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Resumo
Estudos longitudinais envolvendo resultados de laboratório, medições repetidas podem
ser censuradas devido aos limites de detecção do ensaio. Por exemplo, em ensaios clínicos
de AIDS, as medições de RNA do HIV-1 são coletadas irregularmente ao longo do
tempo e geralmente estão sujeitas a alguns limites superiores e inferiores de detecção,
dependendo dos ensaios de quantificação. Para analisar esses dados, várias abordagens
utilizando modelos de efeitos mistos lineares e não lineares censurados têm sido propostas
na literatura. Uma complicação surge quando a forma paramétrica dos modelos de efeitos
mistos parece muito restritiva para caracterizar a complexa relação entre uma variável de
resposta e suas covariáveis ao longo do tempo. Nesta tese, propomos o uso de modelos
mistos semiparamétricos para analisar dados longitudinais censurados, estendendo os
modelos de efeitos mistos lineares censurados e fornecendo um esquema de modelagem
mais flexível, permitindo modelar o valor esperado da variável resposta através de uma
função arbitrária do tempo e de funções paramétricas das covariáveis. Além disso, uma
suposição comum de distribuição para modelos de efeitos mistos é a distribuição normal
para erros aleatórios e efeitos aleatórios. Essa suposição pode não ser robusta contra
desvios da normalidade e pode levar a uma inferência enganosa ou tendenciosa. Portanto,
também estendemos os modelos mistos semiparamétricos com erros normais a erros com
distribuição t multivariada e também estendemos os modelos de efeitos mistos lineares/não
lineares a erros com distribuição skew-normal, a fim de permitir distribuições com caudas
mais pesadas que a normal.

Palavras-chave: Dados censurados. Algoritmo EM. Dados longitudinais. Modelos de
efeitos mistos. Modelo misto semiparamétrico.



Abstract
Longitudinal studies involving laboratory results, repeated measurements can be censored
due to assay detection limits. For example, in HIV/AIDS clinical trials, the HIV-1 RNA
measurements are collected irregularly over time and are often subject to some upper and
lower detection limits, depending on the quantification assays. For analyzing such data,
several approaches using censored linear and nonlinear mixed-effects models have been
proposed in the literature. A complication arises when the parametric form of mixed effects
models appears too restrictive to characterize the complex relationship between a response
variable and its covariates over time. In this thesis, we propose the use of semiparametric
mixed models to analyze censored longitudinal data extend censored linear mixed-effects
models and provide a more flexible modeling, allowing to model the expected value of
the response variable through an arbitrary function of time and parametric functions of
covariates. In addition, a common assumption of the distribution for mixed-effect models is
the normal distribution for random errors and random effects. This assumption may not be
robust against deviations from normality and may lead to a misleading or biased inference.
Therefore, we also extend the semiparametric mixed models with normal errors to errors
with multivariate-t distribution, and also, we extend the linear/nonlinear mixed-effects
models to errors with skew-normal distribution, in order to allow distributions with tails
heavier than normal.

Keywords: Censored data. EM algorithm. Longitudinal data. Mixed-effects models.
Semiparametric mixed model.
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Chapter 1

Introduction

1.1 Background and motivation
Longitudinal studies are common in epidemiological and biomedical research.

In these studies, measurements of one or more variables are made repeatedly over time for
a group of subjects. A key feature of longitudinal data is that the repeated measurements
of a variable within a subject tend to be correlated with each other, that is, there may
be within-individual correlations. The measurements across subjects are usually assumed
to be independent. Due to the within-individual correlations and the between-individual
variations in longitudinal data, classical regression models for cross-sectional data, such
as linear or generalized linear models, are not appropriate for longitudinal data analysis.
Parametric regression models, such as linear mixed-effects (LME) models (Laird & Ware,
1982) have proved to be valuable tools for analyzing continuous longitudinal data. With the
incorporation of subject-specific random effects, LMEs can properly model the correlation
of longitudinal data.

As an example of longitudinal data, we may consider an AIDS (acquired
immunodeficiency syndrome) study. The HIV (human immunodeficiency virus) progress
status is usually measured via HIV-1 viral RNA (viral load) or CD4 cell count in the
plasma. CD4 cell count is more often used as an endpoint for long follow-up trials or
advanced patients population, but for trials with short follow-up periods, viral load is often
used as a primary endpoint to quantify treatment effect, where CD4 cell count is viewed as
a covariate to help predict virologic responses. Since the viral load is measured repeatedly
from the beginning of the treatment, the measures obtained from the same subject may
be correlated but can be assumed to be independent if obtained across different subjects.
A powerful tool to handle such longitudinal data is mixed-effects modeling, where linear
and nonlinear mixed-effects (LME/NLME) modeling approaches have been proposed in
HIV dynamics (Wu et al., 1998; Wu, 2005).

Another complexity of longitudinal data is when the response in a longitudinal
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study is a laboratory-based outcome, in this study censoring may occur due to the upper
and/or lower detection limits of an assay. Examples of such censored longitudinal data
arise from a variety of research areas (Moulton & Halsey, 1995; Singh & Nocerino, 2002).
Censoring can be left, right or interval-censored, typical examples of left censored longitu-
dinal data are from HIV studies, where the detection of viral load in blood compartment
is often limited by the sensitivity of a laboratory-performed assay.

Many statistical approaches have been developed to deal with longitudinal data
containing censored measurements within the mixed-effects model framework. A simple
and ad hoc approach is to substitute the censored measurements with the value of the
full or half detection limit, which was shown to produce biased estimates (Hughes, 1999;
Jacqmin-Gadda et al., 2000). As alternatives to these crude imputation techniques, Vaida
& Liu (2009) proposed expectation-maximization (EM) schemes for LME/NLME models
with censored responses (LMEC/NLMEC).

Although LMEs are useful tools for analyzing longitudinal data, an important
assumption of LMEs is that the response variable is linearly related to its covariates by a
known function. Commonly, this linear regression function is not straightforward to derive
due to the lack of sufficient understanding of scientific problems. In other situations, the
linear parametric form of LMEs appears too restrictive to be used to address the complex
relationship between a response variable and covariates. To overcome this difficulty, a
more general and robust modeling tool is needed, which motivates the development of
nonparametric regression models.

In the last years, nonparametric and semiparametric regression models, that
provide great flexibility in modeling covariate effects of longitudinal data, have been
extensively investigated. Instead of using a linear predictor, these models formulate
the relationship between the response variable and certain covariates through arbitrary
functions, and the unknown functions are estimated using nonparametric smoothing
techniques. Hence, semiparametric regression models have gained increasing attention
in longitudinal data analysis due to their flexible structure. As implied by the name,
semiparametric regression models incorporate both parametric and nonparametric forms
of covariate effects, and therefore enjoy the flexibility of nonparametric regression models
while retaining nice properties such as easy implementation and good interpretability
of parametric models. There are a rich literature on the development of semiparametric
regression models for longitudinal data analysis, for example, Zeger & Diggle (1994);
Ruppert et al. (2003); Arribas-Gil et al. (2015); Szczesniak et al. (2015).

However, these developments are in general made on the assumption of normal
errors. Some works have investigated alternative distributions for the errors in multivariate
and repeated-measures problems with indications of light- or heavy-tailed distributions.
Pinheiro et al. (2001) proposed a robust hierarchical linear mixed model in which the
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random effects and the within-subject errors have a multivariate t-distribution. Lachos et al.
(2010) proposed a robust generalization of LME, called the skew normal/independent linear
mixed (SNI-LME) model, by assuming a skew normal/independent (SNI) distribution
(Branco & Dey, 2001) for the random effects and a normal/independent distribution for the
random errors. Ibacache-Pulgar et al. (2012) extend semiparametric mixed linear models
with normal errors to elliptical errors in order to permit distributions with heavier and
lighter tails than the normal ones. In the context of censored responses, Matos et al. (2013b)
proposed an EM algorithm for linear and nonlinear mixed-effects models with censored
response using the multivariate Student’s t-distribution (t-LMEC/t-NLMEC). Bayesian
proposals in the context of heavy-tailed include Lachos et al. (2011) who adopted a Bayesian
approach to carry out posterior inference for censored linear and nonlinear mixed-effects
models considering a class of thick-tail distributions (the so called normal/independent
proposed by Lange & Sinsheimer (1993)) as the joint distribution of the error term
and random effects, while Bandyopadhyay et al. (2012, 2015) studied the LMEC model
considering both skewness and heavy-tails. Most recently, Castro et al. (2019) proposed a
Bayesian flexible semiparametric approach to model censored longitudinal data, where
the random error of the model is normally distributed and the random effects follow a
skew-normal distribution.

This thesis is devoted to a series of chapters that use different models and
techniques to deal with censored data, in particular, HIV/AIDS clinical trials. As a result,
we have implemented different approaches to modeling longitudinal the censored data.
The organization of the thesis is as follows:

Chapter 2: We propose semiparametric mixed models to analyze censored
longitudinal data with irregularly observed repeated measures. The proposed model ex-
tends the censored LME model and provides more flexible modeling schemes by allowing
the time effect to vary nonparametrically over time. We develop an EM algorithm for max-
imum penalized likelihood (MPL) estimation of model parameters and the nonparametric
component. Further, as a byproduct of the EM algorithm, the smoothing parameter is
estimated using a modified LME model, which is faster than alternative methods such
as the restricted maximum likelihood (REML) approach. Finally, the performance of the
proposed approach is evaluated through extensive simulation studies as well as application
to dataset from AIDS study.

Chapter 3: We extended the semiparametric mixed model for longitudinal
censored data with normal errors to Student’s-t erros. This models allows flexible functional
dependence of an outcome variable on covariates by using nonparametric regression,
while accounting for correlation between observations by using random effects. Penalized
likelihood equations are applied to derive the maximum likelihood estimates which appear
to be robust against outlying observations in the sense of the Mahalanobis distance. We
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estimate nonparametric functions by using smoothing splines jointly estimate smoothing
parameter by the EM algorithm. Finally, the performance of the proposed approach is
evaluated through extensive simulation studies as well as application to dataset from AIDS
study.

Chapter 4: Although normal distributions are commonly assumed for random
effects, such assumption may be unrealistic obscuring important features of among-
individual variation. We relax this assumption by consider a likelihood-based inference
for linear and nonlinear mixed effects models with censored response (NLMEC/LMEC)
based on the multivariate skew-normal distribution. An ECM algorithm is developed for
computing the maximum likelihood estimates for NLMEC/LMEC with the standard errors
of the fixed effects and the exact likelihood value as a by-product. The algorithm uses
closed-form expressions at the E-step, that rely on formulas for the mean and variance of a
truncated multivariate skew-normal distribution. It is applied to analyze longitudinal HIV
viral load data in two recent AIDS studies. In addition, a simulation study is conducted
to examine the performance of the proposed methods.

Chapter 5: We present final remarks and perspectives for future research
related to this thesis.

In the following sections of Chapter 1, we provide a brief description of the
EM algorithm, which will be used in our developments to find, for instance, the maximum
likelihood estimates of the model parameters and the damping exponential correlation
(DEC) structure. Also, we describe the data sets used in the applications of the thesis.

1.2 The EM algorithm
The EM algorithm (Dempster et al., 1977) is a popular iterative algorithm

for maximum likelihood (ML) estimation in models when the data has missing/censored
observations and/or latent variables. More specifically, let yobs denote the observed data
and ymis denote the missing data. The complete data ycom � pyobs,ymisq is yobs augmented
with ymis, and `compθ|ycomq � logpfpycom|θqq the complete-data log-likelihood function
of a parameter vector θ P Θ. The EM algorithm consists basically of two steps: the
Expectation step (E-step) and the Maximization step (M-step). Each iteration is performed
as follows:

E-step: Calculate the conditional expectation Qpθ|pθpkqq � E
�
`compθ|ycomq|y, pθpkq�,

where pθpkq is the estimate of θ at the k-th iteration.

M-step: Find θpk�1q such that Qpθpk�1q|θpkqq � max
θPΘ

Qpθ|pθpkqq.
These steps are performed iteratively in `compθ|ycomq until it reaches the convergence.
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When the M-step in the EM algorithm is difficult to implement, it is often
useful to replace it with a sequence of constrained maximization (CM) steps, each of which
maximizes Qpθ|θpkqq over θ with some function of θ held fixed. The sequence of CM-steps
is such that the over all maximization is over the full parameter space. This leads to a
simple extension of the EM algorithm, called the ECM algorithm (Meng & Rubin, 1993).
A further extension of the EM algorithm is the ECME algorithm (Liu & Rubin, 1994).
This algorithm replaces each CM-step of ECM with a CM-step that maximizes either the
constrained Q-function, as in ECM, or the correspondingly constrained likelihood function.
Liu & Rubin (1994) showed that ECME typically shares with EM the simplicity and
stability, but has a faster rate of convergence, especially for the Student’s t-distribution
with unknown degrees-of-freedom.

1.3 Damped exponential correlation structure (DEC)
Following Muñoz et al. (1992), the damped exponential correlation (DEC)

structure is defined as:

Ei � Eipφ, tiq �
�
φ
|tij�tik|

φ2
1

�
, i � 1, . . . , n, j, k � 1, . . . , ni, (1.1)

where ti � pti1, . . . , tiniq is a vector of time points for subject i and φ � pφ1, φ2q
J. The

parameter φ1 is the correlation between observations separated by one t-unit in time, and
the “scale parameter” φ2 permits attenuation or acceleration of the exponential decay of
the autocorrelation function defining a continuous-time autoregressive (AR) model. From
a practical point of view and in order to avoid computational problems, the parameter
space of φ1 and φ2 is confined within φ � tpφ1, φ2q : 0   φ1   1, φ2 ¥ 0u.

For nonnegative φ1, the correlation structure given in (1.1) produces a variety
of standard correlation structures upon fixing the damping parameter φ2, as follows:

1. if φ2 � 0, then Ei is the compound symmetry correlation structure (CS);

2. when 0   φ2, 1, then Ei presents a decay rate between the compound symmetry and
AR(1) model;

3. if φ2 � 1 , then Ei generates an AR(1) structure;

4. when φ2 ¡ 1, then Ei presents a decay rate faster than that of AR(1).

5. if φ2 Ñ 8, Ei yields MA(1), the moving average model of order 1.

1.4 Case studies
In this section we present the motivating datasets, which will be analysed in

this thesis.
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1.4.1 ACTG 315 data

The AIDS Clinical Trials Group (ACTG) protocol 315 considers 46 HIV-
1 infected patients treated with a potent antiretroviral regimen consisting of protease
inhibitor and reverse transcriptase inhibitor drugs. Before initiating the antiretroviral
regimen, all patients discontinued their own antiretroviral regimen for five weeks as a
“washout" period. The aim of this antiretroviral regimen is to show that immunity can be
partially restored in people with moderately advanced HIV disease.

The viral load was quantified irregularly on days 0, 2, 7, 10, 14, 21, 28, 56, 84,
168 and 196 after start of treatment, generating 361 observations. CD4� cell counts were
also measured along with viral loads. Measurements below the detectable threshold of 100
copies/mL (40 out of 361, i.e, 11% censored observations) were considered left-censored,
and the censoring mechanism was assumed to be independent of the complete data. The
number of measurements per subject varied from 4 to 10. Figure 1a displays the individual
profiles of the viral loads. As can be seen, the HIV-1 RNA levels changed over time in a
nonlinear manner. Moreover, a variation in the intercept among individuals is also observed.
In Figure 1b, we display a scatter plot of the viral load and CD4� cell counts, showing
an inverse relationship between viral and the CD4� cell count, i.e., high CD4� cell count
leads to lower levels of viral load. This is because the CD4� cells (also called T-cells)
alert the immune system in case of invasion by viruses and/or bacteria. Consequently, a
lower CD4� count means a weaker immune system. For a more detailed description of the
HIV/AIDS study, we refer the interested reader to Landay et al. (1998) and Kotzin et al.
(2000).
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Figure 1 – ACTG 315 data. (a) Individual profiles for HIV viral load (in log10 scale) at
different follow-up times. Dotted line indicates the censoring level. (b) Scatter
plot of the CD4� cell counts against viral loads (in log10 scale). Gray line is a
regression line between y � CD4�.
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1.4.2 A5055 data

The ACTG protocol A5055 was a phase I/II, randomized, open-label, 24-week
comparative study of the pharmacokinetics, tolerability, safety and antiretroviral effects
of two regimens of indinavir, ritonavir and two nucleoside analogue reverse transcriptase
inhibitors on HIV-1 infected patients. A more detailed description of this study and data
can be found in Acosta et al. (2004).

In this study, 44 patients were randomized in one of two regimens and plasma
HIV-1 RNA (viral load) was measured (copies/mL) in blood samples collected irregularly
on study days 0, 7, 14, 28, 56, 84, 112, 140, and 168 of follow-up. The nucleic acid sequence-
based amplification assay (NASBA) was used to measure plasma HIV-1 RNA, with a lower
limit of quantification of 50 copies/mL, and there were 102 out of 308 (around 33.12%)
RNA viral load measurements below the detection limit, so there was left censoring. A
series of potentially explanatory variables was collected at the same time. For the data
analysis, we consider only the covariates CD4� and CD8� cell counts. The number of
measurements per subject varied from 1 to 8. Figure 2a shows the longitudinal trajectories
of RNA viral load (in log-base-10 scale) across days for patients. It can be noted that the
viral load trajectory is complex and is substantially different across individuals. Figures
2b and 2c display the individual trajectories of CD4� and CD8� cell counts, respectively.
Previous studies show that CD4� cells and CD8� cells are immunologic markers, providing
a way of prognosticating the status of progression from HIV to AIDS. HIV-1 infection and
AIDS are characterized by a significant and progressive destruction of CD4� cells, which
results in a weakened immune system that can no longer fight infections. In addition to
the steady decline of CD4� cells during infection, there is a concomitant increase in CD8�

cells as part of the normal immune response to viral infection (Stevens et al., 2006).
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Figure 2 – A5055 data. Individual profiles for HIV viral load (in log10 scale), CD4� and
CD8� cell count at different follow-up times. Dotted line indicates the censoring
level.
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1.4.3 AIEDRP data

The AIEDRP data set consists of longitudinal HIV RNA measurements taken
on 320 subjects from the Acute Infection and Early Disease Research Program (AIEDRP),
a large multicenter observational established to develop and evaluate data from studies
of patients with acute or recent HIV infection. During the acute stage of infection, the
large HIV RNA observations may lie above the limit of quantification of the assay, which
we treat as right-censoring. This limit was between 75, 000 and 500, 000 copies/milliliter,
depending on the assay. The time of infection was estimated at 24 days prior to first
positive HIV RNA sample or detectable serum p24 antigen test. The subjects had between
one and 14 observations: 129 had one, 82 had two, and 109 had three or more observations.
Of the 830 recorded observations, 185 (22%) were above the limit of quantification of the
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Figure 3 – AIEDRP data. Individual profiles (in log10 scale) for HIV viral load at
different follow-up times.

assay. In the absence of treatment, following acute infection the HIV RNA decreases and
then varies around a setpoint value. This setpoint value may differ between individuals,
and is of central interest here. The viral setpoint characterizes the severity of infection, it
may relate to the strength of the subject’s immune system, and it may predict clinical
progression of the disease. The individual profiles are shown in Figure 3.

1.4.4 UTI data

The UTI data is referred to a study of 72 children and adolescents who had
HIV-1 infection and stopped their medications at 4 academic centers in the United States
between January 2000 and September 2004. An unstructured treatment interruption (UTI)
is an issue in the adolescent population, because the potential alternative of suboptimal
adherence can lead to antiretroviral resistance and diminished treatment options in the
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future; however, there is little information on the clinical, virologic, and immunologic
outcomes of UTI in pediatric and adolescent populations. The aim of this study was
to monitor the HIV-1 viral laod (RNA) after unstructured treatment interruption. The
subjects in the study had taken ARV therapy for at least 6 months before UTI, and the
medication was discontinued for more than 3 months. The HIV viral load were studied
from the closest time points at 0, 1, 3, 6, 9, 12, 18, 24 months after UTI. The number of
observations from baseline(month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13,
respectively. Out of 362 observations, 26(7%) observations were below the detection limits
(50 or 400 copies/mL) and were left-censored at these values. The individual profiles are
shown in Figure 4.
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Figure 4 – UTI data. Individual profiles (in log10 scale) for HIV viral load at different
follow-up times.
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Chapter 2

A semiparametric mixed-effects
model for censored longitudinal data

2.1 Introduction
Longitudinal studies are used in many fields of research, including epidemiology,

clinical trials, and survey sampling. Parametric mixed-effects models are powerful tools to
model the relationship between a response variable and covariates in longitudinal studies.
LME models and nonlinear mixed-effects (NLME) models are the two most popular
examples. These models have been extensively studied in the literature and applied to
analyze longitudinal data (Davidian & Giltinan, 1995; Pinheiro & Bates, 2006; Diggle,
2002; Wu, 2010). One difficulty that arises in longitudinal data analysis is when the
response is censored for some of the observations, that is, the measurements collected
over time and the assay procedure may be subject to upper and lower detection limits.
Typical examples of censored longitudinal data are from Human Immunodeficiency Virus
(HIV) studies, where the detection of the viral load (the number or virus RNA copies)
in the blood compartment is often limited by the sensitivity of a laboratory assay. With
the advance of effective antiviral treatments, in some cases the HIV copy number can be
extremely low and beyond the detection limit, which leads to left-censoring.

Several statistical approaches have been developed to deal with longitudinal data
with censored measurements in the LME framework. Hughes (1999) proposed a likelihood
method based on Monte Carlo EM (MCEM) for LME with censored responses (LMEC).
Vaida & Liu (2009) proposed an EM algorithm to compute the maximum likelihood (ML)
and restricted maximum likelihood (REML) for linear and nonlinear mixed effects models
with censored responses (LMEC/NLMEC), which uses closed-form expressions at the
E-step. Matos et al. (2013a) presented influence diagnostics and perturbation schemes
for the LMEC and NLMEC models. For a robust estimation of longitudinal data in the
presence of potential outliers or atypical observations, Pinheiro et al. (2001) proposed a
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robust extension of the LME model by considering a joint multivariate-t distribution for
the random effects and within-subject errors, called the Student-t LME (t-LME) models.
More recently, Matos et al. (2013b) developed an EM-type algorithm for computing the ML
estimates for NLMEC/LMEC based on the multivariate Student’s t-distribution, named
t-NLMEC/t-LMEC. Furthermore, Lachos et al. (2019) proposed a flexible longitudinal
LME model for multiple censored LME models based on the symmetric class of scale
mixtures of normal (SMN) distributions, where an stochastic approximation of the EM
(SAEM) algorithm is proposed to compute the ML estimates of the model parameters
and to take into account the autocorrelation existing among irregular observations, and a
damped exponential correlation (DEC) structure is considered.

Although LME models are useful tools for analyzing longitudinal data, an
important assumption for these models is that the response variable is a known parametric
function of both fixed effects and random effects. However, this assumption is not always
satisfied in practical applications. To overcome this difficulty, a more general and robust
modeling tool is needed, which motivates the development of nonparametric regression
models (Green & Silverman, 1994; Wang, 1998a; Rice & Wu, 2001). Nonparametric models
are more robust against the model assumptions but they are usually more complex and
less efficient. Semiparametric models are a good compromise and retain nice features of
both parametric and nonparametric models. In semiparametric models, the parametric
components are often used to model important factors that affect the response and the
nonparametric component is often used for nuisance factors. Semiparametric regression
models for longitudinal data have gained increasing attention due to their flexible structure.
For example, Zeger & Diggle (1994) proposed a semiparametric model where a nonpara-
metric function is used to model the time effect, and a random intercept together with a
Gaussian stochastic process is used to account for the within-subject correlation. Zhang
et al. (1998) extended the Zeger & Diggle (1994) model to a more general class of models
named semiparametric stochastic mixed models and proposed various stationary and
nonstationary stochastic processes to model serial correlation. Vock et al. (2011) developed
a mixed model framework for censored longitudinal data in which the random effects
are represented by the flexible seminonparametric (SNP) density, and showed through
simulations that this approach can lead to reduced bias and increased efficiency relative to
assuming Gaussian random effects.

The literature contains many works about semiparametric models for longitu-
dinal data, but to the best of our knowledge there are no studies of semiparametric mixed
effects models for longitudinal irregularly observed censored data (SMEC). Motivated by
this, the aim of this work is to perform a study of statistical inference in the SMEC model,
in which the estimators of the regression coefficients and the nonparametric function of
time are obtained using the EM algorithm for MPL estimation. A major challenge facing
the penalized likelihood approach is estimation of the smoothing parameters (Wood, 2004).
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There are several proposals to estimate this parameter, the most popular approaches
being the generalized cross-validation (GCV), Akaike information criterion (AIC) and
maximum restricted likelihood (REML). A drawback of these methods is that they are
usually unstable and computationally expensive. In this article, as a byproduct of the
EM algorithm, the smoothing parameter is estimated using a modified parametrization
LME model, which is faster than those alternative methods. The autocorrelation existing
among irregularly observed measures is modeled for the parametric damped exponential
correlation (DEC) structure as proposed by Muñoz et al. (1992), this correlation structure
allows us to deal with unequally spaced and unbalanced observations.

The rest of this chapter is structured as follows. Section 2.2 presents the
multivariate normal and some of its keys properties. In Section 2.3, we introduce the
SMEC model and the estimation and inference are outlined. Details of the EM algorithm as
well as the derivation of the standard errors are also presented in this Section. A discussion
about the estimation of the semiparametric degrees of freedom and the smoothing parameter
are given in Section 2.4. Section 2.5 presents the results of simulation studies conducted
to analyze the performance of the proposed methods. The analyses of two longitudinal
datasets are presented in Section 2.6. Finally, some concluding remarks are given in Section
2.7 .

2.2 The multivariate normal
A random variable Y is said to follow a p-variate normal distribution with

mean vector µ and variance matrix Σ (positive definite), denoted by Nppµ,Σq, if the
probability density function (pdf) of Y, is given by

φppy|µ,Σq �
1

p2πqp{2 |Σ|
�1{2 exp

"
�

1
2 py� µq

J Σ�1 py� µq
*
,

where Φpp�|a,Aq and φpp�|a,Aq are the cdf and pdf, respectively, of Nppa,Aq. In order to
introduce some notation, for a normal random vector, we establish the following which is
important for our subsequent research.

Proposition 1. Let Y � Nppµ,Σq and Y is partitioned as Y � pYJ
1 ,YJ

2 q
J, with

dimpY1q � p1, dimpY2q � p2, p1 � p2 � p, and Σ �

�
Σ11 Σ12

Σ21 Σ22

�
and µ � pµJ

1 ,µ
J
2 q

J

be the corresponding partitions of Σ and µ. Then

(i) Y1 � Np1pµ1,Σ11q,

(ii) The conditional distribution of Y2|Y1 � y1 is given by

Y2|Y1 � y1 � Np2

�
µ2.1, rΣ22.1

	
,

where Σ22.1 � Σ22 �Σ21Σ�1
11 Σ12, µ2.1 � µ2 �Σ21Σ�1

11 py1 � µ1q.
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Now, let TNppµ,Σ;Aq represent a p-variate truncated normal distribution for
Nppµ,Σq lying over the truncation region A � tpy1, . . . , ypq P Rp : a1 ¤ y1 ¤ b1, . . . , ap ¤

yp ¤ bpu � ty P Rp : a ¤ y ¤ bu. Specifically, we say that the p-dimensional vector
Y � TNppµ,Σ;Aq, if its density is given by:

fpy|µ,Σ;Aq � φppy|µ,Σq³
A φppy|µ,Σqdy

IApyq.

2.3 The semiparametric mixed effects model with censored responses

2.3.1 The model

Ignoring censoring for the moment, suppose that in a longitudinal study
there are n subjects, with the ith subject having ni observations over time. Denote
by yi � pyi1, . . . , yiniq

J the vector of observed responses for the ith subject at time
ti � pti1, . . . , tiniq

J. The semiparametric mixed-effects model is specified as follows:

yi � Xiβ � Zibi �Nif � εi, (2.1)

where bi iid.
� Nqp0,Dq is independent of εi ind.

� Nnip0,Ωiq, i � 1, . . . , n, Xi is the ni � p

design matrix corresponding to the p � 1 vector of fixed-effects β, and Zi is the ni � q

design matrix corresponding to the q� 1 vector of random effects bi. Let t0 � pt01, . . . , t
0
rq
J

be a vector of ordered distinct values of the time points tij . Then Ni is the incidence matrix
(ni� r) for the ith subject connecting ti and t0 such that the pj, sqth element of Ni equals
the indicator function Iptij � t0sq for j � 1, . . . , ni and s � 1, . . . , r, f � pfpt01q, . . . , fpt

0
rqq

J

is an r � 1 vector, with fp�q an arbitrary twice-differentiable smooth function of time, and
εi is the ni � 1 vector of random errors. The dispersion matrix D � Dpαq depends on the
unknown and reduced parameter vector α of dimension q. The correlation structure of
the error vector is assumed to be Ωi � σ2Ei, where the ni � ni matrix Ei incorporates a
time-dependence structure. Following Muñoz et al. (1992), as described in Section 1.3, we
adopt a DEC structure for Ei, which is defined as:

Ei � Eipφ; tiq �
�
φ
|tij�tik|

φ2
1

�
, i � 1, . . . , n, j, k � 1, . . . , ni,

where φ � tpφ1, φ2q : 0   φ1   1, φ2 ¥ 0u, φ1 is the correlation between observations
separated by one t-unit in time and φ2 is the “scale parameter”, which permits attenua-
tion or acceleration of the exponential decay of the autocorrelation function, defining a
continuous-time autoregressive model. Examples of particular cases in this family of corre-
lation structures include the compound symmetry (CS), AR(1), and MA(1) correlation
structures when φ2 takes the values 0,1, and 8, respectively. A more detailed discussion
of the DEC structure can be found in Muñoz et al. (1992).

Before proceeding further, we introduce some notation. Let y � pyJ
1 , . . . ,yJ

n q
J,

X � pXJ
1 , . . . ,XJ

n q
J, N � pNJ

1 , . . . ,NJ
n q

J, ε � pεJ1 , . . . , ε
J
n q

J, and Z � diagpZ1, . . . ,Znq.
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Then model (2.1) can be written as:

y � Xβ �Nf � Zb� ε, (2.2)

where b � pbJ
1 , . . . ,bJ

n q
J is Nnqp0,Dpαqq, with Dpαq � diagpD, . . . ,Dq and ε is NNp0,Ωq,

with Ω � diagpΩ1, . . . ,Ωnq. The matrix rX,NTs must be of full column rank, where
T � r1, t0s and 1 is an r � 1 vector of 1’s.

As mentioned earlier, the proposed model also considers censored observations,
i.e., we assume that the response yij is not fully observed for all i, j. Let the observed data
for the i-th subject be pVi,Ciq, where Vi represents the vector of uncensored readings
(Vij � V0i) or censoring interval (V1ij, V2ij), and Ci is the vector of censoring indicators,
such that:

Cij �

$&%1 if V1ij ¤ yij ¤ V2ij,

0 if yij � V0i,
(2.3)

for all i P t1, . . . , nu and j P t1, . . . , niu, i.e., Cij � 1 if yij is located within a specific interval.
Note that for a right-censored observation V2ij � 8, and for a left-censored observation
V1ij � �8. The model defined in (2.1)-(2.3) is henceforth called the DEC-SMEC model.

Notice that in the absence of the nonparametric function Nif , i � 1, . . . , n, in
(2.1)-(2.3), the DEC-SMEC model reduces to the DEC-LMEC model proposed by Matos
et al. (2016) (see also, Vaida & Liu, 2009), and in the absence of the random effects term bi
(other terms in (2.1) remaining intact), the DEC-SMEC model reduces to the well-known
partial linear model (Ibacache-Pulgar et al., 2013). Finally, when β � 0, the DEC-SMEC
model reduces to the nonparametric mixed model developed by Wang (1998a).

2.3.2 The log-likelihood function

Following Vaida & Liu (2009), frequentist inference on the parameter vector
θ � pβJ, fJ, σ2,αJ,φJqJ is based on the marginal distribution of yi. For complete data,
we have marginally that yi ind.

� Nnipµi,Σiq, where µi � Xiβ�Nif and Σi � Ωi�ZiDZJ
i ,

with the non-parametric component representing some fixed function. For responses with
censoring pattern as in (2.3), we have yi|Vi,Ci � TNnipµi,Σi;Aiq, where TNnip.;Aq
denotes the truncated normal distribution on the interval A, where Ai � Ai1 � . . .� Aini ,
with Aij being the interval p�8,8q if Cij � 0 and the interval pV1ij, V2ijs if Cij � 1. To
compute the likelihood function associated with the model defined by (2.1) and (2.3), the
first step is to treat separately the observed and censored components of yi.

Let yoi be the noi -vector of observed outcomes and yci be the nci -vector of censored
observations for subject i with pni � noi � nciq such that Cij � 0 for all elements in yoi , and
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1 for all elements in yci . After reordering, yi, Vi, µi, and Σi can be partitioned as follows:

yi � vecpyoi ,yciq, Vi � vecpVo
i ,Vc

iq, µ
J
i � pµoi ,µ

c
iq and Σi �

�
Σoo
i Σoc

i

Σco
i Σcc

i

�
,

where vecp.q denotes the function which stacks vectors or matrices of the same number of
columns. Then, we have

yoi � Nnoi
pµoi ,Σoo

i q, yci |yoi � Nnci
pµico,Siq,

where µico � µci�Σco
i pΣoo

i q
�1pyoi �µoi q and Si � Σcc

i �Σco
i pΣoo

i q
�1Σoc

i . Thus, the likelihood
function for subject i , using conditional probability arguments and following Vaida & Liu
(2009) and Matos et al. (2013a), is given by:

Lipθq � fpyoi |θqP pVc
1i ¤ yci ¤ Vc

2i|Vo
i ,θq

� φnoi py
o
i ;µoiβ,Σoo

i q

» Vc
2i

Vc
1i

φppyci ;µico,Siqdyci , (2.4)

where φpp�;µ,Σq denote the probability distribution function (pdf) of the p-variate normal
distribution Nppµ,Σq, with mean vector µ and covariate matrix Σ.

The log-likelihood function for the observed data is thus given by `pθq �

`pθ|yq �
ņ

i�1
tlogLiu. Hence, the estimates obtained by maximizing the log-likelihood

function `pθq are the ML estimates. However, maximization of `pθq without imposing
restrictions on the function fp�q may cause over-fitting and non-identification of β (see, for
instance, Green, 1987). A well-known procedure that is based on the idea of log-likelihood
penalization consists of incorporating a penalty function in the log-likelihood, such that:

`ppθ, λq � `pθ|yq �
λ

2Jpfq, (2.5)

where Jpfq denotes the penalty function over fp�q and λ is a smoothing parameter that
controls the tradeoff between goodness of fit and the smoothness of the estimated function.
By maximizing (2.5), one obtains the MPL estimates.

2.3.3 The EM algorithm for MPL estimation

This Section describes in detail how the proposed DEC-SMEC model (2.1)-(2.3)
can be fitted by using the ECM algorithm (Meng & Rubin, 1993).

Let y � pyJ
1 , . . . ,yJ

n q
J, b � pbJ

1 , . . . ,bJ
n q

J, V � vecpV1, . . . ,Vnq and C �

vecpC1, . . . ,Cnq, where pVi,Ciq is observed for the ith subject. In the estimation procedure,
b and Y are treated as hypothetical missing data, and for augmentation with the observed
data V, C, we set ycom � pCJ,VJ,yJ,bJqJ . Hence, the EM-type algorithm works over
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the complete-data log-likelihood function `cpθ|ycomq �
ņ

i�1
`ipθ|ycomq, where

`ipθ|ycomq � �
ni
2 log σ2 �

1
2 logp|Ei|q �

1
2σ2 pyi � µi � ZibiqJE�1

i pyi � µi � Zibiq

�
1
2 log |D| �

1
2bJ

i D�1bi � C, (2.6)

with C being a constant independent of the parameter vector θ. Given the current
estimate θ � pθpkq, the E-step calculates the conditional expectation of the complete data
log-likelihood function given by:

Qpθ|pθpkqq � E
�
`cpθ|ycomq|V,C, pθpkq�

�
ņ

i�1
Qipθ|pθpkqq

�
ņ

i�1
Q1ipβ, f , σ2|pθpkqq � ņ

i�1
Q2ipα|pθpkqq, (2.7)

where

Q1ipβ, f , σ2|pθpkqq � �
ni
2 log σ2 �

1
2 logp|Ei|q �

1
2σ2

�papkqi � 2µJ
i E�1

i

�pypkq
i � Zi

pbpkq
i

	
� µJ

i E�1
i µi

�
and

Q2ipα|pθpkqq � �
1
2 log |D| �

1
2tr
�zbibJ

i

pkq

D�1


,

with

papkqi � tr
�zyiyJ

i

pkq

E�1
i � 2zyibJ

i

pkq

ZJ
i E�1

i �zbibJ
i

pkq

ZJ
i E�1

i Zi



,

pbipkq � E
�
bi
���Vi,Ci, pθpkq� � ϕi �pyipkq � µi	 ,zbibJ

i

pkq

� E
�
bibJ

i

���Vi,Ci, pθpkq� � Λi �ϕi

�zyiyJ
i

pkq

� 2pyipkqµi � µiµJ
i



ϕJ
i ,

zyibJ
i

pkq

� E
�
yibJ

i

���Vi,Ci, pθpkq� � �zyiyJ
i

pkq

� pyipkqµJ
i



ϕJ
i ,

with Λi � pD�1 � ZJ
i E�1

i Zi{σ
2q�1 and ϕi � ΛiZJ

i E�1
i {σ2.

It is clear that the E-step reduces only to the computation of

zyiyJ
i

pkq

� E
�
yiyJ

i

��Vi,Ci, pθpkq� and pypkq
i � E

�
yi
��Vi,Ci, pθpkq� ,

that is, the first and second moments of a truncated multivariate normal (MN) distribution.
These expected values can be determined in closed form, using Proposition 1, as follows:
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1. If the ith subject has only non-censored components, i.e, yi � yoi then

zyiyJ
i � yiyJ

i , pyi � yi.

2. If the ith subject has only censored components, i.e, yi � yci , we have

zyiyJ
i � E

�
yiyJ

i

��Vi,Ci, pθpkq� ,
pyi � E

�
yi
��Vi,Ci, pθpkq� ,

where yi|Vi,Ci � TNnip pµi,xΣi;Aiq, pµi � Xi
pβ �Ni

pf , xΣi � xΩi � Zi
pDZJ

i .

3. If the ith subject has censored and uncensored components, i.e, yi � pycJi ,yoJi q.
Then from Proposition 1 and by the fact that tyi|Vi,Ciu, tyi|Vi,Ci,yoi u and
tyci |Vi,Ci,yoi u are equivalent processes, we have

zyiyJ
i � EryiyJ

i |yoi ,Vi,Ci, pθs � � yoiyoJi yoi pwJ
ipwiyoJi {wiwJ
i

�
,

pyi � Eryi|yoi ,Vi,Ci, pθs � vecpyoi , pwiq,

where pwi � ErWi|pθs, {wiwJ
i � ErWiWJ

i |
pθs, with Wi � TNnci

pµico,Si;Aiq, and
Ai � Ai1� . . .�Aini , with Aij being the interval p�8,8q if Cij � 0 and the interval
pV1ij, V2ijs if Cij � 1.

For more details on the computation of these moments, see Vaida & Liu (2009)
and Matos et al. (2013a). Alternatively, Kan & Robotti (2017) proposed an efficient
algorithm to compute any arbitrary moment for the MN distribution. These can be
obtained in the R package MomTrunc (Galarza et al., 2020).

Following Green (1987), the MPL estimate of θ is the value that maximizes
the function

Qppθ|pθpkqq � Qpθ|pθpkqq � λ

2Jpfq,

where Jpfq and λ are as defined in (2.5) and Qpθ|pθpkqq is the conditional expectation
function. Similarly to Ibacache-Pulgar et al. (2013), we will consider the following penalty
function:

Jpfq �
» b
a

rf2ptqs2dt � fJKf ,

where rf2ptqs denotes the second derivative of fptq with ra, bs containing the values t0j ,
of j � 1, . . . , r and K is the nonnegative definite smoothing matrix defined in Green &
Silverman (1994). In this case, the estimation of f leads to a smooth cubic spline with
knots at the points t0j .
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The CM-step then conditionally maximizes Qppθ|pθpkqq with respect to θ and
obtains a new estimate pθpk�1q

, as follows:

pβpk�1q
�

�
ņ

i�1
XJ
i
pE�1pkq
i Xi

��1 ņ

i�1
XJ
i
pE�1pkq
i

�pyipkq �Ni
pf pkq � Zi

pbpkq
i

	
, (2.8)

pf pk�1q �

�
ņ

i�1
NJ
i
pE�1pkq
i Ni � pσ2pkqλK

��1 ņ

i�1
NJ
i
pE�1pkq
i

�pyipkq �Xi
pβpk�1q

(2.9)

� Zi
pbpkq
i

	
,

pσ2pk�1q
�

1
N

ņ

i�1

�papkqi � 2pXi
pβpk�1q

�Ni
pf pk�1qqJpE�1pkq

i ppypkq
i � Zi

pbpkq
i q

� pXi
pβpk�1q

�Ni
pf pk�1qqJpE�1pkq

i pXi
pβpk�1q

�Ni
pf pk�1qq

�
(2.10)

pDpk�1q �
1
n

ņ

i�1

zbibJ
i

pkq

, (2.11)

pφpk�1q
� arg max

φPp0,1q�R�

�
�

1
2 logp|Ei|q �

1

2 pσ2pk�1q

�papkqi � 2pµpk�1qJ
i E�1

i

�pypkq
i � Zi

pbpkq
i

	
� pµpk�1qJ

i E�1
i pµpk�1q

i

�	
, (2.12)

where N �
ņ

i�1
ni. This process is iterated until some distance between two succes-

sive evaluations of the actual penalized log-likelihood `ppθ, λq in Section 2.3.2, such as
|`pppθpk�1q

q{`pppθpkqq � 1|, becomes small enough, for example, ε � 10�6. A set of reasonable
starting values may be achieved by computing pβp0q, pσ2p0q, pDp0q and pφp0q

as the solution
of the normal linear mixed-effects model, using the package nlme (Pinheiro et al., 2020),

and so, pf p0q � � ņ

i�1
NJ
i Ni � pσ2p0qλK

��1 ņ

i�1
NJ
i

�
yi �Xi

pβp0q	. In each iteration of the EM

algorithm, the smoothing parameter, λ, can be estimated as described in Section 2.4.

2.3.4 Estimation of the random effects

To estimate the random effects, we consider the conditional mean of bi given
the observed data Vi and Ci, that is, E rbi | Vi,Cis. Thus, for a given value of θ �

pβJ, fJ, σ2,αJ,φJqJ, the conditional mean of bi given Vi and Ci ispbipθq � E rbi | Vi,Cis � ϕippyi �Xiβ �Nifq, (2.13)

where ϕi � ΛiZJ
i E�1

i {σ2 and Λi � pD�1 � ZJ
i E�1

i Zi{σ
2q�1. Note that pyi � E ryi|Vi,Cis

is given by the first moment of a truncated MN distribution. In practice, the estimator
of bi, pbi, can be obtained by substituting the MPL estimate pθ into (2.13), leading topbi � pbippθq. Moreover, the conditional covariance matrix of bi given Vi and Ci is

Var rbi | Vi,Cis � E
�
bibJ

i | Vi,Ci

�
� pbipθqpbipθqJ � Λi �ϕiVar ryi | Vi,Cisϕ

J
i .
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Note that Var ryi|Vi,Cis can be easily obtained as a byproduct of the proposed ECM
algorithm developed in Section 2.3.3.

2.3.5 Approximate standard errors

In the context of nonparametric regression, the covariance matrix of the MPL
estimates can be evaluated by inverting the observed information matrix obtained by
treating the penalized likelihood as a usual likelihood (Segal et al., 1994). Within the
framework of censoring, the variance of the parameter estimates can be obtained using
the missing information principle (Louis, 1982), according to which:

observed information = complete information - missing information.

Following Segal et al. (1994) and Louis (1982), we derive the covariance matrix
of ppβ,pfq by using the inverse of the penalized observed information matrix. Thus, the
approximate covariance matrix of ppβ,pfq is given as:

yCovppβ,pfq ≈ I�1
p pβ, fq

��
pθ
,

where the penalized expected information matrix Ippβ, fq takes the form:

Ippβ, fq �

�
Iββ Iβf
IJβf Iff

�
. (2.14)

Thus, we obtain the variance of β̂ and f̂ estimated at convergence, respectively, as:

yVarapproxppβq �
�
Iββ � IβfI

�1
ff I

J
βf
	���
pθ
,

yVarapproxppfq �
�
Iff � IJβfI

�1
ββIβf

	���
pθ
,

where

Iββ �
ņ

i�1

"
XJ
i Σ�1

i Xi �XJ
i Σ�1

i Var ryi|Vi,CisΣ�1
i Xi

*
,

Iβf �
ņ

i�1

"
XJ
i Σ�1

i Ni �XJ
i Σ�1

i Var ryi|Vi,CisΣ�1
i Ni

*
,

Iff �
ņ

i�1

"
NJ
i Σ�1

i Ni �NJ
i Σ�1

i Var ryi|Vi,CisΣ�1
i Ni

*
� λ2KffJK.

Note that when f � 0, we obtain the variance of the fixed effects in the
approximate ML estimation given by Vaida & Liu (2009) and Hughes (1999).
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2.4 Estimation of the smoothing parameter
The smoothing parameter λ has been assumed to be fixed, but in practice it

should be estimated. Selecting a suitable value of λ is crucial to good curve fitting. A classic
data-driven approach to selecting the smoothing parameter is cross-validation, which leaves
out one subject’s entire data at a time, but this approach is often computationally expensive.
Likelihood-based smoothing parameter selection has been proposed as an alternative to
prediction error-based approaches such as GCV or information criteria.

Several authors have shown the connection between a smoothing spline and
a linear mixed-effects model for analysis of longitudinal data (see, for instance, Speed,
1991; Wang, 1998a). The authors treat the smoothing function as a linear combination of
the fixed effects and random effects, so that the λ is variance component, which can be
estimated by ML or restricted maximum likelihood (REML) (Wahba, 1985; Kohn et al.,
1991). Reiss & Ogden (2009) provided a theoretical comparison of GCV and REML with
finite sample sizes, showing that GCV is prone to undersmoothing and is more likely to
develop multiple minima and to give more variable λ estimates than REML. Zhang et al.
(1998) formulated the semiparametric mixed model defined in (2.2) as a modified LME
model and proposed to estimate the smoothing parameter λ and the variance component
simultaneously using REML.

Following Green (1987) and Zhang et al. (1998), we can write f via a one-to-one
linear transformation as:

f � Tδ �Bd, (2.15)

where δ and d are vectors with dimensions 2 and r � 2, B � LpLJLq�1 and L is an
r � pr � 2q full-rank matrix satisfying K � LLJ and LJT � 0. Given (2.15), Equation
(2.2) can be reformulated as:

y � X�β� � Z�b� � ε,

where X� � rX,NTs, Z� � rNB,Zs, β� � pβJ, δJqJ are the regression coefficients and

b� � pdJ,bJqJ are mutually independent random effects with d � Np0, σ
2

λ
Ir�2q, and b

and ε have the same distributions as those given in Section 2.3.1.

Using the connection between the smoothing spline and the LME model, in
this chapter we propose to estimate λ using the EM algorithm, due to its simplicity of
implementation and stable monotone convergence.

This novel procedure is described as follows. Consider the following model:

y|b� � NN pX�β� � Z�b�,Ωq ,

b� � Npr�2�qq�1 p0,Ψq ,
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where

Ψ �

��σ2

λ
Ir�2 0

0 Dpαq

�
.
In order to use the EM algorithm we consider the augmented data vector

ycomp� � pyJ,bJ
� q

J, where b� is assumed to be the missing variable. In this case, the
log-likelihood function for the augmented data model, dropping all the terms that are not
functions of λ, takes the form:

`pλ; ycomp�q9 �
1
2 log |Ψ| �

1
2bJ

�Ψ�1b�.

The solution pλ can be obtained via the following joint iterative process:

Step 1: Obtain pθpk�1q
, as described in Subsection 2.3.3 ;

Step 2: (E-step) Given the observed data, evaluate the expectation of `pλ; ycomp�q
and estimate in the kth iteration :

Qpλ|pλpkqq � E
�
`pλ; ycomp�q|y, pλpkq� � �

1
2 log |Ψ| �

1
2tr
�

Ψ�1zb�bJ
�

pkq


,

with zb�bJ
�

pkq
� E

�
b�bJ

� |y, pλpkq� � Λ�
i � Λ�

i Z�J
i Ω�1

i pyi � X�
i β

�qpyi � X�
i β

�qJΩ�1
i Z�

i Λ
�
i ,

Λ�
i � pΨ�1 � Z�J

i Ω�1
i Z�

i q
�1 (see, Matos et al., 2013a);

Step 3: (M-step) Uptade λ by

pλpk�1q � �
r � 2

tr
�

Ψ�1 BΨ
Bλ

Ψ�1zb�bJ
�

pkq

 .

Thus, by repeating Step 1, Step 2 and Step 3, this iterative process leads to
the MPL estimates of θ and the smoothing parameter λ.

2.4.1 Effective degrees of freedom for model selection

Degree of freedom is defined as approximately the number of effective parameters
involved in modeling the nonparametric effects (Green & Silverman, 1994). It is useful in
model selection criteria. Similarly to Tibshirani (1990), we can define the effective degrees
of freedom as:

dfpλq � trtNSfu

� tr
!
N
�
NJE�1N� λσ2K

��1 NJE�1
)
,

where E � diagpE1, . . . ,Enq.
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The Akaike information criterion (AIC) is based on information theory and is
useful for selecting an appropriate model given data with adequate sample size (Akaike,
1974). It is denoted by:

AIC � �2`pppθ, λq � 2tm� dfpλqu,

where `pppθ, λq denotes the penalized log-likelihood function available at pθ for a fixed λ
and m is the number of parameters estimated pβ, σ2,α,φq.

2.5 Simulation studies
In order to examine the performance of our proposed models and algorithm,

we present two simulation studies. The first one investigates the performance of the MPL
estimates of SMEC models for different correlation structures and the second one shows
the asymptotic behavior of the MPL estimates as well as the consistency of the proposed
standard errors of the MPL estimates.

All computational procedures were implemented using the R software (R Core
Team, 2020), which is available from us upon request.

For the simulations, we considered a DEC-SMEC model as defined in (2.1)-(2.3).
We simulated data from the model

yij � β1x1ij � β2x2ij � fptijq � b0i � b1itij � εij, (2.16)

with i � 1, . . . , n, j � 1, . . . , ni, pb0i, b1iq
ind.
� Np0,Dq, and εij ind.

� Nnip0,Ωiq. The parame-
ters were set at βJ � pβ1, β2q � p2,�1.5q, σ2 � 0.55, and D with elements α11 � 0.25,
α12 � 0.1, and α22 � 0.2. The values xJ

i � px1, x2q were generated independently from a
uniform distribution in the intervals (0,1) and (-1,2), respectively, and those values were
kept constant throughout the experiment.

In simulation studies, we generate samples with random censoring at a certain
rate. For example, for a sample with 10% of censored observations: First, we generate
yi ind.

� Nnipµi,Σiq, i � 1, . . . , n. Then, we take the value of the 10th percentile of the
sample, this value becomes the limit of censorship. Therefore, all values below the 10th
percentile are now censored and their values are the censorship limit. Thus, we generated
a random sample with 10% of censored observations.

2.5.1 Simulation study 1

For the first study, we simulated several datasets considering different values
of the parameter φ1 under the correlation structure AR(1). This study aims to discover
the effect of the correlation level on the estimates. We chose a smooth function fptijq �
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2sinp0.25πtijq, where tij � p4, 6, 9, 10, 11, 12q, and for each value of φ1, we simulated 500
datasets with sample sizes n � 100. In addition, we considered 10% and 20% of left-
censored observations for each value of φ1. Once the simulated datasets were generated,
we fitted the proposed model assuming the uncorrelated (UNC) and AR(1) structures.
The model selection criteria (AIC) values as well as the estimates of the model parameters
were stored for each simulation. To evaluate the estimates obtained from the DEC-SMEC
model with different values of φ1, we compared the bias (Bias) for each parameter over
the 500 replicates. It is defined as:

Biaspθkq �
1

500

500̧

j�1
ppθpjqk � θkq,

where pθpjqk is the estimate of θk from the jth sample for j � 1, . . . , 500.

Table 1 has the summary statistics of the AIC values based on 500 replicates,
where it can be observed that the model selection criterion chose the true model (AR(1))
in all 500 replicates when the parameter φ1 is equal to or greater than 0.5. When φ1 � 0.1,
the estimation of the AR(1) and UNC model is confounded.

Table 1 – Simulation study 1. Summary statistics of AIC values based on 500 simulated
AR(1). The percentage of times that the AR (1) model was selected is in
parentheses.

Censoring level Structure φ1

0.1 0.3 0.5 0.7 0.9

10% censored

Mean UNC 1772.426 1732.959 1663.156 1520.367 1124.027
AR(1) 1772.360 1724.511 1639.541 1477.433 1065.243

SD UNC 32.8789 32.9188 33.9434 35.0294 36.0151
AR(1) 32.8677 32.5091 32.7543 32.776 32.8190

( 35%) ( 96.8%) (100%) (100%) ( 100%)

20% censored

Mean UNC 1637.034 1600.819 1537.841 1409.838 1058.398
AR(1) 1637.119 1593.437 1516.984 1372.072 1007.159

SD UNC 30.7722 31.3998 32.2036 33.1929 34.1557
AR(1) 30.8306 31.1223 31.2321 31.2826 31.6325

(31.8%) (94%) (100%) (100%) (100%)

Figures 5a - 5b show the bias of each parameter estimated over 500 samples,
considering 10 and 20% censored observations and in the uncorrelated and AR(1) models.
Figure 5a shows that the correlation parameter did not affect the fixed-effects estimates,
resulting in bias less than 0.009 for both levels of censoring. In Figure 6, for the both
levels of censoring, the biases in the UNC structure are greater than those obtained in
the AR(1) structure. In addition, as the value of the correlation parameter increases (φ1q

the bias in the UNC structure increases. It can also be noted that the estimates in both
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models were underestimated. With respect to the components of the variance (Figure 5b),
it can be observed that the biases of parameter estimates (σ2, α11, α12 and α22) in the
AR(1) structure are lower than those obtained in the UNC structure for different values of
φ1. Also, the biases of the parameters in the UNC structure increase as the correlation
parameter increases for the both levels of censoring. The biases in the AR(1) structure are
smaller and are little affected by the correlation parameter. Therefore, we can conclude
from this study that when the true model is fitted to the dataset, the correlation level
does not affect the parameter estimates.
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Figure 5 – Simulation study 1. Bias of β, σ2 and α estimates in the uncorrelated (gray,
dotted line) and AR(1) (black, dashed line) structure for 5 different values of φ1.
First column: 10% of censored observations; second column: 20% of censored
observations.

2.5.2 Simulation study 2

In this simulation study, the main focus is to evaluate the finite-sample perfor-
mance of the MPL estimates of the regression coefficients and the nonparametric function
with the smoothing parameter estimated using the proposed EM algorithm. Another goal
is to examine the consistency of the standard errors for the MPL estimates of β and f . In
this study, parameter values were the same as mentioned in (2.16).

For this purpose, the left censoring proportion was fixed at 15% and sample sizes
at n � 60, 100, 200, and 400 were considered. For each sample size, we generated 500 samples
of the DEC-SMEC model considering an AR(1) structure with parameter φ1 � 0.6. For this
study, we chose a function fptijq � cospπ

a
tijq, with tij � p2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12q.

To evaluate the computational accuracy, we computed:
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Figure 6 – Simulation study 1. Bias of f estimates in the uncorrelated (gray, dotted
line) and AR(1) (black, dashed line) structure for 5 different values of φ1.
First column: 10% of censored observations; second column: 20% of censored
observations.

• The arithmetic average of estimates:

MC Mppθkq � 1
500

500̧

j�1

pθkpjq,
where pθpjqk is the estimate of θk from the j-th sample for j � 1, . . . , 500.

• The absolute errors of estimates:

MAEppθkq � 1
500

500̧

j�1
|pθpjqk � θk|.

• The average values of the approximate standard errors obtained through the method
described in Section 4.3.4 (MC SE).

• The standard deviations estimates of β and f :

MC SDppθiq � sdppθkp1q, . . . , pθkp500q
q.
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• The coverage probability (CP), that is, the proportion of times that the 95% confi-
dence interval of the estimated contains the true value:

CP ppθkq � 1
500

500̧

j�1
Ipθk P r95%CI of pθkpjqsq.

Evaluation of the parametric components

Table 2 has summarizes the simulation results for the parametric components
of the model. It can be observed that the MAE tend to zero when n increases and the MC
Mean approaches the true value of the parameter. It can also be seen that the estimation
method of the standard errors (MC SE, Section 2.3.4) provides relatively close results for
the standard deviation estimates (MC SD), suggesting that the derived standard errors
work well. Figures 7 and 8 show the bias (pθpjqi � θi, j � 1, . . . , 500) of the estimates for
each simulated dataset. It can be noted that as the sample size increases from 60 to 400,
the range of the biases of the estimates becomes narrower, as expected. Also, pβ1 and pβ2

estimates are more accurate than estimates of the other parameters. Therefore, the results
for the parametric components of the model indicate that the MPL estimates of the SMEC
model do provide good asymptotic properties and that the proposed approximate standard
errors are reliable.
Table 2 – Simulation study 2. Summary statistics based on 500 simulated AR(1) samples

for the parametric components.

Parameter n � 60 n � 100
MC M MAE MC SE MC SD CP MC M MAE MC SE MC SD CP

β1 � 2 2.0026 0.0623 0.0777 0.0804 93.2% 1.9997 0.0498 0.0608 0.0615 96.2%
β2 � �1.5 -1.5001 0.0208 0.0245 0.0256 94.4% -1.5017 0.0161 0.0206 0.0201 96.4%
σ2 � 0.55 0.5394 0.0672 0.5403 0.0513
α11 � 0.25 0.2602 0.1342 0.2654 0.1188
α12 � 0.1 0.0890 0.0449 0.0932 0.0367
α22 � 0.2 0.1988 0.0330 0.1969 0.0242
φ1 � 0.6 0.5907 0.0495 0.5918 0.0384

n � 200 n � 400
MC M MAE MC SE MC SD CP MC M MAE MC SE MC SD CP

β1 � 2 1.9998 0.0354 0.0430 0.0430 96.4% 2.0003 0.0256 0.0300 0.0320 92.6%
β2 � �1.5 -1.5002 0.0117 0.0146 0.0147 94.4% -1.5000 0.0086 0.0101 0.0107 94.6%
σ2 � 0.55 0.5445 0.0384 0.5497 0.0276
α11 � 0.25 0.2555 0.0840 0.2515 0.0641
α12 � 0.1 0.0960 0.0258 0.0984 0.0191
α22 � 0.2 0.1984 0.0179 0.1984 0.0131
φ1 � 0.6 0.5953 0.0280 0.5987 0.0199

Evaluation of the nonparametric component

One of the principal objectives of this simulation is to see the effect of the
nonparametric component, fptijq, and the performance of the smoothing parameter selected.
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Figure 7 – Simulation study 2. Box-plots of the biases of β and σ2 estimates.
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Figure 8 – Simulation study 2. Box-plots of the biases of α and φ1 estimates.

In practice, the estimates of the nonparametric component provide useful information.

Table 3 summarizes some simulation results from the estimation of f for n � 60,
100, 200 and 400. It can be observed that the MAE in the estimated nonparametric
function is small for the first six components, and it becomes even smaller with increasing
sample size. The MAE is relatively higher at values of t where the variance is larger, which
may be due to the fact that the nonparametric function has large curvature at these points.
The approximate standard errors (MC SE) obtained in Section 2.3.5 and the standard
deviation estimates (MC SD) closely agree with each other, suggesting that the derived
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standard errors work well.

To investigate the accuracy of estimating the nonparametric function fptijq �
cospπ

a
tijq, the true shape of this function is plotted in Figure 9 with the 500 fitted

curves and with the average estimates with four sample sizes. From Figure 9 it can be
observed that the variability among the estimates of the nonparametric function declines
as the sample size increases, and in addition, we can note that the shape of the average
estimates of fptijq is very close to the true function for all sample sizes. This is an indication
of consistency of the nonparametric estimator as well as the capacity of the estimated
smoothing parameter (discussed in Section 2.4) to capture the true unknown function.

Table 3 – Simulation study 2. Summary statistics based on 500 simulated AR(1) samples
for the nonparametric components.

Parameter n � 60 n � 100
MC M MAE MC SE MC SD CP MC M MAE MC SE MC SD CP

f1p2q � �0.2663 -0.2530 0.1442 0.1814 0.1802 95.6% -0.2508 0.1180 0.1416 0.1451 94.4%
f2p3q � 0.6661 0.6558 0.1754 0.2224 0.2198 95% 0.6697 0.1451 0.1731 0.1825 93.6%
f3p4q � 1 0.9933 0.2134 0.2728 0.2689 94.6% 1.0078 0.1787 0.2120 0.2235 93.4%
f4p5q � 0.7374 0.7444 0.2493 0.3288 0.3144 95.6% 0.7532 0.2124 0.2553 0.2651 94%
f5p6q � 0.1580 0.1781 0.2954 0.3850 0.3718 94.4% 0.1820 0.2484 0.2987 0.3104 94.8%
f6p7q � �0.4421 -0.4150 0.3343 0.4406 0.4223 95% -0.4127 0.2811 0.3416 0.3517 94%
f7p8q � �0.8552 -0.8322 0.3704 0.4964 0.4670 95.4% -0.8242 0.3103 0.3847 0.3892 94.2%
f8p9q � �1 -0.9724 0.4102 0.5531 0.5176 95.2% -0.9665 0.3435 0.4285 0.4303 94.8%
f9p10q � �0.8728 -0.8494 0.4551 0.6103 0.5740 95% -0.8361 0.3823 0.4727 0.4791 94.8%
f10p11q � �0.5447 -0.5242 0.4932 0.6677 0.6262 94.6% -0.5030 0.4176 0.5171 0.5265 94.8%
f11p12q � �0.1125 -0.0950 0.5329 0.7269 0.6807 94.6% -0.0716 0.4502 0.5628 0.5670 94.8%

n � 200 n � 400
MC M MAE MC SE MC SD CP MC M MAE MC SE MC SD CP

f1p2q � �0.2663 -0.2545 0.0802 0.1006 0.0989 95% -0.2607 0.0622 0.0714 0.0769 93.8%
f2p3q � 0.6661 0.6757 0.1017 0.1230 0.1274 94.2% 0.6720 0.0753 0.0872 0.0943 92.2%
f3p4q � 1 1.0137 0.1266 0.1506 0.1584 93.2% 1.0095 0.0916 0.1067 0.1132 94%
f4p5q � 0.7374 0.7567 0.1497 0.1814 0.1869 94% 0.7488 0.1080 0.1286 0.1357 93.6%
f5p6q � 0.1580 0.1844 0.1767 0.2123 0.2184 95% 0.1737 0.1259 0.1504 0.1575 94.8%
f6p7q � �0.4421 -0.4089 0.1967 0.2428 0.2441 95% -0.4225 0.1427 0.1720 0.1770 95%
f7p8q � �0.8552 -0.8221 0.2202 0.2735 0.2728 94.6% -0.8348 0.1590 0.1937 0.1973 95.6%
f8p9q � �1 -0.9633 0.2468 0.3047 0.3075 94.4% -0.9761 0.1799 0.2158 0.2212 94.8%
f9p10q � �0.8728 -0.8301 0.2762 0.3361 0.3420 93.8% -0.8430 0.2006 0.2380 0.2475 95.4%
f10p11q � �0.5447 -0.4954 0.3013 0.3678 0.3741 94.8% -0.5104 0.2199 0.2605 0.2707 95.6%
f11p12q � �0.1125 -0.0604 0.3272 0.4003 0.4053 94.6% -0.0761 0.2381 0.2835 0.2919 95.2%

Two additional simulation studies can be found in Appendix A. In Section A.1,
the simulation study verifies the behavior of the proposed model for different sizes of time
dimensions. In Section A.2, the study assesses the behavior of the proposed model when
compared to others in the literature.
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Figure 9 – Simulation study 2. Graphs of the nonparametric components with 500
replications. Estimated curves (gray lines), true curves (red lines) and the
average estimates (blue lines, dashed).

2.6 Application
In this Section, we apply our proposed semiparametric linear mixed-effects

model to the motivating ACTG 315 protocol HIV-1 RNA viral load dataset previously
analyzed by Wu (2002). In HIV-AIDS research, it is hypothesized that the relationship
between the viral load and the time of treatment within an antiviral regimen is nonlinear,
whereas the relationship between the viral loads and certain immunological response such
as CD4� cell count is linear. Since the viral load is recorded for patients at specific time
points, mixed-effects models are typically used.

As mentioned in Section 1.4.1, the ACTG 315 dataset considers 46 HIV-1
infected patients treated with a potent ARV therapy. The viral load was measured on
days 0, 2, 7, 10, 14, 28, 56, 84, 168 and 196 after start of treatment, with a total of
361 observations. Immunological markers known as CD4� cell counts were also measured
along with viral load. Since one of our motivations is to investigate the relationship
between virological and immunological responses in AIDS clinical trials, we consider the
standardized version of CD4� cell count as a covariate for the parametric part of the
model, whereas the time of treatment is modeled using splines. The predefined study day
of viral load measurement (not the exact measured day) was used in our analysis.

We considered the following model:

yij � CD4�ijβ1 � fptijq � b0i � b1itij � εij (2.17)

where yij denotes the log10 transformation of the viral load for the ith subject at time tij
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(i � 1, 2, . . . , 46 ; j � 1, 2, . . . , ni), fptijq is an arbitrary smoothing function, b0i, b1i are the
random intercept and random slope, respectively for the i-th patient, and εij are random
errors. Following (2.1), one may express (2.17) in matrix form as:

yi � Xiβ �Nif � Zibi � εi, (2.18)

where yi is an pni � 1q vector of responses for the i-th patient, Xi � rCD4�i1, . . . ,CD4�inis
J

where CD4�ij indicates a summary of the unobserved CD4� values up to time tij , Ni is the
incidence matrix, f is a p10� 1q vector whose components are the function fp�q evaluated
at the times in the set t0 � pt01 � 0, t02 � 2, t03 � 7, . . . , t010 � 196q, Zi � r1ni , tis, with 1ni
an pni�1q vector of ones and ti � rti1, . . . , tinis

J, bi � pb0i, b1iq
J the random intercept and

random slope, respectively, and εi � pεi1, . . . , εiniq
J represents the within-subject random

error.

The MPL estimates of θ � pβJ, fJ, σ2,αJqJ, the smoothing parameter estimate
(λ), the corresponding penalized log-likelihood function evaluated at pθ in the fitted models,
and the values of AIC for the four models considered are presented in Table 4. These
results reveal that the model with a DEC structure has lower AIC compared to the other
structures. Moreover, and as expected, CD4� cell counts are negatively correlated with
HIV-1 RNA levels. The clinical interpretation is that as the count of CD4 cells increases,
the immune systems of infected patients recover quickly and the viral load decreases with
rapidly.

Table 4 – ACTG 315 data. Parameter estimates of the SMEC model (2.17) for the
ACTG 315 data. SE indicates the standard errors.

UNC DEC AR(1) CS

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 -0.0703 0.0441 -0.0583 0.0392 -0.0617 0.0398 -0.0704 0.0441
f1 4.9380 0.0918 4.9293 0.0912 4.9235 0.0952 4.9474 0.0926
f2 4.9535 0.0778 4.9754 0.0996 4.9764 0.0945 4.9334 0.0834
f3 4.1325 0.0842 4.1298 0.0870 4.1293 0.0898 4.1401 0.0829
f4 3.7863 0.0833 3.7759 0.0867 3.7742 0.0900 3.7825 0.0821
f5 3.4181 0.0893 3.4100 0.0904 3.4079 0.0928 3.4181 0.0875
f6 3.0364 0.1009 3.0304 0.1017 3.0315 0.1022 3.0352 0.1005
f7 2.7905 0.1269 2.7803 0.1294 2.7831 0.1286 2.7893 0.1268
f8 2.4340 0.1647 2.4339 0.1666 2.4210 0.1666 2.4323 0.1647
f9 2.9769 0.3025 2.8663 0.3008 2.8999 0.3034 2.9731 0.3024
f10 3.4407 0.5585 3.3810 0.5995 3.3510 0.6102 3.4380 0.5531
σ2 0.1449 0.2851 0.1991 0.2855
α11 0.2435 0.0507 0.1747 0.1034
α12 -0.0006 0.0008 -0.00003 -0.0006
α22 0.0001 0.0001 0.0001 0.0001
φ1 0.9 0.89 0.4914
φ2 0.6501 1 0
λ 88.2971 63.7242 42.1648 174.4071

loglikp -275.481 -230.7881 -239.2762 -276.1796
AIC 580.406 495.4174 510.4558 585.8651

Figure 10a shows the nonparametric function for the ACTG data. From a
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medical point of view, it is important to identify when patients’s RNA viral load levels
decline and when this decline becomes slower and rebound occurs. From Figure 10a
it can be observed that viral load decreases rapidly at the beginning of antiretroviral
treatment and, after 84 days of therapy, viral load levels recover slightly. Clearly, the
viral load changes with time in a nonlinear manner and the graph is U-shaped. Note
that at later times the shaded area is larger due to the lower number of observations at
these times. Figure 10b presents the estimated trajectories for 6 randomly chosen subjects
after fitting the model given in (2.17) in the DEC structure. It is possible to see that the
SMEC model provides better subject-specific estimated trajectories than the parametric
DEC-NLMEC model. It can also be observed that in some individuals the DEC-NLMEC
model overestimates the viral loads when observations are censored.
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Figure 10 – ACTG 315 data. (a) Fitted curve of nonparametric part. The shaded regions
denote the 95% confidence intervals obtained by pf � 1.96

byVarppfq. (b) Viral
loads in log10 scale (solid line) for 6 randomly chosen subjects and estimated
trajectories (red, dotted line) for the SMEC model in the DEC structure. Gray
line indicate the estimated trajectories in in the DEC-NLMEC model.

2.7 Conclusions
This chapter provides a theoretical framework for a semiparametric mixed

model for longitudinal censored data, which can be considered a generalization of the
normal linear/nonlinear mixed-effects models for censored data proposed by Matos et al.
(2016) and Vaida & Liu (2009). We developed a method based on the EM algorithm to
obtain MPL estimates of the regression coefficients of the parametric part and to estimate
the nonparametric component as a natural cubic spline. We proposed the EM algorithm to
estimate the smoothing parameter using a modification of the mixed model proposed by
Green (1987). Simulation studies carried out suggest that the proposed method performs
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very well in estimating the parametric part and the nonparametric function. The variance of
the MPL estimates can be estimated using the missing information principle, as described
in Section 2.3.5. The approach was applied to analyze two HIV-AIDS studies, showing the
advantage of the SMEC model to fit datasets with nonlinear subject-specific trajectories.
The R code (R Core Team, 2020) is available from us upon request.

The multivariate normal assumption of SMEC models might not provide robust
inference for the data which exhibit, even after being transformed, heavy-tailed and
asymmetric features. It would thus also be interesting to consider a broader family of
distributions such as the multivariate skew-normal distribution (Azzalini & Valle, 1996),
the multivariate skew-t distribution (Azzalini & Genton, 2008) and the multivariate skew-
normal/independent distributions (Lachos et al., 2010), which could be more practical for
the random effects and error terms.
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Chapter 3

Extending multivariate-t
semiparametric mixed models for
longitudinal data with censored
responses and heavy tails

3.1 Introduction
Longitudinal data analysis has attracted considerable research interest, and a

large number of statistical modeling and analysis methods have been suggested to analyze
such data with various features. Linear and nonlinear mixed effects (LME and NLME,
respectively) are parametric models for longitudinal data that have been extensively
studied in the last few decades; see Davidian & Giltinan (1995); Diggle (2002); Pinheiro &
Bates (2006) among others, for more ideas and methodologies for longitudinal data analysis
using parametric modeling. These models are very useful for longitudinal data analysis,
as they provide a parsimonious description of the relationship between the response and
its covariance. However, parametric models are efficient when they are correctly specified,
the model misspecification can result in biased estimation. To relax the assumptions on
parametric forms, an attractive approach is the semiparametric mixed model, which retains
the flexibility of the nonparametric model while preserving good properties such as easy
implementation and good interpretability of parametric models.

Semiparametric mixed models have received great attention in the literature
with approaches based on kernel smoothing (Zeger & Diggle, 1994), or, more often,
on smoothing spline (Zhang et al., 1998). However, these models (LME/NLME and
semiparametric) are in general made on the assumption of Gaussian errors. Some studies
have investigated alternative distributions for errors in LME/NLME, for example, Pinheiro
et al. (2001) propose a robust hierarchical linear mixed model in which the random effects
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and the within-subject errors have a multivariate Student’s t-distribution. Moreover, Meza
et al. (2012) presented an extension of a Gaussian nonlinear mixed effects model considering
a class of heavy tailed multivariate distributions for both random effects and residual errors.
In the semiparametric context, Ibacache-Pulgar et al. (2012) extended semiparametric
mixed linear models with normal errors to elliptical errors in order to permit distributions
with heavier and lighter tails than the normal ones.

At the same time, longitudinal data can be complicated when the response is
censored for some of the observations due to an assay detection limit used to quantify
the marker. For example, this can occur when measuring the chemical content of a
collection of samples (Palarea-Albaladejo & Martin-Fernandez, 2013), when measuring
the concentration of some pollutants in environmental data (Helsel, 2011) or measuring
Human Immunodeficiency Virus viral load in blood compartment (HIV RNA) (Hughes,
1999). Several methods have been proposed to deal with such limits of detection, censored
mixed-effects models are frequently used in the analysis of longitudinal AIDS data. Lachos
et al. (2011) considered a Bayesian treatment of the linear mixed model with censored
responses (LMEC) and the nonlinear mixed model with censored responses (NLMEC)
models based on the normal/independent distributions. Further, Matos et al. (2013b)
developed a likelihood-based inference for LMEC and NLMEC based on the multivariate
Student’s t-distribution, named as t-LMEC and t-NLMEC.

The aim of this chapter is to consider the study of censored mixed-effects
models using, simultaneously, semiparametric techniques such as smoothing splines and
the multivariate Student’s t-distribution, due to its capability of down-weighting out lying
observations. This chapter is organized as follows. Section 3.2 describes the multivariate
Student’s t-distribution and some of its properties. In Section 3.3, the Student’s-t semi-
parametric censored mixed-effects model is defined, where the estimation and inference
procedures of the regression coefficients, nonparametric function, and scale parameter are
presented. Results and discussions about the estimation of the smoothing parameter are
given in Section 3.4. Moreover, in Section 3.5, the goodness of fit and model selection
procedures are proposed to check the quality of fit. Simulation results are presented in
Section 3.6 and an application to the data set of HIV viral loads is presented in Section
3.7. Finally, in Section 3.8 some concluding remarks are given with some future research
directions.

3.2 The multivariate Student’s t-distribution
In this section we present the p-variate Student’s t-distribution and some of

its useful properties. The following properties are useful for the implementation of the
expectation maximization (EM) algorithm.
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A random variable Y having a p-variate Student’s t-distribution with location
vector µ, scale matrix Σ (positive definite) and degrees of freedom ν (ν ¡ 0) denoted by
Y � tppµ,Σ, νq, has the probability density function (pdf):

tppy|µ,Σ, νq �
Γppp� νq{2q
Γpν{2qπp{2 ν�p{2|Σ|�1{2

�
1� δ2pyq

ν


�pp�νq{2

,

where Γp�q is the standard gamma function and δ2pyq � py � µqJΣ�1py � µq is the
Mahalanobis distance. The cumulative distribution function (cdf) of Y is denoted by

Tppb|µ,Σ, νq �
» b

�8

tppy|µ,Σ, νqdy (3.1)

and Tppa,b;µ,Σ, νq is defined as

Tppa,b;µ,Σ, νq �
» b

a
tppy|µ,Σ, νqdy. (3.2)

An important property of the random vector Y is that it can be written as a
mixture of a normal random vector and a positive random variable, i.e.

Y � µ� U�1{2Z, Z � Npp0,Σq, U � Gammapν{2, ν{2q,

where Z and U are independent and Gammapα, βq stands for a gamma distribution with
mean α{β, and density denoted by Gp�|α, βq. It is important to stress that if ν ¡ 1, µ is
the mean of Y, and if ν ¡ 2, pν{pν�2qqΣ is its covariance matrix. As ν Ñ 8, U converges
to one with probability one, and so Y becomes marginally multivariate normal with mean
µ and covariance matrix Σ, denoted by Nppµ,Σq.

In order to introduce some notation, for the multivariate Student’s-t distribution,
the following property is useful for our theoretical developments. We start with the marginal-
conditional decomposition of a Student’s t random vector. Details of the proofs are provided
in Arellano-Valle & Bolfarine (1995).

Proposition 2. Let Y � tppµ,Σ, νq partitioned as Y � pYJ
1 ,YJ

2 q
J, with dimpY1q � p1,

dimpY2q � p2, where p � p1 � p2. Let µ � pµJ
1 ,µ

J
2 q

J and Σ �

�
Σ11 Σ12

Σ21 Σ22

�
be the

corresponding partions of µ and Σ. Then, we have

(i) Y1 � tp1pµ1,Σ11, νq; and

(ii) The conditional cdf of Y2|Y1 � y1 is given by

Y2|Y1 � y1 � tp2

�
y2|µ2.1, rΣ22.1, ν � p1

	
,

where µ2.1 � µ2 �Σ21Σ�1
11 py1 � µ1q and rΣ22.1 �

�
ν � δ2py1q

ν � p1



Σ22.1 with δ2py1q �

py1 � µ1q
JΣ�1

11 py1 � µ1q and Σ22.1 � Σ22 �Σ21Σ�1
11 Σ12.
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A p-dimensional random vector Y is said to follow a truncated Student’s t-
distribution with location µ, scale-covariance matrix Σ and degrees of freedom ν over the
truncation region A � tpy1, . . . , ypq P Rp : a1 ¤ y1 ¤ b1, . . . , ap ¤ yp ¤ bpu � ty P Rp : a ¤
y ¤ bu, denoted by Y � Ttppµ,Σ, ν;Aq, if its density is given by:

fpy|µ,Σ, ν;Aq � tppy|µ,Σ, νq
Tppa,b;µ,Σ, νq , a ¤ y ¤ b.

The following results provide the truncated moments of a Student’s t random
vector. The proofs of Proposition 3 and 4 are given in Matos et al. (2013b).

Proposition 3. If Y � Ttppµ,Σ, ν; pa,bqq then it holds that

E
��

ν � p

ν � δ2pYq


r
Ypkq

�
� cppν, rq

Tppa,b;µ,Σ�, ν � 2rq
Tppa,b;µ,Σ, νq ErWpkqs, k � 0, 1, 2,

where cppν, rq �
�ν � p

ν

	r �Γppp� νq{2qΓppν � 2rq{2q
Γpν{2qΓppp� ν � 2rq{2q



, Σ� �

ν

ν � 2rΣ,

W � Ttppµ,Σ�, ν � 2r; pa,bqq, Wp0q � 1, Wp1q � W, Wp2q � WWJ and ν � 2r ¡ 0.

Proposition 4. Let Y � Ttppµ,Σ, ν; pa,bqq. Consider the partition Y � pYJ
1 ,YJ

2 q
J with

dimpY1q � p1, dimpY2q � p2, p1 � p2 � p, and the corresponding partitions of a, b, µ
and Σ. Then, under the notation of Proposition 2, the conditional k-th moment of Y2 is

E
��

ν � p

ν � δ2pYq


r
Ypkq

2
��Y1

�
�

dppp1, ν, rq

pν � δ2py1qqr
Tp2pa2,b2;µ2.1, rΣ�

22.1, ν � p1 � 2rq
Tp2pa2,b2;µ2.1, rΣ22.1, ν � p1q

ErWpkqs,

where dppp1, ν, rq � pν � pqr
�

Γppp� νq{2qΓppp1 � ν � 2rq{2q
Γppp1 � νq{2qΓppp� ν � 2rq{2q



,

rΣ�

22.1 �

�
ν � δ2py1q

ν � 2r � p1



Σ22.1, W � Ttp2pµ2.1, rΣ�

22.1, ν � p1 � 2r; pa2,b2qq, Wp0q � 1,

Wp1q � W, Wp2q � WWJ and ν � p1 � 2r ¡ 0, k � 0, 1, 2.

3.3 The Student-t semiparametric mixed effects model with cen-
sored responses

3.3.1 Model specification

Let the sample consist of n subjects, with the ith subject having ni observations
over time. Let yij denote the measurement of the ith subject at time tij, then the
semiparametric mixed model for outcome yij is given by

yij � xJ
ijβ � fptijq � zJijbi � εij, i � 1, . . . , n, j � 1, . . . , ni, (3.3)

where β is the p� 1 vector of regression coefficients associated with covariates xij (p� 1),
fp�q is a twice-differentiable smooth function of time, the bi are independent q � 1 vectors



Chapter 3. Extending multivariate-t semiparametric mixed models for longitudinal data 54

of random effects associated with covariates zij (q � 1), and the εij are independent
measurement errors.

In order to write model (3.3) computationally more advantageous, we can
express in a matrix form as

yi � Xiβ �Nif � Zibi � εi, (3.4)

where yi � pyi1, . . . , yiniq
J is a (ni � 1) random vector of observed responses from the ith

subject, Xi is an ni � p design matrix with rows xJ
ij, Ni is an ni � r incidence matrix

for the ith subject connecting ti and t0 such that the pj, sqth element of Ni equals the
indicator function Iptij � t0sq for j � 1, . . . , ni and s � 1, . . . , r, f � pfpt01q, . . . , fpt

0
rqq

J

with t01, . . . , t0r being the distinct and ordered values of tij, Zi is the ni � q design matrix
of the random effects with zJij and εi is an ni � 1 vector of within-subjects errors.

In this work, we assume that the random effects and the errors follow a Student’s
t-distribution: �

bi
εi

�
ind.
� tq�ni

��
0
0

�
,

�
D 0
0 Ωi

�
, ν

�
, i � 1, . . . , n, (3.5)

where ν represents the multivariate Student’s t-distribution degrees-of-freedom (df), D is a
q� q symmetric positive-definite covariance matrix of the random effects (bi) that depends
upon a set of unknown parameter vector α and Ωi � σ2Ei represents the within-subject
variance-covariance matrix for subject i, σ2 is the scalar within-subject variance parameter
and Ei is a ni� ni matrix that incorparate a time-dependence structure. Note that bi and
εi are uncorrelated, but not necessarily independent.

Muñoz et al. (1992) proposed a family of correlation structures, damped
exponential correlation (DEC) structure, which allows to deal with unequally spaced and
unbalanced observations. We adopt the DEC structure for Ei, defined as

Ei � Eipφ; tiq �
�
φ
|tij�tik|

φ2
1

�
, 0   φ1   1, φ2 ¥ 0,

where φ1 is the correlation between observations separated by one t-unit in time and φ2

is the "scale parameter", which permits attenuation or acceleration of the exponential
decay of the autocorrelation function, defining a continuous-time autoregressive model.
Examples of particular cases in this family of correlation structures include the compound
symmetry (CS), AR(1), and MA(1) - moving average of order 1, correlation structures
when φ2 takes the values 0,1, and 8, respectively. A more detailed discussion of the DEC
structure can be found in Muñoz et al. (1992) and in Section (1.3).

It follows that the semiparametric mixed model with Student’s t-distribution
assumes the following joint distribution:�

yi
bi

�
ind.
� tni�q

��
Xiβ �Nif

0

�
,

�
ZiDZJ

i �Ωi ZiD
DZJ

i D

�
, ν

�
. (3.6)
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Thus, the yi are independent and marginally distributed as

yi ind.
� tnipµi,Σi, νq,

where µi � Xiβ �Nif , Σi � ZiDZJ
i �Ωi, for i � 1, . . . , n.

As mentioned earlier, the proposed model also considers censored observations,
i.e., we assume that the response yij is not fully observed for all i, j. Let the observed data
for the i-th subject be pVi,Ciq, where Vi represents the vector of uncensored readings
(Vij � V0i) or censoring interval (V1ij, V2ij), and Ci is the vector of censoring indicators,
such that:

Cij �

$&%1 if V1ij ¤ yij ¤ V2ij,

0 if yij � V0i,
(3.7)

for all i P t1, . . . , nu and j P t1, . . . , niu, i.e., Cij � 1 if yij is located within a specific interval.
Note that for a right-censored observation V2ij � 8, and for a left-censored observation
V1ij � �8. The model defined in (3.3)-(3.7) is henceforth called the DEC-tSMEC model.

For responses with censoring pattern as in (3.7), we have that marginally

yi|Vi,Ci � Ttnipµi,Σi, ν;Aiq,

where Ttnip.;Aq denotes the truncated Student’s t-distribution on the interval A, Ai �

Ai1 � . . .�Aini , with Aij being the interval p�8,8q if Cij � 0 and the interval pV1ij, V2ijs

if Cij � 1.

3.3.2 The likelihood function

We are interested in maximum likelihood estimation of model (3.3) when yi has
a censored response. To compute the likelihood function associated with the model defined
by (3.3)-(3.7), the first step is to treat separately the observed and censored components
of yi. Let yoi be the noi -vector of observed outcomes and yci be the nci -vector of censored
observations for subject i with pni � noi � nciq, such that Cij � 0 for all elements in yoi and
1 for all elements in yci . After reordering, yi, Vi, µi, and Σi can be partitioned as follows:

yi � vecpyoi ,yciq, Vi � vecpVo
i ,Vc

iq, µ
J
i � pµoi ,µ

c
iq and Σi �

�
Σoo
i Σoc

i

Σco
i Σcc

i

�
,

where vecp.q denotes the function which stacks vectors or matrices of the same number of
columns.

Using properties of multivariate Student’s t-distribution (see Arellano-Valle &
Bolfarine, 1995), we have that

yoi � tnoi pµ
o
i ,Σoo

i , νq, and yci |yoi � tnci pµ
co
i ,Scoi , ν � noi q,
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where

µoi � Xo
iβ �No

i f , µci � Xc
iβ �Nc

i f , µcoi � µci �Σco
i Σoo�1

i pyoi � µoi q,

Scoi �

�
ν � δ2pyoi q
ν � noi



Si, Si � Σcc

i �Σco
i Σoo�1

i Σoc
i and

δ2pyoi q � pyoi � µoi qJΣoo�1
i pyoi � µoi q.

Let θ � pβJ, fJ, σ2,αJ,φJ, νqJ be the parameters vector. From Matos et al.
(2013a), the likelihood for subject i is given by

Lipθq � fpyi|θq � fpyoi |θqP pVc
1i ¤ yci ¤ Vc

2i|Vo
i ,θq

� tnoi pV
o
i ;µoi ,Σoo

i ,νqTnci
pVc

1i,Vc
2i;µcoi ,Scoi , ν � noi q � Li, (3.8)

where Tppa,b;µ,Σ, νq is defined in (3.2).

Adopting the same idea of the work of Chapter 2, the log-likelihood function for

the observed data is given by `pθ|yq �
ņ

i�1
logLi, and the estimates obtained by maximizing

the log-likelihood function `pθ|yq are the maximum likelihood estimates (MLEs). For
the reason that fp�q is an infinite-dimensional parameter, the direct maximization of
(3.8) without imposing restrictions over the function fp�q may cause overfitting and
non-identifiability of β (see Green, 1987). A well-know procedure based on the idea of log-
likelihood penalization and consists of incorporating a penalty function in the log-likelihood,
such that

`ppθ|yq � `pθ|yq �
λ

2Jpfq, (3.9)

where Jpfq denotes the penalty function over f and λ ¥ 0 is a smoothing parameter which
controls the tradeoff between goodness of fit and the smoothness estimated function. By
maximizing (3.9), one obtains the MPL estimate.

Similarly to Ibacache-Pulgar et al. (2013), we will consider the following penalty
function:

Jpfq �
» b
a

rf2ptqs2dt � fJKf ,

where rf2ptqs denotes the second derivative of fptq with ra, bs containing the values t0j , of
j � 1, . . . , r and K is the nonnegative definite smoothing matrix that depends only on the
knots defined in Green & Silverman (1994). In this case, the estimation of f leads to a
smooth cubic spline with knots at the points t0j .

3.3.3 The EM algorithm for MPL estimation

In this subsection, we discuss the estimation of θ based on penalized log-
likelihood.
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The EM algorithm (Dempster et al., 1977) is a popular iterative algorithm for
ML estimation of models with incomplete data and has several appealing features such as
stability of monotone convergence and simplicity of implementation. We adopt a variant of
the the EM-type algorithm, called the ECME algorithm, for computing MPL estimates of
model parameters. Liu & Rubin (1994) showed that ECME typically shares with EM the
simplicity and stability, but has a faster rate of convergence, especially for multivariate
Student’s t-distribution with unknown degrees-of-freedom.

Based on the essential property of multivariate Student’s t-distribution, the
model (3.6) can be expressed in the following hierarchical model:

yi|bi, ui ind.
� Nnipµi, u

�1
i Ωiq,

bi|ui ind.
� Nqp0, u�1

i Dq, (3.10)

ui
ind.
� Gamma

�ν
2 ,
ν

2

	
,

where Gammapa, bq denotes the gamma distribution with mean a{b and variance a{b2.
Thus, it is possible to apply the penalized EM algorithm (Green, 1990) by assuming
that y � pyJ

1 , . . . ,yJ
n q, b � pbJ

1 , . . . ,bJ
n q, and u � pu1, . . . , unq

J are hypothetical missing
variables, and augmenting with the observed variables pV,Cq where V � vecpV1, . . . ,Vnq,
and C � vecpC1, . . . ,Cnq. Hence, the penalized log-likelihood function for the model based
on complete data yc � pCJ,VJ,yJ,bJ,uJqJ is given by

`pcpθ|ycq � `cpθ|ycq �
λ

2 fJKf , (3.11)

with

`cpθ|ycq �
ņ

i�1

�
�
ni
2 log σ2 �

1
2 logp|Ei|q �

ui
2σ2 pyi � µi � ZibiqJE�1

i pyi � µi � Zibiq

�
1
2 log |D| �

ui
2 bJ

i D�1bi � log hpui|νq � C

�
, (3.12)

where C is a constant that does not depend on the vector parameter θ and hpui|νq is the
pdf of a Gammapν{2, ν{2q distribution.

Given the current estimate θ � pθpkq, the E-step calculates the conditional
expectation of the complete-data-penalized log-likelihood function given by

Qppθ|pθpkqq � E
�
`cpθ|ycq

���V,C, pθpkq�� λ

2 fJKf ,

�
ņ

i�1
Q1ipβ, f , σ2,φ|pθpkqq � ņ

i�1
Q2ipα|pθpkqq,

where

Q1ipβ, f , σ2,φ|pθpkqq � �
ni
2 log σ2 �

1
2 logp|Ei|q

�
1

2σ2

�papkqi � 2µJ
i E�1

i

�yuiyipkq � Zi
yuibipkq
 puipkqµJ

i E�1
i µi

�
�

λ

2nfJKf
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and

Q2ipα|pθpkqq � �
1
2 log |D| �

1
2tr
�{uibibJ

i

pkq

D�1


,

with

papkqi � tr
�{uiyiyJ

i

pkq

E�1
i � 2 {uiyibJ

i

pkq

ZJ
i E�1

i � {uibibJ
i

pkq

ZJ
i E�1

i Zi



,

yuibipkq � E
�
uibi

���Vi,Ci, pθpkq� � ϕi �yuiyipkq � puipkqµi	 ,{uibibJ
i

pkq

� E
�
uibibJ

i

���Vi,Ci, pθpkq� � Λi �ϕi

�{uiyiyJ
i

pkq

� 2yuiyipkqµi � puipkqµiµJ
i



ϕJ
i ,

{uiyibJ
i

pkq

� E
�
uiyibJ

i

���Vi,Ci, pθpkq� � �{uiyiyJ
i

pkq

� yuiyipkqµJ
i



ϕJ
i ,

where Λi � pD�1 � ZJ
i E�1

i Zi{σ
2q�1 and ϕi � ΛiZJ

i E�1
i {σ2.

The conditional maximization (CM) steps then conditionally maximizesQppθ|pθpkqq
with respect to θ and obtains a new estimate pθpk�1q

, as follows:

pβpk�1q
�

�
ņ

i�1
puipkqXJ

i
pE�1pkq
i Xi

��1 ņ

i�1
XJ
i
pE�1pkq
i

�yuiyipkq � puipkqNi
pf pkq � Ziyuibipkq
(3.13)

pf pk�1q �

�
ņ

i�1
puipkqNJ

i
pE�1pkq
i Ni �xσ2pkqλK

��1 ņ

i�1
NJ
i
pE�1pkq
i

�yuiyipkq � puipkqXi
pβpk�1q

� Ziyuibpkq



(3.14)

xσ2pk�1q
�

1
N

ņ

i�1

�papkqi � 2pµpk�1qJ
i E�1

i

�yuiyipkq � Ziyuibipkqi 
� puipkqpµpk�1qJ
i E�1

i pµpk�1q
i

�
(3.15)

pDpk�1q �
1
m

ņ

i�1

{uibibJ
i

pkq
(3.16)

pφpk�1q � arg max
φPp0,1q�R�

�
�

1
2 logp|Ei|q �

1

2xσ2pk�1q

�papkqi � 2pµpk�1qJ
i E�1

i

�yuiyipkq � Ziyuibipkqi 

� puipkqpµpk�1qJ

i E�1
i pµpk�1q

i

�	
(3.17)

pνpk�1q � arg max
ν

#
m̧

i�1
logTnci

�
Vc

1i,Vc
2i;µco

pk�1q
i ,Scopk�1q

i , ν � noi

	
�

m̧

i�1
log tnoi

�
Vo
i ;µo

pk�1q
i ,Σoopk�1q

i ,ν
	+

, (3.18)

where N �
ņ

i�1
ni. The algorithm is iterated until a suitable convergence rule is satisfied,

in this case, we adopt the distance involving two successive evaluations of the actual
penalized log-likelihood. So, this process is iterated until some distance between two
successive evaluations of the actual penalized log-likelihood `ppθ, λq in Section 3.3.2,
such as |`pppθpk�1q

q{`pppθpkqq � 1|, becomes small enough, for example, ε � 10�6. A set of
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reasonable starting values may be achieved by computing pβp0q, pσ2p0q, pDp0q and pφp0q
as the

solution of the normal linear mixed-effects model, using the package nlme (Pinheiro et al.,

2020), and so, pf p0q � � ņ

i�1
NJ
i Ni � pσ2p0qλK

��1 ņ

i�1
NJ
i

�
yi �Xi

pβp0q	. In each iteration of

the EM algorithm, the smoothing parameter, λ, can be estimated as described in Section
3.4.

It is important to stress that from equations (3.13) to (3.17), the E-step reduces
to the computation of

{uiyiyJ
i � E

�
uiyiyJ

i

���Vi,Ci,θ
�
, yuiyi � E

�
uiyi

���Vi,Ci,θ
�
, and pui � E

�
ui

���Vi,Ci,θ
�
,

that is, the first and second moments of a truncated multivariate Student’s t-distribution.
These expected values can be determined in closed form, using Propositions 3-4, as follows:

1. If the ith subject has only non-censored components, then

pui � � ν � ni
ν � δ2pyiq



, yuiyi � puiyi {uiyiyJ

i � puiyiyJ
i ,

where δ2pyiq � pyi � µiqJΣ�1
i pyi � µiq.

2. If the ith subject has only censored components then from Proposition 3, we have:

pui �
TnipV1i,V2i;µi,Σ�

i , ν � 2q
TnipV1i,V2i;µi,Σi, νq

,

yuiyi � puiEpWiq,{uiyiyJ
i � puiEpWiWJ

i q,

where W � Ttnipµi,Σ�
i , ν � 2; pV1i,V2iqq, µi � Xiβ � Nif , Σ�

i �
ν

ν � 2Σi, Σi �

ZiDZJ
i �Ωi.

3. If the ith subject has censored and uncensored components and given that pYi

��Vi,Ciq,
pYi

��Vi,Ci,Yo
i q, and pYc

i

��Vi,Ci,Yo
i q are equivalent process, then from Proposition

4, we have

pui �

�
noi � ν

ν � δ2pyoi q


 Tnci
pVc

1i,Vc
2i;µcoi , rScoi , ν � noi � 2q

Tnci
pVc

1i,Vc
2i;µcoi ,Scoi , ν � noi q

,

yuiyi � vecppuiyoi , puiErWisq,{uiyiyJ
i �

� puiyoiyoJi puiyoiEJrWispuiErWisyo
J

i puiErWiWJ
i s

�
,

where Wi � Ttnci pµ
co
i , rScoi , ν � noi � 2, pVc

1i,Vc
2iqq, rScoi �

�
ν � δ2pyoi q
ν � noi � 2



Si and Si,

Scoi and µcoi are as in Section 3.3.2.
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Formulas for ErWs and ErWWJs, where W � Ttppµ,Σ, ν;Aq, have been
recently developed using recurrence relations involving the density of multivariate Student’s
t-distribution. These can be obtained in the R package MomTrunc (Galarza et al., 2020).

3.3.4 Estimation of the random effects

In this section, we are interested in the estimation of random effects, which is
useful for evaluating subject-specific quantities of interest such as individually changed
intercepts and slopes. To estimate the random effects, we consider the conditional mean of
bi given the observed data Vi, and Ci, that is, Erbi|Vi,Cis, empirical Bayes approach.
Thus, when the parameter values of θ are known, the conditional mean of bi given Ci, Vi

is

pbipθq � E rbi|Vi,Cis � ϕippyi �Xiβ �Nifq, (3.19)

where ϕi is defined in Subsection 3.3.3 and pyi � Eryi|Vi,Cis is the first moment of the
truncated Student’s t-distribution.

The empirical Bayes estimates of random effects are obtained by substituting
the MPL estimates pθ into bipθq, leading to pbi � bippθq. In addition, the fitted values of
responses can be estimated directly by pyi � Xi

pβ �Ni
pf � Zi

pbi.
3.3.5 The expected information matrix

In the context of nonparametric regression, the covariance matrix of the MPL
estimates can be evaluated by inverting the observed information matrix obtained by
treating the penalized likelihood as a usual likelihood (Segal et al., 1994). Louis (1982)
proposed a technique for computing the observed matrix within the EM algorithm frame-
work, this method adjust the variance of the estimated fixed effects for the information
lost owing to censoring. Using this method, and from the results given by Lange et al.
(1989), the information matrix for pβ, fq can be approximated by

Ippβ, f |yq � Icpβ, f |yq � Impβ, f |yq,

where Ippβ, f |yq is the information about pβ, fq in the observed data y, Icpβ, f |yq is the
conditional expectation of the complete-data information, and Impβ, f |yq is the missing
information. Therefore, the approximate covariance matrix of ppβ,pfq is given as

yCovppβ,pfq � I�1
p pβ, fq

��
pθ
,

where the penalized expected information matrix Ippβ, fq takes the form:

Ippβ, fq �

�
Ippβ,βq Ippβ, fq
IJp pβ, fq Ippf , fq

�
,
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where

Ippβ,βq �
ņ
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ν � ni
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where E1 � pyuiyi � puiµiqpyuiyi � puiµiqJ and E2 � p{u2
iyiyJ

i �
yu2
iyiµJ

i �µi
zu2
iyJ

i �
pu2
iµiµ

J
i q.

Note that E1 depend on the computation of pui, yuiyi that can be obtained in Subsection
3.3.3 and E2 depend on the following quantities

pu2
i � E

��
ν � ni

ν � δ2pyiq


2 ���Vi,Ci,θ

�
, yu2

iyi � E

��
ν � ni

ν � δ2pyiq


2

yi
���Vi,Ci,θ

�
and

{u2
iyiyJ

i � E

��
ν � ni

ν � δ2pyiq


2

yiyJ
i

���Vi,Ci,θ

�
.

These expected values can be determined in closed form using Proposition 3 and 4, as
follows

1. If the ith subject has only non-censored components, then,

pu2
i �

�
ν � ni

ν � δ2pyiq


2

, yu2
iyi � pu2

iyi, {u2
iyiyJ

i �
pu2
iyiyJ

i ,

where δ2pyiq � pyi � µiqJΣ�1
i pyi � µiq.

2. If the ith subject has only censored components then

pu2
i � cppν, 2q

TnipV1i,V2i;µi,Σ�
i , ν � 4q

TnipV1i,V2i;µi,Σi, νq
,

yu2
iyi � pu2

iErWis,{u2
iyiyJ

i � pu2
iErWiWJ

i s,

where cppν, 2q �
pni � νqpν � 2q
νpni � ν � 2q , Wi � Ttnipµi,Σ�

i , ν�4; pV1i,V2iqq, Σ�
i �

ν

ν � 4Σi,

µi � Xiβ �Nif , Σi � ZiDZJ
i �Ωi.

3. If the ith subject has censored and uncensored components and given that pYi|Vi,Ciq,
pYi|Vi,Ci,Yo

i q, and pYc
i |Vi,Ci,Yo

i q are equivalent process, we have

pu2
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dppn
o
i , ν, 2q

pν � δ2pyoi qq2
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1i,Vc

2i;µcoi , rScoi , ν � noi � 4q
Tnci pV

c
1i,Vc

2i;µcoi ,Scoi , ν � noi q
,

yu2
iyi � vecp pu2

iyoi , pu2
iErWisq,{u2

iyiyJ
i �

� pu2
iyoiyoJi pu2

iyoiEJrWispu2
iErWisyo

J

i
pu2
iErWiWJ

i s

�
,



Chapter 3. Extending multivariate-t semiparametric mixed models for longitudinal data 62

where dppn
o
i , ν, 2q �

pν � niqpn
o
i � ν � 2qpnoi � νq

ni � ν � 2 , Wi � Ttnci pµ
co
i , rScoi , ν � noi �

4; pVc
1i,Vc

2iqq, rScoi �

�
ν � δ2pyoi q
ν � noi � 4



Si and Si, Scoi and µcoi are as in Subsection 3.3.2.

It can be noted that here we also need the first and second moments of truncated
Student’s t-distribution. And, as mentioned before, these moments can be obtained in the
R package MomTrunc (Galarza et al., 2020).

3.4 Estimation of the smoothing parameter
In the previous sections we considered the smoothing parameter λ fixed to

make inference for the nonparametric function f . However, in practice, this parameter need
to be estimated from the data. Many authors have pointed out that the proper selection of
smoothing parameters is essential for good a performance of the spline estimates (Green
& Silverman, 1994).

Wahba & Wold (1975) examine how much the smoothing should be: If λ is
too small, the spline is too wiggly and picks up too much noise (overfit); and if λ is too
large, the spline is too smooth and the signal is lost (underfit). A classical data-driven
approach to selecting the smoothing parameter is cross validation (CV), which leaves out
one subject’s entire data at a time, but this approach is often computationally expensive
(Zeger & Diggle, 1994).

Several authors have shown the connection between a smoothing spline and a
linear mixed effects model for analysis of longitudinal data (see, Wang, 1998b; Kohn et al.,
1991, for instance,). Zhang et al. (1998) treated the smoothing parameter as an additional
variance component and estimated it with other variance components simultaneously using
REML. According to Green (1987); Zhang et al. (1998), we can write f via a one-to-one
linear transformation as:

f � Tδ �Bd, (3.20)

where δ and d are vectors with dimensions 2 and r � 2, B � LpLJLq�1 and L is an
r � pr � 2q full-rank matrix satisfying K � LLJ and LJT � 0. Given (3.20), Equation
(3.4) can be reformulated as:

yi � X�
i β

� � Z�
i b�

i � εi,

where X�
i � rXi,NiTs, Zi � rNiB,Zis, β� � pβJ, δJqJ are the regression coefficients and

b� � pdJ,bJ
i q

J are mutually independent random effects with d � tr�2p0,
σ2

λ
Ir�2q and bi

and εi have the same distributions as those given in Section 3.3.1.

Motivated by Zhang et al. (1998)’s results and using the connection between
the smoothing spline and the linear mixed models, we propose to estimate λ using the
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EM algorithm, due to its simplicity of implementation and stable monotone convergence.
This novel procedure is described as follows. Consider the following model:

yi|b�
i , ui � NnipX�

i β
� � Z�

i b�
i , u

�1
i Ωiq

b�
i |ui � Nr�2�qp0, u�1

i Ψq,

ui � Gammapν{2, ν{2q,

where

Ψ �

��σ2

λ
Ir�2 0

0 D

�
.
Let yi denote the observed data and pb�

i , uiq denote the missing data. Then,
we consider the augmented data vector y�

ic � pyJ
i ,b�J

i , uJi q. In this case, the log-likelihood
function for the augmented data model, dropping all the terms that are not functions of λ,
takes the form:
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c q9
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The solution pλ can be obtained via the following joint iterative process:

Step 1: Obtain pθpk�1q
, as described in Subsection 3.3.3;

Step 2: (E-step) Given the observed data, evaluate the expectation of `pλ; y�
c q

and estimate in the kth iteration :

Qpλ|pλpkqq � E
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Step 3: (M-step) Uptade λ by

pλpk�1q � �
npr � 2q°n

i�1 tr
�

Ψ�1 BΨ
Bλ

Ψ�1 {uib�
i b�J

i

pkq

 .

Thus, by repeating Step 1, Step 2 and Step 3, this iterative process leads to
the MPL estimates of θ and the smoothing parameter λ.

3.5 Goodness of fit and model selection
In this section, we consider diagnoses to assess the adequacy of the fit in the

proposed model and detect influential observations.
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Under condition that yi ind.
� tnipµi,Σi, νq, the Mahalanobis distance, δ2

i pθq �

pyi � µiqJΣ�1
i pyi � µiq, has been considered by several authors to detect outliers in

multivariate t models. To deal with the censored values existing in yi, we used the
imputation procedure, that is, for censored values pyi � E ryi|Vi,Cis. According to Lange
et al. (1989), under t model Fi � δ2

i pθq{ni is F-distributed with ni and ν degrees of freedom,
where ni corresponds to the number of measurements associated with the ith subject.
In addition, pFi � δ2

i p
pθq{ni has asymptotically the same distribution as Fi, i � 1, . . . , n.

Therefore, using the Wilson-Hilferty approximation (Johnson et al., 1994; Galea-Rojas,
1995), we have that the transformed distance is

F
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9ni
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2
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F

2{3
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2
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�1{2 , i � 1, . . . ,m,

and follows approximately a standard normal distribution. Thus, a Q-Q plot of the
transformed distances, F rzs

i , can be used to assess the fit of the multivariate Student’s
t-distribution.

For a model selection criterion, we adopt the Akaike Information Criterion
(AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz et al., 1978,
so BIC is also known as SIC) which have been extended for standard LME and NLME
models (Davidian & Giltinan, 1995). For t-SMEC model, we can define the AIC and BIC
as follows:

AICppθq � �2`pppθq � 2p�,

BICppθq � �2`pppθq � p� logN,

where `pppθq corresponds to the logarithm of the penalized likelihood function, defined in
Equation (3.9), p� is the total number of parameters in the model, and N denotes the size
of the sample.

3.6 Simulation studies
In order to examine the performance of our proposed models and algorithm, we

present two simulation studies. The first one examines the finite sample properties of the
estimators. The second study compares the performance of the estimates of the t-SMEC
model and the N-SMEC model. For both simulation schemes, we simulate longitudinal
data from the following model:

yij � β1x1ij � β2x2ij � fptijq � b0i � b1itij � εij, i � 1, . . . , n, , j � 1, . . . , ni. (3.21)

The parameters were set at βJ � pβ1, β2q � p2,�1.5q, σ2 � 0.13, and D with el-
ements α11 � 0.25, α12 � 0.01, α22 � 0.1. We chose a smooth function fptijq �
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exppsenp0.3tijq cosp0.6tijqq, where tij � p1, 2, 3, 4, 5, 6, 7q. The values xJ
i � px1, x2q were

generated independently from a uniform distribution in the intervals (0,1) and (-1,1),
respectively, and those values were kept constant throughout the experiment.

All computational procedures were implemented using the R software (R Core
Team, 2020), which is available from us upon request.

3.6.1 Asymptotic properties

In this simulation study, the main focus is to evaluate the finite-sample per-
formance of the parameter estimates. Another goal is to examine the consistency of the
standard errors for the MPL estimates of β and f . Therefore, we generated samples from
the t-SMEC model, with pb0i, b1iq

ind.
� t2p0,D, νq and εi � tnip0,Ωi, νq, where Ωi � σ2Ei,

with a correlation structure AR(1) for Ei considering φ1 � 0.8 and ν � 5. Moreover, to
study the effect on the level of censoring and sample sizes, we consider two left censoring
proportions (10% and 20%) and sample sizes fixed at n � 50, 100 and 300. For each
combination of sample size and censoring level, we generated 200 simulated datasets.

To evaluate the computational accuracy and to examine the consistency of the
estimates of the standard erros suggested in Subsection 3.3.4, we computed the following
measures:

• The arithmetic average of estimates:

MC Meanppθiq � 1
200

200̧

j�1

pθipjq
• The average values of the estimates of the standard erros obtained through the
method described in Subsection 3.3.4 using the expected information matrix (MC
IM).

• The Monte Carlo standard deviation of β and f (MC SD).

Table 5 summarize the simulation results based on 200 Monte Carlo data sets
for the model parameters pβ, fq. It can be observed that the MC Mean approaches the
true value for fixed components and when the sample size increases the value of MC SD
decreases. It can also be seen that the approximate standard errors (MC IM) obtained in
Subsection 3.3.4 and the standard deviation estimates (MC SD) closely agree with each
other, suggesting that the derived standard errors works well. From Figure 11 it can be
observed that the variability among the estimates of the nonparametric function declines
as the sample size increases, and the censorship does not influence the estimation of the
nonparametric part. Therefore, we can conclude that the t-SMEC model provides estimates
with good asymptotic properties for the fixed components and the nonparametric part is
able to capture the true unknown function.
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Table 5 – Simulation study - Asymptotic properties. Results based on 200 simulated
samples. MC IM, MC SD are the respective average of the approximate standard
errors obtained using the expected information matrix, and the average of the
approximate standard deviations from fitting t-SMEC model.

Cens. level Parameter n=50 n=100 n=300
MC Mean MC IM MC SD MC Mean MC IM MC SD MC Mean MC IM MC SD

10%

β1 � 2 1.9993 0.0362 0.0389 2.0040 0.0263 0.0289 1.9996 0.0148 0.0145
β2 � �1.5 -1.4989 0.0186 0.0199 -1.5020 0.0131 0.0141 -1.4992 0.0073 0.0076

fp1q � 1.2762 1.2759 0.1091 0.1128 1.2777 0.0787 0.0747 1.2713 0.0453 0.0462
fp2q � 1.2270 1.2297 0.1384 0.1397 1.2301 0.1005 0.0933 1.2198 0.0576 0.0566
fp3q � 0.8370 0.8470 0.1759 0.1820 0.8369 0.1281 0.1197 0.8270 0.0733 0.0713
fp4q � 0.5029 0.5120 0.2176 0.2244 0.5020 0.1585 0.1507 0.4915 0.0906 0.0868
fp5q � 0.3725 0.3866 0.2613 0.2675 0.3659 0.1904 0.1818 0.3568 0.1086 0.1059
fp6q � 0.4176 0.4335 0.3061 0.3145 0.4077 0.2230 0.2111 0.3989 0.1272 0.1264
fp7q � 0.6549 0.6785 0.3519 0.3616 0.6456 0.2561 0.2433 0.6349 0.1461 0.1433

20%

β1 � 2 1.9981 0.0292 0.0466 2.0037 0.0209 0.0316 1.9987 0.0117 0.0165
β2 � �1.5 -1.4971 0.0150 0.0222 -1.5011 0.0104 0.0166 -1.4986 0.0058 0.0090

fp1q � 1.2762 1.2666 0.0934 0.1129 1.2672 0.0654 0.0783 1.2582 0.0376 0.0477
fp2q � 1.2270 1.2163 0.1184 0.1385 1.2156 0.0833 0.0957 1.1995 0.0478 0.0577
fp3q � 0.8370 0.8301 0.1501 0.1815 0.8174 0.1061 0.1227 0.7999 0.0607 0.0722
fp4q � 0.5029 0.4909 0.1853 0.2254 0.4777 0.1313 0.1543 0.4583 0.0749 0.0874
fp5q � 0.3725 0.3629 0.2221 0.2698 0.3372 0.1577 0.1865 0.3163 0.0898 0.1067
fp6q � 0.4176 0.4055 0.2599 0.3174 0.3731 0.1846 0.2166 0.3522 0.1051 0.1273
fp7q � 0.6549 0.6476 0.2985 0.3649 0.6056 0.2120 0.2483 0.5820 0.1207 0.1443

10% 20%
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Figure 11 – Simulation study - Asymptotic properties. Graphs of the nonparametric
components with 200 replications. Adjusted curves (gray lines) and true curves
(red lines) for all scenarios.
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3.6.2 Robustness of the estimates

The purpose of this simulation study is to compare the fits of the t-SMEC and
N-SMEC models when we assume the normal distribution for the errors and random effects.
Also, we are interested in comparing the fits when the usual assumption of normality
is violated. Then, in this case, we replace the multivariate normal distribution by the
multivariate contaminated normal, which is a particular case of the SMN distributions.

First, for the normal distribution, we consider pb0i, b1iq
ind.
� N2p0,Dq and εi �

Nnip0,Ωiq, where Ωi � σ2Ei with a correlation structure AR(1) for Ei and φ1 � 0.4. For
the contamined normal, we consider pb0i, b1iq

ind.
� N2p0, u�1

i Dq, εi � Nnip0, u�1
i Ωiq and

Ui �

$&%0.3 with probability 0.3,

1 with probability 0.7,

where Ωi � σ2Ei, with a correlation structure AR(1) for Ei and φ1 � 0.4. We generated
M � 200 datasets of size n � 150 with left censoring proportion 15%. Once the simulated
data were generated, we fit the N-SMEC model and t-SMEC model to each simulated
dataset.

The model selection criterion as well as the estimates of the model parameters
were recorded for each simulation. The detailed numerical results under the scenarios
considered, including the average BIC values and the MPL estimates are summarized in
Table 6. From Table 6, can be noted that when the data generated follow the normal
distribution the performances of the N-SMEC model and t-SMEC model are similar,
indicating that the t-SMEC model gives reliable estimates. Also, to evaluate the use of
the BIC criterion, the N-SMEC model was chosen by the criterion in 79.5% (159/200) of
the samples generated as the best model. When the data generated follow the contamined
normal, the t-SMEC model has better estimates and the standard errors are less than the
N-SMEC model. Evaluating the BIC criterion, the N-SMEC model was chosen in 38.5%
(77/200) of the samples.

Another important feature in our model is the ability to detect whether the
distribution has heavy tails or not. It can be seen from Table 6 that when we fit the
t-SMEC model to normal data, the estimate of ν on average is high, that is, the data does
not have heavy-tails behavior. Now, when the data generated is contaminated normal, the
estimated ν on average is small since we are dealing with a distribution with heavier tails
that the normal distribution. Therefore, it can be observed that the t-SMEC model fits
better than the N-SMEC model counterpart when the data have heavy tail behavior.
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Table 6 – Simulation study - Robustness of the estimates. Summary statistics based
on 200 simulated AR(1) samples for the estimates parameters.

Fit

Distribution Parameter Normal Student-t
MC Mean MC IM MC SD MC Mean MC IM MC SD

Normal

β1 (2) 2.0065 0.0475 0.0406 1.9968 0.0349 0.0413
β2 (-1.5) -1.5071 0.0233 0.0197 -1.5011 0.0172 0.0197
fp1q � 1.2762 1.2798 0.0640 0.0583 1.2869 0.0601 0.0611
fp2q � 1.2270 1.2287 0.0780 0.0719 1.2387 0.0751 0.0767
fp3q � 0.8370 0.8428 0.0980 0.0994 0.8526 0.0948 0.1048
fp4q � 0.5029 0.5130 0.1208 0.1203 0.5236 0.1168 0.1274
fp5q � 0.3725 0.3889 0.1435 0.1414 0.3981 0.1394 0.1486
fp6q � 0.4176 0.4434 0.1673 0.1670 0.4487 0.1628 0.1733
fp7q � 0.6549 0.6867 0.1918 0.1958 0.6881 0.1868 0.2014
σ2 (0.13) 0.1396 0.0993
α11 (0.25) 0.2606 0.2294
α12 (0.01) 0.0124 0.0108
α22 (0.1) 0.0967 0.0845
φ1 (0.4) 0.3212 0.3929
ν - 24.5473
λ 3.0217 1.3226
BIC 1490.536 1500.18

Contamined
Normal

β1 (2) 1.9966 0.0552 0.0458 1.9950 0.0373 0.0474
β2 (-1.5) -1.4998 0.0271 0.0257 -1.4992 0.0182 0.0244
fp1q � 1.2762 1.2910 0.0806 0.0761 1.2874 0.0652 0.0696
fp2q � 1.2270 1.2463 0.0991 0.0931 1.2263 0.0814 0.0899
fp3q � 0.8370 0.8706 0.1247 0.1168 0.8582 0.1037 0.1121
fp4q � 0.5029 0.5494 0.1539 0.1548 0.5279 0.1279 0.1457
fp5q � 0.3725 0.4314 0.1835 0.1863 0.3984 0.1529 0.1735
fp6q � 0.4176 0.4930 0.2142 0.2225 0.4552 0.1785 0.2044
fp7q � 0.6549 0.7400 0.2458 0.2523 0.6884 0.2049 0.2288
σ2 (0.13) 0.2190 0.0932
α11 (0.25) 0.4311 0.2135
α12 (0.01) 0.0215 0.0120
α22 (0.1) 0.1603 0.0810
φ1 (0.4) 0.3593 0.3925
ν - 3.8593
λ 4.7094 24.0673
BIC 1925.797 1920.187

3.7 Application
In this section, we apply our method to analyze a longitudinal dataset (UTI

data) corresponding to the interruption of treatment in HIV-infected adolescents at four
institutions in the USA.

The UTI data is referred to a study of 72 perinatally HIV-infected children
(Saitoh et al., 2008), and it is available in the R package lmec (Vaida & Liu, 2012). Primarily
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due to treatment fatigue, unstructured treatment interruptions (UTI) are common in
this population. Suboptimal adherence can lead to antiretroviral (ARV) resistance and
diminished treatment options in the future. The aim of this study was to monitor the
HIV-1 viral load (RNA) after unstructured treatment interruption. The subjects in the
study had taken ARV therapy for at least 6 months before UTI, and the medication was
discontinued for more than 3 months. The HIV viral load were studied from the closest
time points at 0, 1, 3, 6, 9, 12, 18, 24 months after UTI. The number of observations from
baseline (month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13, respectively. Out of 362
observations, 26p7%q observations were below the detection limits (50 or 400 copies/mL)
and were left-censored at these values. The individual profiles are shown in Figure 12. This
dataset was analyzed by Vaida & Liu (2009) and Matos et al. (2013b) using the N-LMEC
and t-LMEC models, respectively.
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Figure 12 – UTI data. Individual profiles (in log10 scale) for HIV viral load at different
follow-up times.

Here, we revisit the UTI data assuming that the functional form of the HIV
RNA levels over time is not known. We considered the following model:

yij � fptijq � bi � εij, (3.22)

where yij is the log10HIV RNA for subject i at time tij (i � 1, 2, . . . , 72; j � 1, 2, . . . , ni),
fptijq is an arbitrary smoothing function, bi is the random intercept for the i-th subject,
and εij are random errors. The model (3.22) can be express in matrix form as:

yi � Nif � Zibi � εi, (3.23)

where yi is a (ni � 1) vector of responses for the i-th children, Ni is the incidence matrix,
f is a p8� 1q vector whose components are function fp�q evaluated at the times in the set
t0 � pt01 � 0, t02 � 1, t03 � 3, . . . , t08 � 24q, Zi � 1ni , with 1ni a (ni � 1) vector of ones and
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ti � rti1, . . . , tinis
J, bi � bi the random intercept and εi � pεi1, . . . , εiniq

J represents the
within-subject random error.

We acknowledge four cases of correlation structure to specify the matrix Ei: the
continuous-time AR(1) structure, the compound symmetry (CS), the damped exponential
(DEC) and the uncorrelated (UNC). Table 7 represents the MPL estimates of θ �

pfJ, σ2, α,φJ, νqJ, the smoothing parameter estimate (λ), the corresponding penalized
log-likelihood function evaluated at pθ in the fitted models, and the values of AIC and
BIC. These results reveal that the model with an UNC structure has lower AIC and BIC
compared to the other structures, that is, the measures over the time of the same subject
are not correlated. From the fit of (3.22), considering the t-SMEC model under UNC
correlation structure, estimates of individual profiles are shown for six subjects in Figure
13a, it can be seen that the model seems to provide a good fit.

Table 7 – UTI dataset. Parameter estimates of the t-SMEC model (3.22) for the UTI
dataset. SE indicates the standard errors.

AR(1) CS DEC UNC

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

f1 4.1106 0.0948 4.0863 0.1169 4.1276 0.0998 4.0929 0.1082
f2 4.2219 0.0921 4.1853 0.1137 4.2146 0.0975 4.2116 0.1039
f3 4.3647 0.0991 4.3462 0.1243 4.3563 0.1046 4.3672 0.1126
f4 4.5284 0.0975 4.5213 0.1218 4.5226 0.1029 4.5323 0.1103
f5 4.6484 0.1013 4.6294 0.1277 4.6324 0.1066 4.6478 0.1153
f6 4.6795 0.1048 4.6704 0.1331 4.6729 0.1108 4.6786 0.1195
f7 4.7080 0.1129 4.7161 0.1446 4.7132 0.1200 4.7090 0.1300
f8 4.8736 0.1309 4.8499 0.1691 4.8542 0.1389 4.8697 0.1516
σ2 0.0777 0.4668 0.3407 0.1036
α 0.3171 0.0615 0.0559 0.3741
φ1 0.0007 0.7369 0.7777
φ2 1 0 0.0317
ν 3.0344 3.0998 3.036 3.0978
λ 699.1542 2095.618 2137.032 695.6855

loglikp -341.2195 -339.7186 -340.5147 -339.4198
AIC 706.439 703.4372 707.0294 700.8397
BIC 753.1388 750.1369 757.6208 743.6477

Again, for the t-SMEC model under UNC correlation structure (our best
model), we present in Figure 13b the curve of the estimated nonparametric function and
the corresponding confidence bands. It can be noted that the estimated nonparametric
function increase gradually. This is the evidence of the negative effect of the antiretroviral
therapy interruption on the viral load levels. It means, the viral load increments consistently
along the time when the antiretroviral therapy begins to be interrupted. For the fit model,
the mean viral load (Epyijq � fptijq) increases from 4.09 at the time of UTI to 4.87 at 24
months.

Figure 14 displays the transformed distance plots, for the Student-t (Figure
14a) and the normal (Figure 14c) models. The transformed distance under the Student-t
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Figure 13 – UTI dataset. (a) Viral loads in log10 scale (solid line) for 6 randomly chosen
subjects and estimated trajectories (red, dotted line) for the t-SMEC model
in the UNC structure. (b) Fitted curve of nonparametric part. The shaded
regions denote the 95% confidence intervals obtained by pf � 1.96

byVarppfq.
model seems to be closer to normality than under the normal model. Therefore, it can be
seen that the fitted model t-SMEC with the UNC correlation structure seems to present
an adequate fit. Identification of outlying observations under the t-SMEC model may
be performed, for instance, by the scatter plot between the estimated weight and the
estimated Mahalanobis distance, Figure 14b. As can be seen, the subject 42 receive a
smaller weight and the higher Mahalanobis distance. Besides, in this Figure, it can be
observed that many observations present smaller weights, verifying the robust aspects of
the MPL estimation under the Student’s t-distribution.
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Figure 14 – UTI dataset. (a) Normal probability plot for the transformed distance under
the t-SMEC model with UNC structure. (b) Estimated weights (pui) for the
estimated t-SMEC model with UNC structure. (c) Normal probability plot
for the transformed distance under the N-SMEC model with UNC structure.
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3.8 Conclusion
In this chapter, we proposed a semiparametric mixed model for the analysis of

longitudinal censored data, assuming that the within-individual measurement errors and
the random effects were distributed with multivariate Student’s t-distribution. This work
can be considered as an extension of Matos et al. (2013b), where a linear/nonlinear mixed
effects model was considered for censored data with Student’s t-distribution.

In practical implementation, the EM algorithm is used to obtain MPL estimates
of the regression coefficients of the parametric part and to estimate the nonparametric
component as a natural cubic spline. We proposed the EM algorithm to estimate the
smoothing parameter using a modification of the mixed model proposed by Green (1987).
The first simulation study validates the performance of our method and the second study
indicates that there is an efficiency gain of the t-SMEC model when compared to the
N-SMEC model for data with tails heavier than normal. A real data set previously analyzed
under N-LMEC and t-LMEC models is reanalyzed under the semiparametric mixed model,
showing the flexibility of the t-SMEC model to fit the data set in which we do not know
the functional form that relates the variables. The codes in R (R Core Team, 2020) used
in the application can be obtained from the authors upon request.

In this work, we have discussed the estimation of a single nonparametric function,
but the methods can be generalized to additive mixed models in the presence of multiple
nonparametric additive covariate effects and non-Gaussian outcomes (Ibacache-Pulgar
et al., 2013). Although the t-SMEC model considered here has shown great flexibility
for modeling symmetric data with indications of lighter or heavier tails than the normal
distributions, its robustness against outliers can be seriously affected by the presence
of skewness. Thus, it is of interest to generalize the t-SMEC model by considering a
more flexible family of distributions, such as the scale mixtures of skew-normal (SMSN)
distribution class, to accommodate the censoring, skewness and heaviness in the tails of a
distribution, simultaneously.
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Chapter 4

Likelihood-based inference for
mixed-effects models with censored
response using skew-normal
distribution

4.1 Introduction
Longitudinal studies have attracted a considerable interest in clinical trials,

biological psychology, environmental science, and medical research, as they enable the study
of change over time of an outcome and the evaluation of determinants of change. Linear and
nonlinear mixed-effect (N/LME) models are powerful tools for analyzing longitudinal data.
In these models, random effects are incorporated to accommodate among-subject variation
(Laird & Ware, 1982; Davidian & Giltinan, 1995). The random errors and/or random
effects are routinely assumed to have a normal distribution due to their mathematical
tractability and computational convenience.

Although the normality assumption may be reasonable for many situations, a
serious departure of normality will cause a lack of robustness and subsequently lead to
invalid inference and unreasonable estimates (Verbeke & Lesaffre, 1996). Specially non-
normal characteristics such as skewness with heavy right or left tail appear often in virologic
responses. For example, Figure 15a displays the histogram of the viral load measurements
for 44 subjects enrolled in an AIDS clinical study - A5055, (refer to Subsections 1.4.2
and 4.6.1 for details of this data). From this figure, it can be seen that the viral load
measurements are highly skewed, even after a log10 transformation.

As an alternative to the weakness of unrealistic normality assumptions and
eliminate the need for ad hoc data transformations, asymmetric distributions can be
applied to consider this non-ignorable departure from normality. Lachos et al. (2010)
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proposed a robust generalization of LME, called the skew normal/independent linear
mixed (SNI-LME) model, by assuming a skew normal/independent (SNI) distribution
(Branco & Dey, 2001) for the random effects and a normal/independent distribution
for the random errors. HO & LIN (2010) proposed a model that provides flexibility in
capturing the effects of skewness and heavy tails simultaneously among longitudinal data,
they consider an extension of LME assuming a multivariate skew-t distribution for the
random effects and a multivariate Student’s t-distribution for the error terms.

Another complexity of longitudinal studies occurs when the response is censored
for some of the observations, which often arises when assay measures are collected over time
and the assay procedure is subject to limits of quantification. As a case in point, the HIV-1
viral load, which is currently the primary marker of HIV infection, has a lower and upper
quantification limit, which depends on the type of assay used. The viral load of patients
receiving anti-retroviral treatment will typically decline and stay for a longer period below
the lower limit of quantification. Figure 15b shows the measurements of viral load for
patients in the A5055 study. We can see that for some patients viral loads are below a
limit of detection (50 copies/mL here). When response observations are below limits of
quantification, a common practice is to impute the censored values by the detection limit
or half the detection limit (Wu & Ding, 1999). Such ad hoc methods may produce biased
results as pointed out by Hughes (1999), Jacqmin-Gadda et al. (2000), Matos et al. (2016),
just to name a few.

In the literature, longitudinal data with censored observations have received con-
siderable attention. Vaida & Liu (2009) proposed an exact EM algorithm for LME/NLME
with censored response (LMEC/NLMEC), which uses closed-form expressions at the
E-step, as opposed to Monte Carlo simulations. Robust extensions of LMEC and NLMEC
based on the multivariate Student’s t-distribution, named as tLMEC and tNLMEC, have
been introduced by Matos et al. (2013b). On the other hand, and under a Bayesian
framework, Bandyopadhyay et al. (2012) studied LMEC models considering both skewness
and heavy tails, replacing the Gaussian assumptions with skew-normal/independent (SNI)
distribution. However, to the best of our knowledge, no previous work have investigated
LMEC/NLMEC models based on the skew-normal distributions from a likelihood based
perspective.

In this chapter, we are devoted to presenting methodological developments of the
skew-normal linear/nonlinear mixed model with censored responses (SN-LMEC/NLMEC)
from a likelihood based perspective, which takes into account the skewness behaviour of
the random effects. The SN-LMEC/NLMEC is defined by supposing that, for each subject,
the random effects follow a SN distribution introduced by Azzalini & Valle (1996), while
the within-subject errors follow a multivariate normal distribution to prevent identifiability
problems. Like Matos et al. (2013b), we show that the E-step reduces to computing the
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Figure 15 – A5055 data. (a) Histogram for HIV viral load (in log10q scale. (b) Individual
profiles for HIV viral load (in log10 scale).

first two moments of a truncated multivariate SN distribution. The likelihood function is
easily computed as a byproduct of the E-step and is used for monitoring convergence and
for model selection.

The organization of this chapter is outlined as follows. Section 4.2 presents
the skew-normal distribution (SN) and some of its keys properties. Section 4.3 introduces
the model (SN-LMEC) and describes an efficient EM algorithm for calculating maximum
likelihood (ML) estimates of parameters. We also discuss the issues related to empirical
Bayes estimates of the random effects and prediction of future responses. The extension
to the nonlinear case (SN-NLMEC) is discussed in Section 4.4. A simulation study is
conducted in Section 4.5 to evaluate the proposed method. In Section 4.6, two case studies
of HIV viral load are analyzed in detail. We conclude the article with some discussions in
Section 4.7.

4.2 The multivariate skew-normal distribution
In this section we present the multivariate skew-normal distribution (SN) and

multivariate extended skew-normal (ESN) and some of its useful properties. Some versions,
extensions, and unifications of the SN family are carefully surveyed in works such as
Azzalini (2005) and Arellano-Valle et al. (2006).

Definition 1. A random vector Y has multivariate skew-normal distribution with p� 1
location vector µ, p� p positive definite dispersion matrix Σ and p� 1 skewness parameter
vector λ, and we write Y � SNppµ,Σ,λq, if its density is given by

SNppy;µ,Σ,λq � 2φppy;µ,ΣqΦ1pλ
JΣ�1{2py� µqq, (4.1)

where φpp�;µ,Σq and Φpp�;µ,Σq denote, respectively, the probability distribution function
(pdf) and the cumulative distribution function (cdf) of the p-variate normal distribution
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Nppµ,Σq, with mean vector µ and covariate matrix Σ, respectively, and Σ�1{2 is such
that Σ�1{2Σ�1{2 � Σ�1. Note that if λ � 0, then the density of Y reduces to the Nppµ,Σq
density.

It is worth mentioning that the multivariate skew-normal distribution is not
closed over conditioning. Next we present its extended version which holds this property,
called, the multivariate ESN distribution.

Definition 2. A random vector Y has multivariate ESN distribution with p� 1 location
vector µ, p� p positive definite dispersion matrix Σ, p� 1 skewness parameter vector λ,
and shift parameter τ P R, denoted by Y � ESNppµ,Σ,λ, τq, if its density is given by

ESNppy;µ,Σ,λ, τq � ξ�1φppy;µ,ΣqΦ1pτ � λ
JΣ�1{2py� µqq, (4.2)

with ξ � Φ1pτ{p1� λJλq1{2q. Note that when τ � 0, we recover the skew-normal distribu-
tion defined in (4.1), that is, ESNppy;µ,Σ,λ, 0q � SNppy;µ,Σ,λq.

Define,

Lppa,b;µ,Σ,λ, τq �
» b

a
ξ�1φppy;µ,ΣqΦ1pτ � λ

JΣ�1{2py� µqqdy.

When λ � 0 and τ � 0, we recover the multivariate normal case, and then

Lppa,b;µ,Σ,0, 0q � Lppa,b;µ,Σq �
» b

a
φppy;µ,Σqdy.

Proposition 5. Let Y � SNppµ,Σ,λq and Y be partitioned as Y � pYJ
1 ,YJ

2 q
J, with

dimensions p1 and p2, p1 � p2 � p, respectively. Let

µ � pµJ
1 ,µ

J
2 q

J, Σ �

�
Σ11 Σ12

Σ21 Σ22

�
, λ � pλJ1 ,λ

J
2 q

J and ϕ � pϕJ
1 ,ϕ

J
2 q

J

be the corresponding partitions of µ, Σ, λ and ϕ � Σ�1{2λ. Then,

(i) Y1 � SNp1pµ1,Σ11, c12Σ1{2
11 υ̃q; and

(ii) Y2|Y1 � y1 � ESNp2pµ2.1,Σ22.1,Σ1{2
22.1ϕ2, τ2.1q,

where c12 � p1 � ϕJ
2 Σ22.1ϕ2q

�1{2, υ̃ � ϕ1 � Σ�1
11 Σ12ϕ2, Σ22.1 � Σ22 � Σ21Σ�1

11 Σ12,
µ2.1 � µ2 �Σ21Σ�1

11 py1 � µ1q and τ2.1 � υ̃
Jpy1 � µ1q.

Proof. See Proposition 2 in Galarza et al. (2019).

The mean and variance of a ESN random vector is given in the following lemma:
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Lemma 1. Let Y � ESNppµ,Σ,λ, τq. Then,

i) ErYs � µ� ηΣ1{2λ,

ii) ErYYJs � Σ� µµJ � η
�
µλJΣ1{2 �Σ1{2λµJ

�
� ητΣ1{2 λλJ

1� λJλ
Σ1{2,

iii) VarpYq � Σ� ηΣ1{2λ

�
ηλ�

τ

1� λJλ
λ


J

Σ1{2,

with η � φ1pτ ; 0, 1� λJλq{ξ. When τ � 0, we recover ErYs,ErYYJs and VarpYq the
skew-normal distribution.

Definition 3. Let X � ESNppµ,Σ,λ, τq and Ppa   X   bq ¡ 0. A random vector Y has
a truncated extended multivariate skew-normal (TESN) distribution in the interval ra,bs,
denoted by Y � TESNppµ,Σ,λ, τ, ra,bsq, if its density is given by

fYpyq �
ESNppy;µ,Σ,λ, τq³b

a ESNppy;µ,Σ,λ, τqdy
, a ¤ y ¤ b.

For the special case τ � 0, we refer to this distribution as a truncated multivariate
skew-normal (TSN) distribution, i.e., TESNppµ,Σ,λ,0, ra,bsq � TSNppµ,Σ,λ, ra,bsq.

The following properties of the multivariate truncated ESN distribution are
useful for the implementation of the EM-algorithm in SN-LMEC/NLMEC models.

Lemma 2. Let Y � TESNppµ,Σ,λ, τ, ra,bsq. For any measurable function gp�q, we have
that

E

�
gpYq

φ1pτ � λ
JΣ�1{2pY � µqq

Φ1pτ � λ
JΣ�1{2pY � µqq

�
�
ηL
L

ErgpWqs,

with η � φ1pτ ; 0, 1� λJλq{ξ, L � Lppa,b;µ � µ�,Ψq, L � Lppa,b;µ,Σ,λ, τq, Ψ �

Σ1{2pIp � λλJq�1Σ1{2, µ� � τΨϕ, and W � TNppµ� µ
�,Ψ, ra,bsq.

Proof. See Lemma 1 in Galarza et al. (2019).

Corollary 1. Setting τ � 0, it follows that Y � TSNppµ,Σ,λ, ra,bsq and

E

�
gpYq

φ1pλ
JΣ�1{2pY � µqq

Φ1pλ
JΣ�1{2pY � µqq

�
�

L0b
π
2 p1� λ

JλqL0

ErgpW0qs,

with L0 � Lppa,b;µ,Ψq, L0 � Lppa,b;µ,Σ,λ, 0q and W0 � TNppµ,Ψ, ra,bsq.

Proof. The proof is straightforward. Setting τ � 0, it suffices to find that µ� � 0 and
η �

b
2{πp1� λJλq.
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4.3 The skew-normal linear mixed effects model with censored re-
sponses

4.3.1 The statistical model

In order to allow symmetric-asymmetric properties in real data sets, the SN-
LMEC is defined by extending the normal mixed-effects models presented by Vaida & Liu
(2009). The model is specified as follows:

Yi � Xiβ � Zibi � εi, i � 1, . . . , n, (4.3)

where the subscript i is the subject index, Yi � pYi1, . . . , Yiniq
J is a ni�1 vector of observed

continuous responses for sample unit i, Xi is the ni � p design matrix corresponding to
the p� 1 vector of fixed-effects β, and Zi is the ni � q design matrix corresponding to the
q � 1 vector of random effects bi, and εi is the ni � 1 vector of random errors.

In this work, we assume that�
bi
εi

�
ind.
� SNq�ni

��
c∆
0

�
,

�
D 0
0 Ωi

�
,

�
λ

0

��
, (4.4)

where c � �
a

2{π, ∆ � D1{2δ, δ � λ

p1� λJλq1{2
. The value of the location parameter,

c∆, of bi is chosen in order to obtain Erbis � 0, as in the normal model. The dispersion
matrix D � Dpαq models between-subjects variability, and depends on the unknown and
reduced parameter vector α of dimension q. The correlation structure of the error vector
is assumed to be Ωi � σ2Ei, where the ni � ni matrix Ei incorporates a time-dependence
structure. Thus, we adopt a DEC structure for Ωi, as proposed by Muñoz et al. (1992). This
correlation structure allows us to deal with unequally spaced and unbalanced observations
and is defined as

Ωi � σ2Ei � σ2Eipφ; tiq � σ2
�
φ
|tij�tik|

φ2
1

�
, i � 1, . . . , n, j, k � 1, . . . , ni,

where φ1 is the correlation parameter that describes the autocorrelation between observa-
tions separated by the absolute length of two time points, and φ2 is the damping parameter
which allows the acceleration of the exponential decay of the autocorrelation function,
defining a continuous-time autoregressive model. For practical reasons, the parameter
space of φ1 and φ2 is confined within Φ � tpφ1, φ2q : 0   φ1   1, φ2 ¡ 0u. A more detailed
discussion of the DEC structure can be found in Muñoz et al. (1992).

According to Lachos et al. (2010), model (4.3) can be written hierarchically as

Yi|bi ind.
� NnipXiβ � Zibi,Ωiq,

bi|Ti � ti
ind.
� Nqp∆ti,Γq, (4.5)

Ti
iid.
� TNpc, 1; pc,8qq,



Chapter 4. Mixed-effects models with censored response using skew-normal distribution 79

where Γ � D�∆∆J.

It follows from (4.5) that the density of Yi is

fpYiq � 2φnipYi; Xiβ � Zic∆,ΣiqΦ1

�
λ̄
J

i Σ�1{2
i pyi �Xiβ � Zic∆q

	
, (4.6)

i.e., Yi
ind.
� SNnipXiβ � Zic∆,Σi, λ̄iq, i � 1, . . . , n, where Σi � Ωi � ZiDZJ

i ,

Λi � pD�1 � ZJ
i Σ�1

i Ziq
�1 and λ̄i �

Σ�1{2
i ZiDζa
1� ζJΛiζ

, with ζ � D�1{2λ.

As previously mentioned, the proposed model also considers censored obser-
vations, i.e., we assume that the response Yij is not fully observed for all i, j. Thus, we
consider the approach proposed by Vaida & Liu (2009) to model the censored responses.
Let the observed data for the i-th subject be pVi,Ciq, where Vi represents the vector
of uncensored readings (Vij � V0i) or censoring level, and Ci is the vector of censoring
indicators, such that:

Cij �

$&%1 if V1ij ¤ Yij ¤ V2ij,

0 if Yij � V0i,
(4.7)

for all i P t1, . . . , nu and j P t1, . . . , niu, i.e., Cij � 1 if Yij is located within a specific
interval. The model defined in (4.3)-(4.7) is henceforth called the SN-LMEC model.

4.3.2 The likelihood function

To obtain the likelihood function of the SN-LMEC model, first we treat
separately the observed and censored components of Yi, i.e. Yi � pYoJ

i ,YcJ
i q

J, with
Cij � 0 for all elements in Yo

i , and Cij � 1 for all elements in Yc
i . Analogous, we write

Vi � vecpVo
i ,Vc

iq, where Vc
i � pVc

1i,Vc
2iq with

µi � pµoJi ,µ
cJ
i q

J, Σi �

�
Σoo
i Σoc

i

Σco
i Σcc

i

�
, λ̄i � pλ̄

oJ

i , λ̄
cJ

i q
J and ϕi � pϕoJi ,ϕ

cJ
i q

J,

where µi � Xiβ � Zic∆ and ϕi � Σ�1{2
i λ̄i. Then, using Proposition 5, we have that

Yo
i � SNnoi

pµoi ,Σoo
i , c

co
i Σoo1{2

i υ̃q and Yc
i |Yo

i � yoi � ESNnci
pµcoi ,Si,S

1{2
i ϕ

c
i , τ

co
i q,

where

µcoi � µci �Σco
i Σoo�1

i pyoi � µoi q, Si � Σcc
i �Σco

i pΣoo
i q

�1Σoc
i , ccoi � p1�ϕcJi Siϕciq�1{2,

υ̃ � ϕoi �Σoo�1

i Σoc
i ϕ

c
i and τ coi � υ̃Jpyoi � µoi q.

Thus, the likelihood for the i-th subject is given by

Lipθq � Li � fpyoi |θqPpVc
1i ¤ yci ¤ Vc

2i|yoi ,θq

� SNnoi
pµoi ,Σoo

i , c
co
i Σoo1{2

i υ̃qLnci pV
c
1i,Vc

2i;µcoi ,Si,S
1{2
i ϕ

c
i , τ

co
i q,

and the log-likelihood function for the observed data is given by `pθ|yq �
ņ

i�1
logLi.
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4.3.3 The EM algorithm

In this section, we describe how to use the EM-type algorithm to compute the
Maximum Likelihood (ML) estimation of the DEC-SNLMEC model. The EM algorithm
originally proposed by Dempster et al. (1977) has several appealing features such as stability
of monotone convergence with each iteration increasing the likelihood and simplicity of
implementation.

Let y � pyJ
1 , . . . ,yJ

n q
J, b � pbJ

1 , . . . ,bJ
n q

J, t � pt1, . . . , tnq
J, V � vecpV1, . . . ,

Vnq and C � vecpC1, . . . , bCnq, where pVi,Ciq is observed for the ith subject. Treating
y,b and t as hypothetical missing data, and augmenting with the observed data V,C, we
set yc � pCJ,VJ,yJ,bJ, tJqJ as the complete data. Hence, it follows from (4.5) that the
complete-data log-likelihood function is of the form

`cpθ|ycq �
ņ

i�1
rlog fpyi|biq � log fpbi|tiq � log fptiqs

�
ņ

i�1

"
�

1
2 log |Ωi| �

1
2pyi �Xiβ � ZibiqJΩ�1

i pyi �Xiβ � Zibiq

�
1
2 log |Γ| � 1

2pbi � ti∆qJΓ�1pbi � ti∆q

*
� C

where C is a constant that is independent of the parameter vector θ.

The E-step evaluate the conditional expectation of complete-data log-likelihood
function given the observed data V, C and current values pθpkq � ppβpkqJ, pσ2pkq, pαpkqJ, pφpkqJ

,pλpkqJqJ, yielding the so-called Q-function

Q
�
θ; pθpkq	 � E

�
`cpθ; ycq

���V,C, pθpkq�
�

ņ

i�1
Q1i

�
β, σ2,φ

��pθpkq	� ņ

i�1
Q2i

�
α,λ

��pθpkq	 ,
where

Q1i

�
β, σ2,φ

��pθpkq	 � �
ni
2 log pσ2pkq �

1
2 log |pEpkq

i | �
1

2 pσ2pkq

�papkqi ppφpkq
q

� pβpkqJXJ
i
pE�1pkq
i Xi

pβpkq � 2pβpkqJXJ
i
pE�1pkq
i

�pypkq
i � Zi

pbpkq
i

	�
, (4.8)

Q2i

�
α,λ

��pθpkq	 � �
1
2 log |pΓpkq

| �
1
2tr
�pΓ�1pkq

�zbibJ
i

pkq

� p∆pkqytibJ
i

pkq

�ytibipkq p∆pkqJ

� pt2i pkq p∆pkq p∆pkqJ

�

, (4.9)

with papkqi ppφpkq
q � tr

�pE�1pkq
i

�zyiyJ
i

pkq

� 2zyibJ
i

pkq

ZJ
i � Zi

zbibJ
i

pkq

ZJ
i


�
.
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The following conditional distributions are useful for obtaining the conditional
expectations of missing data. From Lachos et al. (2010), we have that

bi|Ti � ti,Yi � yi � Nq

�
siti �BiZJ

i Ω�1
i pyi �Xiβq,Bi

�
,

Ti|Yi � yi � TN1
�
c�mi,M

2
i ; p0,8q

�
,

Yi � SNnipXiβ,Σi, λ̄iq,

where Mi � p1 � ∆JZJ
i Υ�1

i Zi∆q�1{2, mi � M2
i ∆

JZJ
i Υ�1

i pyi � Xiβ � Zic∆q, Bi �

pΓ�1 � ZJ
i Ω�1

i Ziq
�1, si � pIq �BiZJ

i Ω�1
i Ziq∆, Υi � Ωi � ZiΓZJ

i .

Therefore, the Q-function is completely determined by the knowledge of the
following expectations:

ptipkq � E
�
Ti

���Vi,Ci, pθpkq�
� c� xM2pkq

i
p∆pkqJ

ZJ
i
pΥ�1pkq
i

�pypkq
i �Xi

pβpkq � Zic p∆pkq
	
� xM pkq

i pκpkqi ,

pt2i pkq � E
�
T 2
i

���Vi,Ci, pθpkq�
� xM4pkq

i
p∆pkqJ

ZJ
i
pΥ�1pkq
i

pRpkq
i
pΥ�1pkq
i Zi

p∆pkq
� xM2pkq

i � c2

� 2cxM2pkq
i

p∆pkqJ
ZJ
i
pΥ�1pkq
i

�pypkq
i �Xi

pβpkq � Zic p∆pkq
	

� xM3pkq
i

p∆pkqJ
ZJ
i
pΥ�1pkq
i

�xκiypkq
i � pκpkqi �

Xi
pβpkq � Zic p∆pkq

		
� 2cxM pkq

i pκpkqi ,

ytiyipkq � E
�
TiYi
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� xM2pkq

i

�zyiyJ
i

pkq

� pypkq
i

�
Xi
pβpkq � Zic p∆pkq

	J
 pΥ�1pkq
i Zi

p∆pkq
� xM pkq

i yκiyipkq
� cpypkq

i ,pbpkq
i � E

�
bi
���Vi,Ci, pθpkq�

� pspkqi ptipkq � pBpkq
i ZJ

i
pΩ�1pkq
i

�pypkq
i �Xi

pβpkq	 ,
zbibJ

i

pkq

� E
�
bibJ

i

���Vi,Ci, pθpkq�
� pt2i pkqpspkqi pspkqJi � 2pBpkq

i ZJ
i
pΩ�1pkq
i

�ytiyipkq � ptpkqi Xi
pβpkq	pspkqJi

� pBpkq
i ZJ

i
pΩ�1pkq
i prpkqi pΩ�1pkq

i Zi
pBpkq
i � pBpkq

i ,zyibJ
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� E
�
YibJ
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���Vi,Ci, pθpkq�
�

�zyiyJ
i

pkq

� pypkq
i
pβpkqJXJ

i


 pΩ�1pkq
i Zi

pBpkq
i �ytiyipkqpspkqJi ,

ytibJ
i

pkq

� E
�
TibJ

i

���Vi,Ci, pθpkq�
�

�ytiyJ
i

pkq

� ptipkqpβpkqJXJ
i


 pΩ�1pkq
i Zi

pBpkq
i � pt2i pkqpspkqJi ,

with pRpkq
i � zyiyJ

i

pkq

�2pypkq
i

�
Xi
pβpkq � Zic p∆pkq

	J
�
�
Xi
pβpkq � Zic p∆pkq

	�
Xi
pβpkq � Zic p∆pkq

	J
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prpkqi � zyiyJ
i

pkq

� 2pypkq
i
pβpkqJXJ

i �Xi
pβpkqpβpkqJXJ

i .

It is easy to see that the E-step reduces only to the computation of pyi, zyiyJ
i ,pκi and yκiyi. These expected values can be determined in closed form using Lemma 2 and

Corollary 1, as follows

1. If the ith subject has only non-censored components, then,

pypkq
i � E

�
Yi

���Vi,Ci, pθpkq� � yi,zyiyJ
i

pkq

� E
�
YiYJ

i

���Vi,Ci, pθpkq� � yiyJ
i ,

pκpkqi � E
�
WΦ

�p̄λi pΣ�1{2
i

�
yi �Xi

pβ � Zic p∆		 ���Vi,Ci, pθpkq�
� WΦ

�p̄λpkqi pΣ�1{2pkq
i

�
yi �Xi

pβpkq � Zic p∆pkq
		

,

yκiyipkq � E
�
YiWΦ

�p̄λi pΣ�1{2
i

�
yi �Xi

pβ � Zic p∆		 ���Vi � Vi,Ci, pθpkq�
� yipκpkqi ,

with WΦpxq � φ1pxq{Φpxq, x P R.

2. If the ith subject has only censored components then from Corollary 1,

pypkq
i � E

�
Yi

���Vi,Ci, pθpkq� � E
�
Wi

��pθpkq� ,
zyiyJ

i

pkq

� E
�
YiYJ

i

���Vi,Ci, pθpkq� � E
�
WiWJ

i

��pθpkq� ,
pκpkqi � E

�
WΦ

�p̄λi pΣ�1{2
i

�
yi �Xi

pβ � Zic p∆		 ���Vi,Ci, pθpkq�
�

1c
π
2

�
1� p̄λpkqJi

p̄λpkqi 	
Lni

�
V1i,V2i; pµpkq

i , pΨpkq

i

	
Lni

�
V1i,V2i; pµpkq

i , pΣpkq

i , p̄λpkqi , 0
	 ,

yκiyipkq � E
�
YiWΦ

�p̄λi pΣ�1{2
i

�
yi �Xi

pβ � Zic p∆		 ���Vi � Vi,Ci, pθpkq�
� E

�
W0i

��pθpkq� pκpkqi ,

where pΨpkq

i � pΣpkq1{2
i

�
Ini �

p̄λpkqi p̄λpkqJi

	�1 pΣpkq1{2
i , W0i � TNni

�pµpkq
i , pΨpkq

i , rV1i,V2is
	
,

and Wi � TSNni

�pµpkq
i , pΣpkq

i , p̄λpkqi , rV1i,V2is
	
.

3. If the ith subject has censored and uncensored components and given that pYi

��Vi,Ciq,
pYi

��Vi,Ci,Yo
i q, and pYc

i

��Vi,Ci,Yo
i q are equivalent process, then from Proposition

5 and Lemma 2, we have

pypkq
i � E

�
Yi

���Vi,Ci,Yo
i ,
pθpkq� � vecpyoi , pwpkq

i q,
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zyiyJ
i

pkq

� E
�
YiYJ

i

���Vi,Ci,Yo
i ,
pθpkq� � � yoiyoJi yoi pwpkqJ

ipwpkq
i yoJi {wiwJ

i

�
,

pκpkqi � E
�
WΦ

�p̄λi pΣ�1{2
i

�
yi �Xi

pβ � Zic p∆		 ���Vi,Ci,Yo
i ,
pθpkq�

�
φ1

�pτ copkqi ; 0, 1� pλcopkqJi
pλcopkqi

	
Φ1pτ̃q

Lnci

�
Vc

1i,Vc
2i; p̃µpkq

i , p̃Ψpkq
i

	
Lnci

�
Vc

1i,Vc
2i; pµcopkqi , pSpkq

i , pλcopkqi , pτ copkqi

	 ,
yκiyipkq � E

�
YiWΦ

�p̄λi pΣ�1{2
i

�
yi �Xi

pβ � Zic p∆		 ���Vi � Vi,Ci, pθpkq�
� vecpyoi , pwpkq

0i qpκpkqi ,

where

pwpkq
i � E

�
Wi

��pθpkq� , {wiwJ
i � E

�
WiWJ

i

��pθpkq� , pwpkq
0i � E

�
W0i

��pθpkq� ,
with Wi � TESNnci

�pµcopkqi , pSpkq
i , pλcopkqi , pτ copkqi , rVc

1i,Vc
2is
	
,

W0i � TNnci

�p̃µpkq
i , p̃Ψpkq

i , rVc
1i,Vc

2is
	
, and τ̃ �

τ coi
p1� λcoJi λcoi q

1{2
, λcoi � S1{2

i ϕ
c
i ,

µ̃i � µ
co
i � τ coi Ψ̃iϕ

c
i , Ψ̃i � S1{2

i pInci � λ
co
i λ

coJ
i q�1S1{2

i .

It can be noted that we need the first and second moments of a TESN distribu-
tion. These can be determined in closed-form using recurrence relations. For more details
on the computation of these moments, we refer to Galarza et al. (2019). These moments
can be obtained in the R package MomTrunc (Galarza et al., 2020).

The M-step then conditionally maximizes Qpθ|pθpkqq with respect to θ and
obtains a new estimate pθpk�1q

, as follows:

pβpk�1q
�

�
ņ

i�1
XJ
i
pE�1pkq
i Xi

��1 ņ

i�1
XJ
i
pE�1pkq
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°n
i�1
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i�1
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�
1
N

ņ

i�1

�zbibJ
i
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,
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1
N

ņ
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i
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i Xi

pβpk�1q
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XJ
i
pE�1pkq
i

�pypkq
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i

	�
,
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φPp0,1q�R�

�
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1
2 logp|Ei|q �

1

2 pσ2pk�1q

�papkqi � 2pβpk�1qJ
XJ
i
pE�1pkq
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where N �
ņ

i�1
ni. The skewness parameter vector, and the parameters of the scale matrix

of the random effects b, can be estimated by noting that

pDpkq � pΓpkq
� p∆pkq p∆pkqJ

and pλpkq � pDpkq�1{2 p∆pkq�
1� p∆pkqJ pDpkq�1 p∆pkq

	1{2 .

This process is iterated until some distance between two successive evaluations of
the log-likelihood `pθ|yq in Section 4.3.2, such as |`ppθpk�1q

q�`ppθpkqq| or |`ppθpk�1q
q{`ppθpkqq�1|,

becomes small enough, for example, ε � 10�6.

4.3.4 Approximate standard errors

In what follows, we reparameterize D � F2 for ease of computation and
theoretical derivation, where F is the square root of D, i.e. F1{2, containing qpq � 1q{2
distinct elements α � pα1, . . . , αqpq�1q{2q

J.

Following Louis (1982), the individual score is determined as

spyi|θq �
B log fpyi|θq

Bθ
� E

�
B`icpθ|yicq

Bθ

��Vi,Ci.θ



,

where `icpθ|yicq is the complete data log-likelihood function formed from the complete
observation yic. Substituting the ML estimate of θ in spyi|θq leads to spyi|pθq � 0. As a
result, the empirical information matrix Iepθ|yq is reduced to

Ieppθ|yq � ņ

i�1
psipsJi ,

where psi � �psipβqJ,psipσ2q,psipαqJ,psipφqJ,psipλqJ	J, has elements given by

psipβq �
1pσ2

�
XJ
i
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�pyi �Xi
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pbi	� ,
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2 pσ22
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i
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pbi	� pβJXJ

i
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pβ� ,
psipαq �

�psipα1q, . . . ,psipαqpq�1q{2q
�J
,psipφq � ppsipφ1q,psipφ2qq

J ,psipλq � ppsipλ1q, . . . ,psipλqqqJ ,
with pai � tr

�pE�1
i

�zyiyJ
i

pkq

� 2zyibJ
i
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�
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psipαrq � �
1
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�pyi � Zi
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9Es
i
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�
�

1
2tr
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i
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2tr
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!
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λt
pΓ�1 p∆�) ,

where

9Γαr �
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Bαr

���
α�xα

� F 9Fr � 9FrF� FδδJ 9Fr � 9Frδδ
JF,

9Fr �
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Bαr

���
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, r � 1, . . . , qpq � 1q{2,
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Bλt

���
λ�xλ
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�
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1� λJλ
�

2λtλλJ
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�
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�
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�
,

9λt �
Bλ
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���
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BλλJ

Bλt

���
λ�xλ

, t � 1, . . . , q,

9Es
i �

BEi

Bφs

���
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For the DEC structure we have that
BEi

Bφ1
� |tij � tik|

φ2φ
|tij�tik|

φ2�1

1 ,

BEi

Bφ2
� |tij � tik|

φ2 log p|tij � tik|q log pφ1qφ
|tij�tik|

φ2
1 .

4.3.5 Estimation of the random effects

In this section, we consider an empirical Bayes inference for the random effects
that is useful for interpreting the subject-specific variability. From (4.3)-(4.4), it implies
that Yi|bi � NnipXiβ � Zibi,Ωiq and bi � SNqpc∆,D,λq. The conditional distribution
of bi given Yi belong to the extended skew-normal (ESN), and its pdf is

fpbi|Yiq �
fpYi|biqfpbiq³
fpYi|biqfpbiqdbi

�
φq
�
bi; c∆�DZJ

i Σ�1
i pyi �Xiβ � Zic∆q,Λi

�
Φ1
�
λJD�1{2pbi � c∆q

�
Φ1

�
λ̄
J

i Σ�1{2
i pyi �Xiβ � Zic∆q

	 ,
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i.e.,

bi|Yi � ESNqpc∆�DZJ
i Σ�1

i pyi �Xiβ � Zic∆q,Λi,Λ1{2
i ζ,

ζJDZJ
i Σ�1

i pyi �Xiβ � Zic∆qq.

Thus, from Lemma 1, it follows that

E
�
bi
��Yi � yi,θ

�
� c∆�DZJ

i Σ�1
i pyi �Xiβ � Zic∆q

�
Λiζa

1� ζJΛiζ
WΦ

�
λ̄iΣ�1{2

i pyi �Xiβ � Zic∆q
	
.

The minimum mean-squared error (MSE) estimator of bi obtained by the
conditional mean of bi given Vi and Ci ispbipθq � E rbi|Vi,Cis � E rEpbi|Yi,θq|Vi,Cis

� c∆�DZJ
i Σ�1

i ppyi �Xiβ � Zic∆q �
Λiζa

1� ζJΛiζ
pκi,

where pyi � ErYi

��Vi,Cis and pκi � ErWΦp�q
��Vi,Cis depend on the censoring pattern of

subject i (see Subsection 4.3.3).

The empirical Bayes estimates of random effects are obtained by substituting
the ML estimates pθ into bipθq, leading to pbi � bippθq. In addition, the fitted values of
responses can be estimated directly by pyi � Xi

pβ � Zi
pbi.

4.3.6 Prediction of future observations

The prediction problem for longitudinal data is also of great importance in a
number of practical applications. Rao et al. (1987) pointed out that the predictive accuracy
of future observations can be taken as an alternative measure of “goodness-of-fit”. In order
to propose a strategy to generate predicted values from the DEC-SNLMEC model, we use
the approach proposed by Wang (2013). Thus, let yi,obs be an observed response vector
of dimension ni,obs � 1 for a new subject i over the first portion of time and yi,pred be
the corresponding ni,pred � 1 response vector over the future portion of time. Moreover,
let X�

i � pXi,obs,Xi,predq and Z�
i � pZi,obs,Zi,predq denote the pni,obs � ni,predq � p and

pni,obs � ni,predq � q design matrices corresponding to ȳi � pyJ
i,obs,yJ

i,predq.

To deal with the censored values existing in yi,obs, we use the imputation
procedure, by replacing the censored values by pyi � Eryi|Vi,Ci, pθs obtained from the EM
algorithm. Therefore, when the censored values are imputed, a complete data, denoted by
yi,obs� , is obtained. The reason to use the imputation procedure is that it avoids computing
truncated conditional expectations of the multivariate skew-normal distribution originated
by the censoring scheme. Hence, we have that

ȳ�
i � pyJ

i,obs� ,yJ
i,predq

J � SNpni,obs��ni,predq

�
X�
i β � Z�

i c∆,Σ�
i , λ̄

�

i

	
,
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where Σ�
i �

�
Σobs�,obs�
i Σobs�,pred

i

Σpred,obs�
i Σpred,pred

i

�
, λ̄�i �

Σ��1{2

i Z�
i Dζb

1� ζJΛ�
i ζ

. As mentioned in Wang

(2013), the best linear predictor of yi,pred with respect to the minimum mean squared
error (MSE) criterion is the conditional expectation of yi,pred given yi,obs� , which, from
Proposition 5, is given by

pyi,predpθq � µ
� �WΦ

�
τ�a

1� vJ
2iSiv2i

�
Siv2ia

1� vJ
2iSiv2i

, (4.10)

where vi � pvJ
1i,vJ

2iq
J � Σ��1{2

i λ̄
�

i , Si � Σpred,pred
i � Σpred,obs�

i pΣobs�,obs�
i q�1Σobs�,pred

i ,
µ� � Xi,predβ � Zi,predc∆�Σpred,obs�

i pΣobs�,obs�
i q�1pyi,obs� �Xi,obs�β � Zi,obs�c∆q,

τ� �
�
v1i � pΣobs�,obs�

i q�1Σobs�,pred
i v2i

	J �
yi,obs� �Xi,obs�β � Zi,obs�c∆

�
.

Therefore, yi,pred can be estimated directly by substituting pθ into (4.10), leading
to {yi,pred � pyi,predppθq.
4.4 The Nonlinear case

Extending the notation of the previous section and ignoring censoring, we first
propose the following general mixed-effects model in which the random terms are assumed
to follow a multivariate skew-normal distribution (SN-NLME).

Let yi � pyi1, . . . , yiniq
J denote the response vector for subject i and fipXi, ψiq �

pfpXi1, ψiq, . . . , fpXini , ψiqq
J be a nonlinear vector-valued differentiable function of the

random parameter ψi and covariate vector Xi. The SN-NLME can then be expressed as

yi � fpXi, ψiq � εi, ψi � Aiβ �Bibi, i � 1, . . . , n, (4.11)

where the joint distribution of pbi, εiq is as in (4.4), β is a p-vector of fixed population
parameters, bi is a q-vector of random effects associated with subject i, Ai and Bi are
know design matrices of dimensions r � p and r � q for the fixed and random effects,
respectively.

As mentioned by Vaida & Liu (2009), the linearization (L) procedure to obtain
the approximate MLE of θ � pβJ, σ2,αJ,φJ,λJqJ involves taking the first-order Taylor
expansion of f around the current parameter estimate rβ and the random effect estimatesrbi (empirical predictors). This procedure is equivalent to iteratively solving the following
LME model (L-step)

ryi � rXiβ � rZibi � εi, i � 1, . . . , n, (4.12)

where ryi � yi � fpAi
rβ �Bi

rbi,Xiq � rXi
rβ � rZi

rbi and
rXi �

BfpAiβ �Bibi,Xiq

BβJ

���
β��β

, rZi �
BfpAiβ �Bibi,Xiq

BbJ
i

���
bi�rbi

.
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Therefore, for the censored response the linearized model (4.12) is an LME
with censored data, with same structure as (4.3), which is then solved as indicated in the
previous section. The model matrix for (4.12) depends on the current parameter value,
and needs to be recalculated at each iteration. The algorithm iterates between L-,E-, and
M-steps until convergence.

4.4.1 Starting values

It is well known that maximum likelihood estimation in nonlinear mixed models
may face some computational hurdles, in the sense that the method may not give maximum
global solutions if the starting values are far from the real parameter values. Thus, the
choice of starting values for the EM algorithm in the nonlinear context plays a big role in
parameter estimation. To circumvent such a limitation, a convenient way is to initialize
the EM algorithm with a variety of initial values that are representatives of the parameter
space. In practice, a default procedure for obtaining reasonable initial values is summarized
below.

• Compute pβp0q, pσ2p0q, pDp0q and pbp0q using the NLME model through the library nlme()
in R software, for instance.

• The initial value for the skewness parameter λ is obtained in the following way:
Let pρl be the sample skewness coefficient of the lth column of pbp0q, obtained under
normality. Then, we let pλp0ql � 3� signppρlq, l � 1, . . . , q.

• The initial values for φ, depending on the structure, are simply chosen to give a
condition of nearly uncorrelated errors.

Even though these procedures look reasonable for computing the starting points,
the tradition in practice is to try several initial values for the EM algorithm, in order to
get the highest likelihood value.

4.5 Simulation studies
In order to study the performance of our proposed model and algorithm, we

present two simulation studies. The first simulation study is to show that the parameter
estimates based on the EM algorithm of the SN-NLMEC models provides good asymptotic
properties. The goal of the second simulation study is to compare the behavior and
performance of the NLMEC in the presence of asymmetry. Lastly, we present a third
simulation study in which attention is focused on comparing the predictive abilities of the
proposed SN-NLMEC model. The computational procedures were implemented using the
R software (R Core Team, 2020).
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The simulation study was based on the model proposed for the AIEDRP data
discussed in Section 4.6.2. We considered a similar logistic model (4.16) (see Application
2) with random set-points value α1i and random decreases from the maximum HIV RNA
α2i, as follows

yij � α1i �
α2i

1� exp pptij � α3q{α4q
� εij, (4.13)

with i � 1, . . . , n, j � 1, . . . , 10, α1i � exppβ1 � b1iq, α2i � exppβ2 � b2iq, βk � logpαkq,
k � 3, 4, pb0i, b1iq

iid.
� SN2pc∆,D,λq, εi iid.

� N10p0,Ωiq, such that Ωi � σ2Ei. The parameters
in the simulations were chosen similarly to the estimated values based on the original
data using SN-NLMEC under uncorrelated (UNC) structure : β � p1.53, 0.71, 3.51, 1.78qJ,
σ2 � 0.22, D with elements α11 � 0.09, α12 � α21 � �0.16, α22 � 0.43, and λ � p�5, 3qJ.

4.5.1 Simulation study 1

The first simulation study examines the finite sample behavior of ML estimates
obtained through our proposed EM algorithm. The parameter settings are identical to
those given above. For this simulation, the samples sizes were fixed as n � 50, 150, 300, 450
and 600 and the correlation structure of the error term was a continuous-time AR(1)
model with φ1 � 0.7. For each sample size, 500 samples from the SN-NLMEC model with
10% and 20% of censoring proportion were generated.

For this purpose, we analyzed the absolute bias (Bias) and the mean square
error (MSE) of the ML estimates obtained from the SN-NLMEC model for five different
sample sizes. These measures are defined by

Biaspθiq �
1

500

500̧

j�1
|pθpjqi � θi| and MSEpθiq �

1
500

500̧

j�1
ppθpjqi � θiq

2, (4.14)

where pθpjqi is the ML estimate of the parameter θi for the jth sample.

Figures 16, 17 and 18 show that the Bias and the MSE of the parameter
estimates of θ, σ2, α, φ1 and λ tends to zero as the sample size increases. For the
parameter λ, we noticed that the Bias and MSE values are a little high. This can be
explained by the wide estimation range of the parameter - see Figure 19. We can also notice
from Figure 19 that the variation decreases as the sample size increases. In conclusion,
the results provide empirical evidence about the consistency of the ML estimates of the
SN-NLMEC model, even considering the linearization procedure described in Section 4.4.

4.5.2 Simulation study 2

For the second study, we simulated 500 datasets from the SN-NLMEC model
(4.13) and we considered 10% and 20% of the observations in each dataset were censored
with samples sizes n � 50 and 150. Once the simulated datasets were generated, we fitted
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Figure 16 – Simulation study 1. Bias and MSE of β estimates under the AR(1) model
for different sample sizes.
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Figure 17 – Simulation study 1. Bias and MSE of σ2 and α estimates under the AR(1)
model for different sample sizes.

the SN-NLMEC model under the uncorrelated (UNC) structure and the NLMEC model
using the nlmmcl() function provided by Vaida & Liu (2009). The model selection criteria
(AIC and BIC) as well as the estimates of the model parameters were stored for each
simulation. We evaluate the models by comparing the estimates of the parameters with
their true values based on the absolute bias (4.14). The simulation results are summarized
in Table 8. We see that when we fitted the NLMEC model to asymmetric data, the α
parameter estimates are the most affected. The α11 and α22 components are underestimated
and the α12 component is overestimated. For the parameters β and σ2 both models give
similar estimates, but the SN-NLMEC produces smaller bias with relation to β.
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Figure 18 – Simulation study 1. Bias and MSE of φ1 and λ estimates under the AR(1)
model for different sample sizes.
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Figure 19 – Simulation study 1. Boxplots of the λ estimates under the AR(1) model
for different sample sizes. Dotted lines indicate the true parameter value.

4.5.3 Simulation study 3

The third simulation study analyzes the performance of the prediction of future
values described in Subsection 4.3.6. For this purpose, we use the pseudo-cross-validation
approach to assess their predictive performances. This approach of comparing forecasts with
the corresponding actual values. We generated 500 datasets of size n � 100 and n � 200
under the AR(1) structure with parameter φ1 � 0.7, considering two different settings
of censoring proportions, 5% and 15%. Then, we drop out the last two measurements
yi9, yi10 on the ith individual, we compute the ML estimates using the remaining data as
the sample and the prediction of yi � pyi9, yi10q, denoted by pyi � ppyi9, pyi10q, is made.

To evaluate prediction accuracies, we considered two measures of accuracy,
namely the MARE (Mean Absolute Relative Error) and MSRE (Mean Square Relative
Error). These measures are given by

MARE �
1

2n
¸
ij

����yij � ŷij
yij

���� and MSRE �
1

2n
¸
ij

�
yij � ŷij
yij


2

,
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Table 8 – Simulation study 2. Simulation results based on 500 simulated samples.

Censoring 10%
Parameters Criteria

Distribution β1 β2 β3 β4 σ2 α11 α12 α22 loglik AIC BIC

n � 50
SN MC Mean 1.5284 0.7500 3.5062 1.7622 0.2214 0.0778 -0.1428 0.4190 -449.9404 919.8807 962.0268

Bias 0.0217 0.0687 0.0151 0.0735 0.0131 0.0243 0.0478 0.1215

N MC Mean 1.5306 0.7497 3.5037 1.7539 0.2209 0.0309 -0.0616 0.2516 -459.1068 934.2135 967.9304
Bias 0.0221 0.0693 0.0154 0.0748 0.0131 0.0591 0.0984 0.1791

n � 150
SN MC Mean 1.5325 0.7443 3.5073 1.7653 0.2208 0.0829 -0.1461 0.3985 -1353.274 2726.549 2779.681

Bias 0.0128 0.0457 0.0090 0.0428 0.0075 0.0138 0.0298 0.0750

N MC Mean 1.5341 0.7457 3.5044 1.7555 0.2201 0.0306 -0.0617 0.2556 -1380.36 2776.72 2819.226
Bias 0.0132 0.0466 0.0099 0.0456 0.0075 0.0594 0.0983 0.1744

Censoring 20%
Parameters Criteria

Distribution β1 β2 β3 β4 σ2 α11 α12 α22 loglik AIC BIC

n � 50
SN MC Mean 1.5323 0.7449 3.5040 1.7548 0.2214 0.0721 -0.1370 0.4260 -427.8434 875.6868 917.8329

Bias 0.0223 0.0670 0.0163 0.0783 0.0140 0.0285 0.0485 0.1191

N MC Mean 1.5348 0.7467 3.5003 1.7469 0.2211 0.0286 -0.0582 0.2489 -457.5571 931.1142 964.831
Bias 0.0232 0.0687 0.0171 0.0800 0.0140 0.0614 0.1018 0.1817

n � 150
SN MC Mean 1.5336 0.7442 3.5062 1.7615 0.2212 0.0800 -0.1430 0.4027 -1287.648 2595.295 2648.428

Bias 0.0141 0.0464 0.0097 0.0473 0.0082 0.0180 0.0336 0.0753

N MC Mean 1.5380 0.7434 3.5014 1.7509 0.2204 0.0285 -0.0588 0.2537 -1376.61 2769.219 2811.725
Bias 0.0149 0.0456 0.0116 0.0505 0.0081 0.0615 0.1012 0.1763

where yij is the original value and ŷij is the predicted value, for i � 1, . . . , n and j � 1, 2.

Table 9 shows the comparison between the predicted values and real ones under
the SN-NLMEC model considring AR(1) structure. One can see from these results that
the SN-NLMEC predictor performs encouragingly well in both cases since the values of
the two measures are close to zero and, as expected, these values increase as the censoring
level increase.

Table 9 – Simulation study 3. Evaluation of the prediction accuracy for the SN-NLMEC
model.

Censoring 5% Censoring 15%
n MARE MSRE MARE MSRE
100 0.1106 0.0233 0.1521 0.043
200 0.1103 0.0229 0.1522 0.0421

4.6 Illustrative examples

4.6.1 A5055 data

This section illustrates the performance of the proposed methods with the
analysis of A5055 data.
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As was mentioned in the Introduction, the dataset consists of 44 patients were
randomized in one of two regimens and plasma HIV-1 RNA (viral load) was measured
(copies/mL) in blood samples collected irregularly on study days 0, 7, 14, 28, 56, 84, 112,
140, and 168 of follow-up. The nucleic acid sequence-based amplification assay (NASBA)
was used to measure plasma HIV-1 RNA, with a lower limit of quantification of 50
copies/mL, and there were 106 out of 316 (around 33.54%) RNA viral load measurements
below the detection limit, so there was left censoring. A series of potentially explanatory
variables was collected at the same time. For the data analysis, we consider only the
covariate CD4� cell counts. The number of measurements per subject varied from 1 to
9. Figure 15b shows the longitudinal trajectories of RNA viral load (in log-base-10 scale)
across days for patients. It can be noted that the viral load trajectory is complex and is
substantially different across individuals.

This data was previously analyzed by Lachos et al. (2019) using the scale
mixtures of normal distribution (SMN) in the multivariate censored linear mixed effect
(MLMEC) model. Wang et al. (2018) analyzed this data using multivariate t linear mixed-
effects models with censored observations. In Figure 20 we can see the scatter plot of the
estimates of random effects obtained by fitting a LMEC model using R package lmec (Vaida
& Liu, 2012) and the boxplots of estimates. The plots reveal subject-specific behaving
somewhat asymmetrically. Therefore, an assumption of symmetric distribution for random
effects is not very realistic for the A5055 data set.
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Figure 20 – A5055 data. Scatter plot of estimated random effects for LMEC together
with a summary boxplot of the marginal densities.

In this section, we revisit the A5055 data with the aim providing additional
inferences for the use of SN-LMEC. The model considered for modeling the A5055 data is
given by

yij � β0 � β1tij � β2
a
tij � β3CD4�ij � b0i � b1itij � εij, (4.15)

where yij is log10pRNAq for subject i measured roughly at dayij, tij � dayij{7 (week),a
tij is the square root at time tij, CD4�ij indicates the standardized version of CD4 cell
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count for subject i at time tij, and b0i, b1i are the random intercept and random slope,
respectively for the ith subject. The ML estimates were obtained using the EM algorithm
describes in Subsection 4.3.3.

The values of loglikelihood, AIC and BIC for the four considered models are
presented in Table 10. It also presents the ML estimates of the parameters of interest
under the different correlation structure. It can be noted that for each criterion a structure
was selected as the best, that is, for the AIC the DEC structure was selected and for
BIC the AR(1). Note that the parameter estimates for both models are close. It can
be observed that the estimated values of φ1 and φ2 under the DEC model are 0.9 and
1.3917 respectively, close to the estimated values for AR(1), φ̂1 � 0.8539 and φ2 � 1. We
can also notice that in the AR (1) model the sign of the estimated values for λ are in
accordance with the asymmetry of the random effects estimated in Figure 20. Based on
these observations and the criteria, the most parsimonious model is obtained using the
continuous-time autoregressive of order 1 correlation (AR(1)). Note that, for the AR(1)
model, the estimate of β1 reveal that RNA viral loads change over time. In other words, the
mean viral load (Eryijs) at time zero with 300 CD4 cells count is 3.7339 log10 RNA, after
66 days it is 2.0677 log10 RNA, keeping CD4 cells count fixed. From the negative estimate
of β3 indicates that per unit increase in CD4 cells count may a decrease of log10 RNA by
an average of 0.4925 in infected patients. Figure 21 (left panel) shows some individual
profiles (in log10 scale) for HIV viral load and estimated trajectories for the SN-LMEC
model under AR(1) structure.

Table 10 – A5055 data. Parameter estimates of the SN-LMEC model for A5055 data under
different correlation structures. The SE values are estimated as mentioned in Section
4.3.4.

AR(1) CS DEC UNC
Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β0 3.5718 0.2567 3.6327 0.2708 3.5563 0.2290 3.6358 0.2505
β1 0.1226 0.0278 0.1379 0.0220 0.1190 0.0277 0.1393 0.0209
β2 -0.9192 0.1295 -0.9955 0.1162 -0.9067 0.1267 -0.9949 0.1143
β3 -0.4925 0.1611 -0.4875 0.1348 -0.4731 0.1461 -0.4773 0.1292
σ2 0.7754 0.5299 0.7587 0.4283
α11 0.027 0.3962 0.0470 0.6803
α12 -0.006 -0.0130 -0.0013 -0.0082
α22 0.008 0.0080 0.0079 0.0067
φ1 0.8539 0.1887 0.9
φ2 1 0 1.3917
λ1 -0.8068 2.2924 0.7548 3.0991
λ2 5.0123 3.8218 4.4416 2.6436

loglik -303.3264 -324.7245 -301.3819 -324.6679
AIC 628.6529 671.449 626.7638 669.3359
BIC 669.9661 712.7622 671.8327 706.8933
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We are also interested in investigating the performance of the prediction for
future values described in Subsection 4.3.6. We exclude the last two measurements of each
individual in the datasets with more than 6 (inclusive) observations (total 39 individuals)
and we compute the predicted values under SN-LMEC model under AR(1) correlation
structure. Figure 21 (right panel) shows the comparison between the estimated, the
predicted values and the real ones, indicating the good performance of the SN-LMEC in
term of prediction.
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Figure 21 – A5055 data. (left panel) Viral loads in log10 scale (black, solid line) for 6
random subjects and estimated trajectories for the SN-LMEC model under
AR(1) structure. (right panel) Evaluation of the prediction performance for 6
random subjects, considering the SN-LMEC model under AR(1) structure.

4.6.2 AIEDRP data

The AIEDRP data set consists of longitudinal HIV RNA measurements taken
on 320 subjects from the Acute Infection and Early Disease Research Program (AIEDRP),
a large multicenter observational established to develop and evaluate data from studies of
patients with acute or recent HIV infection. In contrast with A5055 data, some observations
here are right-censored, since during the acute stage of infection the large HIV RNA
observations may lay above the limit of quantification of the assay. The subjects had between
1 and 14 observations: 129 had one, 82 had two, and 109 had three or more observations.
Of the 830 recorded observations, 185 (22%) were above the limit of quantification of the
assay (see Vaida & Liu (2009), for more details). The individual profiles are shown in
Figure 22a. Figure 22c shows a scatter plot of the estimates of random effects obtained by
fitting a NLMEC model given in (4.16) using the nlmmcl() function provided by Vaida &
Liu (2009). A visual inspection of this figure reveals that there is considerable asymmetry
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among the estimated random effects. The sample skewness for the estimated random effects
b1i and b2i are �0.6054 and �0.9413, respectively, revealing that they are moderately to
highly asymmetric. Therefore, this reflects the appropriateness of using a bivariate SN
distribution for random effects.
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Figure 22 – AIEDRP data. (a) Individual profiles (in log10 scale) for HIV viral load at
different follow-up times. (b) Histogram for HIV viral load (in log10 scale). (c)
Scatter plot of estimated random effects for NLMEC together with a summary
boxplot of the marginal densities.

This dataset was also analyzed by Vaida & Liu (2009) and Matos et al. (2013b)
using the N-NLMEC and t-NLMEC models, respectively. Therefore, in our analysis we
consider a right-censored five-parameter NLME model (inverted S-shaped curve) as Vaida
& Liu (2009) and Matos et al. (2013b):

yij � α1i �
α2

1� exp pptij � α3q{α4q
� α5iptij � 50q � εij, (4.16)

where yij is the log10HIV RNA for subject i at time tij. The parameters α1i and α2

represent the subject-specific set-point values and the decrease from the maximum HIV
RNA. The location parameter α3 indicates the time point at which half of the change in
HIV-1 RNA is attained, α4 is a scale parameter modeling the rate of decline and α5i allows
increasing the HIV-1 RNA trajectory after day 50. To force the parameters to be positive
we reparameterized the model to β1i � log pα1iq � β1 � b1i, βk � log pαkq, k � 2, 3, 4, and
α5i � β5 � b2i. Also, pb1i, b2iq

iid.
� SN2pc∆,D,λq are the random effects for the ith subject.

The ML estimates were obtained using the EM algorithm described in Section 4.4.

As in Subsection 4.6.1, the correlation structures UNC, DEC, AR(1) and CS
are considered. Table 11 summarizes the values of loglikelihood, AIC and BIC for all
considered models. It can be noted that the values of loglikelihood for the AR(1) and DEC
models are close. This is explained because the estimated values of φ1 and φ2 under the
DEC model are 0.8214 and 1.2348 respectively, close to the estimated values for AR(1),
φ̂1 � 0.7824 and φ2 � 1. Based on this observation and the criteria, the most parsimonious
model is obtained using the continuous-time autoregressive of order 1 correlation (AR(1)).
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The ML estimates of θ and the corresponding standard errors are presented in Table 11.
We can use the AR(1) model with reasonable confidence for predictions of viral load. For
example, at 6 months since infection the average viral load is 4.4794 log10 units. Figure 23
(left panel) shows some individual profiles (in log 10 scale) for HIV viral load at different
follow-up times. Table 12 shows the results obtained when adjust a nonlinear mixed effects
(NLMEC) model for normal distribution to the data (Matos et al., 2016). As expected,
the criteria for the N-NLMEC model are higher than those for the SN-NLMEC, since the
estimated values of the skewness parameter λ are large. Thus, the SN-NLMEC model
seems to be more appropriate than the normal counterpart for this dataset.

Prediction performance is an important measure of model adequacy. To check
the prediction performance of the HIV viral load, we considered the following approach:
we exclude the last two measurements of each individual in the datasets with more than 6
(inclusive) observations (total of 36 individuals), refit the model based on the remaining
data, obtain the new estimates, and we compute the predicted values under SN-NLMEC
model under AR(1) correlation structure. Figure 23 (right panel) shows the comparison
between the estimated, the predicted values and the real ones. Once again, this figure
indicates a good performance of the SN-LMEC model in terms of prediction.

Table 11 – AIEDRP data. Parameter estimates of the SN-LMEC model for AIEDRP data.
The SE values are estimated as mentioned in Section 4.3.4.

AR(1) CS DEC UNC
Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 1.5979 0.0146 1.5858 0.0164 1.5969 0.0144 1.5929 0.0132
β2 -0.1190 0.1424 0.0336 0.1348 -0.1137 0.1422 -0.0798 0.1219
β3 3.5432 0.0316 3.5734 0.0291 3.5477 0.0321 3.5516 0.0262
β4 1.0756 0.3531 1.2661 0.3099 1.0859 0.3620 0.9997 0.3346
β5 -0.0036 0.0020 -0.0028 0.0025 -0.0035 0.0020 -0.0034 0.0020
σ2 0.284 0.4555 0.2785 0.2553
α11 0.0367 0.0147 0.0370 0.03625
α12 0.0006 0.0006 0.0006 0.00071
α22 0.00003 0.0001 0.00004 0.00005
φ1 0.7824 0.4535 0.8214
φ2 1 0 1.2348
λ1 -3.7492 -3.0373 -3.8078 -4.1573
λ2 -1.3682 -2.5609 -1.4096 -1.8388

loglik -668.4097 -680.2904 -667.7367 -681.7877
AIC 1360.82 1384.581 1361.474 1385.575
BIC 1417.477 1441.238 1422.852 1437.511
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Figure 23 – AIEDRP data. (left panel) Viral loads in log10 scale (black, solid line)
for 6 random subjects and estimated trajectories (gray, dotted line) for the
SN-NLMEC model under AR(1) structure. (right panel) Evaluation of the
prediction performance for 6 random subjects, considering the SN-NLMEC
model under AR(1) structure.

Table 12 – AIEDRP data. Model selection criterion for the NLMEC model under differ-
ent correlation structures (Matos et al., 2016).

Criterion UNC DEC AR(1) CS
`max -783.79 -769.81 -770.10 -775.62
AIC 1585.59 1561.63 1560.19 1571.25
BIC 1628.08 1613.56 1607.41 1618.46

4.7 Conclusions
In this chapter we have proposed an approach to a linear and nonlinear mixed

model with censored responses where the random effects are assumed to have a multivariate
skew-normal distribution. We adopted a DEC structure as proposed by Muñoz et al. (1992)
to model the autocorrelation existing among irregularly observed measures. The proposed
model generalizes previous proposals, such as, the SN-LME model proposed by Arellano-
Valle et al. (2005) (see also, Lin & Lee, 2008) and in the context of censored data, the
N-LMEC/NLMEC model proposed by Vaida & Liu (2009) (see also, Matos et al., 2016),
which are restricted to a left or right censored problem. We developed a computationally
tractable EM algorithm for carrying out ML estimation. The algorithm has a closed-form
expression for the E-step, based on formulas for the mean and variance of the truncated
extended multivariate skew-normal distribution (Galarza et al., 2019). The computation
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procedures for the estimation of random effects and the prediction of future responses are
easy to implement once the ML estimates are obtained. Several simulation studies were
performed, indicating that under the skew-normal distribution assumption, there is a gain
efficiency and accuracy in estimating certain parameters when the normality assumption
does not hold. Furthermore, the proposed methods were applied on two AIDS studies,
providing support for the usefulness and effectiveness of our proposal. The R codes are
available upon request.

Although the SN-LMEC/NLMEC models showed flexibility to model asymmet-
ric data, they can be seriously affected by the presence of outliers. A natural generalization
of our method is to extend by considering the skew-t distribution (Azzalini & Capitanio,
2003) or the multivariate skew-elliptical distribution (Branco & Dey, 2001).



100

Chapter 5

Concluding remarks

In this thesis, from a classical perspective, we discuss some approaches for
flexible modeling of censored longitudinal data, motivated by data sets from AIDS clinical
trials. This work is a generalization of the works presented by Lachos et al. (2010), Matos
et al. (2013b), Matos et al. (2016), Ibacache-Pulgar et al. (2012).

In Chapter 2, we proposed a semiparametric mixed model to analyze censored
longitudinal data, called SMEC. This model takes into account the autocorrelation existing
among irregularly observed measures and it is possible to model the effects of the covariates
that contribute in a parametric and nonparametric way on the response variable. A robust
alternative for modeling censored longitudinal data with tails heavier than normal is
presented in Chapter 3, called t-SMEC. Since, skewness of the HIV viral load is still
noticeable even after transformation, it is important to use a distribution that can allow
us to relax the normal assumption. In Chapter 4, we developed a linear and nonlinear
mixed model with censored responses where the random effects are assumed to follow a
multivariate skew-normal distribution.

The EM algorithm (Dempster et al., 1977) was developed to obtain the maxi-
mum likelihood estimates for the parameters of the models. This methodology was applied
and tested on four clinical trials data, as well as on simulated data in order to show how
our procedures can be used to evaluate censored models and obtain robust estimates for
the parameters.

5.1 Future research
Several research works can be derived and/or directed from the results of this

work.

The first work perspective is related to the development of a method of local
influence to detect influential observations and evaluate the sensitivity of the estimates
in the models. In the semiparametric context, Ibacache-Pulgar et al. (2012) proposed
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influence diagnostics for elliptical semiparametric mixed models. Following Ibacache-Pulgar
et al. (2012), we are developing an local influence analysis for the model described in
Chapter 2, see Appendix B. Following Montenegro et al. (2009), we also extend the local
influence analysis to the model proposed in Chapter 4.

The second perspective for future research is to extend the models in Chapters
2 and 3 (SMEC and t-SMEC) to semiparametric additive mixed models. In HIV/AIDS
clinical trials, it is often interesting to investigate differences between treatments for
decreasing a patient’s viral load. For example, Hammer et al. (2002) assess whether adding
a second protease inhibitor (PI) improves antiviral efficacy of a 4-drug combination in
patients with virologic failure while taking a PI-containing regimen. With an additive
mixed model, we can consider a nonparametric function for each treatment and evaluate
the differences between them.

Finally, a third research perspective is to consider distributions with asymmetry
and heavy tails for SMEC models, such as the multivariate skew-normal distribution, the
skew-t distribution, and the multivariate skew-elliptical distribution, to accommodate
the censoring, skewness and heaviness in the tails of the distribution, simultaneously.
Recently, Castro et al. (2019) proposed a Bayesian semiparametric approach considering
skew-normal distribution for modeling the random effects. Therefore, we can propose a
frequentist approach to these models.

In summary, since censored modeling is a promising area many issues still
remain for filling the gap to modeling censored data. We plan to investigate these issues
in our future research.
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APPENDIX A

Chapter 2: Additional simulation
study results

A.1 Simulation Study 3
This simulation verifies the behavior of the proposed model for different sizes

of the time dimensions.

For this simulation study, we considered a DEC-SMEC model as in (2.16). The
left censoring proportion was fixed at 15% and sample size at n � 200. We generated 500
samples of the DEC-SMEC model considering an AR(1) structure with parameter φ1 � 0.6.
For this study, we chose the function fptijq � cos pπ

a
tijq with tij in three scenarios:

• Scenario 1: tij � p2, 4, 6, 8, 10, 12q;

• Scenario 2: tij � p2, 3, 6, 9, 10, 12q;

• Scenario 3: tij � p1, 5, 9, 13, 17, 21, 25, 29q.

To evaluate each scenario we computed the measures described in the Simulation
Study 2 (Section 2.5.2). Table 13 summarize some results of the parameter estimates for
each scenario, respectively, and in Figure 24 we show the 500 estimated curves with the
average estimates curves for each scenario. From the Table and Figure, we notice that
when the spacing between the times is large, the non-parametric function is overestimated.
In addition, we can note that although the estimates of the non-parametric function are
not close to the true function in Scenario 3 (Table 13), the estimates of the parametric
components provided good estimates. However, when the dimension of the number of
times is small (Scenarios 1 and 2), the components of variance are not well estimated.
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Table 13 – Simulation study 3. Summary statistics based on 500 simulated AR(1)
samples for Scenario 1, 2 and 3.

Scenario 1
Parameter MC M MAE MC SE MC SD CP
β1p2q 1.9980 0.0615 0.0778 0.0778 94.8%
β2p�1.5q -1.4972 0.0213 0.0259 0.0265 94.8%
f1p2q � �0.2663 -0.2732 0.0851 0.1225 0.1063 98.2%
f2p4q � 1 0.9878 0.1233 0.1710 0.1549 97.2%
f3p6q � 0.1580 0.1560 0.1665 0.2224 0.2075 97%
f4p8q � �0.8582 -0.8329 0.2139 0.2752 0.2677 95.4%
f5p10q � �0.8728 -0.8082 0.2599 0.3289 0.3226 95.6%
f6p12q � �0.1125 -0.0008 0.3104 0.3826 0.3770 94.6%
σ2 (0.55) 0.6789 0.1289
α11 (0.25) 0.4269 0.1809
α12 (0.1) 0.2487 0.1487
α22 (0.2) 0.1492 0.0509
φ1 (0.6) 0.6803 0.0805

Scenario 2
Parameter MC M MAE MC SE MC SD CP
β1p2q 1.9989 0.0556 0.0702 0.0699 95.8%
β2p�1.5q -1.4986 0.0191 0.0237 0.0241 94.8%
f1p2q � �0.2663 -0.2679 0.0835 0.1142 0.1045 96.4%
f2p3q � 0.6661 0.6593 0.1016 0.1393 0.1287 96.6%
f3p6q � 0.1580 0.1561 0.1667 0.2201 0.2075 96.8%
f4p9q � �1 -0.9763 0.2381 0.3052 0.2976 96%
f5p10q � �0.8728 -0.8383 0.2618 0.3339 0.3264 96.4%
f6p12q � �0.1125 -0.0519 0.3126 0.3916 0.3870 95.4%
σ2 (0.55) 0.6205 0.0917
α11 (0.25) 0.3308 0.1282
α12 (0.1) 0.1829 0.0921
α22 (0.2) 0.1711 0.0378
φ1 (0.6) 0.6419 0.0625

Scenario 3
Parameter MC M MAE MC SE MC SD CP
β1p2q 1.9930 0.0617 0.0744 0.0763 93.8%
β2p�1.5q -1.5013 0.0209 0.0251 0.0260 93.8%
f1p1q � �1 -0.9065 0.1077 0.0861 0.0881 82%
f2p5q � 0.7374 1.0505 0.3210 0.1895 0.1900 62.6%
f3p9q � �1 -0.4544 0.5567 0.3109 0.3047 59.6%
f4p13q � 0.3256 1.0960 0.7859 0.4355 0.4290 57.4%
f5p17q � 0.9261 1.9201 1.0122 0.5614 0.5446 56.8%
f6p21q � �0.2565 0.9670 1.2426 0.6881 0.6676 57.4%
f7p25q � �1 0.4507 1.4737 0.8148 0.7875 57%
f8p29q � �0.3530 1.3255 1.7045 0.9414 0.9062 57.2%
σ2 (0.55) 0.5495 0.0270
α11 (0.25) 0.2541 0.0581
α12 (0.1) 0.1044 0.0235
α22 (0.2) 0.2011 0.0173
φ1 (0.6) 0.5917 0.0475



APPENDIX A. Chapter 2: Additional simulation study results 112

(a)

−2.5

0.0

2.5

5.0

2 3 4 5 6 7 8 9 10 11 12
t

f

(b)

−2.5

0.0

2.5

5.0

2 3 4 5 6 7 8 9 10 11 12
t

f

(c)

−2.5

0.0

2.5

5.0

0 5 10 15 20 25 30
t

f

Figure 24 – Simulation study 3. Graphs of the nonparametric components with 500
replications. Estimated curves (gray lines), true curves (red lines) and the
average estimates curves (blue lines). (a) tij � p2, 4, 6, 8, 10, 12q (b) tij �
p2, 3, 6, 9, 10, 12q (c) tij � p1, 5, 9, 13, 17, 21, 25, 29q

A.2 Simulation Study 4
The purpose of this simulation study is to evaluate the benefits of the proposed

model when compared to the existing literature.

For this simulation, we consider a N-NLMEC model (Matos et al., 2016) as
follows

yij � λ1i �
λ2i

1� exppptij � λ3q{λ4q
� εij, (A.1)

with i � 1, . . . , 100, j � 1, . . . , 10, λ1i � exppβ1 � b1iq, λ2i � exp pβ2 � b2iq, βk � logpλkq,
k � 3, 4, pb1i, b2iq

ind.
� N2p0,Dq, and εij

ind.
� Nnip0, σ2Iq. The parameters are set at β �
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p1.6094, 0.6931, 3.8067, 2.3026qJ, σ2 � 0.55, and D with elements α11 � 0.0025, α12 �

�0.001, α22 � 0.01, tij � p0, 10, 20, 30, 40, 50, 60, 70, 80, 90q.

We simulated 500 datasets from model (A.1) considering 10% of left-censored
observation. Once the simulated datasets were generated, we fitted the proposed model
and the N-NLMEC model. To compare the performance of the fitted, we considered two
empirical discrepancy measures, namely the MAE (mean absolute error) and MSE (mean
square error). For each dataset generated, we calculate the MAE and the MSE. These
measures are given by

MAEplq �
1
N

¸
i,j

|y
plq
ij �xyijplq| and MSEplq �

1
N

¸
i,j

py
plq
ij �xyijplqq2,

l � 1, . . . , 500, and N �
ņ

i�1
ni.

Table 14 – Simulation study 4. Average of the MAE and MSE for SMEC and N-NLMEC
model.

MAE MSE
Model Mean SD Mean SD
SMEC 0.5367 0.0166 0.4517 0.0274
N-NLMEC 0.5296 0.0160 0.4393 0.0239

5

6

7

0 10 20 30 40 50 60 70 80 90
t

f

Figure 25 – Simulation study 4. Graphs of the nonparametric components with 500
replications. Estimated curves (gray lines), true curve (red line) and the
average estimates curve (blue line).
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From Table 14 we can observe that the values of MAE and MSE are close and
also the fit of the SMEC model is close to the fit of the N-NLMEC model, which is the
true model.

To investigate the accuracy of estimating the nonlinear function (A.1), the true
shape of this function is plotted in Figure 25 with the 500 estimated curves. We can note
that the shape of the average estimates of fptijq is very close to the true function. We
note that the nonparametric part captures well the nonlinear function.
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APPENDIX B

Influence diagnostics semiparametric
mixed-effects models with censored
data

Influence diagnostic techniques are used to identify anomalous observations
that impact on model fitting or statistical inference for the assumed statistical model.
There are primarily two approaches for detecting influential observations. The case-deletion
approach (Cook, 1977) is the most popular one for identifying influential observations. To
assess the impact of influential observations on parameter estimates some metrics have
been used for measuring the distance between pθris and pθ, such as the likelihood distance
and Cook’s distance. The second approach is a general statistical technique used to assess
the stability of the estimation outputs with respect to the model inputs (Cook, 1986).

Below we describe two of the main procedures to determine the influence of
outlying observations. We consider diagnostic measures suitable for models with incomplete
data, based on the MPL estimation using the penalized EM algorithm. First, we present
the approach of case deletion using the generalized Cook distance (Zhu et al., 2001).
Subsequently, we develop the diagnostic using the local influence method proposed by Zhu
& Lee (2001). All methods are described for the DEC-SMEC model (Chapter 2) and the
notation is in accordance as well.

B.1 Case-deletion measures
Case-deletion is a common approach for studying the effects of dropping the

ith case from the data set. In the following, a quantity with a subscript "ris" denotes the
original quantity with the ith case deleted; for example, ycomris, denotes the complete-data
with the ith case deleted. The penalized log-likelihood function of θ, based on the data with
the ith case deleted, is then denoted by `pcpθ|ycomrisq. Let pθris � ppβJris,pfJris, pσ2

ris, pαJ
ris,
pφJ

risq
J
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be the maximizer of the function Qprispθ|
pθq � E

�
`pcpθ|ycomrisq|V,C, pθ�, where pθ is the

MPL estimate of θ. To assess the influence of the ith case on the MPL estimate pθ, we
compare the difference between pθris and pθ. If the deletion of a case seriously influences
the estimates, more attention should be paid to that case. Hence, if pθris is far from pθ in
some sense, then the ith case is regarded as influential. As pθris is needed for every case,
the required computational effort may become quite heavy, especially when the sample
size is large. Hence, the following one-step pseudo approximation pθ1

ris is used to reduce the
computational effort (see Cook & Weisberg, 1982; Zhu et al., 2001):

pθ1
ris �

pθ � !� :Qpppθ|pθq)�1
9Qprisp

pθ|pθq, (B.1)

where :Qpppθ|pθq � B2Qppθ|pθq
BθBθJ

���
θ� pθ

and 9Qprisp
pθ|pθq � BQprispθ|

pθq
Bθ

���
θ� pθ

represent the Hessian
matrix and the individual score vector, respectively.

Thus, 9Qprisp
pθ|pθq � � 9Qβ

pris
ppθ|pθq, 9Qf

pris
ppθ|pθq, 9Qσ2

pris
ppθ|pθq, 9Qα

pris
ppθ|pθq, 9Qφ

pris
ppθ|pθq	, with

its elements given by

9Qβ
pris
ppθ|pθq �

#
BQprispθ|

pθq
Bβ

+ �����
θ� pθ

�
1pσ2

¸
j�i

!
XJ
j
pE�1
j

�pyj � pµj � Zj
pbj	) ,

9Qf
pris
ppθ|pθq �

#
BQprispθ|

pθq
Bf

+ �����
θ� pθ

�
1pσ2

¸
j�i

!
NJ
j
pE�1
j

�pyj � pµj � Zj
pbj	)� λKf ,

9Qσ2

pris
ppθ|pθq �

#
BQprispθ|

pθq
Bσ2

+ �����
θ� pθ

� �
1

2 pσ2

¸
j�i

"
nj �

1pσ2

�paj � 2pµJ
j
pE�1
j ppyj � Zj

pbjq
� pµJ

j
pE�1
j pµj�) ,

9Qα
pris
ppθ|pθq �

#
BQprispθ|

pθq
Bα

+ �����
θ� pθ

,

9Qφ
pris
ppθ|pθq �

#
BQprispθ|

pθq
Bφ

+ �����
θ� pθ

,

where paj � tr
�zyjyJ

j
pE�1
j � 2zyjbJ

j ZJ
j
pE�1
j � zbjbJ

j ZJ
j
pE�1
j Zj

	
, pµj � Xj

pβ � Nj
pf , and the

elements of 9Qα
pris
ppθ|pθq and 9Qφ

pris
ppθ|pθq are of the form

9Qαu
pris
ppθ|pθq � �

1
2
¸
j�i

tr
�pD�1

9Du � pD�1
9Du pD�1zbjbJ

j

	
,

9Qφs
pris
ppθ|pθq � �

1
2
¸
j�i

tr
�pE�1

j
9Es
j

	
�

1
2 pσ2

¸
j�i

!
tr
��zyjyJ

j � 2zyjbJ
j ZJ

j �
zbjbJ

j ZJ
j Zj

	
Ajpsq

�
� 2pµJ

j Ajpsqppyj � Zj
pbjq � pµJ

j Ajpsqpµj) ,
where 9Du �

BD
Bαu

���
α�xα

, u � 1, . . . , dimpαq; and Ajpsq � pE�1
j

9Es
j
pE�1
j , 9Es

j �
BEj

Bφs

���
φ�

xφ
,

s � 1, 2.
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It is necessary to compute the Hessian matrix :Qppθ|pθq � ņ

i�1

B2Qpipθ|
pθq

BθBθJ
to

develop case-deletion, local influence and any particular perturbation schemes, following

Zhu & Lee (2001) the Hessian matrix B2Qpipθ|
pθq

BθBθJ
has the following elements:

B2Qpipθ|
pθq

BβBβJ
� �

1
σ2 XJ

i E�1
i Xi,

B2Qpipθ|
pθq

BβBfJ
� �

1
σ2 XJ

i E�1
i Ni,

B2Qpipθ|
pθq

BβBσ2 � �
1
σ4 XJ

i E�1
i

�pyi � µi � Zi
pbi	 ,

B2Qpipθ|
pθq

BβBφs
� �

1
σ2 XJ

i Aipsq
�pyi � µi � Zi

pbi	 ,
B2Qpipθ|

pθq
BfBfJ

� �
1
σ2 NJ

i E�1
i Ni �

λ

n
K,

B2Qpipθ|
pθq

BfBσ2 � �
1
σ4 NJ

i E�1
i

�pyi � µi � Zi
pbi	 ,

B2Qpipθ|
pθq

BfBφs
� �

1
σ2 NJ

i Aipsq
�pyi � µi � Zi

pbi	 ,
B2Qpipθ|

pθq
Bσ2Bσ2 �

ni
2σ4 �

1
σ6

�pai � 2µJ
i E�1

i ppyi � Zi
pbiq � µJ

i E�1
i µi

�
,

B2Qpipθ|
pθq

Bσ2Bφs
� �

1
2σ4

!
tr
��zyiyJ

i � 2zyibJ
i ZJ

i �
zbibJ

i ZJ
i Zi

	
Aipsq

�
� 2µJ

i Aipsqppyi � Zi
pbiq � µJ

i Aipsqµi

)
,

B2Qpipθ|
pθq

BαuBαv
�

1
2tr pBpu, vqq �

1
2tr
�
Cpu, vqzbibJ

i

	
,

B2Qpipθ|
pθq

BφsBφt
�

1
2σ2

!
tr
��zyiyJ

i � 2zyibJ
i ZJ

i �
zbibJ

i ZJ
i Zi

	
Aips, tq

�
� µJ

i Aips, tqµi

� 2µJ
i Aips, tqppyi � Zi

pbiq)� 1
2tr
�
Aiptq 9Es

i � E�1
i

:Est
i

	
,

B2Qpipθ|
pθq

BβBαr
� 0,

B2Qpipθ|
pθq

BfBαr
� 0,

B2Qpipθ|
pθq

Bσ2Bαr
� 0, B2Qpipθ|

pθq
BαrBφs

� 0,

where Bpu, vq � D�1r 9DvD�1
9Du� :Duvs and Cpu, vq � D�1r 9DvD�1

9Du� :Duv� 9DuD�1
9DvsD�1

with :Duv �
B2D

BαuBαv
, u, v � 1, . . . , dimpαq, and Aips, tq �

BAipsq

Bφt
, s, t � 1, 2.

Zhu et al. (2001) proposed the generalized Cook distance for models with
incomplete data defined by

GDi � ppθris � pθqJt� :Qpppθ|pθquppθris � pθq, i � 1, . . . , n. (B.2)

Now, upon substituting (B.1) into (B.2), we obtain the approximation

GD1
i � 9Qprisp

pθqJt� :Qpppθ|pθqu�1
9Qprisp

pθq, i � 1, . . . , n.
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B.2 Local influence
In this subsection, we derive the normal curvature of the local influence (Cook,

1986) for some common perturbation schemes either in the model or in the data. We will
consider the case-weight, scale matrix perturbation schemes, and response perturbation
schemes, for this purpose.

Consider a perturbation vector ω � pω1, ..., ωgq
J varying in an open region

Ω � Rg. Let `pcpθ,ω|ycomq be the complete-data-penalized log-likelihood to the perturbed
model. We assume that there is a ω0 in Ω such that `pcpθ,ω0|ycomq � `pcpθ|ycomq for all
θ. Let pθpωq denote the maximum of the function Qppθ,ω|pθq � Er`pcpθ,ω|ycomq|V,C, pθs.
The influence graph is then defined as αpωq � pωJ, fQpωqq

J, where fQpωq is the Q-
displacement function defined as

fQpωq � 2
�
Qp

�pθ|pθ	�Qp

�pθpωq|pθ	� .
Following the approach of Cook (1986) and Zhu & Lee (2001), the normal

curvature CfQ,d of αpωq at ω0 in the direction of some unit vector d can be used to
summarize the local behavior of the Q-displacement function. It can be shown that

CfQ,d � �2dJ
:Qωod and � :Qω0 � ∆J

ω0

!
� :Qpppθ|pθq)�1

∆ω0 ,

where :Qpppθ|pθq � B2Qppθ|pθq
BθBθJ

���
θ� pθ

and ∆ω �
B2Qppθ,ω|pθq

BθBωJ

���
θ� pθpωq

.

Following the same procedure as in Cook (1986), the quantity � :Qω0 is useful
for detecting influential observations. From the spectral decomposition of a symmetric

matrix �2 :Qω0 �
ģ

k�1
ζkεkε

J
k , where tpζk, εkq, k � 1, . . . , gu are eigenvalue–eigenvector

pairs of �2 :Qω0 with ζ1 ¥ . . . ¥ ζr ¡ ζr�1 � . . . � 0 and orthonormal eigenvectors
tεk, k � 1, . . . , gu, Zhu & Lee (2001) proposed to inspect all eigenvectors corresponding
to nonzero eigenvalues for capturing more information. Following the work of Zhu & Lee
(2001), we consider the following aggregated contribution vector of all eigenvectors that
correspond to nonzero eigenvalues. Let ζ̃k � ζk{pζ1 � . . . � ζrq, ε

2
k � pε2

k1, . . . , ε
2
kgq

J and

Mp0q �
ŗ

k�1
ζ̃kε

2
k. The lth component of Mp0q, Mp0ql, is equal to

ŗ

k�1
ζ̃kε

2
kl. The assessment

of influential cases is based on the visual inspection of the tMp0ql, l � 1, . . . , gu plotted
against the index l. The lth case may be regarded as influential if Mp0ql is larger than the
benchmark value.

The inconvenience in the use of the normal curvature is in deciding about the
influence of the observations, since CfQ,dpθq may assume any value and it is not invariant
under a uniform change of scale. Based on the work of Poon & Poon (1999) in using a
conformal normal curvature, Zhu & Lee (2001) considered the following conformal normal
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curvature BfQ,dpθq � CfQ,dpθq{trr�2 :Qω0s, whose computation is quite simple and also
has the property that 0 ¤ BfQ,dpθq ¤ 1. Let dl be a basic perturbation vector with
lth entry as 1 and all other entries as 0. Zhu & Lee (2001) then showed that for all l,
Mp0ql � BfQ,dl . We can, therefore, obtain Mp0ql via BfQ,dl .

So far, there is no general rule to judge how large is the influence of a specific
case in the data. Let Mp0q and SMp0q denote, respectively, the mean and standard error
of tMp0ql : l � 1, . . . , gu, where Mp0q � 1{g. Poon & Poon (1999) proposed to use 2Mp0q
as a benchmark for Mp0q. But, we may use different functions of Mp0q. For instance, Zhu
& Lee (2001) proposed to use Mp0q � 2SMp0q as a benchmark to take into account the
variance of tMp0ql : l � 1, . . . , gu as well. According to Lee & Xu (2004), the exact choice
of the function of Mp0q as the benchmark is subjective. Lee & Xu (2004) also proposed
to use Mp0q � c�SMp0q, where c� is a selected constant, and depending on the specific
application, c� may be chosen suitably.

B.2.1 Pertubation schemes

Now, in this subsection, we will evaluate the ∆ matrix under the following
perturbation schemes for DEC-SMEC models. Case-weight made for detecting observations
with outstanding contribution on the log-likelihood function and that may exercise high
influence on the maximum likelihood estimates. Scale perturbation made on the scale
matrix Σi � ZiDZJ

i � Ωi. It also can be made on either σ2 or D which may reveal
individuals that are most influential, in the sense, of the likelihood displacement on the
scale structure. Finally, perturbation of response variables made on the response values,
which may indicate observations with large influence on the MPL.

For each perturbation scheme, one has the partitioned form

∆ω0 � p∆J
β ,∆

J
f ,∆

J
σ2 ,∆J

α ,∆
J
φ q

J,

where ∆β �
B2Qppθ,ω|pθq
BβBωJ

���
ω0

P Rp�g, ∆f �
B2Qppθ,ω|pθq

BfBωJ

���
ω0

P Rr�g,

∆σ2 �
B2Qppθ,ω|pθq
Bσ2BωJ

���
ω0

P R1�g, and ∆α � p∆J
α1 , . . . ,∆

J
αq�

qJ, ∆φ � p∆J
φ1 ,∆

J
φ2q, with

∆αu �
B2Qppθ,ω|pθq
BαuBωJ

���
ω0

P R1�g, u � 1, . . . , dimpαq, ∆φs �
B2Qppθ,ω|pθq
BφsBωJ

���
ω0

P R1�g,
s � 1, 2 and g being the dimensions of the perturbation vector ω.

Case weight perturbation

First, we consider an arbitrary attribution of weights for the expected value
of the complete-data log-likelihood function (perturbed Q–function), which may capture
departures in general directions, represented by writing

Qppθ,ω|pθq � E
�
`pcpθ,ω|ycomq|V,C, pθ� � ņ

i�1
ωiE

�
`pipθ|ycomq|V,C, pθ� � ņ

i�1
ωiQpipθ|

pθq.
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Here ω � pω1, . . . , ωnq
J is a n � 1 vector and ω0 � p1, . . . , 1qJ. For this

perturbation scheme, we find

∆β �
1
σ2

�
XJ

1 E�1
1 E1, . . . ,XJ

nE�1
n En

�
,

∆f �
1
σ2

�
NJ

1 E�1
1 E1 �

λ

n
Kf , . . . ,NJ

nE�1
n En �

λ

n
Kf
�
,

∆σ2 �
�
�
n1

2σ2 �
m1

2σ4 , . . . ,�
nn
2σ2 �

mn

2σ4

�
,

∆αu �

�
BQp1pθ|

pθq
Bαu

, . . . ,
BQpnpθ|pθq

Bαu

�
, u � 1, . . . , dimpαq,

∆φs �

�
BQp1pθ|

pθq
Bφs

, . . . ,
BQpnpθ|pθq

Bφs

�
, s � 1, 2,

where Ei � ppyi �Xiβ �Nif � Zi
pbiq, mi �

�pai � 2µJ
i E�1

i ppyi � Zi
pbiq � µJ

i E�1
i µi

	
,

BQpipθ|
pθq

Bαu
� �

1
2tr
�
D�1

9Du �D�1
9DuD�1zbibJ

i

	
, and

BQpipθ|
pθq

Bφs
� �

1
2tr
�
E�1
i

9Es
i

	
�

1
2σ2

!
tr
��zyiyJ

i � 2zyibJ
i ZJ

i �
zbibJ

i ZJ
i Zi

	
Aipsq

�
� 2µJ

i Aipsqppyi � Zi
pbiq � µJ

i Aipsqµi

)
.

Scale matrix perturbation

To study the effects of departures from the assumption regarding the scale ma-
trix, we consider the perturbations Dpωiq � ω�1

i D or σ2pωiq � ω�1
i σ2, for i � 1, . . . , n. Un-

der this perturbation scheme, the non-perturbed model is obtained when ω0 � p1, . . . , 1qJ.
Moreover, the perturbed Q-function is as in (2.7), switching Dpωiq and σ2pωiq with D and
σ2, respectively. The matrix ∆ω0 has its elements as follows:

• Perturbation on D: ∆β � 0, ∆f � 0, ∆σ2 � 0, ∆φ � 0 and

∆αu �
1
2

�
tr
�pD�1

9Du pD�1zb1bJ
1

	
, . . . , tr

�pD�1
9Du pD�1zbnbJ

n

	�
, u � 1, . . . , dimpαq.

• Perturbation on σ2:

∆β �
1
σ2

�
XJ

1 E�1
1 E1, . . . ,XJ

nE�1
n En

�
,

∆f �
1
σ2

�
NJ

1 E�1
1 E1 �

λ

n
Kf , . . . ,NJ

nE�1
n En �

λ

n
Kf
�
,

∆σ2 �
1

2σ4 rm1, . . . ,mns,

∆α � 0,

∆φs �
1

2σ2 rc1, . . . , cns ,
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where ci � tr
��zyiyJ

i � 2zyibJ
i ZJ

i �
zbibJ

i ZJ
i Zi

	
Aipsq

�
�2µJ

i Aipsqppyi�Zi
pbiq�µJ

i Aipsqµi.

Response perturbation

A perturbation of the response variables Vij , i � 1, . . . , n, j � 1, . . . , ni, can be
introduced by replacing Vij by Vijpωq � Vij � ωigij, where gij is a known constant. Hence,
for the DEC-SMEC model, the perturbed response is obtained as

Cij �

$&%1 if V1ij ¤ yijpωq ¤ V2ij,

0 if yijpωq � V0i,

where yijpωq � yij � ωigij. Again, the perturbed Q-function follows (2.7) with pyi, zyiyJ
i

and zyibJ
i replaced by pyiω � pyi � ωigi, {yiωyJ

iω �
zyiyJ

i � ωippyigJi � gipyJ
i q � ω2

i gigJi and{yiωbJ
iω �

zyibJ
i � ωigixbJ

i , respectively, with gi � pgi1, . . . , giniq
J. Under this perturbation

scheme the vector ω0, representing no perturbation, is given by ω0 � 0 and ∆ω0 has the
following elements:

∆β � �
1
σ2

�
XJ

1 E�1
1 g1, . . . ,XJ

nE�1
n gn

�
,

∆f � �
1
σ2

�
NJ

1 E�1
1 g1, . . . ,NJ

nE�1
n gn

�
,

∆σ2 � �
1
σ4

�
EJ1 E�1

1 g1, . . . , EJn E�1
n gn

�
,

∆α � 0,

∆φs � �
1
σ2

�
E�1

1 A1psqg1, . . . , E�1
n Anpsqgn

�
.
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