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Resumo

DE OLIVEIRA LIMA, Luís Felipe. Aplicações da Otimização Estrutural Evolucional Bidirecional
utilizando o método Galerkin sem malha. 2021. 121p. Dissertação (Mestrado). Faculdade de
Engenharia Mecânica, Universidade Estadual de Campinas, Campinas.

O objetivo principal desse trabalho de mestrado é implementar uma ferramenta com-
putacional para otimização topológica estrutural utilizando métodos sem malha para resolver o
problema físico. O método de otimização topológica empregado é o Bi-directional Evolutionary

Structural Optimization – BESO –, enquanto o método sem malha utilizado é o Element-free

Galerkin – EFG. Duas características particulares desse método são a vanidade de malhas estrutu-
radas e sua capacidade de lidar com problemas não lineares. As funções de forma do método EFG
foram implementadas utilizando dois métodos distintos: o Moving Least-Squares e o Radial Point

Interpolation. No campo da otimização topológica, esse trabalho foca em minimizar a flexibilidade
média em problemas elásticos bidimensionais. As formulações em condição linear e para o caso
de não linearidades geométricas são desenvolvidas para o problema de elasticidade que é, em
seguida, discretizado utilizando o Método dos Elementos Finitos – FEM – e o EFG, no intuito de
compará-los. A formulação do BESO é então apresentada, levando em conta as especificidades
do FEM e do EFG. Em um primeiro momento, as implementações dos métodos FEM e EFG são
validadas utilizando soluções analíticas para problemas simples e pacotes numéricos comerciais
para problemas mais complexos. O método BESO-EFG implementado é comparado ao consoli-
dado BESO-FEM através diferentes problemas de referência em elasticidade linear: as estruturas
two-bar e Michel-type e as vigas engastada e MBB. Por fim, buscando explorar a capacidade do
EFG de lidar com não linearidades geométricas, o método BESO-EFG implementado é usado na
otimização topológica de uma viga engastada não linear.

Palavras-chave: Otimização Topológica, BESO, Método dos Elementos Finitos, Element-free

Galerkin, Não Linearidades Geométricas.



Abstract

DE OLIVEIRA LIMA, Luís Felipe. Applications of the Bidirectional Evolutionary Structural
Optimization using the Element-free Galerkin. 2021. 121p. Thesis (Master). School of Mechanical
Engineering, University of Campinas, Campinas, Brazil.

The main objective of this master thesis is to implement a computational tool for structural
topology optimization that uses meshless methods to solve the physical problem. In this work, the
chosen topology optimization method is the Bi-directional Evolutionary Structural Optimization –
BESO –, while the meshless method utilized is the Element-free Galerkin – EFG. Two characteris-
tics of the EFG method are that no structured meshes are needed and its capacity to deal with non-
linear problems. The EFG shape functions are constructed using two different methods: the Moving
Least-Squares and the Radial Point Interpolation Method. In the topology optimization field, this
work is concerned with minimizing the mean compliance in two-dimensional elastic structures.
Both linear and geometrically nonlinear elasticity formulations are developed and, subsequently,
discretized using the Finite Element Method – FEM – and the EFG, in the interest of comparing
these methods. Then, the BESO formulation is presented considering both FEM and EFG solvers.
In a first moment, the EFG and FEM implementation are validated through comparisons with an-
alytical solutions and commercial solvers. The implemented BESO-EFG algorithm is compared
with the well-established BESO-FEM method using several linear elastic benchmark problems:
two-bar and Michel-type structures, cantilever beam, MBB beam. Finally, seeking to explore the
capability of the EFG method to deal with nonlinear structures, the implemented BESO-EFG is
used in the topology optimization of a geometrically nonlinear cantilever beam.

Keywords: Topology Optimization, BESO, Finite Element Method, Element-free Galerkin, Geo-
metrically Nonlinear Structures.
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1 Introduction

1.1 Background

In a world with a growing trend to sustainability and to cost reduction, intelligent design
of structures plays a key role to achieve eco-friendly economy. Intelligent products or materials
can be obtained, for example, through topology optimization methods, where material is added or
removed following specifics performance criteria in a given project domain. For instance, consider
a beam with length 𝑙 and a rectangular cross-section with dimensions 𝑏 × ℎ, projected to be a stiff
structure, as illustrate in Figure 1.1a. The first design would be a completely filled beam, which
meets the project requirements for stiffness. It is, however, interesting to use the least amount
of material to manufacture this beam due to, for example, economics reasons or environmental
impact reduction. A question which naturally arises is: where is the most appropriate location to

remove material, so that the stiffness properties reduces the least? A key for this sort of question is
topology optimization, which gives the material distribution over the design domain that minimizes
or maximizes a performance criterion. To illustrate this idea, Figure 1.1 shows two final designs,
among several possibilities, after material removal. Topology optimization methods help to decide
which design 1.1b or 1.1c is the best, given a performance criterion.

In general, topology optimization involves two fields: the physical problem and the optimiza-
tion problem. Typically, an optimization algorithm uses the results from equations that govern the
physical behavior of a system to decide which is the best material distribution of this system, as
illustrated in Figure 1.2. By solving the physical problem, one gets information on the system be-
havior and then evaluates the performance criterion or the objective function. The optimization
strategies use the performance criteria to decide where to remove or to add material, providing an
optimized system layout.

Often, the physical models are a set of partial differential equations – PDE – which, for
the most part, can only be solved using numerical methods. In addition to consistent PDEs to
model the physical problem, we also need precise and robust numerical methods for solving these
equations, which is a motivation for the great effort in the scientific community to develop efficient
numerical methods. Indeed, in order to assure appropriate topology results, it is important to have
reliable numerical methods to approximate the physical system behavior. The widely known Finite
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(a)

(b)

(c)

Figure 1.1: A completely filled cantilever beam with rectangular cross-section is presented in (𝑎).
Two alternatives for material removal are presented in (𝑏) and (𝑐), considering a same amount of
removed matter. Given an objective function, optimization methods can predict whether (𝑏) or (𝑐)
is the best design.

Element Method – FEM – have been employed with success to solve physical problems in topology
optimization. However, there are other methods that could be used alternatively to FEM, which is
the case of meshless methods, such as the Element-free Garlekin method – EFG – used in this
work. To deal with the optimization problem, different methods can be used to achieve optimal
designs, such as density-based methods, boundary variation methods or discrete methods, which
are reviewed more in detail later in this chapter.

Because no structured mesh is required in meshless methods, they can present advantages
over FEM when dealing with complex geometries, e.g., human bones or cartilages. Typically,
meshing the complex domains like these can be a time expensive task. Indeed, correctly meshing
the solution domain can be time consuming not only for FEM but also for the methods requiring
structured or regular meshes, such as the Finite Difference Method – FDM – or the Finite Volume
Method – FVM. Meshless methods can also be expedient when the structure being modeled needs
remeshing during the solution process or when the mesh elements undergoes great distortions,
leading to numerical precision loss.
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Figure 1.2: Relationship between physical and optimization problems, established through the
structure design and its relative performance criterion.

Meshless methods like the Element-free Galerkin are based on high order shape functions,
while several FEM codes uses the bilinear shape functions of the 4 nodes quadrilateral elements,
called hereafter quad4 elements. This can lead to smoother stress results in the case of EFG at the
cost of higher computational time (MOLLON, 2016), (OVERVELDE, 2012), (BELYTSCHKO
ET AL., 1994). Indeed, the EFG method provides continuous stress field, which is not the case
of FEM with quad4 elements. Finally, the EFG is presented as a more robust method under large
deformation then the traditional FEM, being an interesting alternative for this class of problems.
Indeed, the EFG uses no discretization mesh, therefore it avoids dealing with highly distorted ele-
ments; in addition, the EFG provides a smoother representation of the stress field compared to low
order FEM (MOLLON, 2016) and (BELYTSCHKO ET AL., 1994).

The FEM has been historically employed to solve a large range of engineering problems such
as solid and fluid mechanics, heat transfer, acoustics and electromagnetism. The EFG is a more re-
cent and, so far, a less developed method then the FEM. Nonetheless, it has been successfully used
to solve these engineering problems, being particularly promising in crack propagation (SALARI
AND DIZADJI, 2012), contact and geometrically nonlinear problems (MOLLON, 2016). Of
course, EFG and the whole class of mesh-free methods have their limitations and difficulties, for
instance the imposition of essential boundary conditions and the high computational cost of to eval-
uate the shape functions. However, the EFG is still attractive, presenting interesting benefits over
FEM which lead us to use it as a solver in topology optimization methods.

In the field of topology optimization, several methods have been proposed to solve a
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wide range of optimization problems. Methods such as Level-Set, SIMP, Homogenization and
BESO have been used to obtain optimized design of, for example, stiff structures (VICENTE
ET AL., 2015), systems with fluid-structure interaction, piezoelectric harvesters (DE ALMEIDA
ET AL., 2019) and fluid-cellular actuators (CUNHA D.C, 2018). Among the vast methods for
topology optimization, the BESO, acronym for Bi-directional Evolutionary Structural Optimiza-
tion, will be employed in this work. When compared to its concurrent methods, the BESO presents
precise results and a simpler and more intuitive implementation. It has proven to be an efficient
method when dealing with stiffness and frequency optimization, as well as solving problems
with multiple material, periodic structures, material nonlinearities and large formations. A special
strength of the BESO method is its capability to naturally deal with fluid-structure optimization
problems in multiphysic systems.

1.2 Objectives

The main purpose of this work is to develop a topology optimization algorithm that uses
meshless methods as numerical method for solving solid mechanics problems. The topology opti-
mization strategy selected to this work is the Bi-directional Evolutionary Topology Optimization –
BESO. The meshless method adopted is the Element-free Galerkin – EFG – due to its popularity
and relatively easy implementation. The EFG will be implemented in two versions: in its classical
form, which uses a Moving Least-Squares method to construct the shape functions, and in a slightly
modified version, that uses a Radial Point Interpolation Method to construct the shape functions,
incorporating the Kronecker delta property (LIU, 2003).

Although the main objective of this work is to perform topology optimization using the EFG
method, a secondary objective is to also implement a FEM solver, for three main reasons. First,
to gain a preliminary insight on the BESO method, which was historically implemented using the
FEM solver for the physic problem. Second, it is intended to perform nonlinear structural analysis
and, as a substantial portion of the scientific literature for this class of problems uses the FEM
formulation, a clear understanding of this method is desirable. Third, comparisons between the
FEM and EFG results are envisaged.

The results of BESO-FEM and BESO-EFG will be compared using topology optimization
benchmark problems for 2D linear elasticity, such as two-bar, Michel-type structures, cantilever
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beam and MBB beam. As one of the major advantages of the EFG is it capability to deal with large
deformations, the last objective is to apply the implemented BESO-EFG method to the topology
optimization of a nonlinear cantilever beam.

The main objectives of this project are given in Figure 1.3, organized in two main branches:
objectives related to the FEM implementation and those concerning the EFG method. In a chrono-
logical order, the first objective is the FEM implementation once there is a vast literature about
this method. Then, the shape functions to be used in the EFG method are implemented and stud-
ied before implementing the EFG itself. Actually, these shape functions have a crucial role in the
EFG method and are studied in detail before tackling the implementation of this method. Once the
discretization methods are well established, the topology problem can be tackled. We start with
the implementation of the BESO-FEM followed by the BESO-EFG. These both methods are used
in the topology optimization of linear problems. Next, we apply the BESO-EFG in the topology
optimization of geometrically nonlinear structures.

Figure 1.3: Major objectives of this project, organized using two branches: the first is relative to
them FEM implementation and the other is related to the EFG. The black arrows indicate the
chronological order of the objectives.

1.3 Scientific literature review

When working with topology optimization two different, yet related, problems show-up: the
physical problem and the topology optimization problem, as illustrated in 1.4. To solve the physical
problem governing equations, numerical methods are used to approximate the PDE by a set of
algebraic equations. Traditionally, the Finite Element Method, the Finite Differences Method and
the Finite Volume methods are used as numerical numerical methods to solve the governing PDE
of the physical problem. Recently, meshless methods such as Diffuse Element Methods, Element-
free Garlekin method, Smooth Particle Hydrodynamics Methods are also employed to solve the
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physical problem equations.

It is hence useful to divide the literature review in three groups: first, on the numerical meth-
ods used to solve the physical problem, with an emphasis on EFG and FE methods; second, on
topology optimization – material model and optimization solvers–; and finally, a specific review on
topology optimization works using meshless methods as physical solvers.

1.3.1 Meshless methods and Finite Element Method

Meshless methods or, alternatively, mesh-free methods – MFM – were developed to prevent
the difficulties associated with the meshing step in approximating PDEs (NGUYEN ET AL., 2008).
The EFG method was first proposed by BELYTSCHKO et al. (1994) and an implementation
using MATLAB is proposed in the works of (DOLBOW AND BELYTSCHKO, 1998) and
(OVERVELDE, 2012).

Contemporary, due to the improvement in computational capacities, the Computer Aided
Engineering – CAE – is a widely used tool in the design of industrial systems and in academic
researches. Through this tool, complex multiphysic systems can be modeled and explored. These
systems are governed by differential or partial differential equations which are, traditionally, solved
using numerical methods such as the FEM, FDM or FVM (LIU, 2003).

The FEM, FDM and FVM fundamentally depend on structured meshes. In FEM the mesh
constituted by elements, in FDM the mesh is called grid, and in FVM the mesh is composed by
cells or volumes. For any case, the formulations of these methods are based on nodal discretization
that uses a predefined relationship between the nodes. This relationship is what defines an element,
a grid or a cell in the FEM, FDM or FVM, respectively.

More recently, different methods to solve the PDEs have been developed as an attempt to
overcome the limitations of the mesh-based methods. Among these new methods, the so called
MFM are a promising alternative. This class of method approximates the field function based on a
nodal discretization that do not require any connections between the nodes.

A pioneering MFM is the Smoothed Particle Hydrodynamics – SPH – method, introduced
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independently by LUCY (1977) and GINGOLD and MONAGHAN (1977), which was firstly
proposed to solve astrophysics problems. It was then adapted to fluid mechanics (GINGOLD
AND MONAGHAN, 1982) and to solid mechanics (LIBERSKY AND PETSCHEK, 1991) and
(LIBERSKY AND PETSCHEK, 1993). The SPH uses a strong formulation of the PDEs, which
includes second order derivatives. The first MFM based on a weak formulation and on the Galerkin
technique is the Diffuse Element Method developed by NAYROLES et al. (1992), in which the
main idea is to replace the FEM local interpolants by the Moving Least Squares local interpolation.

An extended version of the DEM was developed by BELYTSCHKO et al. (1994) named
Element-free Galerkin – EFG –, a widely used mesh-free method. Despite more precise than the
DEM, the EFG method is computationally more expensive. The EFG is applied to a vast range of
engineering problems, such as cracks propagation SHOBEIRI (2015), granular materials modeling
MOLLON (2016), rigid and deformable bodies dynamics MOLLON (2018), thermo-mechanical
simulations IBANES et al. (2013) and tunnel design (HAJIAZIZI AND BASTAN, 2014).

Some advantages of MFM are pointed out by NGUYEN et al. (2008): ℎ-adaptivity is simpler
to incorporate in MFMs than in mesh-based methods; problems with moving discontinuities such as
cracks propagation, shear bands and phase transformation can be treated with ease; large deforma-
tion can be handled more robustly; high-order continuous shape functions; non-local interpolation
character; and no mesh alignment sensitivity.

The FEM is not the main object of this work, instead, it plays the role of a tool to discover
the solid mechanics and topology optimization and to validate and compare the results. The FEM
implementation is totally based on (KWON AND BANG, 2000) and (KIM, 2015).

1.3.2 Topology optimization

The domain of structural optimization can be divided in three main branches: sizing, shape
and topology optimization. In sizing optimization, solely parameters as the thickness, lengths or
diameters are set as design variables, which makes the final optimized structure to present a similar
shape to the initial design. In shape optimization, the position of structural boundary can be altered
during the optimization processes. The boundaries can be controlled, for instance, using limit points
and the boundary tangent at these points as design variables. In topology optimization, material
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can be added or removed within the design domain, which allows the creation of holes and the
merging of these holes anywhere in the design domain, leading to results wholly different from the
structure’s initial design. Figure 1.4 illustrates these three categories.

Figure 1.4: The three branches of structural optimization. In A the thickness 𝑡 is the design variable;
in B the position of black points and the tangent at these points are the design variables which will
define the boundaries of the design domain; and C illustrates the void and solid elements using
white and green rectangles, which defines the holes within the domain.

The topology is represented by a design variable vector x = [𝑥1,𝑥2, . . . ,𝑥𝑛]𝑇 which assumes
only values between 0 and 1, representing void or solid, respectively:

𝑥𝑖 =

⎧⎨⎩1 solid

0 void
(1.1)

There are two types of topology optimization algorithms: the global methods, outside the
scope of this work, and the gradient-based methods – object of this text – which relies on the
objective function derivatives with relation to the design variables, often called sensitivity. Here-
after, we will always refer to topology optimization with gradients-base methods only as topology
optimization, for simplicity sake.
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Figure 1.5: The three branches of structural optimization. In this work we are only concerned with
topology optimization using gradient-based methods.

A topology optimization problem consists on finding the material disposition in a structure
so that a specific performance criterion are maximized or minimized. The optimum structure is
obtained by determining, for every point in the design domain, if there should be material or voids
(HUANG AND XIE, 2010). In this sense, topology optimization is a more general class of struc-
tural optimization in which points within the design domain, representing the presence or absence
of material, are used as design variables. To conveniently assign properties to these points and
thus define solid or void, a material model needs to be conveniently defined. Once the material
model is defined, an optimization strategy can be used to properly assign void or solid properties
to a point in the domain aiming at the maximization or the minimization of a given performance
criteria. The topology optimization field can roughly be categorized by material model and opti-
mization scheme, leading up to three groups: density-based methods, boundary variation methods
and discrete methods.

In density-based methods, the design variables are described in terms of material density over
the design domain, imposing that the density is bounded between a minimum value 𝜌𝑚𝑖𝑛 and 1. The
material density at a point is given in terms of the design variables 𝑥𝑖. A crucial aspect of density-
based methods is the choice of an interpolation function to conveniently express the density in a
domain’s point as a function of the design variables. For example, the Solid Isotropic Material with
Penalization – SIMP – method proposed by BENDSOE (1989) uses a power law to describe the
density in domain points. Alternatively to a power law, the Rational Approximation of Material
Properties – RAMP – proposes the use of a rational function to describe the material behavior
(STOLPE AND SVANBERG, 2001). In all cases, the density distribution over the domain can be
treated as a function and an optimization method such as Method of Moving Asymptotes – MMA
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– (SVANBERG, 1987). An extensive review on density method is presented by BENDSOE and
SIGMUND (1999) discussing the advantage and drawbacks of each material model.

In level-set methods (WANG ET AL., 2003), a level-set function is used to describe the
boundaries of solid or void material inside the design domain. The boundaries are controlled
through the motion of the level-set function, which is subject to the physical problem and optimiza-
tion condition. The main idea of using level-set methods is that topological merging or breaking
are well defined and naturally performed (OSHER AND FEKIW, 2001). The level-set function is
well defined, an optimizer such as MMA or OC can be used to find the optimal topology. Recently,
the initial level-set method proposed by WANG et al. (2003) has been used with other techniques
such topological derivatives (BURGER ET AL., 2004). A level-set method implementation is pre-
sented by ANDREASEN et al. (2020) where some overlaping similarities between level-set and
density-based method are shown.

In discrete methods, the material model is usually taken from density-based methods, such as
the SIMP, and the density of a point are allowed to assume rather 1 or 𝜌𝑚𝑖𝑛, no intermediary values
are authorized. The design variable update scheme does not rely on optimization solvers; instead,
the design variables are updated gradually along iterations until a prescribed volume is reached and
a stop criteria is satisfied, that is why this type of method are also called evolutionary methods.
The main representatives methods are the Evolutionary Structural Optimization – ESO (XIE AND

STEVENS, 1993) and its more general version the Bidirectional ESO or BESO (HUANG AND

XIE, 2010). These methods are also called heuristics because they depend on strong hypothesis on
the behavior of the objective function (ZHOU AND ROZVANY, 2001).

Outside these three groups, the Homogenization method presented by BENDSOE and
KIKUCHI (1988) which is one of the precursors of the modern topology optimization field. In
this method, periodically small holes are inserted in a given homogeneous and isotropic material
cells. Then, the properties of the resulting anisotropic material is obtained by means of the homog-
enization method. An optimization scheme is then used to determine the optimal distribution of
small holes in each cell or element.

This work uses a BESO scheme for the design variables update where the main concept is to
incrementally add or remove material along the iterations until the optimum design is obtained. For
this class of topology optimization method, the material density assumes either zero or one values.
The inefficient material to be eliminated is determined by a sensitivity analysis which uses the
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derivative information of the objective function. The sensitivity of each point or material is often
smoothed using a filter scheme, which helps to avoid undesirable numerical instabilities such as
checkerboard patterns, mesh-dependency and convergence issues for more elaborated structures.
The use of proper sensitivity filters and consistent SIMP model with the BESO procedure is a
reliable optimization method, capable of dealing with complex structure with high computational
efficiency HUANG and XIE (2010).

Although the density approaches – Homogenization, SIMP and Level-Set – have been privi-
leged in topology optimization, the BESO is selected as the methods to be used in this work. The
choice of BESO for this project is due to its simplicity in terms of formulation and implementa-
tion and due to its robust results in a wide range of problems, as showed in the works of LOPES
et al. (2017) in natural frequency optimization, PICELLI (2015) in fluid-structure interaction and
CUNHA (2019) in the conception of cellular fluid-actuators.

1.3.3 Topology optimization with meshless methods

The above presented topology optimization methods use the FEM to solve the physical prob-
lem equations. We will call BESO-FEM the algorithm that combines the BESO for topology opti-
mization and the FEM for physical problems. Below, we present a review on the use of meshless
methods employed for topology optimization problems.

The Reproducing Kernel Particles Method – RKPM – is employed with a SIMP method
for topology optimization of geometrically nonlinear structures in CHO and KWAK (2006). The
RKPM is also used with an implicit topology description approach in ZHOU and ZOU (2008).
The EFG is used with a SIMP strategy for topology optimization of compliant actuators (DU
ET AL., 2009), and with an Optimality Criteria – OC – strategy for topology optimization with
displacement constraints in (YANG ET AL., 2017).

The EFG is adopted with the ESO method in (ZHENG ET AL., 2010) and with BESO in
(ZHAO, 2014) and (SHOBEIRI, 2016), demonstrating that the use of meshless methods can ef-
fectively suppress the traditional numerical instabilities of BESO-FEM, such as mesh dependence,
local minima and checkerboards. Indeed, the work presented by ZHAO (2014) is crucial for this
master’s thesis because it introduces the dual-level interpolation method, capable of penalizing
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not only the discretization nodes but also the integration points in a BESO-EFG algorithm. In his
master’s thesis, OVERVELDE (2012) proposes a very interesting optimization method, called the
Moving Nodes Approach – MNA – that uses the EFG.

Topology optimization methods have been used to obtain optimum design of structures un-
dergoing large deflections, which is one of the objectives of this work. The topology optimization of
geometrically nonlinear problems is approached by HUANG and XIE (2010) in their book, propos-
ing a nonlinear FEM model with BESO strategy. Another study has been conducted by GOMES
and SENNE (2014) using the Sequential Piecewise Linear Programming – SPLP – for topology
optimization, providing several benchmark problems. In their work, BUHL et al. (2000) the MMA
method is used to solve the topology optimization problem. Other relevant works on topology op-
timization of geometrically nonlinear structures are (KIKUCHI ET AL., 1998), (NISHIWAKI
ET AL., 1998) and (ABDI ET AL., 2017). Concerning geometrically nonlinear structure and com-
pliant mechanisms using meshless methods, there are the relevant works of (ZHENG ET AL., 2015)
and (QIZHI ET AL., 2014) that use the EFG with the Optimality Criteria method, and (DU
ET AL., 2009) that show interesting topology results for thermo-mechanical compliant mechanisms
using the EFG with an MMA method.
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2 Meshless Methods

We start this chapter by presenting a formulation for two-dimensional linear elasticity prob-
lems. Once the linear elasticity model is detailed, the FEM is presented in a straightforward manner.
Next, the EFG method is presented along with its main characteristics: the absence of structured
mesh and the shape functions. Due to the importance of shape functions to the EFG method, two
subsections are reserved to study the two class of shape functions proposed in this work: the Moving
Least-Squares and the Radial Point Interpolation Method. For both FEM and EFG it is presented
how to obtain the nodal or local stiffness matrix and how to assembly the global matrix. Compar-
isons between FEM and EFG are point out whenever possible. Finally, the linear theory presented
in the first section of this chapter is extended to account large deformations. The FEM and EFG
discretization are also extended to incorporate the large deflections.

2.1 2D Linear elasticity

In continuum mechanics we are often interested in finding the displacement field of a body
given the external load. As illustrated in Figure 2.1, the process to obtain the displacement field
formulation as a function of the external load requires a few transformations. First, it is necessary
a kinematic law that describes the body’s motion to obtain the strain field. A relationship between
strain and stress field is established through a material law obtained experimentally, called constitu-
tive law. Finally, a force balance or energy minimization can be applied to obtain a relation between
external loads and internal forces or the stress field. Below, there are four subsections dedicated to
each of these steps, presenting in detail the assumptions and the procedures to derive the linear
elastic model.
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Figure 2.1: Steps for formulating a static structural problem, which relates the external loads with
displacement field.

2.1.1 Notation

In this short subsection the notation adopted in this chapter is explained, in an attempt to make
the its reading easier. We will denote the displacement field by u(x), where x are the coordinates
of an arbitrary point. Using a vector notation, with subscripts 1 and 2 to indicate the 2D directions,
we write:

u =

{︃
𝑢1(x)

𝑢2(x)

}︃
,

and

x =

{︃
𝑥1

𝑥2

}︃
.



34

The partial derivatives of a scalar function 𝑓 will be denoted by:

𝜕𝑓

𝜕𝑥𝑗
= 𝑓,𝑗.

The gradient of a function will be widely used hereafter. We denote the gradient ∇ of a scalar
function 𝑓 that depends on the variables 𝑥1,𝑥2, . . . , 𝑥𝑛 as:

∇𝑓(x) =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑓(x)
𝜕𝑥1
𝜕𝑓(x)
𝜕𝑥2
...

𝜕𝑓(x)
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦ .

An important operator that is recurrent in elasticity problems is the linear differential operator,
here denoted by L:

L =

⎡⎢⎢⎣
𝜕

𝜕𝑥1
0

0 𝜕
𝜕𝑥2

𝜕
𝜕𝑥2

𝜕
𝜕𝑥1

⎤⎥⎥⎦ .

The stress 𝜎 and strains 𝜖 fields are written using the Voigt notation:

𝜖 =

⎧⎪⎪⎨⎪⎪⎩
𝜖11

𝜖22

2𝜖12

⎫⎪⎪⎬⎪⎪⎭ , 𝜎 =

⎧⎪⎪⎨⎪⎪⎩
𝜎11

𝜎22

𝜎12

⎫⎪⎪⎬⎪⎪⎭ .
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2.1.2 Kinematics

The kinematics of a deformable body is a mathematical description of the relative motion
between two points within a body under external loads. The 2D linear case considers only small
deformations, being a simplification of the more general nonlinear elasticity theory.

To obtain the kinematics of a deformable body with smooth boundaries, we use the diagram
of Figure 2.2, where a body goes from an initial undeformed domain S0 to a final deformed domain
S. The deformation is denoted by a mapping function 𝜙, which transforms a coordinate X in the
initial undeformed geometry to coordinates x in the final deformed shape. In the same manner, the
inverse mapping function 𝜙−1 transforms the deformed coordinates back to the initial undeformed
geometry.

Figure 2.2: Deformation of a material fiber from an initial undeformed domain S0, with coordinates
X, to the final deformed domain S, with coordinates x. The deformation process is denoted by the
mapping function 𝜙, the displacement field is u and 𝑑X and 𝑑x are infinitesimal vectors.

The coordinates of deformed geometry x can be obtained with the following relation, which
states that the deformed shape is the initial geometry plus the displacement u:

x = 𝜓(X) = X + u. (2.1)
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Still in Figure 2.2, an infinitesimal vector 𝑑X in the undeformed geometry, defined by the
points 𝑃 and 𝑃 ′ in S0, is deformed to an infinitesimal vector 𝑑x – defined by the points 𝑄 and 𝑄′

in S. The relationship between the differential vectors 𝑑x and 𝑑X can be expressed as:

𝑑x =
𝜕x

𝜕X
𝑑X. (2.2)

In Equation 2.2, the derivative of each coordinate of x with respect to each coordinate of
X is called the deformation gradient, denoted by F, which is a recurrent quantity in continuum
mechanics and represents the gradient of the mapping function. In matrix notation, we have:

F =
𝜕𝑥𝑖
𝜕𝑋𝑗

=

[︃
𝜕𝑥1

𝜕𝑋1

𝜕𝑥1

𝜕𝑋2

𝜕𝑥2

𝜕𝑋1

𝜕𝑥2

𝜕𝑋2

]︃
. (2.3)

Using the Equation 2.1, we can write the deformed geometry in terms of the displacement:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 = 𝑋1 + 𝑢1

𝑥2 = 𝑋2 + 𝑢2

𝑥3 = 𝑋3 + 𝑢3

. (2.4)

And the deformation gradient F becomes:

F =

[︃
𝜕𝑢1

𝜕𝑋1
+ 1 𝜕𝑢1

𝜕𝑋2

𝜕𝑢2

𝜕𝑋1

𝜕𝑢2

𝜕𝑋2
+ 1

]︃
. (2.5)

It is worth noting that to avoid singularities in deformations we must have 𝑑𝑒𝑡 (F) > 0.

We have so far defined the deformed and undeformed geometry and established a mapping
function between these two configurations in Equation 2.1. The kinematics is defined by the defor-
mation gradient F, given in Equation 2.5. Once the kinematics is well posed, we can pass to the
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next step, that is, to define a strain measure.

2.1.3 Strains

Considering a regime of small deformations, the difference between deformed and unde-
formed configuration is negligible. We can hence define a strain measure in the deformed shape
referential.

A possible definition of strain is the difference between the squared lengths of the infinitesi-
mal vectors 𝑑x and 𝑑X of Equation 2.6, given below. For illustration purposes, these infinitesimal
vectors are depicted in Figure 2.2.

‖𝑑x‖2 − ‖𝑑X‖2 = 𝑑x𝑇𝑑x− 𝑑X𝑇𝑑X

= (F𝑑X)𝑇 F𝑑X− 𝑑X𝑇𝑑X

= 𝑑X𝑇F𝑇F𝑑X− 𝑑X𝑇𝑑X

= 𝑑X𝑇
(︁
F𝑇F𝑑X− 𝑑X

)︁
= 𝑑X𝑇

(︁
F𝑇F− I2

)︁
𝑑X.

(2.6)

The term F𝑇F in the last statement of Equation 2.6 is fundamental in the continuum mechan-
ics and it is defined as right Cauchy-Green deformation tensor, denoted by C. The term 𝐼2 is the
2 × 2 identity matrix.

In order to obtain a strain measurement relative to the initial squared length, one can divide
the last statement of Equation 2.6 by 𝑑X𝑇𝑑X. This leads to:

E =
𝑑x𝑇𝑑x− 𝑑X𝑇𝑑X

𝑑X𝑇𝑑X
= F𝑇F− I2, (2.7)

where E is the strain tensor. Using the relation for deformation gradient F presented in Equation
2.5, we can write the strain tensor in terms of the displacement:
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E =
1

2

(︁
∇u + ∇u𝑇 + ∇u𝑇∇u

)︁
, (2.8)

where a factor of 1/2 is incorporated in the strain measurements to match the infinitesimal strain
(KIM, 2015). Furthermore, when only small deformations are considered, the quadratic term of
Equation 2.8 – ∇u𝑇∇u – is much smaller than 1 and it can be hence neglected. This leads to the
linear strain measurement:

𝜖 =
1

2

(︁
∇u + ∇u𝑇

)︁
. (2.9)

It is important to note that the relation 2.9 is not a true strain measurement once it does not
remain constant under rigid-body rotations. Thus, it should only be used in linear problems in small
deformations regime, where it is known that the structure does not experiment rigid-body rotations.
If it is necessary to deal with large displacements, the quadratic term of Equation 2.8 cannot be
neglected and the problem will be nonlinear with the displacement gradient. The geometrically
nonlinear cases are discussed in Subsection 2.5.

2.1.4 Constitutive Law

In this work we will only consider plane stress. To do so, we assume that both normal and
shear stresses are negligible due to the small thicknesses of the structures studied in this work. The
Figure 2.3 illustrates the plane stress approximation, where a 3D structure is loaded in a single
plane.
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Figure 2.3: Illustration of the plane stress approximation. Three-dimensional structures loaded in a
single plane can be approximated by a 2D structure if the thickness t is considerably small – here
the load is represented in the plane 𝑥3 = 0. In thick structures, the stress components in 𝑥3 direction
can be neglected.

In the plane stress, the stress tensor possess three components: 𝜎11, 𝜎22 and 𝜎12 as introduced
the Subsection 2.1.1. Using the Voigt notation, we can establish a linear relation between 𝜎 and 𝜖

as follows:

𝜎 =

⎧⎪⎪⎨⎪⎪⎩
𝜎11(x)

𝜎22(x)

𝜏12(x)

⎫⎪⎪⎬⎪⎪⎭ = D

⎧⎪⎪⎨⎪⎪⎩
𝜖11(x)

𝜖22(x)

2𝜖12(x)

⎫⎪⎪⎬⎪⎪⎭ . (2.10)

Using the strain definition of Equation 2.9, the strain tensor is written as:

𝜖 =

⎧⎪⎪⎨⎪⎪⎩
𝜖11(x)

𝜖22(x)

2𝜖12(x)

⎫⎪⎪⎬⎪⎪⎭ = Lu =

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑢1(x)
𝜕𝑥1

𝜕𝑢2(x)
𝜕𝑥2

𝜕𝑢1(x)
𝜕𝑥2

+ 𝜕𝑢2(x)
𝜕𝑥1

⎫⎪⎪⎬⎪⎪⎭ , (2.11)

where D is a 3× 3 matrix called stress-strain matrix or constitutive matrix. The constitutive law of
Equation 2.10 is called St Venant-Kirchhoff model. For plane stress cases, D is given by:
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D =
𝐸𝑦

1 − 𝜈2

⎡⎢⎢⎣1 𝜈 0

𝜈 1 0

0 0 1−𝜈
2

⎤⎥⎥⎦ . (2.12)

The material constants𝐸𝑦 and 𝜈 are the Young’s modulus and the Poisson coefficient, respec-
tively. This constitutive law, called Saint Venant-Kirchoff model.

2.1.5 Equilibrium Equations

In two-dimensional solid mechanic we work with systems similar to the one of Figure 2.4. It
is a solid with an internal domain Ω and with a smooth boundary Γ. It can be subjected to point and
distributed loads – called Neumann or natural boundary conditions – and to displacement supports
– called Dirichlet or essential boundary conditions.

Figure 2.4: Deformable body subjected to external loads and displacement restrictions. The solution
domain is represented by Ω and its boundary by Γ.

The strong formulation of equilibrium equations for the linear elasticity will be deduced using
a balance of forces and linear momentum, in a newtonian approach. The principle of virtual work
is employed to obtain the weak-formulation of the elasticity problem, which is used in the EFG
method.

In a 2D approach and we assume that all variables and external loads depend only on 𝑥1
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and 𝑥2 directions. To deduce the strong formulation of the two-dimension linear elasticity, one can
apply the force equilibrium to the infinitesimal solid element of Figure 2.5. The force equilibrium
in 𝑥1 and 𝑥2 directions is:

𝜕𝜎11
𝜕𝑥1

+
𝜕𝜏12
𝜕𝑥2

+ 𝑓1 = 0

𝜕𝜎22
𝜕𝑥𝑠

+
𝜕𝜏12
𝜕𝑥1

+ 𝑓2 = 0.

(2.13)

Figure 2.5: Infinitesimal element represented with stress and body forces.

Here, 𝜌 is the material density, 𝑢1 and 𝑢2 are displacements in 𝑥1 and 𝑥2 direction respectively.
The variables 𝑓1 and 𝑓2 are the body forces. Here we are concerned with static structural analysis, so
the modeled structures does not experiment any variation with time thus the terms in the right-hand
side of Equation 2.13 are set to zero. The forces 𝑓1 and 𝑓2 are also set to zero as gravitational or
magnetic effects are not taken into account in this work. Thus, the Equation 2.13 can be simplified
to:

𝜕𝜎11
𝜕𝑥1

+
𝜕𝜏12
𝜕𝑥2

= 0

𝜕𝜎22
𝜕𝑥2

+
𝜕𝜏12
𝜕𝑥1

= 0.

(2.14)
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The force balance of Equation 2.14 is valid for any elemental stress over the entire domain
Ω. By introducing a matrix notation, the Equations 2.14 can be written in a more compact form:

L𝑇𝜎 = 0, (2.15)

where L is the linear differential operator, defined as:

L =

⎡⎢⎢⎣𝜕/𝜕𝑥1 0

0 𝜕/𝜕𝑥2

𝜕/𝜕𝑥2 𝜕/𝜕𝑥1

⎤⎥⎥⎦ . (2.16)

The boundary conditions – natural and essential – are added to the problem through two extra
equations:

L𝑇𝜎 = 0

u = ū

𝜎n = t̄.

(2.17)

In Equation 2.17 the prescribed displacement is denoted by ū and n is a unitary vector normal,
outward to the surface. The prescribed traction, which can account for both distributed and point

loads, it is denoted by t̄ =
[︁
𝑡1(x) 𝑡2(x)

]︁𝑇
.

It is worth noting that, although the Equation 2.17 has only a linear differential operator ap-
plied to the stress 𝜎, the elasticity problem is a second order problem with relation to the displace-
ment field. Indeed, the stress field is obtained from the strain field, which in turn, results from the
derivative of the displacement field. In this way, the strong formulation requires the displacement
field to be such that the second-order derivatives are continuous.

An alternative way of stating the equilibrium equations is using an energy balance instead
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of linear momentum equilibrium. It considers that the mechanical structure will deform under the
applied load and will resist to deformation by generating internal forces. When a structure deforms,
the internal forces increase and the stored energy also increases. The stored deformation energy is
called strain energy and can be written as:

𝑈(u) =
1

2

∫︁
Ω

𝜎(u) : 𝜖(u) 𝑑Ω. (2.18)

Here the double dots product : of two matrices produces a scalar. Considering two 3 × 3

second order tensors Q and S, the double dots product is defined as:

Q : S =𝑄11𝑆11 +𝑄12𝑆12 +𝑄13𝑆13+

𝑄21𝑆21 +𝑄22𝑆22 +𝑄23𝑆23+

𝑄31𝑆31 +𝑄32𝑆32 +𝑄33𝑆33.

(2.19)

As the structure deforms, the external load – traction and body forces – produces work. The
work done by external forces can be written as:

𝑊 (u) =

∫︁∫︁
Ω

u · f𝑑Ω +

∫︁
Γ

u · t̄ 𝑑Γ. (2.20)

As previously stated, the body forces are not considered in this work hence the term of f
becomes zero:

𝑊 (u) =

∫︁
Γ

u · t̄ 𝑑Γ. (2.21)

The structure’s total potential energy, here denoted by Π, is obtained from the subtraction of
the work of external loads – 𝑊 (u) – from the internal energy – 𝑈(u) – , as follows:
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Π(u) = 𝑈(u) −𝑊 (u)

=
1

2

∫︁
Ω

𝜎(u) : 𝜖(u) 𝑑Ω−
∫︁
Γ

u · t̄ 𝑑Γ.
(2.22)

The principle of minimum total potential energy states that: of all kinematically admissible

configurations, the deformation producing the minimum total potential energy is the stable equi-

librium conditions. The space of kinematically admissible configurations are those that satisfy the
boundary conditions. Taking the stationary value of Equation 2.22, we obtain

0 =
𝜕

𝜕u

(︂
1

2

∫︁
Ω

𝜎(u) : 𝜖(u)𝑑Ω−
∫︁
Γ

u · t̄ 𝑑Γ

)︂
. (2.23)

2.2 FEM Discretization

The FEM discretization is obtained in a straight forward manner with a weighted residual
method applied to the equilibrium Equations 2.13. Below the residual method used to obtain the
FEM formulation is presented in a simplified way. For more details one can consult (KWON AND

BANG, 2000), upon which is based this subsection.

In weighted residual methods, a residual of the approximated solution is evaluated over the
entire domain Ω and is boundaries. So applying the weighted residual to Equation 2.14, we have:

∫︁
Ω

𝜔1

(︂
𝜕𝜎11
𝜕𝑥1

+
𝜕𝜏1
𝜕𝑥2

)︂
𝑑Ω +

∫︁
Γ

𝜔1 𝑡1 𝑑Γ = 0∫︁
Ω

𝜔2

(︂
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜏12
𝜕𝑥1

)︂
𝑑Ω +

∫︁
Γ

𝜔2 𝑡2 𝑑Γ = 0.

(2.24)

The functions 𝜔1 and 𝜔2 are called weight functions. Their definition and how they can be
constructed will be presented latter on this subsection. The boundary traction t̄ = [𝑡1,𝑡2]

𝑇 are given
in terms of the prescribed traction values and the unitary vector normal to the boundary Γ. In this
way, we can write the vector t̄ as follows:
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𝑡1 = 𝜎11𝑛1 + 𝜏12𝑛2

𝑡2 = 𝜏12𝑛1 + 𝜎22𝑛2.
(2.25)

Applying integration by parts, the Equation 2.24 becomes:

−
∫︁
Ω

{︃
𝜕𝜔1

𝜕𝑥1
𝜎11 + 𝜕𝜔1

𝜕𝑥2
𝜎12

𝜕𝜔2

𝜕𝑥1
𝜎12 + 𝜕𝜔2

𝜕𝑥2
𝜎22

}︃
𝑑Ω +

∫︁
Γ

{︃
𝜔1 𝑡1

𝜔2 𝑡2

}︃
𝑑Γ = 0. (2.26)

Which can be rewritten in matrix form for a more compact notation:

−
∫︁
Ω

[︃
𝜕𝜔1

𝜕𝑥1
0 𝜕𝜔1

𝜕𝑥2

0 𝜕𝜔2

𝜕𝑥2

𝜕𝜔2

𝜕𝑥1

]︃⎧⎪⎪⎨⎪⎪⎩
𝜎11

𝜎22

𝜎12

⎫⎪⎪⎬⎪⎪⎭ 𝑑Ω +

∫︁
Γ

{︃
𝜔1 𝑡1

𝜔2 𝑡2

}︃
= 0, (2.27)

or

∫︁
Ω

[︃
𝜕𝜔1

𝜕𝑥1
0 𝜕𝜔1

𝜕𝑥2

0 𝜕𝜔2

𝜕𝑥2

𝜕𝜔2

𝜕𝑥1

]︃⎧⎪⎪⎨⎪⎪⎩
𝜎11

𝜎22

𝜏12

⎫⎪⎪⎬⎪⎪⎭ 𝑑Ω =

∫︁
Γ

{︃
𝜔1𝑡1

𝜔2𝑡2

}︃
𝑑Γ. (2.28)

Applying the definition of strain and stress presented in Sections 2.1.3 and 2.1.4 we can relate
the strain field with the external loads using the constitutive relation:

∫︁
Ω

[︃
𝜕𝜔1

𝜕𝑥1
0 𝜕𝜔1

𝜕𝑥2

0 𝜕𝜔2

𝜕𝑥2

𝜕𝜔2

𝜕𝑥1

]︃
[𝐷]

⎧⎪⎪⎨⎪⎪⎩
𝜖11

𝜖22

𝜖12

⎫⎪⎪⎬⎪⎪⎭ 𝑑Ω =

∫︁
Γ

{︃
𝜔1𝑡1

𝜔2𝑡2

}︃
𝑑Γ. (2.29)
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The domain Ω will be discretized using rectangular elements with a four nodes rectangular
element – hereafter quad4 element –, shown in Figure 2.6. For this element, the nodal displacements
are interpolated using the bi-linear shape functions 𝑁𝑖:

u = Nue, (2.30)

where N is a matrix containing the shape functions of each node of the quad4 element and ue is an
array that collects the nodal diplacement of the quad4 element. In matrix form, we have:

N =

[︃
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0

0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]︃
, (2.31)

and

ue =
{︁
𝑢11 𝑢12 𝑢21 𝑢22 𝑢31 𝑢32 𝑢41 𝑢42

}︁𝑇

. (2.32)

The shape functions of each node 𝑖 for a quad4 element are given in Equations 2.33. A shape
function 𝑁𝑖 is written in terms of lengths 𝑎, 𝑏 and the coordinates 𝑥1 and 𝑥2 of each point inside
an element, as shown in Figure 2.6. These shape functions are called bi-linear shape functions and
are illustrated in Figure 2.7. One may note that the shape function of a node 𝑖 assumes value of 1 at
this node coordinates and vanishes for all other nodes.

𝑁1(𝑥1,𝑥2) =
(𝑎− 𝑥1)(𝑏− 𝑥2)

𝑎𝑏

𝑁2(𝑥1,𝑥2) =
𝑥1(𝑏− 𝑥2)

𝑎𝑏

𝑁3(𝑥1,𝑥2) =
𝑥1𝑥2
𝑎𝑏

𝑁4(𝑥1,𝑥2) =
𝑥2(𝑎− 𝑥1)

𝑎𝑏

(2.33)
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(a) (b)

Figure 2.6: Illustration (𝑎) shows the domain discretized using the quad4 element. Illustration (𝑏)
gives more detail on the DOF of quad4 element: it is a rectangular element with 4 nodes and two
degrees of freedom per node - in 𝑥1 and 𝑥2 directions.

Figure 2.7: Bi-linear shape functions used in FEM. These functions are only defined inside an
element and assume values 1 in their correspondent node and vanishes in all other nodes.

In a similar way to the discretization of the displacement field in Equation 2.30, the strain
tensor can also be interpolated using the derivatives of the shape functions – the B matrix – and the
elemental displacement vector ue:
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𝜖 = Bue. (2.34)

Here, B is a matrix containing the shape function derivatives and it is given by:

B =

⎡⎢⎢⎣𝑁1,1 0 𝑁2,1 0 𝑁3,1 0 𝑁4,1 0

0 𝑁1,2 0 𝑁2,2 0 𝑁3,2 0 𝑁4,2

𝑁1,2 𝑁1,1 𝑁2,2 𝑁2,1 𝑁3,2 𝑁3,1 𝑁4,2 𝑁4,1

⎤⎥⎥⎦ . (2.35)

This far, we know how to use the shape functions and their derivatives to discretize the dis-
placement and strain field. However, it is still necessary to define the weight function 𝜔1 and 𝜔2

in Equation 2.29 to finish the FEM discretization process. In Galerkin methods, the weight func-
tions 𝜔𝑖 are chosen to be equal to shape functions. In this way we have 𝜔1 = [𝑁1,𝑁2,𝑁3,𝑁4]

𝑇 and
𝜔2 = [𝑁1,𝑁2,𝑁3,𝑁4]

𝑇 . This is to say that each variable 𝜔𝑖 in Equation 2.29 should be replaced by
the 4 × 1 vector N = [𝑁1,𝑁2,𝑁3,𝑁4]

𝑇 .

The Equation 2.29 then becomes:

∫︁
Ω

[︃
𝜕𝜔1

𝜕𝑥1
0 𝜕𝜔1

𝜕𝑥2

0 𝜕𝜔2

𝜕𝑥2

𝜕𝜔2

𝜕𝑥1

]︃
D

⎧⎪⎪⎨⎪⎪⎩
𝜖11

𝜖22

𝜖12

⎫⎪⎪⎬⎪⎪⎭ 𝑑Ω =

𝑛𝑒𝑙
A
𝑖=1

∫︁∫︁
𝑎 𝑏

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑁1
𝜕𝑥1

0 𝜕𝑁1
𝜕𝑥2

0 𝜕𝑁1
𝜕𝑥1

𝜕𝑁1
𝜕𝑥1

𝜕𝑁2
𝜕𝑥1

0 𝜕𝑁2
𝜕𝑥2

0 𝜕𝑁2
𝜕𝑥1

𝜕𝑁2
𝜕𝑥1

𝜕𝑁3
𝜕𝑥1

0 𝜕𝑁3
𝜕𝑥2

0 𝜕𝑁3
𝜕𝑥1

𝜕𝑁3
𝜕𝑥1

𝜕𝑁4
𝜕𝑥1

0 𝜕𝑁4
𝜕𝑥2

0 𝜕𝑁4
𝜕𝑥1

𝜕𝑁4
𝜕𝑥1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D

⎡⎢⎢⎣
𝜕𝑁1
𝜕𝑥1

0 𝜕𝑁2
𝜕𝑥1

0 𝜕𝑁3
𝜕𝑥1

0 𝜕𝑁4
𝜕𝑥1

0

0 𝜕𝑁1
𝜕𝑥2

0 𝜕𝑁2
𝜕𝑥2

0 𝜕𝑁3
𝜕𝑥2

0 𝜕𝑁4
𝜕𝑥2

𝜕𝑁1
𝜕𝑥2

𝜕𝑁1
𝜕𝑥1

𝜕𝑁2
𝜕𝑥2

𝜕𝑁2
𝜕𝑥1

𝜕𝑁3
𝜕𝑥2

𝜕𝑁3
𝜕𝑥1

𝜕𝑁4
𝜕𝑥2

𝜕𝑁4
𝜕𝑥1

⎤⎥⎥⎦ui
e 𝑑𝑥1 𝑑𝑥2. (2.36)

In Equation 2.36 two important modifications with relation to Equation 2.29 were done. First,
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the elements of the matrix containing the weight function derivatives were reorganized to be in
accordance with the elemental displacement vector ue. Second, the integral over the domain Ω

were replaced by a summation – denoted by A – over all the quad4 elements, where 𝑛𝑒𝑙 represents
the total number of element. The summation A is an special operator: it is called the assembly

operator, which performs the summation of all DOFs – 𝑢𝑖1 and 𝑢𝑖2 – present in the discretization.

Indeed, during the assembly of the global system, the contribution of each element 𝑖 needs
to be taken into account. The contribution of each element 𝑖 is called elemental or local stiffness,
while the matrix resulting from the assembly operation is called global stiffness matrix.

One may also note that in Equation 2.36 the matrix containing shape function derivatives are
the same B matrix defined in Equation 2.34. In this way, the elemental stiffness can be written in a
compact form:

Ke =

∫︁∫︁
𝑎 𝑏

B𝑇D B 𝑑𝑥1𝑑𝑥2. (2.37)

The global force is calculated in a similar way. The imposed traction forces are discretized
using the shape functions and integration along the boundary, as shown in Equation 2.38. When
point forces are considered, the integral solution is straightforward and for these case the nodal
forces can be imposed directly in the global force vector. The same assembly operator A can be
used to correctly assign the nodal forces to each DOF in the global force vector.

fg =

∫︁
Γ

N𝑇

{︃
𝑡1

𝑡2

}︃
𝑑Γ. (2.38)

It is still necessary to calculate the integrals of Equation 2.37 and 2.38. Due to the simplic-
ity of bi-linear shape functions, the integrals are calculated analytically for the quad4 rectangular
element. The elemental matrix are assembled into the global stiffness matrix considering a nodal
numbering scheme, as shown in Figure 2.6.

Considering that each node posses 2 DOF and the total number of nodes is 𝑛 = 4 × 𝑛𝑒𝑙, the
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global matrix Kg is a 2𝑛 × 2𝑛 matrix, accounting 2 DOF for each node and it is the sum of all
element stiffness matrix. Similarly, the global forces vector fg is a 2𝑛 × 1 vector. As a result, we
have the following linear system, obtained from the discretization of Equation 2.29:

Kgu = fg, (2.39)

where Kg is the global stiffness matrix, u is the displacement field and fg is the force vector,
accounting both point and distributed forces.

2.3 EFG Discretization

The basic idea of EFG is to approximate the displacement field u(x) of the weak formulation
of Equation 2.23 using a finite number 𝑛 of approximated nodal values ûℎ𝑘 and the shape functions
𝜑𝑘(x). Each node 𝑘 has a shape function, and we can approximate the displacement field and its
derivatives as follows:

u(x) ≈ uℎ(x) =
𝑛∑︁

𝑘=1

𝜑𝑘(x)ûℎ𝑘, (2.40)

and

u(x),𝑗 ≈ uℎ
,𝑗(x) =

𝑛∑︁
𝑘=1

𝜑𝑘
,𝑗(x)ûℎ𝑘. (2.41)

Here, x are the coordinates where we want the approximation, x𝑘 are the coordinates of
discretization nodes and ûℎ𝑘 = ûℎ(x𝑘) is the approximated nodal value of the displacement field.
The function 𝜑(x)𝑘 is the shape function of node 𝑘 evaluated at coordinates x. This approximation
is similar to the one used in FEM, where the nodal displacement of an element is interpolated using
the bi-linear shape functions N. Differently from FEM, the EFG uses approximated nodal values.
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While in FEM the shape functions are defined inside an element of a structured mesh, in
meshless methods they are defined in regions called influence domain. The influence domain is the
neighborhood of a given node. This neighborhood can be defined as the region inside a circle of
radius 𝑟 centered in the interest node. Alternatively, a rectangle with sides ∆𝑥, ∆𝑦 centered in the
interest node can also be used. The influence domain concept is illustrated in Figure 2.8.

(a) Circular (b) Rectangular

Figure 2.8: Illustration of the influence domain of a node. In the EFG method, the shape functions
of a node is active inside the influence domain of this node and vanishes for all positions outside.

For example, the nodes with coordinates x𝑖𝑛 that lies inside the neighborhood of a node
with coordinates x𝑘 will be influenced by this node once the shape function 𝜑𝑘(x) is active in
this region. Equivalently, all nodes with coordinates x𝑜𝑢𝑡 will not be influenced because the shape
function vanishes for all nodes lying outside the influence domain of coordinates x𝑘.

An important aspect of the EFG method is hence the construction of the shape functions,
which will be discussed in the next subsection. With illustration purposes, Figure 2.9 shows the
general aspects of a shape function: it is active only inside the nodal influence domain and it
is decreasing with distance from its correspondent node. In the current section, however, we are
concerned with the construction of EFG approximation and with the discretization of the linear
elasticity problem. We will, for now, consider that 𝜑(x) exists and it is at least 𝐶1 continuous.
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Figure 2.9: Illustration of the general aspects of a shape function. Here the shape function 𝜑(x)𝑘 of
a given node 𝑘 is drawn. The shape function assumes its maximum value at the coordinate x𝑘 of its
correspondent node and decreases as the distance from x𝑘 increases.

The next step in the EFG construction is to replace the approximation of the dis-
placement field and its derivatives in weak formulation of Equation 2.23 - (LIU, 2003),
(OVERVELDE, 2012). The approximations of Equations 2.40 and 2.41 can be written in a more
compact way using the matrix notation:

u(x) ≈
{︃
𝑢ℎ1(x)

𝑢ℎ2(x)

}︃
=

[︃∑︀𝑛
𝑘=1 𝜑

𝑘(x)𝑢̂ℎ𝑘1∑︀𝑛
𝑘=1 𝜑

𝑘(x)𝑢̂ℎ𝑘2

]︃
=

𝑛∑︁
𝑘=1

𝜑𝑘(x)ûℎ𝑘. (2.42)

With this relation we can write the displacement field u(x) in terms of approximated nodal
values ûℎ𝑘. In Equation 2.42 the final terms are:

𝜑𝑘(x) =

[︃
𝜑𝑘(x) 0

0 𝜑𝑘(x)

]︃
, (2.43)

and

ûℎ𝑘 =
{︁
𝑢̂ℎ𝑘1 𝑢̂ℎ𝑘2

}︁𝑇

. (2.44)

So, in a compact form, the discretized displacement field approximation can be written as:
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u(x) ≈ ΦU, (2.45)

where Φ is a matrix containing the shape function of all 𝑛 discretization nodes evaluated at the
coordinates of interest x, and the vector U is a vector collecting the approximated nodal values of
displacement. They are written as:

Φ =

[︃
𝜑1(x) 0 . . . 𝜑𝑛(x) 0

0 𝜑1(x) . . . 0 𝜑𝑛(x)

]︃
2×2𝑛

, (2.46)

and

U =
{︁
𝑢11 𝑢12 . . . 𝑢𝑛1 𝑢𝑛2

}︁𝑇

1×2𝑛
. (2.47)

A shape function of an arbitrary node 𝑘 evaluated in 𝑞 points with coordinates x =[︁(︀
𝑥11,𝑥

1
2

)︀
, . . . ,

(︀
𝑥𝑞1,𝑥

𝑞
2

)︀]︁
is written as: 𝜑𝑘(x) = 𝜑𝑘 =

[︁
𝜑1
(︀
𝑥11,𝑥

1
2

)︀
, . . . ,𝜑1

(︀
𝑥𝑞1,𝑥

𝑞
2

)︀]︁
. The shape

function vanishes for coordinates lying outside the influence domain of node 𝑘. Thus, 𝜑𝑘 is eval-
uated only for coordinates inside the influence domain of node 𝑘. Moreover, as it explained later
in the chapter, the coordinates x are thode of the Gauss points used in the integration of the weak-
formulation.

One may note an important difference between the shape functions used in EFG and those
used in FEM. Here, 𝜑𝑘 is not a 3-by-8 matrix as in FEM, instead, it is assumes different sizes
depending on the number of nodes inside the influence domain of each node. This number may
vary, for example, if a node lies in the central portion of the solution domain Ω or in a corner.

The derivatives of the displacement field can also be discretized by simply applying the linear
differential operator to the approximated displacement field:

Lu(x) ≈
𝑛∑︁

𝑘=1

L 𝜑𝑘 ûℎ𝑘 = LΦU, (2.48)
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where the matrix containing the shape function derivatives is denoted by B, and has the following
form:

LΦ = B =

⎡⎢⎢⎣𝜑
1
,1(x) 0 . . . 𝜑𝑛

,1(x) 0

0 𝜑1
,2(x) . . . 0 𝜑𝑛

,2(x)

𝜑1
,2(x) 𝜑1

,1(x) . . . 𝜑𝑛
,1(x) 𝜑𝑛

,2(x)

⎤⎥⎥⎦ . (2.49)

The method to obtain the shape function and its derivatives will be discussed in the next
subsection.

Finally, the strain field 𝜖 = Lu(x) is written in terms of B and the nodal values of displace-
ment Us:

Lu(x) ≈ BU. (2.50)

Now that the displacement field and its derivatives are discretized, we can replace these ap-
proximations in the weak formulation of Equation 2.23. This equation is rewritten below in a vari-
ational form, where the test functions are chosen to be similar displacement field. The Lagrange
multipliers are used to enforce essential boundary conditions. We have:

∫︁
Ω
𝛿 [Lu]𝑇 D [Lu] 𝑑Ω−

∫︁
Ω
𝛿u𝑇 f𝑑Ω−

∫︁
Γ
𝛿u𝑇 t𝑑Γ−

∫︁
Γ
𝛿𝜆𝑇 [u− ū] 𝑑Γ−

∫︁
Γ
𝛿u𝜆𝑇 𝑑Γ = 0. (2.51)

Applying the discretization to the first term of Equation 2.51:

∫︁
Ω

𝛿 [Lu]𝑇 D [Lu] 𝑑Ω =

∫︁
Ω

𝛿U𝑇D [BU] 𝑑Ω =

∫︁
Ω

𝛿U𝑇B𝑇DBU 𝑑Ω. (2.52)

As the terms ûℎ and its variational 𝛿ûℎ are constant nodal values, they can be removed from
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the integral, leading to:

∫︁
Ω

𝛿 [Lu]𝑇 D [Lu] 𝑑Ω = 𝛿U𝑇

∫︁
Ω

B𝑇DB 𝑑Ω U. (2.53)

The integral in the above equation also appears in the FEM discretization and we can recog-
nize it as the global stiffness matrix. We have then:

Kg =

∫︁
Ω

B𝑇DB 𝑑Ω. (2.54)

The global stiffness matrix is composed by 𝑛 sub-matrix with size 2×2, called nodal or local
stiffness matrix, as shown below:

Kg =

⎡⎢⎢⎣
K11 . . . K1𝑛

... . . . ...
K𝑛1 . . . K𝑛𝑛

⎤⎥⎥⎦ , K𝑖𝑗 =

∫︁
Ω

B𝑖𝑇DB𝑗 𝑑Ω. (2.55)

The first term of Equation 2.51 is then written as:

∫︁
Ω

𝛿 [Lu]𝑇 D [Lu] 𝑑Ω = 𝛿U𝑇KgU. (2.56)

Here, B𝑖 refers to a matrix containing only the derivatives of the shape functions relative
to node 𝑖. Differently from FEM, the local stiffness matrix needs to be integrated over the entire
domain or, more efficiently, over the influence domain of a node, once the shape function vanishes
for all positions outside the influence domain of node. This integration is performed using the
Gauss Quadrature method, explained later on this subsection. For now, we will firstly state the
discretization for the other terms of weak formulation 2.51.

The second term in Equation 2.51, corresponding to body forces contributions, are discretized
in a similar way:
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∫︁
Γ

𝛿u𝑇 f 𝑑Ω =

∫︁
Ω

𝛿 [ΦU]𝑇 f 𝑑Ω =

∫︁
Ω

𝛿U𝑇Φ𝑇 f 𝑑Ω = 𝛿U𝑇

∫︁
Ω

Φ𝑇 f 𝑑Ω, (2.57)

where the integral over the domain is called global body force vector:

Fb =

∫︁
Ω

Φ𝑇 f 𝑑Ω. (2.58)

In this way, the body forces term is written as:

∫︁
Ω

𝛿u𝑇 f 𝑑Ω = 𝛿U𝑇Fb. (2.59)

The third term in Equation 2.51, relative to the distributed loads, becomes:

∫︁
Γ

𝛿u𝑇 t𝑑Γ =

∫︁
Γ

𝛿 [ΦU]𝑇 p 𝑑Γ =

∫︁
Γ

𝛿U𝑇Φ𝑇p 𝑑Γ = 𝛿U𝑇

∫︁
Γ

Φ𝑇p 𝑑Γ. (2.60)

The integral in the above equation is the global traction vector:

Ft =

∫︁
Γ

Φ𝑇p 𝑑Γ. (2.61)

Thus, the traction loads term is:

∫︁
Γ

𝛿u𝑇 t𝑑Γ = 𝛿U𝑇Ft. (2.62)

Now, for the Lagrange Multiplier terms, we can approximate the multipliers 𝜆 using the same
strategy employed with the displacement field. We have:
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𝜆(x) ≈
{︃
𝜆̂1(x)

𝜆̂2(x)

}︃
=

[︃∑︀𝑛𝑏

𝑖=1N
𝑖(x)𝜆𝑖1∑︀𝑛𝑏

𝑖=1N
𝑖(x)𝜆𝑖2

]︃
=

𝑛𝑏∑︁
𝑖=1

N(x)𝜆𝑖. (2.63)

Here, the summation is over the boundary nodes 𝑛𝑏 and the shape function matrix is denoted
N and is written as:

N =

[︃
𝑁1(x) 0 . . . 𝑁𝑛𝑏(x) 0

0 𝑁1(x) . . . 0 𝑁𝑛𝑏(x)

]︃
. (2.64)

The notation for these shape functions changed because for essential boundary conditions im-
position, the FEM shape functions can be employed (BELYTSCHKO ET AL., 1994), (DOLBOW
AND BELYTSCHKO, 1998), (OVERVELDE, 2012) – of course, the shape functions 𝜑 could
also be used. Actually, the FEM shape functions are more simple and computationally less expan-
sive. Hence, in this work, the 1D linear FEM shape function will be used for imposing essential
boundary conditions using the Lagrange Multipliers.

Now that we have a discretization for Lagrange Multipliers, we can apply it to the two last
terms of Equation 2.51. Let us begin with the term containing the prescribed displacements:

∫︁
Γ

𝛿𝜆 [u− ū] 𝑑Γ =

∫︁
Γ

[N𝛿Λ]𝑇 [ΦU− ū] 𝑑Γ = 𝛿Λ𝑇

∫︁
Γ

N𝑇Φ 𝑑Γ − 𝛿Λ𝑇

∫︁
Γ

N𝑇 ū 𝑑Γ. (2.65)

The integral in the first term of Equation 2.65 is denoted by G and the integral in the second
term is denoted by Q. Similarly to the global stiffness matrix, G is composed by 𝑛𝑏 sub-matrix
with size 2 × 2. The vector Λ and 𝛿Λ are constant nodal values relative to Lagrange Multipliers.
We have:

Λ =
{︀
𝜆11,𝜆

1
2, . . . ,𝜆

𝑛𝑏
1 ,𝜆

𝑛𝑏
2

}︀𝑇
𝛿Λ =

{︀
𝛿𝜆11,𝛿𝜆

1
2, . . . ,𝛿𝜆

𝑛𝑏
1 ,𝛿𝜆

𝑛𝑏
2

}︀𝑇
,

(2.66)
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G =

⎡⎢⎢⎣
G11 . . . G1𝑛𝑏

... . . . ...
G𝑛1 . . . G𝑛𝑛𝑏

⎤⎥⎥⎦ , Gi j =

∫︁
Γ

N𝑖𝑇𝜑𝑗 𝑑Γ, (2.67)

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑞11

𝑞12
...
𝑞𝑛𝑏1

𝑞𝑛𝑏2

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, q𝑖 = −

∫︁
Γ

N𝑖𝑇 ū 𝑑Γ. (2.68)

The last term of Equation 2.51 is discretized in the same manner:

∫︁
Γ

𝛿u𝑇𝜆 𝑑Γ =

∫︁
Γ

[Φ𝛿U]𝑇 NΛ 𝑑Γ = 𝛿U𝑇

∫︁
Γ

Φ𝑇N 𝑑Γ Λ. (2.69)

The integral of Equation 2.69 is the G matrix previously defined. With this, the last two terms
of Equation 2.51 are written as:

∫︁
Γ

𝛿𝜆 [u− ū] 𝑑Γ = 𝛿Λ𝑇GU + 𝛿ΛQ, (2.70)

and

∫︁
Γ

𝛿u𝑇𝜆 𝑑Γ = 𝛿U𝑇GΛ. (2.71)

Finally, the discretized version of Equation 2.51 is:

𝛿U𝑇KgU + 𝛿U𝑇Fb + 𝛿U𝑇Ft + 𝛿Λ𝑇GU + 𝛿ΛQ + 𝛿U𝑇GΛ = 0

[𝛿U]𝑇
[︀
KgU + F + GΛ

]︀
+ [𝛿Λ]𝑇 [GU + ΛQ] = 0,

(2.72)
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where the body and traction forces Fb and Ft are grouped in the global force vector F. As the
terms 𝛿U and 𝛿Λ can be chosen arbitrary (OVERVELDE, 2012), the above equations reduce to
the following linear system:

[︃
Kg G

G𝑇 0

]︃{︃
U

Λ

}︃
=

{︃
F

Q

}︃
. (2.73)

The integration over the domain Ω and the boundary Γ are performed using the well-known
Gaussian Quadrature. The Gauss points are distributed over the domain Ω and they are orga-
nized inside integration cells, as shown in Figure 2.10. Although the integration cells constitute
a background mesh, its complexity is considerably inferior compared to a typicall FEM mesh
(BELYTSCHKO ET AL., 1994), (OVERVELDE, 2012). In fact, the background mesh is not
structured and it can be created independently from the discretization nodes, as illustrated in Figure
2.10b. Moreover, randomly spaced nodes can also be used instead of regularly distributed nodes.

It can also be seen in Figure 2.10 the boundary Gauss points for integration, represented in
red. These points are used to perform the integration of Equations 2.70 and 2.71. Figure 2.11 shows
in more detail the spatial distribution of Gauss points inside an integration cell. The number of
Gauss points per cell is, of course, an arbitrary choice: too few points can lead to imprecision during
the integration process and a large number of points may drastically increase the computational time
to evaluate the integrals.
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(a) Coincident

(b) Non-coincident

Figure 2.10: Typical EFG discretization. Nodes in blue are nodes and green dots are Gauss points
organized inside the cells marked with dotted line. The red dots are boundary Gauss points. Images
𝑎 and 𝑏 show that discretization nodes and background mesh can be created independently.

Figure 2.11: Integration cell with 5 × 5 Gauss points, represented in green. The blue points are the
discretization nodes. The dotted lines illustrate borders of the integration cell.

A broad EFG algorithm is given in Figure 2.13. The assembly of the global vectors and matrix
is a substantial portion of the EFG method. An algorithm for the calculation of the local stiffness
matrix and for assembling the global matrix is given in Figure 2.14. The algorithm consists in a
loop over all the integration point; this is done with a loop over the integration cell and, for each
integration cell, a second loop over its Gauss points. As represented in Figure 2.14, 𝑛𝑐 is the total
number of cells and 𝑛𝐺𝑃 is the number of Gauss points per cell.
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Still in the algorithm of Figure 2.13, the shape function of a Gauss point 𝑔 is evaluated at the
coordinates of each node 𝑖 inside the influence domain of 𝑔. The matrix B can hence be obtained
and the integration is done using the Gauss Quadrature rule. The resulting of the integration is than
added to the global stiffness matrix using a localization vector, given in Equation 2.74, that states
the position of each DOF in the global stiffness matrix. The order global vectors and matrix – G,
Q and F – are obtained using the same procedure.

loc = [2𝑛− 1 , 2𝑛] . (2.74)

A representation of the difference between FEM and EFG discretization is shown in Figure
2.12. The triangular elements of FEM mesh create a structured mesh through nodal connections.
On the other hands, the EFG discretization does not possess an explicit connection between nodes,
and some regions of the domain can belong to the influence domain of more than one node.

(a) Representation of a FEM discretization with triangular
elements.

(b) Representation of a meshless discretization with circular
influence domain.

Figure 2.12: A structured mesh of triangular elements typically used in FEM is shown in (𝑎). A
meshless discretization is represented in (𝑏).
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Figure 2.13: The general EFG algorithm.

Figure 2.14: The algorithm to assembly the Kg matrix. Through a loop over the 𝑛𝑐 integration
cells and over all the Gauss points 𝑛𝐺𝑃 of each cell, the shape functions of nodes 𝑖 inside the
influence domain of a quadrature point 𝑔 are evaluated and the integrals are calculated using the
Gauss quadrature method.
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2.4 Shape Functions

Among several methods to obtain shape functions, in this work two are considered: the Mov-
ing Least-Squares – MLS – and the Radial Point Interpolation Method – RPIM – shape func-
tions. In fact, in its first version, the EFG method were formulated with MLS shape functions
(BELYTSCHKO ET AL., 1994). Although the promising results, one relevant drawback of us-
ing MLS is the difficulty to impose essential boundary conditions, as will be explained further in
this subsection. To overcome this difficulty, new developments in the EFG method propose the use
of RPIM shape functions, notably LIU (2003). With this class of shape functions, one can easily
impose Dirichlet boundary conditions, in the same way of FEM.

The MLS, used in the first version of the EFG method (BELYTSCHKO ET AL., 1994), does
not present the Kronecker delta property, that is, the approximated value of a function at node 𝑥𝑖 is
different from the nodal value used to construct the approximation, as stated in Equation 2.75:

𝑢̂(xi) ̸= u𝑖. (2.75)

Because of the absence of Kronecker delta property, the essential boundary conditions need
to be imposed using Lagrange Multipliers to ensure numerical precision. An alternative method to
construct smooth shape functions is the RPIM, in which the Kronecker delta property does exist.
Thus, the essential boundary conditions can be imposed directly in the global stiffness matrix, like
in FEM, preventing the use of Lagrange Multipliers.

Further in this section, the procedure to obtain both MLS and RPIM shape function is detailed
and some examples are given. The main differences between these methods are also highlighted.

2.4.1 Moving Least-Squares shape functions

The Moving Least-Squares were originally developed to fit a continuous smooth function
through a set of scattered points. An interesting application is reconstructing surfaces from a set of
points in computer graphics (AMIRFAKHRIAN, 2013), (NEALEN, 2004).
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Given a set of 𝑛 points in R2 with coordinates x𝑖 and nodal values G = 𝑔𝑖, 𝑖 = 1, . . . ,𝑛, we
want a function 𝑔(x) that approximates the nodal values G in the sense of least-squares. This idea
is illustrated in Figure 2.15, where a set of scattered points represented in black are approximated
by a surface obtained by approximating the scattered points.
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(a) Scattered points
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(b) Approximant surface

Figure 2.15: Illustration of the basic idea of MLS in R2. The surface in (𝑏) represents the function
𝑔(x) that approximates the scattered points shown in black in (𝑎).

The objective here is to obtain the shape functions 𝜑𝑘(x) to be used in Equations 2.40 and
2.41. To do so, we will consider that the approximation 𝑔(x) is a combination of a monomials
basis p(x) and a vector of coefficient a(x) to be determined. In fact, the shape functions 𝜑𝑘(x) are
obtained when the coefficient vector a(x) is determined. We can write

𝑔(x) =
𝑚∑︁
𝑙=1

𝑝𝑙(x)𝑎𝑙(x) = p𝑇 (x)a(x). (2.76)

In the summation of Equation 2.76, 𝑚 is the number of monomials present in the monomial
basis p(x). A monomial basis is a combination of monomials, and the most common basis are:
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p(x) = [1 𝑥1]
𝑇 1𝐷 , 𝑚 = 2

p(x) = [1 𝑥1 𝑥21]
𝑇 1𝐷 , 𝑚 = 3

p(x) = [1 𝑥1 𝑥2]
𝑇 2𝐷 , 𝑚 = 3

p(x) = [1 𝑥1 𝑥2 𝑥21 𝑥22 𝑥1𝑥2]
𝑇 2𝐷 , 𝑚 = 6.

(2.77)

The coefficients vector a(x) is written as:

a(x) =
[︀
𝑎1(x), . . . ,𝑎𝑚(x)

]︀𝑇
. (2.78)

In this work the 2D monomial basis with 𝑚 = 6 is chosen, which is called quadratic mono-
mial basis. The coefficients a(x) can be determined by minimizing the 𝐿2 weighted norm given in
Equation 2.79. The 𝐿2 norm can be seen as an error between the true nodal value and the approxi-
mated values:

𝐿2 =
𝑘∑︁

𝑖=1

𝑊

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂[︁
p𝑇 (x𝑖)a(x) − 𝑔𝑖

]︁2
. (2.79)

In Equation 2.79 the summation is over all nodes 𝑘 with coordinates x𝑖 and x are the coordi-
nates of an arbitrary point where we want the approximation. The function 𝑊 (x − x𝐼 ,𝑑) is called
weight function and its arguments

⃦⃦
x− x𝑖

⃦⃦
are the Euclidean distance between x and x𝑖 and 𝑑 is

a parameter relative to the influence domain size of a node, discussed in the beginning of Section
2.3.

In MLS approximations, the weight function must satisfy the following conditions:

i The unity condition. This property assures that the weight function integral is one, that is:∫︁
Ω

𝑊

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂
𝑑x = 1. (2.80)

ii The compact condition. This is to state that only for coordinates x inside the influence domain
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of node 𝐼 the value of scalar field 𝑢𝐼 will influence the approximation of 𝑢(x). In equation
form:

𝑊

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂
= 0 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 Ω𝐼 . (2.81)

iii The delta function condition. This property states that the closer a point of coordinates x is
from the node of interest 𝐼 , the higher will be the value of the weight function.

lim
𝑑→0

𝑊

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂
= 𝛿(x− x𝐼). (2.82)

A relatively simple function which satisfies these three conditions is the cubic spline shown
in Equation 2.83. This type of weight function is widely used in MLS methods such as (NGUYEN
ET AL., 2008) and (GINGOLD AND MONAGHAN, 1982).

𝑊 (𝛼) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3
− 4𝛼2 + 4𝛼3 if 0 ≤ 𝛼 ≤ 1/2

4
3
− 4𝛼 + 4𝛼2 − 4

3
𝛼3 if 1/2 ≤ 𝛼 ≤ 1

0 otherwise,

(2.83)

with derivatives

𝑊, 𝛼 (𝛼) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−8𝛼 + 12𝛼2 if 0 ≤ 𝛼 ≤ 1/2

−4 + 8𝛼− 4𝛼2 if 1/2 ≤ 𝛼 ≤ 1

0 otherwise.

(2.84)

Here 𝛼 is calculated using the influence domain size and the distance between the points x

and x𝑖. Considering circular influence domain, the relation for 𝛼 is:

𝛼 =

⃦⃦
x− x𝑖

⃦⃦
𝑑

. (2.85)

Thus, the weight function and its derivatives can be written as:
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𝑊

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂
= 𝑊 (𝛼) , (2.86)

where the derivatives of 𝛼 can be easily obtained by deriving the Euclidean norm that defines
𝛼:

𝑊, 𝑗

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂
= 𝑊, 𝛼 (𝛼)𝛼, 𝑗. (2.87)

As previously mentioned, rectangular influence domains can also be used. For this case, the
weight function is written in terms of 𝛼1 and 𝛼2:

𝑊 (𝛼) = 𝑊 (𝛼2)𝑊 (𝛼1) . (2.88)

The parameters 𝛼1 and 𝛼2 are also calculated using the distance between x and x𝑖. We con-
sider however the distance in 𝑥1 and 𝑥2 directions separately, as follows:

𝛼1 =

⃦⃦
x1 − 𝑥𝑖1

⃦⃦
𝑑1 𝑑

, (2.89)

and

𝛼2 =

⃦⃦
x2 − 𝑥𝑖2

⃦⃦
𝑑2 𝑑

. (2.90)

Thus, for rectangular influence domains, the weight function and its derivatives are written as

𝑊

(︂⃦⃦⃦
x− x𝑖

⃦⃦⃦
,𝑑

)︂
= 𝑊 (𝛼1,𝑑1 𝑑)𝑊 (𝛼2,𝑑2 𝑑) . (2.91)
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The parameters 𝑑, 𝑑1 and 𝑑2 are related to the size of the influence domain. For static analysis,
the parameter 𝑑 typically assumes values between 2.0 and 4.0 (BELYTSCHKO ET AL., 1994).
Concerning the parameters 𝑑1 and 𝑑2, they are chosen to correspond to the distance between nodes
in 𝑥1 and 𝑥2 directions, respectively. The impact of these parameters is studied later in this section.

Back to Equation 2.79, once the weight function is chosen, the minimization problem can be
solved by making the first derivative of the 𝐿2 norm equals to zero

𝜕𝐿2

𝜕a
= 0. (2.92)

Which leads to the following set of linear equations:

A(x)a(x) = B(x)u. (2.93)

The terms A(x) and B(x) are:

A(x) =
𝑘∑︁

𝐼=1

𝑊 (𝑥− 𝑥𝐼)𝑝(𝑥𝐼)𝑝𝑇 (𝑥𝐼), (2.94)

and

B(x) =
𝑘∑︁

𝐼=1

𝑊 (𝑥− 𝑥𝐼)𝑝(𝑥𝐼). (2.95)

Hence, the coefficient vector a(x) can be written as

a(x) = A(x)−1B(x)u, (2.96)
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and the approximation of Equation 2.76 becomes:

𝑢ℎ(x) = p(x)A(x)−1B(x)u =
𝑘∑︁

𝐼=1

𝜑𝐼𝑢𝐼 . (2.97)

The function 𝜑𝐼 is called the shape function at node 𝐼 .

An example of one-dimensional MLS shape function for node 𝑥1 = 0 is given in Figure 2.16.
The domain is [−1,1] and is discretized with 5 nodes, an influence domain with radius of 1 was
used. One may note in Figure 2.16 that the Kronecker delta property is not satisfied at 𝑥1 = 0 once
𝜑 (𝑥1 = 0) ̸= 1.
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Figure 2.16: Example of one-dimensional MLS shape function (a) and its derivative b. The shape
function is relative to node 𝑥1 = 0.

A two-dimensional MLS shape function is illustrated in Figure 2.17, for a domain with size
[−1,1] × [−1,1] and discretized with 5 nodes equally spaced in both 𝑥1 and 𝑥2 directions.
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Figure 2.17: Example of a two-dimensional MLS shape function (a) and its derivative in 𝑥1 direc-
tion (b). The shape function is relative to node (𝑥1,𝑥2) = (0,0).

2.4.2 Radial Point Interpolation Method shape functions

As previously mentioned, the MLS shape function does not hold the Kronecker delta crite-
rion, and for this reason the essential boundary condition cannot be easily imposed such as in FEM.
In this way, strategies like the Penalty Method or Lagrange Multipliers need be used to impose the
Dirichlet boundary conditions.

An alternative class of shape function that does hold the Kronecker criterion, and thus simpli-
fies the imposition of boundary conditions, is the Radial Point Interpolation Method – RPIM. The
use of RPIM as shape functions in meshless methods was proposed by (LIU, 2003) as a modifica-
tion of the original EFG method. In this section we will discuss the basic theory of the RPIM used
to construct the shape functions.

With the RPIM, the displacement field is approximated at a coordinate x as follows
(MOLLON, 2016):

𝑢(x,x𝐼) =
𝑛∑︁

𝑖=1

𝑅𝑖(x)𝑎𝑖(x
𝐼) +

𝑚∑︁
𝑗=1

𝑝𝑗(x)𝑏𝑗(x
𝐼), (2.98)
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where 𝑅𝑖(x) is a radial basis function, 𝑝𝑗(x) is a monomial basis, the same one used in the MLS
method, and 𝑚 is the number of monomials of 𝑝𝑗(x). The coefficients 𝑎𝑖 and 𝑏𝑗 are yet to be
determined. The vector xI contains the coordinates of nodes inside the influence domain of a point
with coordinates x.

There are several options for the radial functions 𝑅𝑖 such as multi-quadratic, Gaussian, log-
arithmic, thin plate spline, among others. In this work we will use the following Gaussian radial
function:

𝑅𝑖(x) =

⎧⎪⎨⎪⎩exp
(︁
− 𝑐𝑑𝑖

𝐷𝑖

)︁2
, if 𝑑𝑖 ≤ 𝐷𝑖

0 , otherwise.
(2.99)

The 𝑐 coefficient is called a shape parameter and its influence on the shape function construc-
tion will be investigated latter in this subsection. The value 𝐷𝑖 is the influence domain radius of an
node 𝑖 and, finally, 𝑑𝑖 is the Euclidean distance from the coordinates x to the coordinates x𝑖 of an
node 𝑖, as shown below:

𝑑𝑖 = ‖x− x𝑖‖ . (2.100)

We can use matrix form for a more compact notation which is also more suited to computa-
tional implementation:

𝑢(x) = R𝑇 (x)a + P𝑇 (x)b =
[︁
R𝑇 (x) P𝑇 (x)

]︁{︃a

b

}︃
, (2.101)

where:

a = [𝑎1,𝑎2, . . . ,𝑎𝑛]𝑇 , (2.102)
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b = [𝑏1,𝑏2, . . . ,𝑏𝑚]𝑇 , (2.103)

R(x) = [𝑅1(x),𝑅2(x), . . . ,𝑅𝑛(x)]𝑇 , (2.104)

and

P(x) = [𝑃1(x),𝑃2(x), . . . ,𝑃𝑚(x)]𝑇 . (2.105)

The vectors of coefficients 𝑎 and 𝑏 can be determined by stating that the Equation 2.101 to be
true for all nodes 𝑛. This will produce the following set of equations:

us = Rqa + Pmb. (2.106)

Here us is a vector containing the displacement value for all the domain’s nodes. The linear
system of 2.106 cannot be solved because it is a set of 𝑛 equations and 𝑛 + 𝑚 variables. An
additional constraint must be imposed in order to solve the equation system:

P𝑇
𝑚a = 0. (2.107)

Combining equations 2.106 and 2.107 leads to the following equation system:

[︃
Rq Pm

Pm 0

]︃{︃
a

b

}︃
=

{︃
u𝑠

0

}︃
. (2.108)

Thus, the coefficients a and b can be determined:
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{︃
a

b

}︃
=

[︃
Rq Pm

Pm 0

]︃−1{︃
u𝑠

0

}︃
. (2.109)

Using a more compact notation, where the coefficient matrix of Equation 2.108 is denoted
G:

{︃
a

b

}︃
= G−1

{︃
u𝑠

0

}︃
, (2.110)

where G is the matrix containing Rq and Pm. Back to the equation 2.101, with the coefficient a
and b now determined, the displacement field is interpolated as:

u(x) =
[︁
R𝑇 (x) P𝑇 (x)

]︁
G−1

{︃
u𝑠

0

}︃
. (2.111)

By denoting the shape functions by 𝜑 as in the MLS subsection, we have:

𝑢(x) = 𝜑(x)

{︃
u𝑠

0

}︃
, (2.112)

and the shape functions can then be obtained with the following relation:

𝜑(x) =
[︁
R𝑇 (x) P𝑇 (x)

]︁
G−1, (2.113)

with:

𝜑(x) =
[︁
𝜑1(x) 𝜑2(x) . . . 𝜑𝑛(x) . . . 𝜑𝑛+𝑚(x)

]︁
. (2.114)
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The vector 𝜑(x) contains 𝑚 extra terms that are relative to the monomial basis terms of the
linear system of Equation 2.109. Hence, the shape functions corresponding to the nodal displace-
ments are:

𝜑(x) =
[︁
𝜑1(x) 𝜑2(x) . . . 𝜑𝑛(x)

]︁
. (2.115)

The shape functions derivatives along the directions 𝑗 = 1,2 are obtained using both radial
and monomial basis vector derivatives, as follows:

𝜑,𝑗(x) =
[︁
R𝑇

,𝑗(x) P𝑇
,𝑗(x)

]︁
G−1. (2.116)

Similarly to the shape function, the derivatives corresponding to nodal displacement are:

𝜑,𝑗(x) =
[︁
𝜑1
,𝑗(x) 𝜑2

,𝑗(x) . . . 𝜑𝑛
,𝑗(x)

]︁
. (2.117)

To differentiate the shape functions 𝜑 obtained with the MLS method from those constructed
using RPIM, a subscript 𝑀 for MLS and 𝑅 for RPIM will be used. For example, 𝜑𝑖

𝑀 and 𝜑𝑖
𝑅 stands

for the shape function of node 𝑖 using MLS and RPIM methods, respectively.

A typical one-dimensional RPIM constructed with the Gaussian radial function is illustrated
in Figure 2.18. The domain [−1,1] is discretized with five nodes equally spaced nodes and the
shape function is relative to the node 𝑥 = 0. The influence domain radius is set to 1 and the shape
parameter of the radial function 𝑐 is set to 0.3. The RPIM derivatives in 𝑥1 direction is also shown
in Figure 2.18b.
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Figure 2.18: Example of RPIM shape function (a) and its derivatives (b)for node 𝑥 = 0. In (a) we
can note that the Kronecker delta property is respected.

A comparison between shape functions obtained with MLS and RPIM methods is given in
Figure 2.19. One may note that RPIM shape function posses the Kronecker delta criterion while
the MLS does not, that is, 𝜑𝑀 (𝑥1 = 0) ̸= 1 and 𝜑𝑅 (𝑥1 = 0) = 1. The RPIM shape function is the
same of Figure 2.18 and the MLS shape function is the same of Figure 2.16. One may also note in
Figure 2.19a that RPIM shape function presents more variation over the domain than the MLS.
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Figure 2.19: Comparison between MLS and RPIM. One may note that the MLS does not possess
the Kronecker delta criterion while the RPIM shape function does have this property.
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In order to study the impact of the shape parameter 𝑐 of Gaussian radial functions, the Figure
2.20 presents a comparison for different values of 𝑐. One may note that greater 𝑐 values affects the
decay rate of the oscillations behind the first dominant peak (LIU, 2003). In the EFG with RPIM
presented by (MOLLON, 2016) the value 𝑐 is usually set to be 3, and this choice is kept in this
work.
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Figure 2.20: Influence of the 𝑐 parameter on the RPIM shape function results.

To illustrate the RPIM for 2D cases, the Figure 2.21 shows RPIM shape function and its
derivatives for a squared domain of (𝑥,𝑦) ∈ [−1,1] × [−1,1], discretized with 5 × 5 equally spaced
nodes. A Gaussian radial function with 𝑐 = 3 is used and the influence domain size is set to 𝑑 = 1.
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Figure 2.21: Example of a 2D RPIM shape function and its derivative.

2.5 2D Nonlinear elasticity

As the geometrically nonlinear problems undergo large displacement, rotation and strains, the
formulation used for linear cases, which assumes that there is no consequent difference between the
deformed and undeformed shapes, cannot be used. Although the kinematics and constitutive law –
presented in subsections 2.1.4 – remain the same, a new formulation for strains must be obtained
in order to correctly define their dependency with large deformations.

2.5.1 Strain and Stress

Either deformed and undeformed geometries can be used to define a way of measuring the
strain under large deformations. In this work, the undeformed initial domain S0 is used to define
strain, which is called a Lagrangian approach. In this way, the Equation 2.8 – which relates the
strain and displacement – can be rewritten using a subscript 0 to indicate that the displacement
gradient is related to the undeformed referential:

E =
1

2

(︁
∇0u + ∇0u

𝑇 + ∇0u
𝑇∇0u

)︁
. (2.118)
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As large deflection is expected, the quadratic term of Equation 2.8 is not anymore negligible.
Using the Voigt notation, the Lagrangian strain can be written in terms of displacements:

E =

⎧⎪⎪⎨⎪⎪⎩
𝐸11

𝐸22

2𝐸12

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
𝑢1,1 + 1

2

(︀
𝑢1,1𝑢1,1 + 𝑢2,1𝑢2,1

)︀
𝑢2,2 + 1

2

(︀
𝑢1,2𝑢1,2 + 𝑢2,2𝑢2,2

)︀
𝑢1,2 + 𝑢2,1 + 𝑢1,2𝑢1,1 + 𝑢2,1𝑢2,2

⎫⎪⎪⎬⎪⎪⎭ , (2.119)

The conjugated stress pair of the Lagrangian strain is called Second Piola-Kirchhoff stress
tensor and it is obtained through the constitutive matrix:

S =

⎧⎪⎪⎨⎪⎪⎩
𝑆11

𝑆22

𝑆12

⎫⎪⎪⎬⎪⎪⎭ = D : E. (2.120)

As material nonlinearities are not considered in this work, the constitutive matrix D remains
the same of Equation 2.12, which assumes a plane stress state. The Second Piola-Kirchhoff stress
tensor both forces and area refer to undeformed configuration (KIM, 2015). The relation between
the Second Piola-Kirchhoff and Cauchy – called true stress – is:

S = 𝐽F−1 · 𝜎 · F−𝑇 , (2.121)

where 𝐽 is the determinant of F, the gradient of the mapping function defined in 2.3, and 𝜎 is
Cauchy stress, defined as:

lim
Δ𝑆→0

∆f

∆𝑆
= 𝜎 · n, (2.122)

for an internal force vector f acting on a area ∆𝑆, with unit normal vector n, both referring to the
final deformed domain S. This is claimed to be a true measure of stress because it takes both force
and area of the deformed domain. However, to have a conjugate pair in energy, the tensor S and E
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must be used together (KIM, 2015).

2.5.2 Equilibrium equations

Below, we present a simplified way of obtaining the nonlinear equilibrium equations by in-
troducing the Green-Lagrange strain tensor. Next, a linearization technique is presented to solve the
nonlinear equations with the Newton-Raphson method. The deductions here presented are extracted
from KIM (2015), to which one may refer for more details.

We begin with the energy balance of a nonlinear elastic structure. We write the total potential
energy of a system, as follows:

Π(u) = 𝑈(u) −𝑊 (u)

=
1

2

∫︁∫︁
S0
𝜎(u) : 𝜖(u) 𝑑S−

∫︁∫︁
S0
u · f 𝑏 𝑑S−

∫︁
Γ0

u · t𝑑Γ.
(2.123)

We are now concerned with large displacements, thus the Lagrangian strain tensor given in
Equation 2.8 is used in Equation 2.123, which becomes nonlinear with the displacement field u(x).

We know from the principle of minimum potential energy that the displacement field u(x)

we are trying to determine is the one that minimizes the Equation 2.123. Knowing this, to find this
displacement field, we can employ a perturbation method, as described below.

A perturbation in the displacement field in an arbitrary direction ū with size 𝜏 (OLIVER
AND AGELET, 2017). The perturbation can be written as:

u𝜏 = u + 𝜏 ū. (2.124)

It is worth noting that the perturbation direction ū must not transgress the essential boundary
conditions. In this way, the perturbed displacement u𝜏 also belongs to the space of kinematically
admissible configurations.
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Here the concept of functional first variation needs to be introduced. We can understand the
variational of a function as the generalization of the concept of the differential of a function of one

variable (OF MATHEMATICS, 2011), which is also known as Gâteaux derivative (STOVER, 2021).
In the context of this work, we will use the concept of functional first variational to obtain the
potential energy variation in the direction of ū. We can state that the first-variational of Π in the
direction of ū is:

Π̄ (u,ū) ≡ 𝑑

𝑑𝜏
Π (u + 𝜏 ū)

⃒⃒⃒
𝜏=0

. (2.125)

Using the total potential energy of Equation 2.22, one can write:

Π̄ (u,ū) =

∫︁∫︁
S0

𝜕𝑊 (E)

𝜕E
: Ē 𝑑S−

∫︁∫︁
S0
ū · f 𝑏 𝑑S−

∫︁
Γ0

ū · t𝑑Γ, (2.126)

where the chain rule is applied to differentiate the external work contribution. The Ē portion is
calculated using the definition of functional variation:

Ē(u,ū) =
𝑑

𝑑𝜏
E (u + 𝜏 ū)

⃒⃒⃒
𝜏=0

=
1

2

(︁
∇0ū + ∇0ū

𝑇 + ∇0ū
𝑇∇0u + ∇0u

𝑇∇0ū
)︁

= 𝑠𝑦𝑚
(︁
∇0ū

𝑇 + ∇0ū
𝑇∇0u

)︁
= 𝑠𝑦𝑚

(︁
∇0ū

𝑇F
)︁
.

(2.127)

One can write the variational Equation 2.126 in a form similar to the linear problems:

𝑎(u,ū) = 𝑙(ū), (2.128)

where 𝑎(u,ū) and 𝑙(ū) are the strain energy and external load contribution to the structure’s total
potential energy, respectively. The strain energy term is:
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𝑎(u,ū) =

∫︁∫︁
S0
S(u) : Ē 𝑑S0, (2.129)

where the term 𝜕𝑊 (E)
𝜕E

was replaced by S(u), which denotes the second Piola-Kirchhoff stress. The
external load contribution is:

𝑙(ū) =

∫︁∫︁
S0
ū · f 𝑏 𝑑S−

∫︁
Γ0

ū · t 𝑑Γ. (2.130)

As previously mentioned, body forces are not considered in this work thus the external load
can be simplified to:

𝑙(ū) =

∫︁
Γ0

ū · t𝑑Γ. (2.131)

With the Equation 2.131 we have a formulation for the equilibrium equation which considers
large displacements. In order to solve this equation, a linearization scheme is proposed so that a
numerical method can be used to solve the nonlinear problem.

The numerical schemes used to solve nonlinear equations are generally iteratives methods
that uses an initial guess to generate a sequence of improving approximate solutions (RUGGIERO
AND LOPES, 1996). At each iteration a linearized equilibrium equation is solved and, until the
convergence, a residual will exist once the minimum potential energy is not reached. At the correct
solution, the residual will tend to zero. In this work the Newton-Raphson method will be used.

The above mentioned residual, is the difference between internal and external efforts, and it
is defined as:

R = 𝑎 (u,ū) − ℓ (ū) . (2.132)

The residual equation is nonlinear with respect to u and need hence to be linearized. The
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linearization of a function 𝑓(u) can be obtained with Taylor expansion, as follows:

𝑓 (u) = 𝑓 (u0) +
𝜕𝑓 (u0)

𝜕u
(u− u0) +𝑂

(︀
u2
)︀
. (2.133)

Considering that the order two error 𝑂
(︀
u2
)︀

can be neglected and knowing that we a looking
for the zero of function 𝑓 , we can write:

0 ≈ 𝑓 (u0) +
𝜕𝑓 (u0)

𝜕u
(u− u0) . (2.134)

The Equation 2.134 can be rewritten in a more convenient way using an iteration notation.
Let 𝑘 be used to denote the 𝑘-th iteration of the solution algorithm. Let also u − u0 be defined as
the change between two consecutive iterations, that is, d𝑘 = u𝑘+1 − u𝑘. In this way, we can write
a sequence of solutions, which is the widely known Newton-Raphson method:

𝜕𝑓
(︀
u𝑘
)︀

𝜕u
d𝑘 = −𝑓(u𝑘)

u𝑘+1 = u𝑘 + d𝑘.

(2.135)

This linearization process can be applied to the residual R of Equation 2.132. One may
note that the load portion ℓ (ū) of Equation 2.132 does not depend on the displacement field and
therefore there is no need to linearize this term. Thus, only the energy contribution 𝑎(u,ū) needs
linearization, which is given by:

𝐿
[︀
𝑎 (u,ū)

]︀
=

∫︁∫︁
S0

[︀
ΔS : Ē + S : ΔĒ

]︀
𝑑S, (2.136)

where ΔS is the increment in stress, Ē is the strain variation, S is the stress and ΔĒ is the increment
in the strain variation. The tensors ΔS and Ē can be calculated with the following relations:
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ΔS = D : ΔE, (2.137)

and

ΔĒ = sym
(︁
∇0ū

𝑇∇0u
)︁
. (2.138)

Using the relations given by Equation 2.137, we can replace the terms ΔS and Ē in Equation
2.136. This leads us to the following relation:

𝐿
[︀
𝑎 (u,ū)

]︀
=

∫︁∫︁
S0

[︀
D : ΔE : Ē + S : ΔĒ

]︀
𝑑S ≡ 𝑎* (u,Δu,ū) , (2.139)

which is the linearized form of 𝑎(u,ū).

Using 𝑘 to denote the iterations, we can write the residual Equation 2.132 in terms of incre-
mental displacement and the linearized form of the energy:

𝑎*
(︁
u𝑘,Δu𝑘,ū

)︁
= ℓ (ū) − 𝑎

(︁
u𝑘,ū

)︁
u𝑘+1 = u𝑘 + Δu𝑘.

(2.140)

Is it possible to write the Equation 2.140 using matrix notation (LIU, 2003), (KIM, 2015),
as follows:

KtΔu = R, (2.141)

where Kt is called tangent matrix, Δu is an incremental in displacement and R is a residual array.
The tangent matrix Kt and the residual vector R are obtained through the discretization of Equation
2.140, which is presented in the next two sections. With Kt and R we can obtain the Δu for each
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iteration until the correction solution for displacement field is reached.

As previously mentioned, the next two section are dedicated to present the FEM and EFG
discretization of the nonlinear problem stated in Equation 2.140.

2.5.3 FEM Discretization

Here the FEM discretization is detailed. The discretization process is similar to the linear
case, that is, the shape functions defined within an element and the nodal displacement are used to
discretize the displacement field over the domain. This subsection is also based on (KIM, 2015).

In order to obtain the discretized form of the Equation 2.140 the Voigt notation presented in
Subsection 2.1.4 is used. Using this notation, the strain and stress tensor are written as:

E =

⎧⎪⎪⎨⎪⎪⎩
𝐸11

𝐸22

2𝐸12

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
𝑢1,1 + 1

2

(︀
𝑢1,1𝑢1,1 + 𝑢2,1𝑢2,1

)︀
𝑢2,2 + 1

2

(︀
𝑢1,2𝑢1,2 + 𝑢2,2𝑢2,2

)︀
𝑢1,2 + 𝑢2,1 + 𝑢1,2𝑢1,1 + 𝑢2,1𝑢2,2

⎫⎪⎪⎬⎪⎪⎭ . (2.142)

The displacement field and its derivatives are approximated using the conventional FEM
interpolation scheme, based on shape functions and nodal displacement:

u =
4∑︁

𝑖=1

𝑁𝑖u
𝑖, (2.143)

and

u,𝑗 =
4∑︁

𝑖=1

𝑁𝑖,𝑗u
𝑖. (2.144)

Here𝑁𝑖 are the bi-linear shape function used for the quad4 element and u𝑖 is the displacement
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vector relative to the nodes 𝑖 of an element. It is worth noting that, for meshless formulations,
the nodal displacement can be approximated in a very similar way. However, the bi-linear shape
functions should be replaced by a MLS or RPIM shape function, and the summation would be
over all the influence domain nodes of a given node and not just only over the 4 nodes of a quad4

element.

Using the approximations of Equations 2.143 and 2.144, the variation of the Green-Lagrange
strain tensor Ē(u,ū) of Equation 2.127 can be written as:

Ē = BNū, (2.145)

where BN is called the nonlinear displacement-strain matrix, and is has the following form, de-
pending on u:

BN =

⎡⎢⎢⎣ 𝐹11𝑁1,1 𝐹21𝑁1,1 . . . 𝐹11𝑁4,1 𝐹21𝑁4,1

𝐹12𝑁1,2 𝐹22𝑁1,2 . . . 𝐹12𝑁4,2 𝐹22𝑁4,2

𝐹11𝑁1,2 + 𝐹12𝑁1,1 𝐹21𝑁1,2 + 𝐹22𝑁1,1 . . . 𝐹11𝑁4,2 + 𝐹12𝑁4,1 𝐹21𝑁4,2 + 𝐹22𝑁4,1

⎤⎥⎥⎦ . (2.146)

The matrix F was defined in terms of displacement field in Equation 2.5 of Subsection 2.1.2
and it is repeated here for an ease reading:

F =

[︃
𝜕𝑢1

𝜕𝑋1
+ 1 𝜕𝑢1

𝜕𝑋2

𝜕𝑢2

𝜕𝑋1

𝜕𝑢2

𝜕𝑋2
+ 1

]︃
. (2.147)

With the Lagrangian strain variation Ē discretization is possible to also discretize the energy
form 𝑎(u,ū) defined in Equation 2.129 appearing also in Equations 2.140, as follows:

𝑎(u,ū) =

∫︁∫︁
S0
S(u) : Ē 𝑑S0 ≈ ū𝑇

∫︁∫︁
S0
BN

𝑇S(u) 𝑑S0 ≡ ū𝑇 f 𝑖𝑛𝑡. (2.148)
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Similarly, the load form:

𝑙(ū) =

∫︁
Γ0

ū · t𝑑Γ ≈
4∑︁

𝑖=1

ū𝑇
i

∫︁
Γ0

𝑁𝑖 t̄ 𝑑Γ ≡ ū𝑇 fext, (2.149)

where f 𝑖𝑛𝑡 and f 𝑒𝑥𝑡 stand for internal forces.

Similarly to the variation of Lagrangian strain Ē(u,ū), the incremental Green-Lagrange strain
tensor ΔE can be obtained with the following relation:

ΔE = BNΔu. (2.150)

Hence, the first integrand in the strain energy of Equation 2.139 becomes:

∫︁∫︁
S0
Ē : D : ΔE 𝑑S0 = ū𝑇

[︂∫︁∫︁
S0
BN

𝑇 D BN 𝑑S0

]︂
Δu. (2.151)

The second integrand of Equation 2.139, frequently called the initial stiffness term, is given
by the following formula:

∫︁∫︁
S0
D : ΔĒ 𝑑S0 = ū𝑇

[︂∫︁∫︁
S0
BG

𝑇 Σ BG𝑑S
]︂
Δu, (2.152)

where:

Σ =

⎡⎢⎢⎢⎢⎣
𝑆11 𝑆12 0 0

𝑆12 𝑆22 0 0

0 0 𝑆11 𝑆12

0 0 𝑆11 𝑆12

⎤⎥⎥⎥⎥⎦ , (2.153)
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and

BG =

⎡⎢⎢⎢⎢⎣
𝑁1,1 0 𝑁2,1 0 𝑁3,1 0 𝑁4,1 0

𝑁1,2 0 𝑁2,2 0 𝑁3,2 0 𝑁4,2 0

0 𝑁1,1 0 𝑁2,1 0 𝑁3,1 0 𝑁4,1

0 𝑁1,2 0 𝑁2,2 0 𝑁3,2 0 𝑁4,2

⎤⎥⎥⎥⎥⎦ . (2.154)

Adding the expressions for first and second integrand of Equation 2.139 we have the tangent
stiffness matrix:

KT =

∫︁∫︁
S0

[︁
BN

𝑇 D BN + BG
𝑇 Σ BG

]︁
𝑑S. (2.155)

The discretized version of the linearized incremental residual - Equation 2.140 - is obtained
by combining the expression 2.148, 2.149, 2.151, 2.152 and 2.155:

ū𝑇 KT Δu = ū𝑇
(︁
f 𝑒𝑥𝑡 − f 𝑖𝑛𝑡

)︁
. (2.156)

Removing the common term ū𝑇 :

KT Δu = R. (2.157)

Which is the relation previously stated in Equation 2.141.

All the integrals necessary to evaluate the Equation 2.157 are calculated using the Gauss
quadrature scheme for the quad4 isoparametric element, with 4 integration points. Once the nodal
tangent stiffness and external forces are calculated, they are assembled in the global matrix in
the same manner shown in the section for linear FEM discretization. The Equation 2.157 is then
iteratively solved using a Newton-Raphson scheme.
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2.5.4 EFG Discretization

The EFG discretization of Equation 2.140 follows the same procedure used to FEM. The main
difference is the type of shape function used in to approximate the displacement field. As explained
in Subsection 2.3, the bi-linear shape functions𝑁𝑖 defined within an element 𝑖 are replaced by MLS
or RPIM shape functions 𝜑𝑖

𝑀 and 𝜑𝑖
𝑅 defined within the influence domain of node 𝑖.

As consequence, the matrix BN and BG have their sizes modified. Let 𝑛𝑒 be the number
of nodes inside the influence domain of a Gauss point, the matrix BN and BG will assume the
following form:

BN =

⎡⎢⎢⎣ 𝐹11𝜑1,1 𝐹21𝜑1,1 . . . 𝐹11𝜑𝑛𝑒,1 𝐹21𝜑𝑛𝑒,1

𝐹12𝜑1,2 𝐹22𝜑1,2 . . . 𝐹12𝜑𝑛𝑒,2 𝐹22𝜑𝑛𝑒,2

𝐹11𝜑1,2 + 𝐹12𝜑1,1 𝐹21𝜑1,2 + 𝐹22𝜑1,1 . . . 𝐹11𝜑𝑛𝑒,2 + 𝐹12𝜑𝑛𝑒,1 𝐹21𝜑𝑛𝑒,2 + 𝐹22𝜑𝑛𝑒,1

⎤⎥⎥⎦ , (2.158)

and

BG =

⎡⎢⎢⎢⎢⎣
𝜑1,1 0 . . . 𝜑𝑛𝑒,1 0

𝜑1,2 0 . . . 𝜑𝑛𝑒,2 0

0 𝜑1,1 . . . 0 𝜑𝑛𝑒,1

0 𝜑1,2 . . . 0 𝜑𝑛𝑒,2

⎤⎥⎥⎥⎥⎦ . (2.159)

The assembly of the tangent matrix KT follows the same procedure described in Figure 2.13,
that is, using a loop over Gauss integration points. The residual is calculated in that same way of
FEM. After the global vectors are assembled, the Newton-Raphson method is carried out to obtain
the displacement field.
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3 Topology Optimization - BESO method

This chapter is dedicated to presenting the Bi-directional Evolutionary Structural Optimiza-
tion - BESO - method. The general aspects of the method are presented considering the FEM
approach, which is based on (HUANG AND XIE, 2010). The structural evolutionary optimization
consists in gradually removing inefficient material from the structure, or design domain, looking
at the maximization or minimization of a specified performance criterion, often called objective
function. The BESO is hence an iterative method and an important characteristic is its ability to
add or remove material along the iterations.

The material is removed from the structure by applying a penalization to the Young’s modulus
of an element if FEM is chosen as solver, or of a node if the EFG method is used. Of course, the final
material distribution must be such that a predefined objective function is optimized. The strategy
to penalize the Young’s modulus and how to choose an objective function are presented in Section
3.1.

Basically, the BESO method removes inefficient material from the structure, and, in some
cases, adds material to efficient regions. The material efficiency is determined through a sensitivity
analysis, computing the effect of removing an element from the structure on the objective function.
Elements with a low sensitivity number have less influence on the objective function than those
with a high sensitivity number. Thus, a strategy to add and remove material can be implemented
based on these sensitivity numbers. The sensitivity analysis is detailed in Section 3.2.

Problems like checker-board patterns and mesh-dependency are likely to happen when using
BESO-FEM method with quad4 elements. Fortunately, these problems are avoided by applying
a filtering scheme to the sensitivity numbers, as explained in Section 3.5. Although no explicit
filtering scheme is required in the BESO-EFG method, an extra technique is required to couple
BESO with EFG: the dual-level interpolation method proposed by (ZHENG ET AL., 2015). This
technique, which can work as a filter, is discussed in Section 3.6.
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3.1 Problem formulation

In this work we are concerned with minimizing the mean compliance C of a structure, which
is equivalent to maximizing its global stiffness, while removing material from the design domain
until a target volume percentage 𝑊𝑓 is reached. For now, a linear elastic behavior is considered and
the problem can be written as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝐶 = 1
2
f𝑇u

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 : 𝑊𝑓 −
∑︀𝑁

𝑖=1𝑊𝑖𝜌𝑖 = 0

Ku = f

𝜌𝑖 = 𝜌𝑚𝑖𝑛 𝑜𝑟 1

(3.1)

In this way, the element removal or addition consists on changing the relative density 𝜌𝑖 of an
element or a node, depending on rather FEM or EFG methods is used. More precisely, removing an
element or a node consists in assigning them a low density value, often called 𝜌𝑚𝑖𝑛. Correspond-
ingly, adding material is equivalent to restore the elemental or the nodal relative density to 1. In this
work, as well as in many others (BENDSOE, 1989), (XIE AND STEVENS, 1993) and (HUANG
AND XIE, 2010), 𝜌𝑚𝑖𝑛 is set to 0.001, which is a common choice in elasticity problems to avoid
singularities in the global stiffness matrix.

A pseudo-density is associated to the material properties using a penalization method, called
Solid Isotropic Material Penalization or SIMP, where a power law is usually used to penalize the
Young’s modulus. In this way, the Young’s modulus 𝐸𝑖

𝑦 of an element or node is written as:

𝐸𝑖
𝑦 = 𝜌𝑝𝑖𝐸0, (3.2)

where 𝐸𝑖
𝑦 is penalized Young modulus, 𝜌𝑖 is the relative density of a given element or node 𝑖 and

𝐸0
𝑦 is the initial Young’s modulus of element or node 𝑖. Figure 3.1 shows the power law behavior

for different values of 𝑝. Usually, for structural optimization problems, the penalization factor is set
to 𝑝 = 3.
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Figure 3.1: Influence of penalization factor 𝑝 on Young’s modulus. Typically, for structural opti-
mization problems, 𝑝 = 3.

3.2 Sensitivity analysis

Once the Young’s modulus is written as a function of the design variables 𝜌𝑖, the sensitivity
analysis can be tackled. In a nutshell, the sensitivity analysis is an indication of material efficiency.
When added or removed, efficient material has a major impact on the objective function, while in-
efficient material causes less impact. In this sense, efficient material tends to be kept in the structure
while the inefficient material tends to be removed.

In terms of discretization, a sensitivity number is assigned to each element or to each node,
depending on rather FEM or EFG is used. Hence, the addition or removal of an element or node
will depend on its sensitivity number, which is obtained with the derivative of mean compliance 𝐶
with relation to each design variable 𝜌𝑖.

In order to do so, let us begin with the discretized elastic equation:

Ku = f , (3.3)

where 𝑓 the external force vector, assumed to be constant in direction, amplitude and application
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point. Hence, the mean compliance 𝐶 of the structure is:

𝐶 =
1

2
f𝑇u. (3.4)

Using Equations 3.3 and 3.4, we can write the compliance as a function of the displacement
field u and the global stiffness matrix K:

𝐶 =
1

2
(Ku)𝑇 u. (3.5)

Using the transpose property of a matrix product, (Ku)𝑇 = u𝑇K𝑇 , and taking advantage
from the fact that the stiffness matrix K is symmetric, which implies that K𝑇 = K, the mean
compliance can be written as:

𝐶 =
1

2

(︁
u𝑇Ku

)︁
. (3.6)

Using the SIMP material model presented in the previous subsection, the mean compliance
can be stated as a function of the relative density 𝜌𝑖. Using the vector 𝜌 that collects all elemental
or nodal relative densities, we can write:

𝐶 =
1

2
u𝑇K (𝜌)u. (3.7)

As previously stated, the sensitivity number is an indication of how the compliance varies
when removing a node. In this sense, the sensitivity number is the compliance derivative with
relation to each design variable 𝜌𝑖. We are hence looking for:

𝜕𝐶

𝜕𝜌𝑖
=

𝜕

𝜕𝜌𝑖

(︁
u (𝜌)𝑇 K (𝜌)u (𝜌)

)︁
. (3.8)
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Before calculating the derivatives of Equation 3.8, it worth noting that the term in parenthesis
is in a quadratic form. A useful property is the fact that a generic quadratic form denoted 𝜃

𝜃 = vT A v (3.9)

has the following derivatives with relation to a scalar quantity 𝑧:

𝜕𝜃

𝜕𝑧
= 2v𝑇A

𝜕v

𝜕𝑧
+ v𝑇 𝜕A

𝜕𝑧
v. (3.10)

Applying this property to the compliance derivative of Equation 3.8, we have:

𝜕𝐶

𝜕𝜌𝑖
=

1

2

(︂
2u𝑇K

𝜕u

𝜕𝜌𝑖
+ u𝑇 𝜕K

𝜕𝜌𝑖
u

)︂
. (3.11)

It is now necessary to evaluate both derivatives of u and K in relation to 𝜌𝑖. To obtain 𝜕u/𝜕𝜌𝑖
one can derive equilibrium equation:

𝜕

𝜕𝜌𝑖
(Ku) =

𝜕f

𝜕𝜌𝑖
. (3.12)

Assuming that the external load does not vary with material removal, Equation 3.12 becomes:

𝜕K

𝜕𝜌𝑖
u + K

𝜕u

𝜕𝜌𝑖
= 0. (3.13)

Arranging the terms:

𝜕u

𝜕𝜌𝑖
= −K−1𝜕K

𝜕𝜌𝑖
u, (3.14)
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and replacing Equation 3.14 into Equation 3.11:

𝜕𝐶

𝜕𝜌𝑖
=

1

2

(︂
−2u𝑇KK−1𝜕K

𝜕𝜌𝑖
u + u𝑇 𝜕K

𝜕𝜌𝑖
u

)︂
. (3.15)

Observing that KK−1 = I, it is possible to simplify the previous equation to:

𝜕𝐶

𝜕𝜌𝑖
=

1

2

(︂
−u𝑇 𝜕K

𝜕𝜌𝑖
u

)︂
. (3.16)

From the SIMP material definition, the term 𝜕K/𝜕𝜌𝑖 is:

𝜕K

𝜕𝜌𝑖
= 𝑝 𝜌

(𝑝−1)
𝑖 K0, (3.17)

where K0 is the initial element or nodal stiffness, that is, the stiffness matrix without penalizing
Young’s module. Finally, the sensitivity number can be written in terms of a given element or node
𝑖, as follows

𝛼𝑖 = −1

2
{u}𝑇𝑖

[︂
𝜕K

𝜕𝜌

]︂
𝑖

{u}𝑖 , (3.18)

where the compliance derivative with respect to the design variable is denoted 𝛼 for simplicity.
When using FEM, {u}𝑖 is a vector collecting the nodal displacement of all nodes of an element 𝑖.
If the EFG is employed, {u}𝑖 becomes a vector collecting the displacement of all nodes inside the
influence domain of a node 𝑖. The term

[︁
𝜕K
𝜕𝜌

]︁
𝑖

represent the stiffness matrix of an element or a node
𝑖, depending on FEM or EFG is being used.

Now that sensitivity is calculated, it is possible to decide which elements to remove. From
sensitivity definition, the nodes with the highest sensitivity numbers should be deleted. There is,
however, a specific number of nodes or elements that can be removed per iteration, this number is
called evolutionary ratio ER which is defined as the ratio between the number of nodes or elements
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to be removed at each iteration and the total number of nodes or elements. This concept is presented
in more detail in the next section.

3.3 Material removal and addition

Once the sensitivity number is properly calculated, it is necessary to determine how many
nodes or elements will be removed or added. The first step is defining an evolutionary ratio 𝐸𝑅,
which represents how many nodes or elements will be removed from topology of current iteration
𝑘. With the evolutionary ratio one can calculate the structure weight at iteration 𝑘 + 1, which,
consequently, allows us to verify when the target weight 𝑊 * is reached.

The target weight is normally expressed as percentage of the structures initial weight. In this
way, the target weight represents how much material we want to remove from the structure. For
example a target weight of 30% means that material will be removed until the resulting structure
presents a weight equivalent to 30% of the initial structure’s weight. Often, the amount of material
to be removed can be equivalently expressed in terms of target volume.

In this way, there are three possibilities:

∘ If 𝑊 𝑘+1 > 𝑊 * then it is still possible to remove material: 𝑊 𝑘+1 = 𝑊 𝑘(1 − 𝐸𝑅)

∘ If 𝑊 𝑘+1 < 𝑊 * then it is necessary to add material: 𝑊 𝑘+1 = 𝑊 𝑘(1 + 𝐸𝑅)

∘ If 𝑊 𝑘+1 = 𝑊 * then the target volume has been reached: 𝑊 𝑘+1 = 𝑊 *

To establish an addition or removal criteria, we begin with sorting the elements or nodes
sensitivity in descendant order. Hence, a solid element or node 𝑖 will be removed if:

𝛼𝑖 ≤ 𝛼𝑡ℎ
𝑑𝑒𝑙. (3.19)

Which is to say that a material with a sensitivity number below a given threshold 𝛼𝑡ℎ
𝑑𝑒𝑙 should

be removed. In turn, a void node will be added if:
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𝛼𝑖 > 𝛼𝑡ℎ
𝑎𝑑𝑑. (3.20)

Here 𝛼𝑡ℎ
𝑑𝑒𝑙 and 𝛼𝑡ℎ

𝑎𝑑𝑑 are threshold sensitivity numbers which put levels for removing or
adding nodes. These threshold numbers can be determined following three steps (HUANG AND

XIE, 2010):

1. Let 𝛼𝑡ℎ
𝑑𝑒𝑙 = 𝛼𝑡ℎ

𝑎𝑑𝑑 = 𝛼𝑡ℎ. For a design domain with 1000 elements, if 𝑊 𝑘+1 corresponds to
725 solid element, then 𝛼𝑡ℎ = 𝛼725.

2. Calculate the addition ratio 𝐴𝑅. This is the number of nodes which would be added based
on the previously obtained 𝛼𝑡ℎ divided by the total number of nodes. If 𝐴𝑅 ≤ 𝐴𝑅𝑚𝑎𝑥 the
nodes can be added or removed. However if 𝐴𝑅 > 𝐴𝑅𝑚𝑎𝑥 it will be necessary to proceed as
explained in step 3 to determine which nodes to add or remove.

3. Recalculate 𝛼𝑡ℎ
𝑎𝑑𝑑, sorting the sensitivity number of only void elements in descendant order.

The elements to be added are then the first 𝑒 elements, where 𝑒 is 𝐴𝑅𝑚𝑎𝑥 times the total
number of nodes. The number of nodes to remove is calculated so that the removed weight
is equal to 𝑊 𝑘 −𝑊 𝑘+1 +𝑊𝑎𝑑𝑑𝑒𝑑, where 𝑊𝑎𝑑𝑑𝑒𝑑 is the weight of added nodes.

3.4 Convergence criteria

When the target weight 𝑊 * is reached, we can define a convergence criterion to stop de
iterations or the BESO will continue to add and remove material indefinably at 𝑊 𝑘 = 𝑊 *. The
convergence criterion states that the change 𝜖 in the objective function over 𝑁 iterations should be
considerably small. The expression for the converge criterion is:

𝜉 =

⃒⃒⃒∑︀𝑁
𝑖=1𝐶𝑘−𝑖+1 −

∑︀𝑁
𝑖=1𝐶𝑘−𝑁−𝑖+1

⃒⃒⃒
∑︀𝑁

𝑖=1𝐶𝑘−𝑖+1

≤ 𝜏, (3.21)

where 𝑘 is the current iteration. In his book, HUANG and XIE (2010) recommends 𝑁 to be 5,
which implies that the change in objective function over the last 10 iterations is acceptably small
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and 𝜏 is the defined convergence tolerance. The number 𝑁 is an arbitrary choice and can assume
other values.

3.5 BESO-FEM filtering

When using FEM with the BESO algorithm, and more specifically, when a quad4 element is
employed. a filtering scheme is required to eliminate checkerboard patterns in the final topology.
We will verify, along results chapter, that neither filtering nor stabilization are required when EFG
methods are used with BESO strategy.

The objective of applying a filter over elements sensitivity is to avoid checkerboards patterns
and mesh-dependency problems. As studied in previous project, the ESO method is susceptible to
encounter both issues: checkerboards - due to quad4 elements - and mesh-dependency. The filter is
applied after calculating the sensitivity for all elements with Equation 3.18. The filtering process is
divided in two steps as presented below.

3.5.1 Nodal sensitivity

The first step in BESO-FEM filtering process is to obtain the nodal sensitivity, which is a
weighted average of the adjacent elemental sensitivity, as illustrated in Figure 3.2. In order words,
considering that the 𝑗𝑡ℎ node is surrounded by 𝑀 adjacent elements with sensitivity 𝛼𝑖, the nodal
sensitivity 𝛼𝑛

𝑗 will be:

𝛼𝑛
𝑗 =

𝑀∑︁
𝑖=1

𝑤𝑖𝛼𝑖. (3.22)

Here a superscript 𝑛 is used to differentiate nodal sensitivity from element sensitivity. The
weight 𝑤𝑖 is defined as an inverse distance law. Considering 𝑟𝑖𝑗 to be the distance between the
centroid of element 𝑖 and the node 𝑗, we have:
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𝑤𝑖 =
1

𝑀 − 1

(︃
1 − 𝑟𝑖𝑗∑︀𝑀

𝑖=1 𝑟𝑖𝑗

)︃
. (3.23)

Figure 3.2: The nodal sensitivity is calculated based on the centroid sensitivity of adjacent elements
and their distance to the current node.

3.5.2 Smoothed elemental sensitivity

With 𝛼𝑛 calculated for all nodes, the element sensitivity can be recalculated using a weighted
average of its neighbor nodes sensitivity. Typically, the neighborhood of an element is defined by a
circle with radius 𝑟𝑚𝑖𝑛 centered in the element centroid, as shown in Figure 3.3. Considering that
𝐾 nodes lie in neighborhood of an element 𝑖, its sensitivity becomes:

𝛼𝑖 =

∑︀𝑁
𝑗=1𝑤(𝑟𝑖𝑗)𝛼

𝑛
𝑗∑︀𝑁

𝑗=1𝑤(𝑟𝑖𝑗)
. (3.24)

Different from the weight used to obtain the nodal sensitivity, here 𝑤(𝑟𝑖𝑗) is defined as:

𝑤(𝑟𝑖𝑗) = 𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗. (3.25)
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Figure 3.3: The smoothed elemental sensitivity is obtained through a weighted average of neighbors
nodes sensitivity.

3.6 Dual-level interpolation

Some authors point that BESO-EFG does not require an additional filter scheme
(SHOBEIRI, 2015), (SHOBEIRI, 2016) and (ZHAO, 2014). However, an interpolation is needed
to couple the nodal densities with Gauss point densities, in order to correctly penalize the nodal
stiffness. This interpolation can be though of as filtering scheme.

More precisely, as explained in Section 2.3, the global stiffness matrix in the EFG method,
is assembled in a loop over the integration points, where, evidently, the integration is performed.
As the material is removed or added by changing the Young’s modulus of discretization nodes, this
nodal density should be accounted at each Gauss point used for integration. This accountability is
done through the interpolation of nodal density using a inverse distance law to obtain the equivalent
nodal density at each Gauss point position.

In addition to the interpolation of nodes density to Gauss points position, the relative density
of given node can also be smoothed using an interpolation of its neighbor nodes density through an
inverse distance law, in a very similar way to the BESO-FEM filter.

In his work ZHENG et al. (2015) states the Dual-level Interpolation Method, in which the two
interpolations mentioned above are performed: a first level interpolation to smooth nodal density
and a second level interpolation to couple the discretization nodes density with the Gauss point
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position. Both interpolations use the Shepard’s functions – which use, essentially, inverse distance
law. This methodology is employed in this work in order to implement the EFG-BESO.

Before presenting the dual-level interpolation itself, it is important to present the Shepard
function used in these interpolations. The Shepard method is a simple way of interpolating a set
of 𝑁 points, for example in R2, with nodal values g = 𝑔𝑖 and coordinates x = x𝑖 = (𝑥𝑖1,𝑥

𝑖
2)

for 𝑖 = 1, . . . ,𝑁 . The interpolation function ĝ = 𝑔𝑖 at a given point y = (𝑦1,𝑦2) depends on the
Euclidean distance 𝑑 between the nodes x and the interpolation point y. We can write:

𝑔(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀𝑁
𝑖=1𝑤

𝑖(x𝑖,y)𝑔𝑖∑︀𝑁
𝑖=1𝑤

𝑖(x𝑖,y)
if 𝑑(x𝑖,y) ̸= 0

𝑔𝑖 if 𝑑(x𝑖,y) = 0.

(3.26)

where:

𝑤𝑖(x,y) =
1

𝑑(x𝑖,y)𝑞

𝑑(x𝑖,y) =
√︁

(𝑥𝑖1 − 𝑦𝑖1)
2 + (𝑥𝑖2 − 𝑦𝑖2)

2.

(3.27)

Here 𝑞 is called power parameter. For illustration, Figure 3.4 shows the Shepard’s interpola-
tion of 5 × 5 nodal values generated with the function 𝑔(x) = 𝑥𝑖1𝑥

𝑖
2 over a squared [−1,1] × [−1,1

domain.
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(b) Shepard interpolation

Figure 3.4: Interpolating a data set of 5 × 5 nodes in a squared domain [−1,1] × [−1,1] using the
Shepard’s method. The nodal values of (𝑎) are 𝑔(x) = 𝑥𝑖1𝑥

𝑖
2 and the surface of (𝑏) were generated

with 50 × 50 equally space points.

3.6.1 First level

As previously mentioned, for smooth topology results, it is desired to approximate the relative
density at any nodes 𝑖 based on the relative density of nodes in the neighborhood of 𝑖, as illustrated
in Figure 3.5. The neighborhood is a compact domain, similar to the influence domain of a node.

We state that the density of a node 𝑖 is affected by the density of its neighbor nodes in the
following manner:

𝜌𝑖 =
𝑚∑︁
𝑘=1

𝜑(x𝑖,x𝑘)𝜌𝑘, (3.28)

where 𝜑 is the first Shepard function, 𝑚 is the number of neighbor nodes of 𝑖 and x are nodal
coordinates vectors.
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Figure 3.5: Smoothing nodal relative density using the Shepard interpolation. The compact domain
which defines the neighborhood of the affected node is illustrated as the 𝑟1 region.

3.6.2 Second level

Here, we want to assign a relative density for the Gauss points in order to penalize the global
stiffness matrix in the EFG method. As illustrated in Figure 3.6, a compact domain is also attributed
to a Gauss point 𝑗 and we state that the discretization nodes lying inside this compact domain will
affect the relative density of the Gauss point as follows:

𝜌𝑔𝑝𝑗 =
𝑛∑︁

𝑘=1

𝜓(x𝑗
𝑔𝑝 ,x

𝑘)𝜌𝑛. (3.29)

Here the superscript 𝑔𝑝 is added to distinguish nodal from Gauss point density. Again, 𝜓 is
the second Shepard function, 𝑚 is the number of nodes inside the compact domain of Gauss point
𝑗 and x are nodal coordinates vectors and x𝑔𝑝 are the Gauss point coordinates vector.
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Figure 3.6: Shepard interpolation used to assign relative density to a Gauss point. The compact
influence of the affected Gauss point is represented by 𝑟2 region.

It is worth noting that compact domains used in the dual-level interpolation and the influence
domain of a node or a Gauss point can assume different sizes.

Now that the Gauss point has densities based on the nodal relative density, one can penalize
the contribution of a given Gauss point 𝑗 when evaluating the global stiffness matrix through the
penalization of Young’s modulus at the position x𝑗

𝑔𝑝:

𝐸𝑦

(︁
x𝑗
𝑔𝑝

)︁
= 𝐸𝑔𝑝

𝑗 =
(︁
𝜌𝑔𝑝𝑗

)︁𝑝
𝐸𝑔𝑝

0 , (3.30)

where 𝜌𝑔𝑝𝑗 is given by Equation 3.29. Thus, when a node is removed, the Gauss points densities
are affected and, consequently, the global stiffness matrix – which is obtained using the Gauss
Quadrature integration – is impacted.

3.7 Stabilization of evolutionary process

This technique is used to avoid mesh-dependency problems and consists on averaging the
sensitivity numbers of two consecutive iterations 𝑘 and 𝑘 + 1:
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𝛼𝑘
𝑖 =

𝛼𝑘
𝑖 + 𝛼𝑘+1

𝑖

2
. (3.31)

Thus, the updated sensitivity number includes the whole history of the sensitivity information
of previous iterations.

3.8 Algorithms

The FEM-BESO procedure is given in Figure 3.7. It is worth noting that the filtering process
of BESO-FEM corresponds to steps Calculate nodal sensitivity and Calculate smoothed element

sensitivity. The stop criteria are the target weight 𝑊 𝑘 = 𝑤* and the small changes in mean compli-
ance of Equation 3.21. Evidently a maximum number of iterations should also be imposed.

The algorithm for EFG-BESO using the dual-level interpolation is shown in Figure 3.8, where
the loop over Gauss points for integrate and assemble the global matrix is also depicted to illustrate
the second interpolation level. The dual-level interpolation consists in steps Smooth nodal density

with Shepard’s interpolation and Assign density to Gauss point with Shepard’s interpolation. One
may note that the first interpolation level happens before carrying out the EFG analysis while the
second level of interpolation is done during the loop to assemble the stiffness matrix. In Section 2.3
the loop over Gauss points and the EFG procedure are presented with more details.
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Figure 3.7: BESO-FEM Algorithm.
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Figure 3.8: BESO-EFG algorithm.
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3.9 Objective function and sensitivity number of nonlinear cases

The optimization problem of this work is the minimization the mean compliance C of a
structure while removing material from the design domain. When it comes to optimize a nonlin-
ear structure, different approaches can be used to solve this problem. In his work, BUHL et al.
(2000) presents three options. The first is the minimization of the end-compliance, this is a very
natural choice, where only the compliance at equilibrium is considered. The second options is a
multiple loading case, where a weighted average of the end-compliance for different loads is used.
The third option is the minimization of the complementary work of external forces for each load
increment. In this work, as well as the reference textbook (HUANG AND XIE, 2010), we choose
the minimization of external load approach.

To better illustrate this concept, consider the Figure 3.9, where the external force smoothly
increases to a maximum value F𝑚𝑎𝑥, for which the structure will present a total displacement of
u*, and the complementary work is the shaded area. The trapezoidal rule can be used to calculate
the shaded area as a function of the displacement at iteration 𝑘, denoted 𝑘u, and the load increment
ΔF, as stated in Equation 3.32.

Figure 3.9: Illustration of the complementary work of external loads, represented by the shaded
area. Adapted from (HUANG AND XIE, 2010).
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𝑊𝐶 = lim
𝑛→∞

⎡⎣1

2

𝑛∑︁
𝑘=1

ΔF𝑇
(︁
𝑘u− 𝑘−1u

)︁⎤⎦ . (3.32)

As pointed by BUHL et al. (2000), the weak point of using the end-compliance is that the
structure can fail for loads lower than the final design load. By minimizing the complementary
work we can make sure that the structure will be stable for any load lower than the design load
(HUANG AND XIE, 2010).

The optimization problem for nonlinear structures can be written as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝑊𝐶 = lim
𝑛→∞

[︁
1
2

∑︀𝑛
𝑘=1ΔF𝑇

(︀
𝑘u− 𝑘−1u

)︀]︁
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 : 𝑊𝑓 −

∑︀𝑁
𝑖=1𝑊𝑖𝜌𝑖 = 0

Ku = f

𝜌𝑖 = 𝜌𝑚𝑖𝑛 𝑜𝑟 1

(3.33)

The sensitivity number can be obtained from the complementary work of Equation 3.32, as
follows:

𝜕𝑊𝐶

𝜕𝜌𝑖
= lim

𝑙→∞

⎡⎣1

2

𝑙∑︁
𝑘=1

(︁
𝑘F𝑇 − 𝑘−1F𝑇

)︁(︂ 𝜕

𝜕𝜌𝑖
(𝑘u𝑇 ) +

𝜕

𝜕𝜌𝑖
(𝑘−1u𝑇 )

)︂⎤⎦ . (3.34)

An adjoint method is used by BUHL et al. (2000) and HUANG and XIE (2010) to obtain the
sensitivity of objective function. In both works, a design independent from load is assumed. It is
shown by HUANG and XIE (2010) that the sensitivity when using the BESO method – which uses
discrete design variables – can be written in a very similar way to the linear case:

𝛼𝑖 =

⎧⎨⎩𝑈 𝑖 when 𝜌𝑖 = 1

𝜌𝑝−1
𝑚𝑖𝑛𝑈

𝑖 when 𝜌𝑚𝑖𝑛 = 1,
(3.35)
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where 𝑈 𝑖 is the strain energy of an element or a node:

𝑈 𝑖 =
1

2
S𝑖 · E𝑖. (3.36)

As we are in nonlinear regime, the Green-Lagrange strain E of Equation 2.119 has to be used
together with the Second Piola-Kirchhoff stress tensor S.
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4 Validations and Results

Along this chapter the procedures used to validate the implemented codes are presented,
followed by the results achieved with the BESO-FEM and BESO-EFG. In a first moment, the
codes are validated for both linear and nonlinear problems. Then, the topology optimization results
of linear structures are detailed and, subsequently, the topology optimization results for nonlinear
cases are presented.

The first validation problem is the linear cantilever beam. This is a relatively simple problem
which has an analytic solution, being widely used for code validation. The FEM and EFG results are
hence contrasted with the analytic solution provided by TIMOSHENKO and GOODIER (1970).
Through this problem, a comparison between the two versions of the EFG method – one with
MLS and other with RPIM shape functions – can also be carried out. The nonlinear cantilever
beam is used as the second validation problem. As for this case no analytic solution is available,
the validation of EFG and FEM codes is accomplished through a comparison with the solution
obtained using the commercial software ANSYS 19.2.

The topology optimization results for linear structures are presented through four benchmarks
problems: two-bar structure, Michell-type structure, cantilever beam, MBB beam. The BESO-FEM
and BESO-EFG are compared in terms of final topology and convergence curve for each of these
problems. Finally, the BESO-EFG method is used in the topology optimization of a nonlinear
cantilever beam. In order to evaluate the quality of results, the final topologies obtained with the
BESO-EFG are compared with literature solutions.

4.1 Validation

As previously mentioned, the cantilever beam will be used to validate the implemented codes.
The validation procedure is divided in two parts: the first considers linear cantilever beam while the
second one is dedicated to the validation of the codes for geometrically nonlinear structures.
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4.1.1 Linear case

The cantilever beam used for validation is shown in Figure 4.1. The analytic solution for
both displacement and stress fields are given in Equations 4.2 and 4.3 (TIMOSHENKO AND

GOODIER, 1970), where the beam’s width is considered to be unitary. The strain field is obtained
by differentiating the displacement field, as stated in Equation 2.11. The exact solution requires
a shearing traction t with parabolic distribution at the free extremity to be valid. Considering a
parabola with maximum value 𝑃 , the traction is written as:

t =

⎡⎣ 0

− 𝑃
2𝐼

(︁
𝑙 2
2

4
− 𝑥2

)︁⎤⎦ . (4.1)

Figure 4.1: Cantilever beam illustration. The structure is subject to a parabolic shearing traction t⃗
applied at 𝑥1 = 𝑙1 and it is fixed at 𝑥1 = 0 portion.

𝑢1(x) = −𝑃𝑥1
6𝐸𝐼

(︃
3(𝑥21 − 𝑙 21 ) − (2 + 𝜈)𝑥22 + 6(1 + 𝜈)

𝑙 22
4

)︃
,

𝑢2(x) =
𝑃

6𝐸𝐼

(︀
3𝜈 𝑥1𝑥

2
2 + 𝑥31 − 3𝑙1𝑥1 + 2𝑙 31

)︀
,

(4.2)
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𝜎11 = −𝑃𝑥1𝑥2
𝐼

,

𝜎22 = 0,

𝜎12 = − 𝑃

2𝐼

(︃
𝑙 22
4

− 𝑥22

)︃
.

(4.3)

Here 𝐼 is the moment of inertia:

𝐼 =
𝑙32
12

(4.4)

To solve this problem using the EFG method, the rectangular domain of 𝑙1 = 48𝑚𝑚 by 𝑙2 =

12𝑚𝑚 is discretized with 49 × 13 nodes. A background mesh containing 48 × 12 integration cells
with 4 integration points is used. The FEM solver uses a mesh with 48×12 isoparametric elements
with 4 integration points per element. A fictitious material with Young’s module of 𝐸0

𝑦 = 210𝐺𝑃𝑎

and Poisson’s coefficient of 𝜈 = 0.3 is used.

In a first time, a visual inspection was carried out and no significant differences between the
methods could be found. In this way, for a better analysis, quantitative indicators must be used.
We will use for this analysis the total displacement of the charged node at 𝑥1 = 𝑙1. The results for
loads from 100𝑁 to 5000𝑁 , obtained with EFG and FEM are compared to those coming by the
analytic formula in the chart of Figure 4.2. As expected, the relative error between analytic and
numerical solutions remain constant for all loads 𝑃 . When compared with the analytic solution,
the EFG-MLS presents a relative error of 2.3%, while the EFG-RPIM relative error is 2.5% and
the FEM come up with 3.2%. As the relative errors are inferior to 5% the implemented codes are
validated for linear structures.

A quantitative analysis of the results obtained with EFG-MLS and EFG-RPIM is carried out
using the strain energy error norm. This scalar quantity is the relative error between the strain
energies obtained with analytical and numerical solutions. It’s given by:
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‖𝐸‖ =

{︁∫︀
Ω

1
2

[︀
𝜖ℎ(x) − 𝜖𝑎(x)

]︀𝑇 [︀
𝜎ℎ(x) − 𝜎𝑎(x)

]︀}︁1/2

{︀∫︀
Ω

1
2
𝜖𝑎(x)𝑇𝜎𝑎(x)

}︀1/2 . (4.5)

In Figure 4.3 the norm errors are given as function of different discretization and Gauss
points. These results are in accordance with (OVERVELDE, 2012) and (BELYTSCHKO
ET AL., 1994). One may note in Figure 4.3 that the MLS results are more precise then RPIM’s.

As the implementation of EFG-RPIM method is slightly simplified because of the imposition
of boundary conditions and recognizing that the difference in results precision between MLS and
RPIM is not big, the RPIM shape functions will be used hereafter. Indeed, when using RPIM shape
functions the essential boundary conditions can be imposed alike FEM, while Lagrange multipliers
or penalty methods must be used to impose Dirichlet conditions when using MLS shape functions.
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Figure 4.2: Comparison between numerical and analytical solutions for the linear elastic cantilever.
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Figure 4.3: Strain energy error analysis. The influence of discretization on the accuracy is given in
𝑎 and the influence of integration points is given in 𝑏.

As an illustration, the results of the cantilever beam obtained using the EFG-MLS are given
in Figures 4.4a to 4.4e. The problem configuration was 𝑙1 = 48, 𝑙2 = 12, 𝑃 = 0.1, 𝐸 = 1 and
𝜈 = 0.3 (OVERVELDE, 2012).
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Figure 4.4: Results for the cantilever beam: displacement u and stress 𝜎 fields in arbitrary units.
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4.1.2 Nonlinear case

Here we will study the results for nonlinear structures obtained with EFG-RPIM and FEM.
The geometrically nonlinear cantilever beam used for validation is presented in Figure 4.5. The
beam dimensions are 𝑙1 = 100𝑚𝑚 and 𝑙2 = 5𝑚𝑚. Here we are going to use a fictitious material
with Young’s modulus of 𝐸 = 200𝑀𝑃𝑎 and a Poisson’s coefficient of 𝜈 = 0.3. Initially, the
force at the right-hand extremity is set to 𝑃 = 100𝑁 . For the EFG method, the discretization uses
151×21 nodes and 150×20 integration cells, with 4 integration points per cell. The FEM is applied
using a mesh with 100 × 20 isoparametric elements with 4 Gauss points.

Figure 4.5: Proposed cantilever beam with nonlinear behavior.

The first step is to compare the results obtained when using linear and nonlinear models to
solve the nonlinear cantilever. The deformed shape in true scale is given in Figure 4.6. These results
are coherent: the linear model presents an amplification proportional do the kinematics of a beam
in small deformation while the nonlinear model can predict the rotation along the beam, avoiding
the undesired volume increase observed in the linear results. Clearly when using the linear model to
solve the cantilever beam of Figure 4.5 we get only a roughly approximation of the beam behavior.
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RPIM

(a) Linear EFG model

NL

(b) Nonlinear EFG model

Figure 4.6: Deformed shape of a nonlinear cantilever beam. While in a) a linear formulation is used,
in b) a nonlinear model is employed.

The second step of the validation is to compare the results of EFG and FEM with ANSYS
19.2 solutions. For a quantitative analysis, we will monitor the total displacement of the charged
node at 𝑥1 = 𝑙1. In Table 4.1, the total displacements are presented for different loads 𝑃 along with
the relative error between EFG, FEM and ANSYS. One may note that the maximum error is less
then 2%, which shows that the codes were implemented correctly.

Load 𝑃 𝑢𝑡 EFG 𝑢𝑡 FEM 𝑢𝑡 ANSYS Error EFG-ANSYS Error FEM-ANSYS

10 -29.523 𝑚𝑚 -29.678 𝑚𝑚 -29.188 𝑚𝑚 1.13 % 1.67 %
20 -49.036 𝑚𝑚 -48.838 𝑚𝑚 -48.403 𝑚𝑚 1.29 % 0.89 %
30 -60.463 𝑚𝑚 -59.956 𝑚𝑚 -59.513 𝑚𝑚 1.57 % 0.75 %
40 -67.472 𝑚𝑚 -66.766 𝑚𝑚 -66.334 𝑚𝑚 1.68 % 0.65 %
50 -72.094 𝑚𝑚 -71.264 𝑚𝑚 -70.793 𝑚𝑚 1.80 % 0.66 %
60 -75.344 𝑚𝑚 -74.436 𝑚𝑚 -74.827 𝑚𝑚 0.68 % -0.52 %
70 -77.752 𝑚𝑚 -76.795 𝑚𝑚 -77.133 𝑚𝑚 0.79 % -0.43 %
80 -79.614 𝑚𝑚 -78.624 𝑚𝑚 -78.266 𝑚𝑚 1.70 % 0.46%
90 -81.101 𝑚𝑚 -80.092 𝑚𝑚 -79.765 𝑚𝑚 1.64 % 0.41%

100 -82.324 𝑚𝑚 -81.310 𝑚𝑚 -81.218 𝑚𝑚 1.34 % 0.10%

Table 4.1: Total displacement of the charged node for different loads 𝑃 , in 𝑚𝑚. The last two
columns present the relative errors between EFG and ANSYS and FEM and ANSYS.

The proposed nonlinear code for EFG and FEM method presented coherent results, being
in agreement with a widely used commercial software. It is inferred that the errors are due to the
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difference between the material model adopted in this work – linear St Venant - Kirchhoff – and
the one used by ANSYS – logarithmic strain tensor. Finally, the errors are considered small enough
to validate the codes implementation.

4.2 Addressed problems

In this section we tackle typical topology optimization problems. Each of these problems is
solved using the EFG-BESO and the FEM-BESO. We begin with four linear problems: the two-bar
structure, the Michell-type structure, the cantilever beam and the MBB beam. Then, we will work
on the nonlinear cantilever beam using the implemented EFG-BESO.

4.2.1 Linear cases

Two-bar

The first addressed problem is the two-bar structure which is maybe the simplest example in
topology optimization. The initial domain is a rectangle with 𝑙1 > 𝑙2 having all its DOFs at the left-
hand side fixed and with a force applied to the middle portion of the right-hand side, as shown in
Figure 4.7. In this example, we consider a structure with 𝑙1 = 10𝑚𝑚 and 𝑙2 = 24𝑚𝑚, the material
properties are 𝐸0

𝑦 = 210𝑀𝑃𝑎 and 𝜈 = 0.3 and the force is 𝑃 = 100𝑁 . For lower final volume
percentage – around 15% – the final topology will degenerate in a two-bar truss.
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Figure 4.7: Two-bar geometry. All DOFs at left-hand side are fixed and a vertical force is applied
to the middle portion of the right-hand side.

To begin, the BESO-FEM algorithm is used to solve the problem. The BESO parameters are:
evolutionary ratio 𝐸𝑅 = 5%, maximum addition ratio 𝐴𝑅𝑚𝑎𝑥 = 2%, final weight 𝑊 * = 15%,
filter radius 𝑟𝑚𝑖𝑛 = 1𝑚𝑚 and convergence criteria 𝜏 = 0.01. The domain is discretized with a
mesh of 50 × 120 quad4 elements.

The topology results for iterations 2, 7, 26 and 88 are given in Figure 4.8. The material is
initially removed from the right-hand corners and, in further iterations, in the middle portion of the
left-hand side until, finally, the topology degenerates in a two-bar truss.

Figure 4.8: Topology results of BESO-FEM for the two-bar structure corresponding to the iterations
2, 7, 26 and 88. The external rectangle with black lines represents the initial design domain
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The BESO-EFG uses the same BESO parameters and the domain is discretized with 21× 49

nodes and we use a background mesh with 20 × 48 cells containing four Gauss points per cell.
A rectangular influence domain is used for both discretization and dual-level interpolation, and
the rectangle size is set to be 2.5 times the distance between nodes in each direction. The influence
domain of the dual-level interpolation is identical to the influence domain used in the discretization.

The evolution of the topology is very similar to BESO-FEM’s. The final topology obtained
with the BESO-EFG is given in Figure 4.9, in which one may note the property 𝐻 = 2𝐿. The
results obtained with BESO-FEM and BESO-EFG are in good agreement with (HUANG AND

XIE, 2010) and (ZHENG ET AL., 2010), given in Appendix A.1.

Figure 4.9: Topology results of BESO-EFG for the two-bar. The final volume of the structure is
15%. One may note the property 𝐻 = 2𝐿 of the final topology. The external rectangle represents
the initial design domain.

Michell type structures

The second example is the Michell’s structure presented in Figure 4.10. All the DOFs at
the lower corners are fixed and a force is applied to the middle node at the lower portion. For this
example we are going to use 𝑙1 = 16𝑚𝑚 and 𝑙2 = 8𝑚𝑚, the material properties are𝐸0

𝑦 = 210𝑀𝑃𝑎

and 𝜈 = 0.3, the vertical force is 𝑃 = 100𝑁 .
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Figure 4.10: Michell type structure.

The BESO-FEM algorithm is applied with the following parameters: 𝐸𝑅 = 5%, 𝐴𝑅𝑚𝑎𝑥 =

5%, 𝑟𝑚𝑖𝑛 = 1𝑚𝑚, 𝑊 * = 30% and 𝜏 = 0.01. The domain is discretized with a mesh of 64 × 32

elements. The final topology and the final sensitivity are given in Figure 4.11 and a convergence
curve, comparing the mean compliance and the structure’s volume along the iterations, is presented
in Figure 4.12.

(a) Final topology (b) Final sensitivity

Figure 4.11: Results for the short cantilever beam using BESO-FEM. In Figure 4.17b the red color
indicates regions with highest sensitivity numbers and the blue colored regions presents low sensi-
tivity values.
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Figure 4.12: Evolutionary convergence curve of BESO-FEM for the Michell’s problem. The topolo-
gies at iterations 5, 14, 25 and 33 are depicted.

The BESO-EFG discretization uses 64× 32 nodes and a background mesh with 32× 16 cells
containing 4 integration points. The influence domain is rectangular with sizes chosen to be 2.5

times the nodal distance in each direction. The BESO parameters used in this analysis are the same
used in BESO-FEM.

The final sensitivity is given in Figure 4.13, where we can observe that the elements with
higher sensitivity are next to the boundary conditions. The final topology is given in Figure 4.14,
represented in two different manners: the first figure presents the penalized Gauss points used for
integration and the second figure shows the discretization nodes. In fact, in the BESO-EFG, the
integration points are also penalized as part of the dual-level interpolation scheme when assembling
the global stiffness matrix, as illustrated in Figure , of Chapter 3. The gray-scale indicates that the
nodes density assumes values between 𝜌𝑚𝑖𝑛 and 1, which is not true for the BESO-FEM algorithm.
The convergence curve of BESO-EFG is given in Figure 4.15.
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Figure 4.13: Final BESO-EFG sensitivity of the Michell structure.

(a) Gauss integration points (b) Discretization nodes

Figure 4.14: Topology results of a Michell structure obtained with the BESO-EFG method. In (𝑎)
we have the topology of integration points and in (𝑏) we have the topology of discretization nodes.
The gray-scale indicates that the nodes density assume values between 𝜌𝑚𝑖𝑛 and 1.

Figure 4.15: Convergence curve of BESO-EFG applied to the Michell structure. The topology at
iterations 5, 14, 25 and 34 are detailed.
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It can be seen from Figures 4.12 and 4.15 that both methods present a very smooth conver-
gence. However, we can see a difference between the topology in the central triangular portion of
the structure: the BESO-FEM provides a larger triangle than BESO-EFG. This tendency can also
be observed in the literature results, provided in the Appendix A.2. A possible explanation for the
smaller central triangle in BESO-EFG is the size of influence domain.

Cantilever beam

Here we study a classical problem in elastic mechanics: the cantilever beam. It is proposed
by HUANG and XIE (2010) the compliance optimization of a short cantilever beam, as shown in
Figure 4.16. The beam dimensions are 𝑙1 = 80𝑚𝑚 and 𝑙2 = 50𝑚𝑚, charged with a punctual force
of 𝑃 = 100𝑁 at the right-hand extremity. A fictitious material with 𝐸0

𝑦 = 100𝐺𝑃𝑎 and 𝜈 = 0.3 is
used. This problem is solved with BESO-FEM and BESO-EFG.

Figure 4.16: Short cantilever beam.

Let us begin with the BESO-FEM. The FEM model uses a mesh of 160×100 elements and the
BESO-FEM parameters are: 𝐸𝑅 = 2%, 𝐴𝑅𝑚𝑎𝑥 = 2%, filter radius of 𝑟𝑚𝑖𝑛 = 4𝑚𝑚, 𝑊 * = 50%

and convergence criteria 𝜏 = 0.001. The final topology and the final sensitivity are given in Figure
4.17 and the convergence curve is shown in Figure 4.18.
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(a) Final topology (b) Sensitivity

Figure 4.17: Results for the short cantilever beam using BESO-FEM. In Figure 4.17b the red color
indicates regions with highest sensitivity numbers and the blue colored regions presents low sensi-
tivity values.

Figure 4.18: BESO-FEM convergence curve for the short cantilever beam. The topology at itera-
tions 10, 20 and 38 are given.

The BESO-EFG algorithm uses a discretization of 96 × 60 nodes, with a background mesh
with 88×55 cells, each cell containing 4×4 Gauss points. The BESO parameters are the same used
in BESO-FEM optimization: 𝐸𝑅 = 2%, 𝐴𝑅𝑚𝑎𝑥 = 2%, 𝑊 * = 50%, 𝜏 = 0.001. It is worth noting
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that no extra filtering method is used apart the implicit dual-level interpolation scheme. Again a
rectangular influence domain is used with size 2.5𝑑𝑥1× 2.5𝑑𝑥2 where 𝑑𝑥1 and 𝑑𝑥2 are the distance
between nodes in 𝑥1 and 𝑥2 directions. The dual level interpolation uses the same influence domain
size.

The final topology obtained with the BESO-EFG is shown in Figure 4.19 in two versions: (𝑎)

the final topology of integration points and (𝑏) the final topology of discretization nodes. In fact,
in the BESO-EFG, the integration points are also penalized as part of the dual-level interpolation
scheme when assembling the global stiffness matrix, as illustrated in Figure 3.8. The final sensi-
tivity is given in Figure 4.20, while the convergence curve for the BESO-EFG is shown in Figure
4.21.

(a) Gauss integration points (b) Discretization nodes

Figure 4.19: Topology results of a short cantilever beam obtained with the BESO-EFG method.
In 𝑎) we have the topology of integration points and in 𝑏) we have the topology of discretization
nodes. The gray-scale indicates that the nodes density assume values between 𝜌𝑚𝑖𝑛 and 1.
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Figure 4.20: Final sensitivity results with BESO-EFG strategy, where the hottest is the color the
higher is the sensitivity numbers. The dark blue region represents the void region.

Figure 4.21: BESO-EFG convergence curve for the short cantilever beam. The topology at iterations
2, 16, 22 ans 43 are depicted.

When comparing the convergences curves 4.18 and 4.21, we can remark that the BESO-EFG
presents smaller peaks then the BESO-FEM. This is can be attributed to the smooth shape functions
of EFG and the continuity of the design variables 𝜌 in the BESO-EFG. Indeed, for the BESO-FEM,
we have employed 𝑞𝑢𝑎𝑑4 element with bi-linear shape function and if high order elements were
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used, the convergence smoothness of BESO-FEM would be improved. High order elements in FEM
can also avoid the need of filtering schemes.

The results are in great agreement with the literature results presented in Appendix A.3, spe-
cially with those obtained by HUANG and XIE (2010). For this case, the final topology obtained
using the BESO-EFG is very similar the topologies obtained using FEM. It can be seen from the
convergence curves of BESO-FEM and BESO-EFG that the EFG can provide a smoother conver-
gence.

MBB beam

Another benchmark problem, proposed by (HUANG AND XIE, 2010) and widely used in
topology optimization studies is the MBB beam shown in Figure 4.22. The left-hand inferior node
has all its DOFs fixed while the right-hand inferior node has only the DOF in 𝑥1 direction fixed. A
force is applied in the middle portion of the structure. For this problem we consider a material with
Young’s modulus 𝐸0

𝑦 = 200𝐺𝑃𝑎 and Poisson’s coefficient 𝜈 = 0.3.

Figure 4.22: MBB beam problem.

Here, we take advantage from the problem’s symmetry by modeling only the right-hand side
of the structure, as shown in Figure 4.22. At the right-hand side only the DOF in 𝑥1 direction are
blocked, allowing a vertical movement of the structure. To apply the symmetry helps the problem
convergence and allow finer discretizations.

We begin with the BESO-FEM, using a discretization of 120 × 40 elements. The BESO
parameters are 𝐸𝑅 = 2%, 𝐴𝑅𝑚𝑎𝑥 = 2%, 𝑟𝑚𝑖𝑛 = 4𝑚𝑚, 𝑊 * = 0.5 and 𝜏 = 0.001. The final
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topology is presented in Figure 4.24 and the convergence curve in Figure 4.25.

Figure 4.23: MBB beam problem.

Figure 4.24: Final topology of the MBB beam obtained with BESO-FEM.
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Figure 4.25: BESO-FEM convergence curve for the MBB beam. The topology at iterations 10, 41,
60 and 79 are detailed.

The BESO-EFG uses a discretization with 120 × 40 nodes and a background mesh with
108 × 36 integration cells containing 4 × 4 Gauss points per cell. The BESO parameters are:
𝐸𝑅 = 2%,𝐴𝑅𝑚𝑎𝑥 = 2%, 𝑊 * = 0.5 and 𝜏 = 0.001. As discussed in the previous problems, a
rectangular influence domain with sizes 2.5𝑑𝑥1 × 2.5𝑑𝑥2 is used for both discretization and dual-
level interpolation.

The final topology for Gauss points and discretization nodes is presented in Figure 4.26. As
symmetry was applied to this problem, the final topology was duplicated in Figure 4.27 to represent
the full structure. The convergence curve is shown in Figure 4.28.
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(a) Gauss integration points (b) Discretization nodes

Figure 4.26: Short cantilever results with the BESO-EFG method.

Figure 4.27: Final topology for full MBB beam.

Figure 4.28: BESO-EFG convergence curve for MBB beam.
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The final topology obtained with both BESO-EFG and BESO-FEM are in agreement with
the results provided by HUANG and XIE (2010) and with other results of literature review, as
presented in Appendix A.4. In the final topology we can observe that the material is removed in a
triangular pattern that recalls a truss structure. We can also note the presence of a reinforcement at
the bottom region of the structure, where the load is applied.

Indeed, the MBB beam presents a more unstable convergence curve than the three precedent
examples for both BESO-FEM and BESO-EFG. When comparing the converges curves of Fig-
ures 4.25 and 4.28, we note less peaks in the BESO-EFG than in BESO-FEM; the peaks also have
smaller amplitudes when using the EFG method. As discussed for the cantilever beam, this charac-
teristic is attributed to the smoothed shape function of meshless methods and the use of continuous
design variable in the dual-level interpolation scheme.

4.2.2 Nonlinear cases

Cantilever beam

In this section we apply the nonlinear model developed in the section 2.5 to topology opti-
mization of a long cantilever beam, as shown in Figure 4.29. Here we only use the BESO-EFG
algorithm, in an attempt to take advantage from the capacity of the EFG to deal with nonlinear
problems (MOLLON, 2016).

The domain dimensions are 𝑙1 = 1𝑚 and 𝑙2 = 0.25𝑚. An initial discretization of 101 × 26

nodes and a background mesh with 100 × 25 integration cells, each containing 4 Gauss points, is
used. The material properties are 𝐸0

𝑦 = 3𝐺𝑃𝑎 and 𝜈 = 0.4. The BESO parameters are: 𝐸𝑅 =

1%,𝐴𝑅𝑚𝑎𝑥 = 1%, 𝑊 * = 0.5 and 𝜏 = 0.001. Although in linear elastic problems the final topology
does not depend on the load, the external forces do change the final topology in nonlinear problems.
We will study this influence below.
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Figure 4.29: Proposed cantilever beam with nonlinear behavior.

It is expected for low forces a linear behavior of the structure (BUHL ET AL., 2000) and
(GOMES AND SENNE, 2014). We present in the Figure 4.30 the resulting topology for a force of
𝑃 = 100𝑁 , where one can observe the linear cantilever pattern – similar to the results presented in
Figures 4.17 and 4.19. Some results of the literature review considering the lower forces scenario
are given in Appendix A.5.

(a) Gauss points

(b) Nodes

Figure 4.30: Topology results for the nonlinear cantilever beam with a low force of 100𝑁 . In this
scenario the nonlinear effect is not present, resulting in the linear cantilever topology pattern.

A load of 𝑃 = 60𝑘𝑁 is applied and to ensure the converge we use a finer discretization,
containing 201 × 51 nodes and 120 × 30 integration cells with 4 Gauss points. The final topology
is given in Figure 4.31, where both integration points and discretization nodes are plotted. It can
be seen some similarities between the BESO-EFG results and the results provided by HUANG and
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XIE (2010), given in Appendix A.5.

(a) Gauss points

(b) Nodes

Figure 4.31: Final topology results for the Gauss integration points and discretization nodes for the
nonlinear cantilever beam with 𝑃 = 60𝑘𝑁 obtained with BESO-EFG.

To study the influence of different loads in the final topology, the external load is increased to
𝑃 = 144𝑘𝑁 and the results are shown in Figure 4.32. As expected, the final design for 𝑃 = 60𝑘𝑁

and 𝑃 = 144𝑘𝑁 are different, and the effects of nonlinearities are strong in the second case, which
is also observed in the works of HUANG and XIE (2010) and GOMES and SENNE (2014). It is
worth noting that the discretization is the same for both loads.

Although some similarities between the BESO-EFG results and those provided by HUANG
and XIE (2010) are still present for 𝑃 = 144𝑘𝑁 , the results cannot be considered compatible.
When comparing the BESO-EFG results with those of (BUHL ET AL., 2000) and (GOMES AND

SENNE, 2014) the differences are even bigger, as illustrated in Appendix A.5 in Figures A.11 and
A.12.

These results show that the implemented BESO-EFG is not yet capable of dealing with geo-
metrically nonlinear structures with ease. It provides results incompatible with those found in the
literature review. However, other authors have shown that the EFG can be successfully applied
to the optimization of nonlinear structures (QIZHI ET AL., 2014) and (ZHENG ET AL., 2015).
An improved version of the implemented code is envisaged in further works, such as a more effi-
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cient implementation that allows finer discretizations for the nonlinear problem and a review on the
sensitivity analysis provided in Chapter 3.

(a) Gauss points

(b) Nodes

Figure 4.32: Final topology results for the Gauss integration points and discretization nodes for the
nonlinear cantilever beam with 𝑃 = 144𝑘𝑁 obtained with BESO-EFG.

In an attempt to reproduce the results of BUHL et al. (2000), different loads are applied
to the structure. The BESO-EFG presented a poor convergence due to the badly scaled tangent
matrix, which is expected phenomena in both references (BUHL ET AL., 2000) and (HUANG AND

XIE, 2010). For future works strategies to improve the convergence quality can be implemented,
such as relaxation of the Newton-Raphson convergence criteria or totally removing low-density
elements. For a load of 𝑃 = 1000𝑘𝑁 and using a very low evolutionary ratio of 𝐸𝑅 = 0.5% and
a damped Newton-Raphson scheme, the topology of Figure 4.33 can be obtained, which comes
closer to the results of Appendix A.11 and A.12, which consider an end-compliance minimization.
The final topology corresponds to a discretization of 101 × 26 nodes and a background mesh with
100 × 25 integration cells containing 4 Gauss points each.

The damped Newton-Raphson uses a factor 𝜁 to reduce the Newton-Raphson step towards
the next iteration. The factor is comprised in the interval [0,1]. For the topology of Figure 4.33 a
factor of 𝜁 = 0.5 is used, which increase the number of iteration for each load step but provides a
more stable convergence.
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The damping of Newton-Raphson method can be stated as:

𝑘+1u = 𝜁 Δu 𝑘u (4.6)

Where 𝑘u is the current displacement, 𝑘+1u is the next iteration initial guess and 𝛿 is the
displacement increment obtained with the tangent system of Equation 2.157.

(a) Gauss points

(b) Nodes

Figure 4.33: Final topology results for the Gauss integration points and discretization nodes for the
nonlinear cantilever beam with 𝑃 = 144𝑘𝑁 obtained with BESO-EFG.
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5 Conclusion

This chapter is dedicated to some concluding remarks.

The main objective of this work is to couple the BESO with the EFG method, in an attempt
to encounter alternative methods to the BESO-FEM. The results, detailed in Chapter 4, are in
agreement with the results of literature review, showing that the BESO can effectively be used with
a meshfree method like the EFG. It could be seen that the BESO-EFG can provide results equivalent
to the BESO-FEM and for some cases with a better convergence rate – e.g. the MBB beam.

One of the interests of using the BESO-EFG is to take advantage of the EFG capacity to deal
with nonlinear problems. The topology optimization of the nonlinear cantilever beam was not so
successful as the optimization of linear problems. Indeed, some similarities could be found between
the results of the implemented BESO-EFG with some results of literature review, notably (HUANG
AND XIE, 2010). The implemented method still needs improvements to come more closer to the
literature reference. Improvements like a more efficient computational implementation to allow
finer discretizations, the use of a relaxation method on the Newton-Raphson method, and the total
elimination of low-density nodes are feasible scenarios.

Concerning the implementation of the discretization methods for the linear elasticity, the
FEM and EFG solvers were validated through a comparison with the analytic results for a cantilever
beam. The errors were typically less than 5%. In addition, the nonlinear solvers were successfully
validated trough a comparison with Ansys results for a geometrically nonlinear cantilever beam. As
discussed in Chapter 4, the results provided by the implemented codes are considered acceptable.

The filtering scheme used in the BESO-FEM is very similar to the dual-level interpolation
employed in the BESO-EFG. Although no explicit filtering scheme is used in BESO-EFG, the dual-
level interpolation, for all effects, is a way of filtering. In this way, the no need of filtering scheme
cannot be presented as an asset of the BESO-EFG method.

In general lines, the objectives established for this work were achieved. This work can be
considered as a primary exploration of the BESO-EFG method and its main aspects. It was shown
that the BESO-EFG can be an alternative to BESO-FEM, presenting consistent results for linear
elastic cases.
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APPENDIX A – Topology results of literature review

This appendix gives the literature results for the addressed problems of Chapter 4.

A.1 Two-bar

The results proposed by HUANG and XIE (2010) using a ESO-FEM algorithm for the two-
bar problem is given in Figure A.1. For this case, the two-bar structure was optimized for stress
distribution over the domain. Although this is not a proper comparison, one may note a solid simi-
larities to the results of Figure 4.9.

Figure A.1: Two-bar results proposed by (XIE AND STEVENS, 1993) and (HUANG AND

XIE, 2010).

A second example is the two-bar results of (ZHENG ET AL., 2010) which also uses the
dual-level interpolation method with the BESO-EFG method.
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Figure A.3: Results proposed by (XIE AND STEVENS, 1993) for the Michell type structure using
the ESO-FEM method. The structure’s final volume is 𝑊 * = 15%.

(a) Initial geometry (b) Final topolgy

Figure A.2: Results for the two-bar proposed by (ZHENG ET AL., 2010), which also uses the
BESO-EFG with the dual-level interpolation method. In (𝑎) we have the initial geometry and the
final topology is given in (𝑏).

A.2 Michell type structure

The topology considering a final volume of 𝑊 * = 15% in given in Figure A.3. This result
was obtained using a ESO-FEM method for stress optimization.

Another example is the results obtained by (SHOBEIRI, 2015), presented in Figure A.4,
considering a final weight of 𝑊* = 30%. In his work a BESO-EFG method is employed with-
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out any interpolation method between nodes and integration points. The final topology remains
however similar the results presented in Figure 4.14.

Figure A.4: Results proposed by (SHOBEIRI, 2015) for the Michell type structure, considering
different discretizations. Starting from the top-right figure, the discretizations are 41× 21; 51× 26;
61 × 31 and 71 × 36.

A.3 Cantilever beam

The cantilever results using a BESO-FEM algorithm for compliance optimization obtained by
HUANG and XIE (2010) is given in Figure A.5. The final topology presents a volume o𝑊 * = 50%.
In Figure A.6 the final topology obtained with the SIMP method for the same problem is presented.
The problem parameters are the same of Figure 4.16.

Figure A.5: Final topology of the cantilever beam obtained by HUANG and XIE (2010) using a
BESO-FEM algorithm. The final topology presents a volume 𝑊 * = 50%.
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Figure A.6: Final topology of the cantilever beam using the SIMP method, provided by HUANG
and XIE (2010).

A.4 MBB

The MBB beam results obtained by (HUANG AND XIE, 2010) using the BESO-FEM algo-
rithm is presented in Figure A.7. The SIMP results for the same problem are provided in Figure
A.8. The problem parameters are the same of Figure 4.22.

Figure A.7: Final MBB topology obtained by HUANG and XIE (2010) using the BESO-FEM for
compliance optimization.

Figure A.8: Final topology obtained with the SIMP method, provided by HUANG and XIE (2010).

In his work SHOBEIRI (2016) also provides results for the MBB beam, given in Figure A.9.
This results were obtained with a BESO-EFG method without dual-level interpolation between
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discretization nodes and Gauss points. Using the symmetry, a discretization of 151 × 51 nodes is
used.

Figure A.9: SHOBEIRI (2016) results for the MBB beam using a BESO-EFG method. The topol-
ogy at iterations 4, 9, 14, 22 and 34 are depicted.

A.5 Nonlinear cantilever beam

The results obtained by HUANG and XIE (2010) for the nonlinear cantilever beam of Figure
4.29 using the BESO-FEM are given in the Figure A.10. These results are similar to those of Figures
4.31 and 4.32.
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Figure A.10: Final topology obtained by (HUANG AND XIE, 2010) using BESO-FEM in end-
compliance optimization. In (𝑎) we have final topology using a linear elastic model, in (𝑏) a non-
linear model is used and the applied force is 𝑃 = 60𝑘𝑁 , and in (𝑐) a nonlinear model is used with
an applied force of 𝑃 = 144𝑘𝑁 .

The results obtained by (BUHL ET AL., 2000) are given in Figure A.11. One may notice
that this result is considerably different from those of Figures 4.31 and 4.32. Another interesting
result obtained by GOMES and SENNE (2014) using a method called Sequential Piecewise Linear

Programming – SPLP – is given in Figure A.12.

(a) Initial geometry (b) Final topolgy

Figure A.11: Results obtained by (BUHL ET AL., 2000) for the nonlinear cantilever beam shown
in (𝑎). The load is 𝑃 = 144𝑘𝑁 and a fictitious material of 𝐸0

𝑦 = 3𝐺𝑃𝑎 and 𝜈 = 0.4 is used.
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Figure A.12: Final topologies for the nonlinear cantilever beam obtained by GOMES and SENNE
(2014) for different filtering schemes. The linear results are obtained with a small displacement
model.
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