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Resumo 

Esta tese apresenta novos modelos para análise da dinâmica não linear de operações de içamen-

tos submarinos. Foco é dado ao desenvolvimento de novos modelos e suas implicações no pla-

nejamento e análise de operações de içamento submarino em águas profundas. Dentre os pontos 

abordados na tese, os mais relevantes são a modelagem de cabos de comprimento variável, a 

análise estatística de séries temporais não estacionárias, a dinâmica do sistema em ressonâncias 

super-harmônicas e a modelagem de coeficientes hidrodinâmicos dependentes de amplitude. 

Verifica-se que a velocidade de lançamento ou içamento tem impacto direto nas forças estáticas 

e dinâmicas que atuam no sistema e também no tempo de exposição do sistema a condições de 

ondas aleatórias. A seleção de uma velocidade adequada para o guincho pode, portanto, ser 

usada para otimizar a operação. Dois métodos também são apresentados para a previsão das 

cargas de projeto quando o sistema é modelado assumindo um cabo de comprimento variável. 

Um desses métodos permite uma representação precisa das estatísticas da resposta por meio de 

um número reduzido de simulações aleatórias independentes em comparação aos métodos tra-

dicionais da literatura. Além disso, soluções semi-analíticas são apresentadas para analisar a 

dinâmica do sistema em ressonância super-harmônica e quando os coeficientes hidrodinâmicos 

são dependentes da amplitude. O método é considerado preciso em comparação à integração 

no domínio do tempo, mas significativamente mais rápido. É mostrado os impactos que as res-

sonâncias super-harmônicas podem ter na dinâmica do sistema, já que em alguns cenários as 

zonas onde essas ressonâncias ocorrem podem ser o caso limite de projeto em operações reais. 

Finalmente, o uso de coeficientes hidrodinâmicos dependentes da amplitude é considerado 

chave para a análise de operações em águas profundas, pois esta formulação prevê variações 

nas cargas extremas e nas profundidades onde ocorrem, devido à variação da frequência natural 

e amortecimento do sistema. 

 



 

 

Abstract 

This thesis presents new models for the analysis of the nonlinear dynamics of subsea lifting 

operations. Focus in given on the development of new models and their implications on the 

planning and analysing of deep water subsea lifting operations. Among the points addressed in 

the thesis, the most relevant are the modelling of variable length cables, the statistical analysis 

of non-stationary time series, the dynamics of the system in super-harmonic resonances and the 

modelling of amplitude-dependent hydrodynamic coefficients. It is found that the lowering or 

lifting velocity has a direct impact on the static and dynamic forces acting on the system and 

also on the time of exposure of the system to random wave conditions. The selection of a suit-

able velocity for the winch might be therefore used to optimize the operation. Two methods are 

also presented for the prediction of the design loads on the system when the system is modelled 

assuming a variable length cable. One of these methods, enables an accurate representation of 

the statistics of the response via a reduced number of independent random simulations in com-

parison to traditional methods in the literature. Furthermore, semi-analytical solutions are pre-

sented to analyse the dynamics of the system in super-harmonic resonance and when the hy-

drodynamic coefficients are amplitude-dependent. The procedure is considered accurate in 

comparison to time domain integration, but significantly faster. It is shown the impacts that 

super-harmonic resonances can have on the dynamics of the system, as in some scenarios the 

zones where these resonances occur might be the limiting design case in real operations. Finally, 

the use of amplitude-dependent hydrodynamic coefficients is found to be key for the analysis 

of deep water operations, as this formulation predicts variations in the extreme loads and on the 

depths where they occur, due to the variation of the natural frequency and damping of the sys-

tem. 
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1. INTRODUCTION 

This thesis is organized as a collection of scientific papers reproduced in specific chapters. A 

general introduction is presented in this first chapter, where the motivation and objectives of 

this study are stated. Further, a comprehensive literature review is presented in the second chap-

ter, detailing the historical background and the dynamic models used to analyse offshore lifting 

operations. Finally, a general conclusion is presented in the last chapter, where the contributions 

of this thesis are presented as well as the suggestions for future work.  

1.1 Motivation 

Offshore oil and gas exploration is one of the main sources of energy in the world. Particularly 

in Brazil, the beginning of the production dates back to the 1960s, progressing continuously to 

deeper waters as new fields were discovered. In contrast to this consolidated activity, explora-

tion of renewable sources of energy has grown significantly in recent decades, driven especially 

by the raising concerns with climate changes. Among several available technologies, the explo-

ration of offshore wind energy is increasing steadily and already accounts for a significant part 

of the energy mix in Europe. Other significant exploration frontier that starts to get significance 

is the deep sea mining. As reserves on land reduces, the extraction of marine minerals are likely 

to get importance in the future. Therefore, exploration of offshore resources plays a key role in 

the world economy, whether through already consolidated activities such as oil and gas extrac-

tion or through emerging areas related to renewable energy or mining.  

A critical aspect of any offshore exploration system is the capital expenditure necessary to im-

plement the infrastructure required to start the production of the field. Particularly, the installa-

tion of equipment, via offshore lifting operations, accounts for a major part of these costs. This 

is because these operations are weather restricted and depend on complex vessels, with high 

daily rates and low availability. In addition, when the production field reaches the end of its 

life, decommissioning activities are required. Depending on the current legislation, the removal 

of part of the infrastructure may be required. Once more, the cost of these operations are pre-

ponderant in an overall analysis of the economic viability of the field. 

Based on this context, the improvement of the technologies for offshore lifting operations is a 

key point to be considered, as this activity is present in every offshore exploration scenario and 
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is directly linked to their economic viability. 

1.2 Objectives 

In general, the challenge regarding offshore lifting operations is to reduce their costs preserving 

the safety requirements. This can be achieved by two means: (1) development of new lifting 

procedures or (2) improvement of the methodologies to analyse these operations. 

The development of new lifting procedures allows for faster operations or for the use of cheaper 

vessels to install a given piece of equipment. Substantial effort has been made towards this end 

in recent years, leading to the development of the pendulous method and of synthetic rope lift-

ing systems, among others. On the other hand, offshore lifting operations are classified as 

weather restricted according to the standard DNVGL-ST-N001, so that assessment of the envi-

ronmental conditions that lead to safe operations is required during the planning phase. Thus, 

the improvement of the dynamic models to analyse these operations can result in reduced 

weather restrictions and, consequently, faster and cheaper operations.  

Based on this scenario, the main objective of this work is the development of new models to 

analyse offshore lifting operations, aiming to obtain more accurate representation of the dy-

namics of the system in comparison to real conditions. The focus in this context is the inclusion 

of nonlinear features of deep water subsea operations that have not been entirely addressed so 

far in the literature. 

During the deep water lowering phase of the subsea lifting operation, two typical conditions are 

possible: either the payload is lowered with a given speed or kept stationary at a certain depth. 

Last scenario occurs when inspections or operational tasks are necessary to be performed, which 

can be more or less frequent depending on the operational procedure. Different models are 

necessary to predict the dynamics of each scenario. The main difference in this case is that for 

the lowering scenario, the length of the cable must be considered variable throughout the sim-

ulation, while in the fixed depth scenario, it is considered constant. 

This thesis is thus divided in two parts, the first one accounts for the variable length models and 

the second one deals with the constant length models. The objectives of each part is detailed in 

the rest of this Section. 
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1.2.1 Variable length models 

The use of variable length models to analyse subsea lifting operations is more recent compared 

to the fixed length models. In this case, the majority of studies focus on the validation of the 

proposed method, instead of on the consequences that this formulation has in the operation. 

Also, the formulations found in the literature consider a discretized cable. No simplified model 

that takes into account the variable length condition has been yet considered to the best 

knowledge of the author. Therefore, the first objective of this thesis is to develop a simple model 

that accounts for a variable length cable, aiming to study the influence of the winch speed on 

the dynamics of the system. 

Furthermore, when the system is modelled using a variable length cable and the input of the 

system is stochastic, the response of the system presents a nonstationary behaviour. This is due 

to the fact that the resonance frequency of the system changes as the length of the cable varies 

throughout the operation. The prediction of the extreme loads in nonstationary time series is 

challenging and has not being covered in the literature in the specific scenario of deep water 

subsea lifting operations. The second objective of this thesis is then to develop a methodology 

to predict the extreme loads on the system under stochastic excitation when the system is mod-

elled by a variable length cable. 

1.2.2 Constant length models 

The use of constant length models to analyse deep water subsea lifting operations is recurrent 

in the literature. An important feature of this problem is the hydrodynamic forces that are intro-

duced in the payload. These forces are typically modelled via Morison’s equation, which intro-

duces a quadratic velocity term in the equation of motion. The presence of this nonlinear term 

can lead to super-harmonic resonances in the system. This phenomenon, although well de-

scribed in the nonlinear dynamics literature, has not been covered in detail for the scenario of 

deep water subsea lifting. Therefore, the third objective of this thesis is to use analytical and 

numerical procedures to solve the nonlinear equation of motion for the system and to study the 

effects that super-harmonic resonance can introduce in real operations. 

Another significant feature of the hydrodynamic forces is the dependence of the hydrodynamic 

coefficients on the amplitude of oscillation, which is typically represented by the Keulegan-

Carpenter number (KC). Although several studies have been published recently addressing this 
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dependence, the majority of papers dealing with the dynamics of the operation consider con-

stant hydrodynamic coefficients. Thus, the fourth objective of this thesis is to develop a model 

that considers KC-dependent hydrodynamic coefficients and study the impacts that this formu-

lation has on the dynamics of the system. 

1.2.3 Summary of objectives 

1. Development of a dynamic model that accounts for a variable length cable, aiming 

to study the influence of the winch speed on the dynamics of the system; 

2. Development of a methodology to predict extreme loads on the system under sto-

chastic excitation when the system is modelled considering a variable length cable; 

3. Study the dynamics of the system in super-harmonic resonances, aiming to under-

stand their features and influence in the operational weather window; 

4. Development of a dynamic model that accounts for KC-dependent hydrodynamic 

forces, aiming to understand the nonlinear phenomena that arise in the response of 

the system. 

1.3 Thesis structure 

In addition to this introduction chapter, where the motivation and objectives of this thesis have 

been stated, a comprehensive literature review on offshore lifting operations is presented in 

Chapter 2. Firstly, an historical overview is presented, describing the development of new pro-

cedures to conduct the operations. Then, specific studies detailing dynamic models to analyse 

the lifting in air, the lowering through the wave zone, the lowering through deep waters and the 

landing on the seabed are presented. Particular attention is also given to studies dealing with 

control strategies and hydrodynamic modelling of oscillating bodies. 

Chapter 3 describes the study published in Applied Ocean Research (v. 77, p. 34-44, 2018) by 

R. B. Tommasini, L. O. Carvalho and R. Pavanello addressing the objective n. 1 of this thesis 

(as per Section 1.2.3). In this study, a single degree-of-freedom model, taking into account a 

variable length cable, has been presented to explore the influence of the winch speed on the 

dynamics of deep water subsea lifting operations. 

Chapter 4  describes the study published in Marine Structures (v. 74, n. 102818, 2020) by R. B. 

Tommasini, R. Pavanello and L. O. Carvalho addressing the objective n. 2 of this thesis (as per 

Section 1.2.3). In this study, two methodologies are presented to estimate the extreme loads on 
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the system when the cable is modelled using a variable length approach and random inputs, 

which leads to a non-stationary signal.  

Chapter 5 is a pre-print of the study by R. B. Tommasini, T. L. Hill, J. H. G. Macdonald, R. 

Pavanello and L. O. Carvalho, accepted for publication in Marine Structures, addressing the 

objective n. 3 of this thesis (as per Section 1.2.3). In this study, an analytical method is used to 

solve the nonlinear equation of motion of the system, aiming to study the influence of super-

harmonic resonances in the dynamics of the system. 

Chapter 6 describes the study published in Ocean Engineering (v. 233, n. 109172, 2021) by R. 

B. Tommasini, T. L. Hill, J. H. G. Macdonald, R. Pavanello and L. O. Carvalho addressing the 

objective n. 4 of this thesis (as per Section 1.2.3). In this study, amplitude-dependent hydrody-

namic coefficients are considered in the modelling of the problem. Numerical and analytical 

solutions for the problem are presented, focusing on the impacts that this formulation has on 

the dynamics and planning of the operation.  

Finally, the conclusion of this thesis is presented in Chapter 7, where a summary of the out-

comes of this thesis is presented. In addition, suggestions of future studies are also included 

aiming to inspire future progress on the modelling of offshore lifting operations. 
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2. LITTERATURE REVIEW 

This Section presents a literature review on offshore lifting operations. Firstly, it is presented 

an historical overview about this topic, illustrating the early methods considered for the opera-

tion and how they evolved throughout time. Then, studies describing methodologies to predict 

the dynamics of the system are presented, particular attention has been given to the lifting in 

air, lowering through the wave zone, lowering through deep waters and landing on the seabed 

phases of the operation. Works detailing control strategies to alleviate the dynamic loads or 

reduce motions on the system are also included. Finally, attention has been given to papers 

describing the hydrodynamic forces acting on oscillating bodies, as these forces are a major 

concern on the correct prediction of the dynamics of the system in subsea operations. 

2.1 Historical overview 

Early subsea lifting operations considered the use of drilling rigs or sling-over-sling methods 

to install structures on the seabed. Examples of some operations based on these methodologies, 

along with their description, advantages and limitations were presented in the study by Rowan 

and Ahilan [1] in 1989. In addition, Roveri et al. [2] described the installation of a 420 tonnes 

manifold at 620 m depth in 1996 by the sling-over-sling method. They also presented the fre-

quency and time domain analysis to plan the operation and experimental tests that were con-

ducted to predict the hydrodynamic coefficients of the manifold.  

In 1997, Nelson et al. [3] proposed a simple heave compensation landing system based on the 

use of a chain and a buoy connected in series with the payload. The system was tested in the 

Gordon Banks field (Gulf of Mexico), which confirmed the effectiveness of the system to ena-

ble the use of simpler vessels to perform the operations. 

During the beginning of the 21st century, offshore oil fields started to reach water depths on the 

order of 2000 m. This fact raised concerns in the industry regarding the technical and economic 

viability of extending the traditional installation methods to this deeper scenario. Aiming to 

address this challenge, the DISH (Deepwater Installation of Subsea Hardware) JIP (Joint In-

dustry Project) was created [4,5]. Among the findings of the JIP, it was concluded that there 

was a limitation on the installation systems using steel wire ropes to install equipment at 2000 

m depth, since the increased weight of the suspended cable in deep waters limited the operation. 
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The solution proposed was the development of an installation system based on synthetic cables, 

since this construction would benefit from their neutral weight inside the water to reduce the 

loads on the system.  

According to Beckman [6] and Torben et al. [7], during the second phase of the DISH JIP, 

laboratory experiments were conducted to assess the performance of several synthetic cables 

regarding the fatigue life, wear and heating due to bending over sheave, and creep, among oth-

ers. Based on the results, a blend of High Modulus Polyethylene (HMPE) fibres and Liquid 

Crystal Polymer (LCP), known as BOB (Braid Optimized for Bending), was considered the 

most appropriate construction. 

Another JIP was created in 2002 to address the development of an installation system based on 

synthetic ropes, which was known as FRDS (Fibre Rope Deployment System). According to 

Ingeberg et al. [8], the first system developed could work at 3000 m depth and withstand 50 

tonnes. The system consisted of a BOB cable passing through several sheaves before entering 

the drum. It could operate on heaving compensation mode or constant tension and had auto-

matic landing/retrieving options. A field test considering the installation of a 35 tonnes piece 

of equipment demonstrated the functionality of the system.  

Further details of the efficiency of the system and integrity of the synthetic rope of the FRDS 

were presented by Torben et al. [9] in 2007. In their work, they described the installation of 60 

equipment, showing a reduction on the global operational times compared to traditional lifting 

procedures. In 2008, Torben et al. [7] presented updated results about the synthetic rope integ-

rity. They showed that, after 6 months of operation and the installation of 140 pieces of equip-

ment, no fibre had been damaged and external layers were in good conditions.  

An improved system, capable of working with 250 tonnes in double fall configuration, was 

developed and tested as presented by Torben et al. [10] in 2011. The system was assembled in 

the Skandi Santos vessel and the tests were conducted in the North Sea with a load of 100 tonnes 

at 940 m depth. The results were satisfactory, indicating no torsion of the cable in the double 

fall configuration. Another vessel that uses the FRDS is the Aker Wayfarer, as presented by Job 

et al. [11] in 2018. This system has a capacity to withstand 290 tonnes in the double fall con-

figuration and has been used for the installation of subsea manifold in the Pre-Salt fields, in 

Brazil. 

An alternative solution developed to install heavy equipment in deep water fields was the Pen-
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dulous Installation Method. In this method, the equipment is dropped from the sea surface con-

nected by a polyester rope and falls on an overdamped pendulous motion, avoiding high dy-

namic loads in the resonance zone. According to Cerqueira et al. [12] and Costa and Lima [13], 

the method was patented in 2003. Scale models (1:35 and 1:70) and a dummy manifold (in the 

scale 1:1) were used to assess the viability of the operation. Following this preliminary phase, 

two manifolds, weighting up to 280 tonnes, were installed at 1900 m depth using this method 

in 2006 and 2007, attesting its effectiveness to install heavy equipment in deep waters.  

A study on the use of the pendulous installation method for the deployment of a 195 tonnes 

manifold at 1500 m depth in China was also presented by Wang et al. [14]. They described the 

operational procedure and the numerical study conducted, showing the economic viability of 

the method compared to traditional lifting procedures. 

Alternative solutions based on towing operations, via submerged buoys, were proposed by sev-

eral authors [15–18] to install heavy equipment in deep water fields. The studies detail the pos-

sibility to install and recover equipment using low costs vessels with increased operational 

weather windows in comparison to traditional procedures. A drawback of this procedure is the 

need for a proper harbour to connect the equipment to the buoy. 

In 2011, another innovative method was proposed for the installation of heavy equipment in 

deep waters [19,20]. This method is known as Y-method and it consists of two vessels support-

ing the payload using a Y rigging configuration. Dynamic amplifications at the resonance zone 

can be reduced in this method by controlling the distance between the two vessels. The authors 

presented experimental and numerical analysis to support the effectiveness of this method. 

Other illustrative examples of non-conventional installation procedures to install subsea equip-

ment can be found in the literature. The experimental and numerical evaluation of the installa-

tion of a support structure for risers was presented by Fujarra et al. [21] and the installation of 

a 60,000 tonnes oil storage tank at 135 m depth was presented by Velema and Bokhorst [22] in 

2015. 

During the past decade, the installation of offshore wind turbines grew considerably and several 

studies were also published regarding the installation of these structures. In 2013, Sarkar and 

Gudmestad [23] presented a preliminary technical feasibility study for a new methodology to 

install monopile based wind turbines. They showed that the method had the potential to be more 

robust than traditional alternatives at the time.  
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In 2017, Acero et al. [24] described a novel procedure for the installation of the tower and Rotor 

Nacelle Assemblies on bottom fixed foundations. The procedure was based on an inverted pen-

dulum principle that could eliminate the use of huge heavy lifting vessel for the operation. Fol-

lowing a numerical study, they showed the procedure was viable for the example scenario. 

A novel concept for replacement or installation of offshore wind turbine blades was proposed 

by Acero et al. [25] in 2020. Their system consisted of a medium-sized jack-up crane vessel 

and a tower climbing mechanism, that provided a stable platform for clamping, lowering and 

lifting the blades. A case study of a 5 MW offshore wind turbine was studied, demonstrating 

the technical feasibility of the concept. 

A comparative assessment of the vessels to install offshore wind turbines, including cost pre-

dictions, was presented by Ahn et al. [26] for an application in the Korean sea and by Paterson 

et al. [27] for the United Kingdom scenario. In addition, Lacal-Arantegui et al. [28] studied the 

evidence for the reduction of installation times of offshore wind turbines by analysing the data 

for the installation of 87 wind farms from 2000 to 2017.  

Finally, the works of Frazer et al. [29], Wang et al. [30] and McPherson [31] presented a review 

of the methods available for the installation of subsea equipment by the time they were written. 

Particularly, Wang et al. [30] also describe a list of the vessels capable of performing the lifting 

operations. Reviews on the methods to install offshore wind turbines were presented by Esteban 

et al. [32], Haselsteiner et al. [33] and Jiang [34].  

2.2 Dynamics of offshore lifting operations 

Offshore lifting operations are typically classified in four different phases: lifting in air, lower-

ing through the wave zone, lowering through deep waters and landing on the seabed. Each of 

these phases must be analysed in order to predict the loads on the system and check if these 

loads are within safe limits. The main outcome of the analysis is an operational weather win-

dow, which details the sea states (combination of wave height and period) that lead to a safe 

operation. Specific models found in the literature to analyse each of these phases are presented 

in this Section. 

2.2.1 Phase 1 – Lifting in air 

During the lifting in air phase (Figure 2.1), the payload is released from its sea-fastening, lifted 

off the deck and then lowered into the ocean waves or transferred to the desired location. The 
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main concern during this phase is the large motions of the payload induced by the vessel move-

ment or wind, which can lead to impacts and damages in adjacent structures or in the payload 

itself. 

 
Figure 2.1: Representation of the lifting in air phase of the operation.  

Early works on the dynamics of floating cranes started to be published during the end of the 

20th century. A 9-DOF model was developed by Schellin [35] in 1991 to evaluate the response 

of a shear-leg crane ship in waves. The model included the coupled dynamics of the vessel 

(translation and rotation) and payload (translation), nonlinear mooring forces and hydrody-

namic forces on the vessel. It was found that wave groups with period near the resonance of 

swing motion of the payload were relevant for defining the limits of the operation, in contrast 

to slowly varying motions which did not affect the hook load response. 

Parametric resonances due to time-varying stiffness of the lifting line was studied by Witz [36] 

in 1995. Once more, a 9-DOF model was considered and time domain integration was used to 

obtain the response of the payload in random seas. It was concluded that the effects of paramet-

ric excitation were less significant for random seas compared with regular seas, but were still 

sufficient to influence the operability limits of the vessel. 

The influence of the nonlinear mooring forces on the dynamics of floating cranes was experi-

mentally assessed by Clauss and Vannahme [37] in 1999. The study showed that when motion 

amplitudes were large, the nonlinear term of the mooring forces governed the response of the 

system. This led to 2:1 and 3:1 sub-harmonic resonance, causing an increase of motion and load 

amplitudes. 

Experimental, numerical and analytical studies on the nonlinear dynamics of moored floating 

cranes were conducted by Ellerman et al. [38,39] in the beginning of the 2000s. The model 
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considered 4-DOF (surge, heave and pitch for the vessel and the swing angle of the payload); 

only head seas were considered acting on the vessel; the moored forces were modelled as a 

cubic polynomial; and hydrodynamic forces, including quadratic viscous terms, were included. 

They showed that nonlinear phenomena, such as sub-harmonic resonances and bifurcations, 

could occur and affect the operating limits of the floating vessel. 

The analysis of the installation of the Gas Modules for the Njord FPU (Floating Production 

Unit) was experimentally and numerically studied by Van der Wal et al. [40]. The experimental 

tests were conducted using 1:50 scale models of the crane vessel, the FPU and the Gas Modules. 

The results from the experiments were considered an input to calibrate the data for a numerical 

model. Next, the computational model was used to assess the weather window of the real oper-

ation. 

Multibody system dynamics were used to study the response of a heavy payload suspended by 

a floating crane in the work of Cha et al. [41] in 2010. In this study, the equation of motion was 

obtained by considering a 12-DOF system, including all the three translational and three rota-

tional degrees-of-freedom of both the vessel and the payload. The motion of the system and the 

tension in the lifting rope were calculated, which could be used as a guide for the planning of 

the operation. Following this study, similar methodology was used to model the dynamics of 

the floating crane by considering: the nonlinear effects of the hydrostatic force [42] and crane 

stiffness [43]. More recently, direct application of the methods presented in [41–43] to the lift-

ing in air of a subsea manifold was presented by Hong et al. [44] in 2016. 

The dynamical model presented by Cha et al. [41] led to numerical instability when the stiffness 

of the rope was large. In order to avoid this problem, Ham et al. [45] used the Discrete-Euler-

Lagrange equation to formulate the problem and they considered the rope as a constrain for the 

motion of the vessel and the payload. The results presented confirmed the stability of the pro-

posed method. 

A numerical and experimental study on the dynamics of a mating operation of a topside module 

by a floating crane was presented by Ha et al. [46] in 2018. The model considered the coupled 

motions of the crane barge, the payload and the vessel where the topside module should be 

connected. The forces due to the waves, mooring lines and thrusters were included; the connec-

tion of the crane barge to the payload was modelled by a bi-linear elastic cable; and a soft 

landing system was included to represent the mating of the payload. Regular and irregular 

waves were analysed and the results demonstrated a good agreement between the numerical 
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model and the experiments.   

During the 2010s the installation of offshore wind turbines grew considerably and many studies 

focused their attention on the dynamics of these operations. Graczyk and Sandvik [47] analysed 

the performance of two different vessels during lift-off and landing operations of offshore wind 

turbine components. The acceleration and impact loads on the deck were assessed and, after 

comparison to limiting criteria, the operational weather window was presented for both vessels. 

Ku and Roh [48] used the model presented in [41] to study the dynamics of the installation of 

a fully assembled offshore wind turbine by a floating vessel. They considered a system with 

14-DOF, including the 6-DOF of both the vessel and turbine plus the roll and yaw of the nacelle. 

The results illustrated the dynamic amplification of forces on the lifting lines during the lifting 

off, translating to desired position and landing on its foundation. 

The modelling of the landing of an offshore wind turbine onto its supporting structure was 

presented by Ming et al. [49]. The authors considered a 11-DOF coupled model, an elastic 

cable, the possibility of slack conditions for the cable and the impact loads when the turbine 

hits the supporting structure. The influence of the wave and landing velocity on the dynamics 

of the system was assessed, providing a tool to estimate the optimal conditions to perform the 

operation. 

Recently, several studies have been conducted at NTNU (Norwegian University of Science and 

Technology) on the dynamics of the installation of offshore wind turbines. Acero et al. [50] 

presented a methodology to predict the operational weather window for the installation of off-

shore wind turbine transition pieces onto a monopile foundation. Ren et al. [51] presented the 

development of a modularized blade installation simulation toolbox for the purpose of control 

design; and Zhao et al. [52] developed a fully coupled model for the installation of single blades 

by jack-up vessels considering the hydrodynamic and aerodynamic loads, soil-structure inter-

action and flexibility of crane and jack-up legs. Jiang et al. [53] presented a parametric study 

on the installation of single blades by jack-up vessels onto monopiles, where the influence of 

water depth, mean wind speed, turbulence intensity, and wind-wave misalignment on the dy-

namics of the system was stressed. An assessment of the impact loads during a single blade 

installation by a jack-up vessel was presented by Verma et al. [54], illustrating that bending and 

plastic deformations of the guide pin could occur in certain scenarios. The dynamics of single 

blade installation by floating cranes, and its comparison with jack-up vessels, was presented by 

Zhao et al. [55], where it was shown that the operation with the floating vessel is possible as 
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long as slowly varying motion of the vessel could be mitigated by the dynamic position system. 

Finally, the use of passive tuned mass dampers attached at the tower top during the installation 

of single blades was assessed by Jiang et al. [56] and Verma et al. [57], highlighting the poten-

tial to increase the operability of the vessel for the mating phase by using these devices. 

2.2.2 Phase 2 – Lowering through the wave zone 

The lowering through the wave zone (Figure 2.2) starts when the payload crosses the surface 

of the sea and lasts until it reaches depths where the kinematics of the sea waves are not relevant 

(i.e. typically around 50 m depth). During this phase, hydrodynamic forces due to the relative 

motion of the payload inside the waves, slamming loads and varying buoyance forces are cru-

cial to the dynamics of the system. Dynamic amplifications due to these loads can lead the 

violation of the structural limits of the lifting system or induce slack conditions in the cable. 

Therefore, careful assessment of the dynamics of the system during this phase is necessary to 

guarantee the safety of the operation. 

 
Figure 2.2: Representation of the lifting through the wave zone phase of the subsea lifting operation.  

An early work on the dynamics of subsea lifting operations in the wave zone is due to Kopsov 

and Sandvik [58] in 1995. They analysed the installation of a pre-drilling template using a non-

linear time domain program. Close to the water surface, the hydrodynamic coefficients were 

considered dependent on the distance from the payload to the surface. Results showed that, in 

the wave zone, the forces were dominated by the direct action of the waves on the structure; the 

motion of the vessel was found to be secondary. 

Several studies were conducted by Li et al. [59–61] on the installation of monopiles for offshore 

wind turbines. In [59], their model considered the coupled dynamics of the monopile and the 
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crane vessel, variable length cable and the effects of the vessel shielding on the wave field. The 

results showed that wave shielding could reduce extreme loads on the system depending on the 

vessel heading and wave length. In [60], they analysed the non-stationary response of the low-

ering operation by assuming stepwise steady-state conditions. Further, the hydrodynamic forces 

on the monopile were modelled by a modified Morison’s equation, which included potential 

damping terms. It was found that the inclusion of the potential damping reduced the response 

of the structure at the monopile rotational natural frequency, which could lead to wider opera-

tional weather windows. In [61], the installation of a rigid large subsea spool was considered 

by using the methodologies presented in [59,60]. It was shown that sufficient wave seeds were 

necessary to account for transient effects during the lowering process; shielding effects actually 

decreased the allowable significant wave heights for the operation due to unbalanced wave 

loads in the spool; and increased operability could be obtained by controlling the heading of the 

vessel. 

A study on slamming loads on suction anchors was presented by Naess et al. [62] in 2014. They 

conducted experimental and numerical (i.e. Computational Fluid Dynamics - CFD) studies to 

calibrate the slamming coefficients of the suction cans, which were used as input for time do-

main simulation software (i.e. SIMO from Marintek). The outcomes obtained showed correla-

tion between model tests and CFD; and the results from SIMO agreed well with experience 

from real operations. 

The dynamics of a fully submerged cylindrical payload suspended by a crane barge was ana-

lysed by Hannan and Bai [63,64]. They modelled the system via a three-dimensional numerical 

wave tank using a fully nonlinear potential flow model in the time domain based on the bound-

ary element method. Different wave directions, cable lengths and lowering velocities were con-

sidered. The results showed the presence of a large mean drift force at high frequencies due to 

shielding effects and various nonlinear effects, such as sub-harmonic motion and period dou-

bling. 

Jeong et al. [65] considered a multibody system model to analyse the lifting operation of a 

subsea equipment. They included the effects due to the lowering speed, snap loads, collisions 

with the vessel, slamming and varying buoyance forces. Several environmental and operational 

conditions were simulated, illustrating the influence of each factor on the dynamics of the sys-

tem. 

Kane’s formalism was used by Raman-Nair et al. [66] to develop a fully coupled model of the 
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deployment or retrieval of a cylinder from a rectangular barge. The model approximated the 

first order wave forces via simplified analytical equations, considered an elastic cable connect-

ing the barge to the cylinder and included forces due to the mooring of the barge. The motion 

of the system and tension on the lifting line was presented for different operational conditions, 

illustrating the effectiveness of the model to predict the dynamics of the system. 

2.2.3 Phase 3 – Lowering into deep waters 

The lowering into deep waters phase of the subsea lifting operation (Figure 2.3) starts when the 

payload finishes to cross the wave zone (i.e. typically around 50 m depth) and lasts until the 

payload is positioned some meters above the sea floor. During this phase, large dynamic loads 

can occur in the system due to the wave induced motion of the crane tip, especially when the 

natural frequency of the cable-payload system matches any of the excitation frequencies. Fur-

ther, horizontal offsets due to the current are expected to occur; and the static tension on the top 

of the cable increases due to its weight as the payload reaches deeper waters. To guarantee the 

safety of the operation, it is necessary to assure that the loads in the system are always bellow 

the structural limits. Also, slack conditions are typically to be avoided as they can lead to large 

snap loads in the cable and unpredictable motions of the payload. 

 
Figure 2.3: Representation of the lowering into deep waters phase of the subsea lifting operation.  

The possible first study regarding the dynamics of deep water lifting operations is due to the 

consulting company Arthur D. Little [67] in a report for the USA Navy Department in 1963. In 
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this study, the subsea lifting system was modelled as a continuum bar element subjected to a 

sinusoidal displacement at the top of the cable. The drag force acting on the payload was line-

arized and the forces on the cable were obtained analytically. It was shown that effects of ocean 

currents were negligible, provided that the vertical forces due to gravity minus buoyancy were 

much larger than the horizontal drag forces due to the currents. Vertical friction along the cable 

was also found to be minor in comparison to the drag acting on the payload, and it was argued 

that the velocity of sound in the cable should be as high as possible, making the resonant fre-

quencies large so that they would lie on the cut-off edge of the spectrum of a given sea state. 

Another report for the USA Navy Department was published by Holmes [68] in 1966, as a 

continuation of the work by Arthur D. Little Co. [67]. In this case, the dynamic model for the 

system was equal to that presented in [67] and a wider range of parameters were considered to 

evaluate the forces on the system, which were presented as non-dimensional charts. Further, a 

design procedure was provided, where the maximum allowable input amplitude for the lifting 

operation, as a function of the input frequency, could be obtained by direct analysing the non-

dimensional charts provided. This procedure was verified against a real subsea lifting opera-

tions, but, in some depths, the measured stresses on the cable exceed by a factor of 2 the calcu-

lated stresses. It was argued that these deviances were due to uncertainties in the hydrodynamic 

coefficients and in the input. 

A study considering the stochastic aspects of the operations was presented by Iwan [69] in 1972. 

In this paper, the author considered a suspended cable-payload system connected to a buoy at 

the top. The nonlinear discretized equation of motion was replaced by a pseudo-linear system, 

that was obtained via an equation difference minimization technique. Then, the steady-state and 

stationary random response was obtained via an iterative procedure considering different pa-

rameters. Some general conclusions regarding the response of the system were presented. Par-

ticularly, the nonlinear drag force was found to have a significant contribution to the dynamics 

of the system. 

An early application regarding deep sea mining was presented by Chung and Whitney [70] in 

1983, where the axial vibration of a pipe attached to an equipment in its lower end was studied. 

In their work, the pipe was modelled as a continuum bar element and the drag at the equipment 

was linearized. They showed that resonance amplifications could occur depending on the mass 

of the payload, geometric properties and length of the pipe. 

An important paper on the field was published by Niedzwecki and Thampi [71] in 1991, where 
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a simplified single degree-of-freedom model was considered to predict the occurrence of snap 

loads in the cable based on three dimensionless groups: the frequency, the displacement and the 

damping ratios. Through the use of this model, the analyst could infer if snap conditions would 

occur and, if so, use a multi degree-of-freedom model to predict the forces in the cable in the 

time domain.  

A study presented by Huang [72] in 1999 detailed the stability of the taut-slack response of a 

submerged cable-body system through a single degree-of-freedom system. It was shown that 

the system could become unstable, especially at low damping conditions, and chaotic motion 

could occur. 

A series of studies were published by Driscoll, Lueck and Nahon in 2000 [73–76] addressing 

the dynamics of tethered cage mounted ROV (Remotely Operated Vehicle) systems. They pre-

sented measurements of the motion of the ship and the cage in real operations [73], showing 

that the vessel and the payload were only coupled vertically, so that unidimensional models 

could be sufficient to represent the dynamics of the system. They also indicated that the system 

could be in resonance conditions at certain depths; and snap loads could occur, leading to prop-

agation of waves inside the tether. The third and fifth harmonics, generated due to the quadratic 

drag term, were also reported in the response of the system, but for moderate ship displace-

ments, were not preponderant in the total response. Further, the author presented analytical and 

numerical models to represent the dynamics of the system. The analytical models [74,75] con-

sidered a continuum bar element and a linearized drag force that were used to calculate the 

displacement and tension transfer functions of the system and to infer the possibility of snap 

loads. The numerical model [76] was based on a finite element representation of the cable and 

included the drag force in its nonlinear quadratic form. This model was integrated in the time 

domain and led to more accurate representation of the dynamics of the system. It was argued 

that deviations between the model and measure data were due to deficiencies in the representa-

tion of the hydrodynamic forces by constant hydrodynamic coefficients; in this context, the 

authors showed that the use a simplified wake model, simulating the influence of the history of 

the flow, could increase the accuracy of the finite element model in comparison to measured 

data. 

The possibility of heave induced pitch resonance during the installation of suction piles was 

presented both experimentally and numerically by Huang et al. [77] in 2011. In this study, an 

equivalent damped Mathieu equation was used to interpret this phenomenon. It was found that 



36 

 

the heave induced pitch resonance could occur if both (a) the pitch natural frequency was 

roughly one half of the heave natural frequency, and (b) the heave excitation frequency was 

approximately equal to the heave natural frequency. 

An experimental and numerical study on the lifting of a subsea manifold in deep waters was 

conducted by Nam et al. [78] in 2017. The coupled dynamics of the crane barge and the payload 

was analysed using a linearized frequency domain approach. It was found that the suspended 

payload increased the roll motions of the vessel even in head seas. Also, the vertical motion of 

the payload under stochastic input presented significant components at the natural frequency of 

the cable-manifold system and at the natural frequencies of the vessel. Finally, Passive Heave 

Compensation (PHC) could reduce the dynamic response of the system by shifting its natural 

frequency. 

Other studies considering the use of passive heave compensation were presented by Driscoll et 

al. [79] in 2000, where the effectiveness of ship-mounted and cage mounted PHC system were 

assessed; and by Quan et al. [80] in 2016, where the influence of subsea currents was consid-

ered. Both these studies reported the capacity of the PHC system to reduce the dynamic loads 

during the operation. 

The use of synthetic ropes in combination with steel wire cables was covered by Neto et al. 

[81] in 2019. They showed that axial resonance amplifications could occur at shallow depths 

for the synthetic cable and at deeper waters for the steel wire cable, due to the difference of 

stiffness of these materials. Therefore, the correct selection of the length of polyester cable and 

the depth where it is attached to the steel wire cable could reduce the total axial dynamic forces 

on the system and increase the operational weather window. 

The studies presented above considered a constant length cable in their models, so no influence 

of the winch speed on the dynamics of the system was presented. The assumption of variable 

length cables is also recurrent in the literature. An early study on this topic was presented by 

Wang et al. [82] in 1998, where a finite element model for an underwater cable with time-

dependent length was considered. More recent studies were presented by Hu and Liu [83] in 

2015, studying the installation of deep sea mining structures; Hu et al. [84] in 2017, considering 

the lifting of subsea trees by marine risers; Gao et al. [85] in 2020, considering the lowering of 

medium size manifold; and Quan and Chang [86] in 2020, assessing the response of a drill rig 

suspended by a tether. All these works highlighted the influence of the winch speed on the 
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dynamic loads in the cable, reinforcing the importance of considering this variable when plan-

ning subsea lifting operations. Theoretical aspects of variable mass systems, which can be di-

rectly applied to the scenario of subsea lifting operations considering variable length cables, 

can be found in the works by Pesce et al. [87,88] and Cveticanin [89]. 

Other representative examples of studies addressing the dynamics of deep water subsea lifting 

operations can also be found in the literature. Morrison and Cermelli [90] studied the installa-

tion of suction piles via a simplified single degree-of-freedom model. The installation of a suc-

tion can was considered by Ireland et al. [91]. Jacobsen and Leira [92] considered the dynamics 

of suspended payload during a towing operation. A comparison of the natural frequencies of 

the system calculated by using an analytical continuous model and a lumped mass model was 

presented by Richter et al. [93]. Parametric transversal resonances due to axial tension varia-

tions were studied via Mathieu equation by Kang et al. [94,95]. Time domain analysis was used 

to study the complete installation of a manifold in the South China Sea by Chen et al. [96]. The 

pendulous vibration due to current excitation using a single degree-of-freedom model by the 

method of averaging was presented by Li et al. [97]. A virtual reality software for the simulation 

of subsea lifting operations was presented by Zhang et al. [98]. An Orcaflex model for the 

installation of subsea manifold by using drilling pipes was considered by Wang et al. [99]. The 

installation of a subsea manifold by the sheave method considering the software Orcaflex was 

analysed by Zhao et al. [100]. The quasi-static analysis of a drill pipe during the installation of 

subsea trees was presented by Qin et al. [101] and natural frequencies of this system was con-

sidered by Xiao et al. [102]. 

2.2.4 Phase 4 – Landing on the seabed 

The final phase of the subsea lifting operation is the landing on the seabed or onto a hosting 

structure. During this phase, it is important to guarantee the correct positioning of the payload 

and to avoid high impact loads on the system in order to avoid damages on the structures.  

The dynamic models presented to model the lowering into deep water phase (Section 2.2.3) can 

typically be used to model the landing phase. In this context, the displacement, velocity and 

acceleration of the payload can be evaluated and the operational weather window can be con-

structed by checking if these variables are within specified limits. 

Specific studies on this phase consider active control strategies to guarantee the correct posi-

tioning of the payload. For example, How et al. [103,104] designed a control strategy based on 
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the use of thrusters on the payload, while Simoes et al. [105] based their modelling on the 

control of the motions of the lifting platform. 

2.3 Control Systems 

Control strategies to alleviate dynamic loads and increase the operational weather window of 

offshore lifting operation can be typically classified in passive or active systems. Besides the 

studies presented in the above Sections describing passive strategies, a great review on the use 

of passive heave compensation systems was presented by Woodacre et al. [106] in 2015.  

Active control strategies to reduce the pendulum motion of the payload during lifting on air has 

been covered by several authors. Henry et al. [107] controlled the motion via actuation on the 

boom-luff angle, while Masoud et al. [108] controlled the slew and luff angles. A tagline pro-

portional-derivative control method was used by Ku et al. [109]. The installation of offshore 

wind turbine components was considered in the study by Ren et al. [110], where an active 

control scheme was proposed to control the tugger line forces acting on the blade during the 

final installation phase before mating. 

Controlling the dynamics of the system in moonpool operations has also been considered in 

several studies. Johansen et al. [111] used a wave synchronization approach in their work. 

Skaare and Egeland [112] considered a parallel force/position method, showing improved re-

sults in comparison with active heave compensation and wave synchronization methods. Mess-

ineo et al. [113,114] considered a control strategy to reduce slamming loads, keeping the ten-

sion on the wire within acceptable bounds.  

Regarding the deep water lifting scenario, Bohm et al. [115] presented the boundary control for 

the displacement of a payload hanging by a cable under the action of a steady current. A semi-

active heave-compensation system was designed and experimentally evaluated by Quan et al. 

[116], showing an increased efficiency in comparison to the passive counterpart. Another study 

considering a semi-active system was presented by Li et al. [117]. 

2.4 Hydrodynamics of oscillating bodies 

During the lowering through the wave zone or into deeper waters, the payload is subjected to 

hydrodynamic forces due to its oscillatory motion inside the water or due to the direct action of 
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the ocean waves on the structure. The correct prediction of these forces is essential for an ac-

curate determination of the global dynamics of the lifting system. Due to the high complexity 

of this time-dependent flow, which may account for viscous effects, oscillation of the payload 

inside its own wake and transition from laminar to turbulent regimes, no closed solution exists 

to represent the hydrodynamic forces acting on the payload. Approximate solutions are then 

typically used to estimate these forces. 

A recurrent approach found in the literature and in commercial software is the use of Morison’s 

equation [118] to estimate the hydrodynamic forces. This formulation was originally developed 

for the analysis of surface wave loads on piles back in 1950 and it accounts for a term that is 

proportional to the acceleration and a term proportional to the square of the velocity. These two 

terms require the knowledge of two coefficients: the added mass and drag coefficients, which 

depend on the shape of the structure and flow conditions. 

Another relevant early work on this field is due to Keulegan and Carpenter [119] in 1958. This 

study presented the added mass and drag coefficients of cylinders and plates on oscillating flows 

for various conditions. The authors showed that the hydrodynamic coefficients were dependent 

on a non-dimensional number given by the amplitude of the velocity multiplied by the period 

of oscillation and divided by the characteristic length of the body. This non-dimensional num-

ber was lately named as Keulegan-Carpenter number (KC). 

Building on these two classical works ([118,119]), a great variety of studies have been pub-

lished on the determination of the hydrodynamic coefficients for different geometries and flow 

conditions. The rest of this Section presents a review on the studies addressing the determina-

tion of these coefficients for relevant structures on the context of subsea lifting operations. 

2.4.1 Simplified geometries 

The prediction of the hydrodynamic coefficients for simplified geometries such as cylinders 

and plates is recurrent in the literature. These simplified geometries are often used as structural 

components of subsea structures, justifying their relevance. An important reference on the hy-

drodynamics of cylinders was presented by Sarpkaya [120] in 2010. This work included a re-

view of the state-of-art on this topic, stressing the influence of the number of Reynolds (Re) 

and Keulegan-Carpenter (KC) in time-dependent flows. Another important aspect highlighted 

by Sarpkaya is the difficulty in finding an accurate and general representation of the hydrody-

namic forces on offshore applications. This is due to the random nature of turbulence and the 
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large parameter space in any real application. 

Recent studies on the hydrodynamic of cylinders are also frequent on the literature. Hu et al. 

[121] presented in 2017 an experimental study on the nonlinear hydrodynamics of a floating 

cylinder in oscillatory flow alone and combined with a current. The hydrodynamic damping of 

circular cylinders was experimentally obtained for KC numbers lower than 5 and Reynolds be-

tween 103 to 105 with and without background current by Gao et al. [122] in 2020. Direct nu-

merical simulation was used by Ren et al. [123] in 2021 to analyse the oscillatory flow around 

a cylinder for various Keulegan-Carpenter and Stokes numbers. 

A relevant reference on the hydrodynamics of flat plates is the review presented by Molin [124] 

in 2011. In this study, Molin presented a summary of his studies on the hydrodynamic of per-

forated plates. Particularly, a theoretical model was presented by Molin for the calculation of 

the added mass and damping coefficients of the perforated plates, which were dependent on a 

non-dimensional number referred as porous Keulegan-Carpenter number (KC̃). The results ob-

tained were in agreement with experimental data for several geometries in both forced motion 

or subjected to incoming waves. 

An experimental and numerical study on the hydrodynamics of rectangular plates was presented 

by An and Faltinsen [125] in 2013. The numerical model combined potential flow theory with 

nonlinear viscous pressure loss. A domain decomposition technique was used combining a 

boundary element method in the inner domain and an analytical representation of the velocity 

potential in the outer domain. The results obtained showed the dependence of the hydrodynamic 

coefficients with KC and agreed with experimental data, especially in the deep submerged cases. 

Li et al. [126] presented an experimental investigation of the hydrodynamic coefficients of 

heave plates in forced oscillation. Results considering the influence of the amplitude and fre-

quency of oscillation, plate depth, thickness-to-width ratio, shape of the edge, perforation ratio 

and hole size were presented. Among other findings, it was argued that the added mass in-

creased with KC, while the frequency of oscillation had little influence.  

The influence of the proximity to the seabed and amplitude of oscillation of heave plates was 

investigated by Garrido-Mendoza et al. [127] in 2015. Numerical simulations via a finite vol-

ume solver showed that, for low KC numbers, increasing the seabed proximity resulted in an 

increased added mass and damping coefficients. 

An experimental investigation on the hydrodynamics of flat plates for the KC ranging from 0.15 
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to 3.15 was conducted by Tian et al. [128] in 2016. The influence of the thickness ratio, shape, 

edge corner radius, perforation ratio and hole size were analysed for single plate configuration, 

and spacing effects was considered also in the double and triple plates configuration.  

A series of studies were published by Mentzoni and Kristiansen [129–131] in 2020 and 2021 

on the numerical and experimental investigation of the hydrodynamics of perforated plates. The 

numerical solver was based on the solution of the Navier-Stokes equations in two dimensions. 

It was found that the hydrodynamic coefficients were highly dependent on the amplitude of the 

oscillation. Influence of the period of oscillation was found to be minor. The authors also 

showed that separation at the edges of the plate were important on the calculation of the damp-

ing coefficient.   

2.4.2 Complex structures 

Subsea lifting operations are typically conducted for the installation or recovery of complex 

structures on the seabed, such as manifolds, X-trees, protection structures, etc. Direct correla-

tion to simplified geometries (as those presented in the above Section) when evaluating their 

hydrodynamic coefficients is not straightforward and, most of the times, not possible. There-

fore, it is necessary to study the hydrodynamic of these complex structures in detail in order to 

obtain an accurate representation of the dynamic of the subsea lifting operations. 

Fernandes and Mineiro [132] published a study describing the translational and rotational added 

mass coefficients of a manifold in 2007. They used the panel method and an experimental setup 

based on a constant acceleration towing. The results showed coherence between the models, 

which were argued to be directly applicable to the pendulum installation scenario, where rota-

tional motions are expected. 

An experimental evaluation of the hydrodynamics of an ROV (Remotely Operated Vehicle) 

was presented by Avila and Adamowski [133] in 2011. They conducted forced oscillation tests 

in a full-scale open-frame ROV. The results showed a large influence of the KC number and a 

low influence of the period of oscillation (particularly for KC > 3) on the hydrodynamic coef-

ficients. 

A detailed study on the hydrodynamics of suction anchors was published by Solaas and Sandvik 

[134] in 2017. Different perforation ratios of the top plate and different height to diameter ratios 

were considered in their study. Influence of these variables and the amplitude of oscillation 

were highlighted and showed agreement with previous data on the literature. 
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Another study on the determination of the hydrodynamic coefficients of subsea manifolds was 

presented by Du et al. [135] in 2020. Experimental and numerical studies (via Computational 

Fluid Dynamics) were conducted and it was found that the added mass increased nearly linearly 

with the KC number and was not significantly affected by the period of oscillation. 

Finally, Pestana et al. [136] studied the variation of the added mass and drag coefficients with 

the KC number for three subsea manifold geometries. They considered an experimental setup 

to perform oscillatory tests with 1:35 scale models representing the different geometries. The 

results showed a linear increase of the added mass with KC and a reciprocal relation of the drag 

coefficient with KC. 

2.5 Discussion 

Based on the references presented in this Chapter, some key aspects of offshore lifting opera-

tions can be highlighted. Analysing the historical perspective, it is clear the presence of some 

periods of time when attention has been given to particular aspects of the operation. During the 

end of the 20th century, early models were studied, focusing on oil and gas applications. During 

the 2000s, attention was given to deep water operations due to the new frontier for the explora-

tion of hydrocarbons at that time. Finally, the past decade was marked by the increase on the 

studies regarding the installation of offshore wind turbines. This trend to focus on renewable 

energy is expected to get even larger importance on the future, as new renewable technologies, 

such as floating wind and wave energy convertors, achieve a more mature level. 

Regarding the design methodologies, great attention has been given to the development of gen-

eral numerical tools to predict the dynamics of the lifting system and, therefore, enable the 

analysts to estimate a safe weather window for real operations. In addition, the development of 

control methods to alleviate the dynamic loads on the system has been considered by several 

authors, while the study of the hydrodynamics of oscillation bodies has been focused by many 

others. 

However, few studies have actually been published on the impact that intrinsic nonlinearities 

of the system can have on the dynamics of the system and how this can affect the planning of 

the operation. This thesis aims to address this issue, focusing on the deep water lowering phase 

of the operation. As presented in Section 1.2, the emphasis is to model the system assuming a 

variable length cable and include the nonlinear aspects introduced by the hydrodynamic forces 

on the system due to the oscillatory motion of the payload inside the water. Finally, the models 
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to be developed in this thesis are general in the sense that they can be used on any type of 

application, both on the oil and gas or renewable energy perspective.  
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3. A DYNAMIC MODEL TO EVALUATE THE INFLUENCE OF 

THE LAYING OR RETRIEVAL SPEED ON THE INSTALLATION AND 

RECOVERY OF SUBSEA EQUIPMENT 

The original version of this paper has been published in Applied Ocean Research (v. 77, p. 34-

44, 2018) by R. B. Tommasini, L. O. Carvalho and R. Pavanello [137] addressing the objective 

n. 1 of this thesis (as per Section 1.2.3). In this study, a single degree-of-freedom model, taking 

into account a variable length cable, has been presented to explore the influence of the winch 

speed on the dynamics of deep water subsea lifting operations. 

 

Abstract 

A new model for the dynamics of a cable-mass system representing the installation or retrieval 

of subsea equipment is analysed. It considers a one-degree of freedom system, which is able to 

account for the variation of the cable’s length during the time, simulating the equipment laying 

or recovering process. Also, the cable’s mass is included in the analysis and the hydrodynamic 

forces are modelled by the Morison’s equation. The resulting nonlinear equation of motion is 

integrated over the time domain via a predictor-corrector Newmark-𝛽 method. Firstly, the pro-

posed model is compared with an Orcaflex model on fixed and variable length scenarios. The 

results show that the proposed model gives accurate solutions in comparison with the finite 

element model through all the depths evaluated, even at zones where super-harmonic response 

occurs. Secondly, the influence of payout speed on the dynamics of the system is assessed. 

Here, the system presents a variation on the static and dynamic forces, especially at the reso-

nance zone. Finally, an operational weather window is generated for a specific case, which 

shows that the acceptable sea states change depending on the laying or retrieval speed consid-

ered. This highlights the importance of using models that account for the payout speed when 

analysing subsea equipment installation and retrieval operations.  
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Nomenclature 

𝐴 Cross-section area of the cable 

𝐴𝑝 Vertical projected area of the equipment 

𝐶𝑑 Drag coefficient of the equipment 

𝐸 Elastic modulus of the cable 

𝐹𝑠𝑡𝑎𝑡𝑖𝑐 Static force on the cable 

𝑔 Gravity acceleration 

𝐻𝑠 Significant height 

ℎ(𝑡) Function for the movement of the vessel at the lifting point 

ℓ Length of the cable from the equipment to a given point 

𝐿 Full suspended length of the cable 

𝑀𝑎𝑑𝑑 Added mass 

𝑀𝑒𝑞 Mass of the equipment 

𝑚′ Linear mass of the cable 

𝑤 Displacement of the equipment 

𝑤0 Displacement of the top of the cable 

𝑤ℓ Displacement of a material point within the cable 

𝜌 Specific mass of the water 

ℚ Nonconservative generalized forces 

𝑆𝑊𝐿 Safe Working Load 

𝑇𝑝 Peak period 

𝕋 Kinetic energy 

𝑡 Time 

𝕍 Potential energy 

𝑉 Volume of the equipment 

𝑉𝑐(𝑡) Function for the payout/retrieval speed 

( )̇  First derivative over the time domain 

( )̈  Second derivative over the time domain 

| | Absolute value of a variable 

3.1 Introduction 

Subsea production systems have been used in offshore oil production for the past fifty years. 

One of the most costing activities to implement a subsea layout is the installation of equipment 

on the seafloor, mainly due to the high daily costs of dedicated vessels used on these operations. 
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The two main approaches considered to reduce these costs, preserving the safety requirements, 

are the development of new installation methods, and the improvement of the methodologies to 

analyse these operations. 

Regarding the development of new installation methods, the first ones considered the use of a 

drilling rig to deploy the equipment on the seafloor. This procedure is usually expensive and 

subjected to tight schedule restrictions since the main task of these rigs is the drilling of subsea 

wells. To overcome this challenge some new installation procedures have been proposed. Rov-

eri, de Oliveira and Moretti [2] described the installation of a manifold by a multiple slings 

technique. They showed that this method was efficient and cheaper than the traditional ones on 

their application. Further, Nelson et al. [3] proposed the use of buoy-chain device in-line with 

the hardware to be deployed to reduce the dynamic loads on the system. Another innovative 

solution is known as the pendulous installation method [14,138,139]. This procedure enables 

the use of low-cost support vessels to install heavy equipment in ultra-deep water. Great effort 

[5,7,9,10] was also made to qualify and provide an installation system based on synthetic ca-

bles. This system is of huge value as the increase of the cable’s mass tends to lead to prohibitive 

weather windows on ultra-deep water. More recently, some authors [16–18] described a method 

in which the equipment is assembled to a submerged floating device in sheltered waters and 

then transported in a towing operation until the installation location. Since the equipment is not 

directly connected to the vessel in this scenario, the operation presents lower weather re-

strictions. Lastly, a review of the available methods to install subsea equipment is described by 

[29–31]. 

On the other hand, the improvement of the analysis methodologies is useful since it allows the 

industry to have more accurate solutions regarding the system’s dynamics, which leads to wider 

installation windows preserving the safety requirements. The firsts studies [1,67,71] about the 

deployment of subsea loads considered analytical approaches, linearizing the drag force acting 

on the equipment and solving the resulting equations in the frequency domain. Later, some 

authors [71,140–142] considered systems which were solved in the time domain, accounting 

for the nonlinear drag forces and the possibility of predicting snap loads on the cable. While 

these works were focused only on the dynamics of a suspended cable, Kopsov e Sandvik [58] 

detailed all the steps that should be addressed in an installation analysis: liting from the deck, 

lowering through the splash zone, lowering into deep water and landing on the seabed. More 

recently, fluid-structure interaction models have been used [76,143–145] to predict the dynam-

ics of the equipment in the wave zone. Although this tends to lead to more realist results, the 
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computational cost is somewhat prohibitive. Finally, as a general guide, the recommended prac-

tice DNV-RP-H103 [146] provides simplified models for all the installation analysis steps, 

guidance for choosing hydrodynamic coefficients, and recommendations on how to use nonlin-

ear dynamic models. 

The lowering into deep water is one of the critical steps to be analysed when the final installa-

tion depth is high. In this case, the cable-equipment system may achieve a resonance regime 

due to the motion induced by the ocean waves. The common feature of the traditionally used 

models to analyse this step [1,58,67,71,140–142,146] is that the equipment is considered to be 

placed at a given depth and the cable has fixed suspended length. Therefore, to perform a full 

installation analysis, it is necessary to run several simulations with the equipment positioned at 

different depths. This procedure is considered valid according to the recommended practice 

DNV-RP-H103 [146]; however, it does not take into account the influence that the laying or 

retrieval speed might have on the dynamics of the system and on the operational weather win-

dow. 

Even though these models do not consider the influence of the payout speed on the dynamics 

of the system, some works have already been presented dealing with this effect. The models 

proposed by [147–150] focused their efforts on the installation of submarine cables (such as 

communication or control cables); Wang, Fung and Lee [82] considered a finite element model 

to analyse an underwater cable with time-dependent length, while Hu et al. [84] modelled the 

dynamics of a rigid riser with variable length during the installation of a subsea production tree. 

Outside the subsea area, Terumichi et al. [151] presented a model for the analysis of a string 

with variable length representing an elevator system; Moustafa et al. [152] dealt with the dy-

namics of overhead cranes during the load hoisting or lowering; and Du et al. [153] presented 

a model for the analysis of variable length cables to be used on large scale radio telescopes. 

Further, the version 10.2 of the commercial software Orcaflex [154], which was released in 

2017, introduced the possibility of line feeding, enabling the users to analyse cables being laid 

or hauled. 

Based on the works presented above, two main gaps may be pointed out regarding the method-

ologies to analyse the installation and recovery of subsea equipment.  The first one is the lack 

of a simple model that is able to account for the influence of the payout speed on the dynamics 

of the system during the laying or recovery process. The existents models that deal with the 

payout speed [82,84,147–154] consider discretized systems, which take longer times to run the 
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required simulations to construct a complete operational weather window. This is a crucial 

point, especially if an analysis is needed to be run aboard the vessel during the operation. The 

second one is the absence of studies presenting results of how the dynamics of the installation 

or recovery operation is affected by the payout speed, since the aforementioned works focused 

their results on the validation of the method or on different applications.  

Consequently, this paper presents two main objectives: (1) to propose a simple model suitable 

to analyse subsea equipment installation and retrieval operations, which is able to account for 

the variation of the cable’s length during the time, simulating the equipment laying or recover-

ing process, and (2) to present results regarding the influence of the payout speed on the dy-

namics of the system and on the operational weather window. 

The proposed model is based on a one-degree of freedom system, in a similar manner as de-

scribed by Niedzwecki and Thampi [71]. However, it includes the possibility of varying the 

suspended length of the cable throughout time, and it considers the drag force on its nonlinear 

form. This model is then compared with the results presented by Orcaflex, in order to assess its 

accuracy on fixed and variable cable’s length scenarios. Finally, the model is used to predict 

the influence of the payout speed on the dynamics of the system, and on the operational weather 

window for installation and retrieval operations. 

3.2 Variable length cable-equipment model 

Previous work has shown that in the absence of time-varying currents or large horizontal ex-

cursions of the vessel, the ship and the equipment are only coupled vertically. Therefore, a one-

dimensional model is sufficient to represent the system [76]. Further, the system is considered 

to have one degree of freedom, which is the vertical displacement of the equipment.  

It is also considered that the dynamics of the vessel is uncoupled from the dynamics of the 

cable-mass system. This assumption is normally acceptable and will give conservative results, 

as the object in most cases tends to reduce the vertical crane tip motion [146]. 

The mass of the cable is included in the analysis, and its suspended length is modeled as variable 

throughout time. Besides, a linear stress-strain relation and an elastic behavior are considered 

for the cable. Consequently, snap loads are not possible to be predicted by the proposed model, 

and only positive values for the efforts on the cable should be considered as valid results. 

Figure 3.1 represents the proposed model. The displacement of the top of the cable and the 
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displacement of the equipment are respectively denoted by 𝑤0 and 𝑤. As a simplification, it is 

considered that the cable is fully submerged, and the hydrodynamics forces act only at the 

equipment. These assumptions are usually taken for one-degree of freedom systems [1,71]. 

 
Figure 3.1: Proposed model for the evaluation of subsea equipment installation and retrieval opera-

tions.  

The resulting equation of motion for this system may be obtained via Lagrange’s equation, 

which can be stated as [155]:  

𝑑

𝑑𝑡
(

𝜕𝕋

𝜕𝑤̇
) −

𝜕𝕋

𝜕𝑤
+

𝜕𝕍

𝜕𝑤
= ℚ (3.1) 

It is then necessary to evaluate the kinetic (𝕋) and potential energies (𝕍), and the non-conserva-

tive generalized forces (ℚ) acting on the system as a function of the generalized coordinate 𝑤. 

The kinetic energy of a differential cable element (𝑑ℓ) is given by: 

𝑑𝕋𝑐𝑎𝑏𝑙𝑒 =
1

2
𝑚′𝑑ℓ𝑤̇ℓ

2 (3.2) 

Since a one-degree of freedom system is used, the velocity of a material point within the cable 

(𝑤̇ℓ) is considered to be the linear interpolation between the velocity of the top of the cable (𝑤̇0) 

and of the equipment (𝑤̇):  

𝑤̇ℓ = 𝑤̇ +
ℓ

𝐿
(𝑤̇0 − 𝑤̇) (3.3) 

Therefore, integration along the cable’s length and the addition of the kinetic energy of the 

equipment lead to the total kinetic energy of the system: 
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𝕋 =
𝑚′𝐿

6
(𝑤̇0

2 + 𝑤̇0𝑤̇ + 𝑤̇2) +
1

2
𝑀𝑒𝑞𝑤̇2 (3.4) 

A similar approach is used to obtain the total potential energy of the system, which is given by 

the summation of the gravitational potential energy of the cable and the equipment, and the 

elastic potential energy of the cable: 

𝕍 =
(𝑚′ − 𝜌𝐴)𝑔𝐿

2
(𝑤0 + 𝑤) + (𝑀𝑒𝑞 − 𝜌𝑉)𝑔𝑤 +

1

2

𝐸𝐴

𝐿
(𝑤0 − 𝑤)2 (3.5) 

The hydrodynamic force acting on the equipment, modeled by Morison’s equation [118], is 

considered to be an external non-conservative force. Consequently: 

ℚ = −𝑀𝑎𝑑𝑑𝑤̈ −
1

2
𝜌𝐶𝑑𝐴𝑝𝑤̇|𝑤̇| (3.6) 

Substituting Equations (3.4) to (3.6) into Equation (3.1), and considering that the cable’s length 

is variable within time, it is possible to obtain the following equation of motion for the system1: 

(𝑀𝑒𝑞 + 𝑀𝑎𝑑𝑑 +
1

3
𝑚′𝐿) 𝑤̈ + (

𝑚′𝐿̇

3
+

1

2
𝜌𝐶𝑑𝐴𝑝|𝑤̇|) 𝑤̇ +

𝐸𝐴

𝐿
𝑤

= −
(𝑚′ − 𝜌𝐴)𝑔𝐿

2
− (𝑀𝑒𝑞 − 𝜌𝑉)𝑔 +

𝐸𝐴

𝐿
𝑤0 −

𝑚′𝐿̇

6
𝑤̇0 −

𝑚′𝐿

6
𝑤̈0 

(3.7) 

This equation must be solved for the displacement of the equipment (𝑤) as a function of the 

imposed movement of the top of the cable (𝑤0, 𝑤̇0, and 𝑤̈0), considering that the cable’s length 

is variable with the time: 𝐿 = 𝐿(𝑡). In comparison with the equation presented by [71], some 

differences arise: the terms 𝑚′𝐿𝑤̈/3 and −𝑚′𝐿𝑤̈0/6 were introduced because of the assump-

tion that the cable’s mass is considered in the analysis; while the terms 𝑚′𝐿̇𝑤̇/3 and −𝑚′𝐿̇𝑤̇0/6 

were included due to the fact that the cable’s length is variable within time. Further, the influ-

ence of the weight of the cable and of the equipment is included as an external force; therefore, 

the static deformation due to these loads will be part of the solution. Lastly, the hydrodynamic 

force acting on the equipment sums the added mass on the inertia term, and introduces a quad-

ratic force, making the system nonlinear. 

In order to solve Equation (3.7), it is necessary to specify the displacement (𝑤0), the velocity 

                                                 
1 The equation of motion presented in this study is similar to the equation obtained by Quan and Chang [86] for a 

finite element representation of an unidimensional variable-length cable, except for one momentum flux term 

(𝑚′𝑉𝑐
2/2) due to the variation of mass in the system. This term is negligible for the example presented in this study 

(i.e. maximum value of 12.3 N, compared to other terms in the order of hundreds of kN). For different applications, 

this term might be significant and included in the analysis. 
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(𝑤̇0) and the acceleration (𝑤̈0) on the top of the cable. In this scenario, they may be considered 

as: 

𝑤0 = ℎ(𝑡) + ∫ 𝑉𝑐(𝑡)𝑑𝑡 (3.8) 

𝑤̇0 = ℎ̇(𝑡) + 𝑉𝑐(𝑡) (3.9) 

𝑤̈0 = ℎ̈(𝑡) + 𝑉̇𝑐(𝑡) (3.10) 

where ℎ(𝑡) is a function that represents the movement of the lifting point under the influence 

of the ocean waves, and 𝑉𝑐(𝑡) is a function for the payout speed (being positive when recovering 

cable and negative when releasing cable). The movement of the lifting point may be given by 

a specified sinusoidal signal or by the product of the displacement RAO of the vessel and the 

wave spectrum, as detailed by [156]. 

It is also required to set the length of the cable and its variation through time to solve Equation 

(3.7): 

𝐿 = 𝐿0 − ∫ 𝑉𝑐𝑑𝑡 (3.11) 

𝐿̇ = −𝑉𝑐 (3.12) 

Finally, the efforts on the top of the cable and on the equipment2 are given by: 

𝐹𝑡𝑜𝑝 =
𝐸𝐴

𝐿
(𝑤0 − 𝑤) +

(𝑚′ − 𝜌𝐴)𝑔𝐿

2
 (3.13) 

𝐹𝑒𝑞 =
𝐸𝐴

𝐿
(𝑤0 − 𝑤) −

(𝑚′ − 𝜌𝐴)𝑔𝐿

2
 (3.14) 

3.2.1 Numerical implementation 

Equation (3.7) is integrated over the time domain via a predictor-corrector form of the Newmark 

β-method [157]. This choice is made due to the fact that this algorithm has successfully been 

                                                 
2 The term named force on the equipment (𝐹𝑒𝑞) actually refers to the force on the bottom part of the cable. This 

nomenclature might be misleading, as the equipment, in addition to the force due to the cable, is also subjected to 

hydrodynamic, inertia, gravitational and buoyancy forces. Nonetheless, the force obtained in Eq. (3.14) is the 

correct term to be compared against design criteria presented in Section 3.3, as this is the force acting on the pad-

eyes of the equipment and on the cable. 
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used on similar applications [71] and is unconditionally stable when using the undamped trap-

ezoidal rule. 

Further, in order to avoid high dynamic transients at the beginning of the simulation, two ap-

proaches are taken into consideration. The static solution of the system is used as an initial 

condition for the displacement of the equipment. And a pre-simulation time is included, when 

the values for ℎ(𝑡) and 𝑉𝑐(𝑡) are ramped from zero to their final values via a sigmoid function. 

3.3 Operational weather window 

The operations of installing and recovering subsea equipment are usually classified as weather 

restricted (as defined by DNV-OS-H101 [158]). Therefore, during the planning phase, it is nec-

essary to specify the weather conditions that guarantee the safety of the operation, which is 

known as the operational weather window. According to DNV-RP-H103 [146], a safe proce-

dure should check if the maximum efforts are not higher than the safe working load (𝑆𝑊𝐿) of 

any component of the lifting system, and if the minimum efforts are 10% higher than the static 

load on each point of cable (𝐹𝑠𝑡𝑎𝑡𝑖𝑐), in order to prevent slack conditions.  

Given that, Table 3.1 presents the algorithm considered to define the weather window in an 

installation-retrieval operation of subsea equipment for the model proposed in this paper. 

Table 3.1: Algorithm for the evaluation of the operational weather window for the proposed model. 

1. Set the data for a given operation; 

2. For each sea state (Significant Height and Peak Period), calculate: 

a. The movement of the equipment over the time according to Equation (3.7); 

b. The efforts on the top of the cable and on the equipment over the time 

according to equations (3.13) and (3.14); 

c. Check for the acceptance criteria (𝐹𝑐𝑎𝑏𝑙𝑒 ≤ 𝑆𝑊𝐿, and 𝐹𝑐𝑎𝑏𝑙𝑒 ≥ 0.1𝐹𝑠𝑡𝑎𝑡𝑖𝑐): 

i. If both criteria are fulfilled, the sea state is acceptable; 

ii. Otherwise, the sea state is unacceptable; 

3. Build the operational weather window with the acceptable sea states. 

If an irregular wave approach is considered, it is then necessary to perform several runs for each 

sea state (step 2a-b). The design values to be compared against the acceptance criteria may be 

obtained via a maximum value statistical analysis. In this work, the design value is taken as the 

maximum and minimum values obtained on 95% of the sea states considered. 



53 

 

3.4 Numerical results and discussion 

The scenario considered in the sequence to evaluate the proposed model is presented in Table 

3.2. This scenario represents an operation for a medium size manifold, being lifted by a 3 in 

diameter steel wire rope. 

Table 3.2: Input data for the evaluation of the proposed model3. 

Parameter Value 

Cable 

Linear mass (𝑚′) 24.6 kg/m 

Area (𝐴) 4098 mm2 

Axial stiffness product (𝐸𝐴) 315 MN 

Safe Working Load (𝑆𝑊𝐿) 1100 kN 

Equipment 

Mass (𝑀𝑒𝑞) 60 tonnes 

Volume (𝑉) 7.63 m3 

Area (𝐴𝑝) 56.95 m2 

Added mass (𝑀𝑎𝑑𝑑) 300 tonnes 

Drag coefficient (𝐶𝑑) 7 

Newmark method Time step  0.1 s 

3.4.1 Verification of the proposed model for fixed length cases 

The first analysis aims to evaluate the system’s response considering no payout speed and a 

sinusoidal displacement imposed on the top of the cable. In this case, to evaluate the dynamics 

of the system during all the installation/retrieval process, several independent time domain anal-

yses are run, each one considering a fixed cable’s length. The results from the proposed model 

are then compared with those obtained using the commercial software Orcaflex, which discre-

tizes the cable in several elements (in this example, 30 elements were considered) and also 

includes the nonlinearities due to the hydrodynamic force.  

The sinusoidal imposed displacement is considered to have an amplitude of 0.3 m and the time 

domain analyses are run for 100 s. Figure 3.2 illustrates the maximum (superior curve) and 

minimum (inferior curve) forces acting on the top of the cable and on the equipment as a func-

tion of the depth of the equipment (unstretched cable’s length). Figure 3.2 a-b, c-d and e-f con-

sider an imposed sinus with period of 5 s, 9 s and 13 s, respectively.  

                                                 
3 The terminal velocity for this manifold (the maximum velocity achieved during free fall inside the fluid) is equal 

to 1.6 m/s. This value can be considered as an upper boundary for the pay-out speed. In this study the maximum 

pay-out speed considered is 1 m/s, which is less than the terminal velocity.  
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It is possible to see that the mean traction on the top of the cable increases linearly with the 

depth, since the total weight of the suspended cable also increases with the depth. Further, the 

peak of the system’s response occurs at different depths when varying the imposed sinus period.  

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 3.2: Maximum and minimum efforts on the top of the cable and on the equipment as a function 

of the equipment’s depth. The imposed sinus has amplitude 0.3 m and period: (a-b) 5 s, (c-d) 9 s, and 

(e-f) 13 s.  
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This is due to the fact that the resonance period of the system varies as a function of the sus-

pended cable’s length: for greater depths, the resonance period tends to be higher. Besides, there 

are other peaks of response at depths where the natural frequency of the system matches an odd 

harmonic of the exciting frequency. At those depths, there is more than one sinusoidal compo-

nent on the response of the system, which is known as super-harmonic response [155]. 

Figure 3.3 represents the traction on the top of the cable considering an exciting sinus of am-

plitude 0.3 m and period 9 s at the zone where super-harmonic response occurs (200 m depth). 

Figure 3.3a is the time domain curve and Figure 3.3b is the Fourier transform of that signal. 

The graphs show the two sinusoidal components on the response of the system. The first one 

has amplitude equal to 60 kN, and frequency of 0.11 Hz (similar to the forcing frequency);  

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 3.3: Traction on the top of the cable for an exciting sinus of amplitude  0.3 m and period 9 s. 

(a) Time domain graph for 200 m depth; (b) Fourier transform for 200 m depth; (c) Time domain 

graph for 1000 m depth; (d) Fourier transform for 1000 m depth.  

while the second has amplitude equal to 18 kN, and frequency of 0.33 Hz (three times the forc-

ing frequency and equal to the resonance frequency at this depth). This second component is 
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the responsible for the increase in the dynamic response of the system at this depth. On the 

other hand, Figure 3.3c-d show the traction on the top of the cable for the equipment at 1000 m 

depth. In this case, the natural frequency of the system (0.15 Hz) does not match an odd har-

monic of the exciting frequency, and consequently there is only one sinusoidal component on 

the response. 

3.4.2 Verification of the proposed model for variable length cases 

Considering a variable length scenario, the results obtained from the proposed model were again 

compared with the results presented by the commercial software Orcaflex. In this case, an im-

posed sine wave on the top of the cable was considered of amplitude 0.3 m and period of 9 s, a 

laying speed of 0.1 m/s, and 30 elements along the full length of the cable for the Orcaflex 

model. Figure 3.4 presents the maximum and minimum efforts on the top of the cable (Figure 

3.4a) and on the equipment (Figure 3.4b) for the two models. These results illustrate the accu-

racy of the proposed model in comparison with a discretized model in predicting the dynamics 

of the system when the payout speed is considered in the analysis. Similar results were also 

obtained for different payout speeds considered. Further, it is possible to see that the zone where 

the super-harmonic response occurs is extended when the payout speed is considered. At this 

region, the efforts on the system present a dynamic transient due to the changing in the ampli-

tude of the super-harmonic component from the moment it appears until it vanishes. 

(a) 

 

(b) 

 
Figure 3.4: Comparison of the system’s response for a variable length scenario considering an im-

posed sinus on the top of the cable of amplitude 0.3 m and period of 9 s, and a laying speed of 

0.1 m/s. (a) Force on the top of the cable; (b) Force on the equipment.  

The next example of this section considers the response of the system when the payout speed 

is considerably low. In this case, Figure 3.5 presents the response of the system considering a 
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laying speed of −0.01 m/s, a retrieving speed of  0.01 m/s, and the response of the system 

obtained from a fixed length analysis (in a similar way as presented in Figure 3.2c-d). The 

results obtained from these three analyses are similar, which suggests that the variable length 

model gives comparable response to fixed length analysis as long as sufficiently low laying or 

retrieval speeds are considered. This is an expected result since, for low payout speeds, the 

system has enough time to reach a permanent response at each water depth, mirroring a fixed 

length analysis. 

(a) 

 

(b) 

 
Figure 3.5: Comparison of the system’s response for a low payout speed (0.01 𝑚/𝑠) and a fixed 

length analysis. The imposed displacement at the top has an amplitude of 0.3 𝑚 and period of 9 𝑠. (a) 

Force on the top of the cable; (b) Force on the equipment.  

The results presented in sections 3.4.1 and 0 showed that the proposed and the Orcaflex models 

give similar results even at zones where super-harmonic response is present. This adherence of 

results may be explained by a modal analysis of the cable-equipment system. Table 3.3 presents 

the 4 first natural vibration periods for the equipment at 3000 m depth (calculated by the Or-

caflex model). The first vibration mode refers to the vertical oscillation of the equipment, sim-

ilar to a one-degree of freedom system. The other modes consider internal axial vibrations along 

the cable. One may notice that these three higher modes have a natural period in a region that 

is not excited in installation and retrieval operations, as they are outside of the frequency range 

of the ocean waves (peak period usually between 5 s and 13 s for the Campos Basin, Brazil). 

This can be seen as a reason for the similarity of results between a one degree-of-freedom sys-

tem and a discretized model, since the first vibration mode is the one that is majorly excited in 

this scenario.  
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Table 3.3: Natural vibration periods for the system at 3000 m depth. 

Vibration mode Vibration period (𝐬) 

1 12.03 

2 1.64 

3 0.84 

4 0.56 

Consequently, one-degree of freedom models may be an efficient and accurate way to predict 

the dynamics of an installation or retrieval operation as long as the modes that result in internal 

axial vibrations along the cable are not majorly excited. 

3.4.3 Influence of the payout speed on the dynamics of the system 

The first example of this section illustrates how the payout speed affects the static force acting 

on the cable during the deployment or recovery of the equipment. For this scenario, it was 

considered that the vessel remains stationary (ℎ(𝑡) = 0), while the cable is laid or recovered 

with a given speed. Figure 3.6 presents the static force acting on the equipment for several drag 

coefficients as a function of the laying speed (Figure 3.6a) and hauling speed (Figure 3.6b). For 

low speeds, the static force on the equipment equals the submerged weigh of the equipment. As 

the speed is increased, the static force decreases in a quadratic way for the case of laying and 

increases (also in a quadratic way) for the case of hauling. It is equally noticeable that the drag 

coefficient has a direct influence on the response. These results suggest that the variation of the 

static force on the system is due to the action of a constant drag force on the equipment when it 

is laid or recovered at a given speed.  

(a) 

 

(b) 

 
Figure 3.6: Influence of the payout speed on the static force for different drag coefficients. (a) Laying 

conditions, and (b) recovering conditions. 
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The second example consists of evaluating the influence of the payout speed on the dynamic 

efforts on the system. In this scenario, it is considered a sinusoidal imposed displacement of 

amplitude 0.3 m and period 9 s. Figure 3.7 presents the dynamic effort on the equipment as a 

function of the water depth for different payout speeds and drag coefficients (𝐶𝑑 = 3 in Figure 

3.7a and 𝐶𝑑 = 7 in Figure 3.7b). It is noticeable that there is a transition point when the fre-

quency ratio4 is about 0.75 (in this case, at 935 m depth). After this point (depths greater than 

935 m), as the payout speed is increased, the peak of response tends to reduce and to occur at 

shallower waters. However, before this point (depths smaller than 935 m), the efforts tend to 

increase if the speed is also increased. Further, depending on the drag coefficient and payout 

speed considered, the maximum response may even occur before this transition point (as seen 

in Figure 3.7b when 𝑉𝑐 ≤  −0.8 𝑚/𝑠). Additionally, the zone where super-harmonic response 

occurs is extended and its peak occurs at slightly deeper waters if the speed is considered in the 

analysis. 

(a) 

 

(b) 

 
Figure 3.7: Influence of the payout speed on the dynamic force for different laying speeds and con-

sidering (a) 𝐶𝑑 = 3 and (b) 𝐶𝑑 = 7. 

It is also important to mention that the payout speed plays an extra role when the system is 

exposed to irregular excitations on the top of the cable (representing a real sea state). In this 

case, the exposure time of the system under the influence of the waves decays in an inversely 

proportional manner with the payout speed, since the final depth is fixed for a given operation. 

Therefore, increasing the payout speed reduces the probability of the system to be subjected to 

high amplitude waves and, consequently, reduces the probability of high efforts on the system. 

                                                 
4 The frequency ratio in this case is the ratio of the forcing frequency and the fundamental resonance frequency 

for a given depth. 
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3.4.4 Influence of the payout speed on the operational weather window 

The last example consists in evaluating the operational weather window for several laying and 

retrieval speeds. This scenario considers an imposed irregular displacement on the top of the 

cable, given by the product of the displacement RAO of the vessel (Appendix A) and a JON-

SWAP wave spectrum fitted for the Campos Basin, Brazil. For each sea state, 20 different seeds 

are considered for the irregular wave train. 

The operational weather window obtained from a fixed length analysis is presented in Table 

3.4. The cells marked in light gray are considered valid sea states, while blank cells represent 

unacceptable sea states. This weather window implies an availability of the vessel of 66% and 

would be used both for installing or retrieving operations if the user decided to plan its operation 

based on fixed length models. 

Table 3.4: Operational weather window for a fixed length analysis 

𝐻𝑠(𝑚)/𝑇𝑝(𝑠) 5 6 7 8 9 10 11 12 13 

1.4          

1.6          

1.8          

2.0          

2.2          

2.4          

2.6          

2.8          

3.0          

On the other hand, Figure 3.8 illustrates the difference on the availability of the vessel as a 

function of the payout speed for installing and retrieving cases. For the installation of the equip-

ment (Figure 3.8a), as the laying speed is increased, the availability of the vessel increases until 

achieving a maximum when 𝑉𝑐 = −0.4 m/s and then starts to decrease continually. This is due 

to the fact that the increase of the speed tends to reduce the maximum efforts at the resonance and 

reduces the exposure of the system to higher wave amplitudes. However, if the laying speed gets 

sufficiently high, the steady drag force acting on the equipment makes the cable more prone to 

slack, restricting the weather window.  

For the recovering scenario (Figure 3.8b), the behavior of the system is slightly different. Even 

though there is a local maximum when 𝑉𝑐 = +0.6 m/s, the availability of the vessel is more 

likely to decrease as the speed is increased. In this case, the increase on the static force on the 

system is preponderant over the reduction on the dynamic efforts on the system, and the system 

tends to violate the criterion of maximum efforts on the cable. 
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It is important to mention however that the change in the weather window depends on the sce-

nario to be evaluated (combination of equipment, cable, vessel and final installation depth). For 

example, if the safe working load of the cable is sufficiently high, there might be a scenario 

where the increase of the retrieval speed will only lead to an increase on the weather window, 

differently from the example presented before. 

As a general outcome, the operational weather window is directly influenced by the payout 

speed considered for the operation. This influence depends on the combined effect of the vari-

ation of the static and dynamic efforts on the system, and the variation of the exposure time of 

the system under the influence of irregular waves. This might result in an increase or decrease 

of the availability of the vessel depending on the scenario considered. 

This result has a direct impact on the planning of subsea equipment installation and recovery 

operations since the use of traditional models that consider a fixed cable length may not always 

lead to a safe or to a cost effective operation. Specifically, for the example presented in this 

section, if an installation operation was to be executed, the use of variable length analysis would 

lead to an increase in the availability of the vessel and, thus, in a cheaper operation. On the 

other hand, if a recovery operation was considered, the use of a fixed length model would indi-

cate as safe some sea states that are not actually acceptable, which could risk the operation. 

(a) 

 

(b) 

 
Figure 3.8: Influence of the payout speed on the availability of the vessel for (a) laying conditions and 

(b) recovering conditions. 

Despite the results presented before, some remarks should be made regarding the model pro-

posed. Firstly, the hydrodynamic coefficients considered on Morison’s equation are usually 

given either for an object on a steady flow or for an object on an oscillating flow. The scenario 
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presented in this work considers the combination of both: the equipment is oscillating and mov-

ing at a constant speed. Therefore, it may be necessary to evaluate the hydrodynamic coeffi-

cients via an experimental or numerical method as a function of both the payout and oscillating 

speed. Secondly, the model proposed is only valid for scenarios where internal vibrations modes 

are not excited by the movements of the vessel. When this assumption is not valid, a discrete 

model may be the most suitable choice. Finally, a risk analysis may be necessary when deciding 

to perform an installation or retrieval operation based only on a variable cable’s length analysis, 

since the winch of the vessel may stop working during the operation. In this case, the equipment 

would be placed at a given depth for an arbitrary period, which could expose the system to 

unpredicted loads and jeopardize the operation. 

3.5 Conclusions 

A one-degree of freedom system was developed to evaluate the installation and retrieval of 

subsea equipment considering the influence of the payout speed. The model considered a vari-

able length cable, included the influence of the cable’s mass and used Morison’s equation to 

represent the hydrodynamic forces acting on the equipment. The resulting nonlinear equation 

of motion was integrated over the time domain via a predictor-corrector form of the Newmark 

β-method. 

The proposed model was evaluated for fixed and variable length scenarios. The results showed 

that the proposed model gave accurate results in comparison with an Orcaflex model through 

all the depths evaluated, even at zones where super-harmonic response occurred. Furthermore, 

the results showed that the increase of the laying speed tended to reduce the static force on the 

system, while the increase on the retrieval speed led to an increase of the static force. Regarding 

the dynamic efforts, a transition point was noticed when the frequency ratio was about 0.75. 

After this point, the maximum dynamic force tended to reduce its value as the payout speed 

was increased and tented to occur at shallower depths. Before the transition point, the efforts 

increased if the payout speed increased. Also, the maximum dynamic force could even occur 

before this point depending on the payout speed and drag coefficient considered. 

Finally, the operational weather window and, consequently, the availability of the vessel were 

directly influenced by the payout speed considered for the operation. Depending on the scenario 

and payout speed, the availability of the vessel could be increased or decreased due to the com-

bined effect of the variation on the static and dynamic efforts, and the exposure time of the 
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system under the influence of irregular waves. This is a key point, since the use of traditional 

models that consider only fixed length scenarios may not always lead to safe or cost effective 

operations. 

3.6 Appendix 

Table 3.5 presents the vertical displacement RAO of the lifting point for a typical support vessel 

used in installation and retrieval operations. 

Table 3.5: Displacement RAO for the lifting point. 

Angular frequency (𝐫𝐚𝐝/𝐬) Complex value 

0.0000 

0.2094 

0.2513 

0.3142 

0.3307 

0.3491 

0.3696 

0.3927 

0.4054 

0.4189 

0.4333 

0.4488 

0.4654 

0.4833 

0.5027 

0.5236 

0.5464 

0.5712 

0.5984 

0.6283 

0.6614 

0.6981 

0.7392 

0.7854 

0.8378 

0.8976 

0.9666 

1.0472 

1.1424 

1.2566 

1.3963 

1.5708 

0.9922 - 0.0238i 

0.9922 - 0.0238i 

0.9841 - 0.0336i 

0.9600 - 0.0667i 

0.9490 - 0.0710i 

0.9369 - 0.0754i 

0.9182 - 0.0799i 

0.8918 - 0.0844i 

0.8739 - 0.1023i 

0.8560 - 0.1035i 

0.8312 - 0.1037i 

0.8011 - 0.1021i 

0.7608 - 0.1135i 

0.7128 - 0.1031i 

0.6446 - 0.0980i 

0.5535 - 0.0639i 

0.4258 + 0.0522i 

0.4706 + 0.4361i 

1.0478 + 0.1883i 

0.8101 - 0.1687i 

0.5644 - 0.2251i 

0.3506 - 0.2270i 

0.1327 - 0.1864i 

-0.0854 - 0.0903i 

-0.2526 + 0.0824i 

-0.2605 + 0.2838i 

-0.0725 + 0.3160i 

0.0524 + 0.1229i 

0.0491 - 0.0246i 

0.0235 - 0.0319i 

-0.0092 - 0.0011i 

-0.0024 - 0.0032i 
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4. PREDICTION OF DESIGN LOADS FOR DEEP WATER SUBSEA 

LIFTING OPERATIONS BASED ON NON-STATIONARY TIME 

RESPONSE 

The original version of this paper has been published in Marine Structures (v. 74, n. 102818, 

2020) by R. B. Tommasini, R. Pavanello and L. O. Carvalho [159] addressing the objective n. 

2 of this thesis (as per Section 1.2.3). This study discusses the determination of the extreme 

loads in subsea lifting operations modelled by using a variable length cable assumption, such 

as presented in Chapter 3. In this case, the response of the system under stochastic excitation is 

non-stationary and specific techniques are required to estimate the design loads. The following 

study presents two methodologies to deal with this problem. 

 

Abstract 

Two methodologies for the prediction of the design loads of deep water subsea lifting opera-

tions crossing resonance zones are presented. These methodologies are applicable to models 

that consider the influence of the payout speed on the dynamics of the operation, leading to a 

non-stationary time series for the dynamic forces on the system. The first model is based on 

running several random simulations of the same scenario and using these simulations as a sam-

ple in which statistical parameters are inferred. The second model uses a weighted least squares 

approach to predict a normalizing function that is used to evaluate the statistical parameters of 

the response. Both models are tested by considering the installation of a typical manifold in the 

Pre-Salt fields, in Brazil, and are able to predict the general form of the envelope of forces on 

the cable for various sea states and payout speeds. The models also provided similar results for 

the availability of the vessel after evaluating the weather window for this operation. Finally, the 

advantages of using the weighted least squares approach in comparison to the direct method are 

discussed, since it may considerably reduce the total number of simulations required to perform 

a real operation assessment, especially during preliminary design phases. 
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Nomenclature 

𝐴𝑝 Vertical projected area of the equipment 

𝐶𝑎 Added mass coefficient of the equipment 

𝐶𝑑 Drag coefficient of the equipment 

𝐸𝐴 Axial rigidity of the cable 

𝐷 Axial dynamic force on the cable 

𝐹 Axial force on the cable 

𝑔 Gravity acceleration 

𝐻𝑠 Significant wave height 

ℎ Vertical displacement of the vessel at the lifting point 

𝑘 Number of times steps 

𝐿 Suspended length of the cable 

𝐿0 Initial suspended length of the cable 

𝑀 Mass of the equipment 

𝑚 Linear mass of the cable 

𝑚𝑠 Equivalent submerged linear mass of the cable 

𝑁 Normal probability distribution function 

𝑛 Number of occurrences of a random process 

𝑤 Displacement of the equipment 

𝑤0 Displacement boundary condition on the top of the cable 

𝑆 Axial static force on the cable 

𝑆𝑊𝐿 Safe Working Load 

𝑇𝑝 Peak period of the wave 

𝑇𝑧 Mean zero up crossing period of the wave 

𝑡 Time 

𝑉 Volume of the equipment 

𝑉𝑐 Payout speed 

𝛼 Ratio for the position of the cable 

𝛽 Coefficients of the normalizing function 

𝜎𝐷 Standard deviation of the dynamic force on the cable 

𝜎𝜓 Standard deviation of the normalized dynamic force on the cable 

𝜆 Weighting function 

𝜂 Number of cycles of the dynamic forces 

𝜌 Density of the sea water 
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𝜓 Normalized dynamic force on the cable 

Φ Constant value 

𝜙 Normalizing function 

4.1 Introduction 

Subsea lifting operations are among the most expensive activities required to develop an off-

shore oil and gas field. Further, emerging technologies such as the exploration of offshore re-

newable energy and deep sea mining also require the installation of equipment on the seafloor. 

Therefore, much effort has been made by the industry and the academy to reduce the global 

costs of these operations in order to achieve profitable offshore exploration systems. 

The beginning of the study of subsea lifting operations trace back to the 1960’s, when a report 

considering the dynamics of underwater ship-suspended loads was published [67]. After this 

pioneer study and following the increase on the water depth of the offshore oil fields, many 

studies have been conducted discussing the dynamics of subsea lifts. A highly influential paper 

was published by Niedzwecki and Thampi [71] which provided means to predict the possibility 

of slack conditions on the cable based on a simple and effective model. Many other models 

were also presented by several authors dealing with different features of this problem, such as 

the presence of snap loads in submerged cables [76,160–162], the dynamics of the system at 

the wave zone [58,65,144,163,164] and at deep water [93,96,165], the use of passive or active 

heave compensation systems [78,79,106], and the determination of hydrodynamic coefficients 

for subsea structures [124,125,132]. Much of this work have been grouped in the recommended 

practice DNV-RP-H103 [146], which is currently used as the technical basis for the analysis of 

subsea lifting operations. 

In the last years, other different approaches to reduce the cost or even enable otherwise unviable 

operations has been considered, such as the development of new subsea lift methods. The pen-

dulous installation method provided means to install heavy equipment at ultra-deep water fields 

without the need of specialized crane vessels [14,166]. Many authors presented technologies 

based on a wet tow of the equipment by means of a floating structure in order to uncouple the 

motions of the vessel and the motion of the equipment to be installed [15,18]. Other recurrent 

approach considered is the use of synthetic cables on the operation [10,81,167], reducing the 

maximum top tension on the cable and avoiding resonance conditions at specific scenarios. 



67 

 

More recently, the installation of structures for offshore energy production has increased con-

siderably, leading to the publication of various studies [23,28,59]. 

Among the phases of a typical subsea lifting, the lowering into deep water presents several 

challenges. Depending on the scenario considered, the motion induced by the ocean waves may 

lead to a resonance regime, causing high dynamic forces on the system. Another difficulty is 

the increase in the suspended weight of the cable as the water depth increases, reducing the 

available load capacity of the crane. In order to perform a safe and cost effective operation, all 

these features should be previously addressed in a detailed engineering analysis. A common 

methodology used by the industry to evaluate this phase is to perform several simulations con-

sidering the equipment positioned at fixed depths, ranging from sea surface to seafloor in sev-

eral steps [146]. In this way, it is possible to evaluate the impact of the increase of the suspended 

weight of the cable and the zones where resonance effects are preponderant. The assumption 

that the equipment is positioned at a fixed depth, however, restricts the possibility to evaluate 

the influence of the payout speed on the dynamics of the system. 

Recent developments have enabled the analysts to model the operation considering an arbitrary 

payout speed for the cable. The commercial software Orcaflex, a traditional tool to simulate 

offshore operations, introduced in its 10.2 version (released in 2017) the line feeding option, 

which can be used to model a cable being laid or hauled. Other state of art software, such as 

SIMO by Marintek, aNySIM by Marin, and ANSYS AQWA, are also suitable to analyse tran-

sient offshore lifting operations. Further, a study conducted by Tommasini et al. [137] presented 

a one degree of freedom model that was able to deal with a variable length cable. In this study, 

the authors also showed that the payout speed has several impacts on the dynamics of the sys-

tems and its consideration during the planning phase of the operation could lead to safer and 

cost optimized operations.  

A typical feature of variable length models is the generation of non-stationary time series for 

the forces on the system. Due to the variation of the suspended length of the cable as time 

progresses, the suspended weight of the cable and the resonance period of the system increases. 

This phenomena lead to a signal that has a variable mean and standard deviation as a function 

of time (or the depth of the equipment, since they are related by the payout speed), as presented 

in Figure 4.1. Due to this behaviour, the determination of the design loads to be compared 

against the limiting criteria of the system is more challenging. 
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Figure 4.1: Typical signal for the tension on the cable as a function of depth for a variable length 

model.  

In a traditional analysis, where the equipment is considered fixed at constant depths, the design 

forces on the cable may be estimated considering that the amplitude of the tension follows a 

Rayleigh distribution. Then, the extreme values for the tension may be obtained considering, 

for example, the most probable largest value of the series [146]. This procedure is possible 

because the time signal obtained is stationary, which means that it has a constant mean and 

variance. For the scenario of a variable length model, this approach is not possible due to the 

variation of the statistics of the signal with the depth.  

The typical methodology considered for the non-stationary case is to run several simulations 

and obtain the statistical description of the random variable at each time instant; or to find a 

way to eliminate the trend of the signal by a variable transformation or by fitting a regression 

model [168]. These procedures are common in statistical modelling, and are typically used to 

model climate changes for example [169–171]. Regarding marine operations, several studies 

have been published dealing with the dynamics of system and the prediction of the availability 

of the vessel under non-stationary conditions [60,61,172–178]. Nevertheless, in most of these 

studies, the non-stationary response is introduced by impact loads, such as the slamming con-

ditions when the equipment is lifted through the wave zone or due to collisions on other struc-

tures during the operation. The study of non-stationary behaviour that is introduced by the pas-

sage through a resonance zone in deep water subsea lifting operations has not been entirely 

addressed so far.  

Based on this scenario, this work has two main objectives: (1) to present a methodology capable 

of defining the design loads of a deep water subsea lifting operation obtained by a variable 
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length model that generates a non-stationary time signal due to the passage through a resonance 

zone; and (2) to evaluate the effectiveness and the impacts of this methodology on typical deep 

water subsea lifting scenarios. Additionally, the focus of the study is on the deep water lifting 

phase; the lifting through the wave zone and the landing on the seabed phases are not covered 

in this paper. 

To this end, two different techniques are presented here. The first one is based on running sev-

eral random simulations for the same scenario and to predict the design forces at each time step 

via a parameter estimation made from the samples produced. The second one focuses on elim-

inating the trend of the time response by means of a normalizing function. This function is 

obtained after solving a weighted least squares constrained optimization problem. Both models 

are then tested for a typical scenario of the Pre-Salt fields in Brazil. 

4.2 Variable length cable-equipment model 

The model considered to generate the dynamic response of the system may be any one that is 

capable of treating the length of the cable as variable throughout time. In this work, a one degree 

of freedom model, as presented by Tommasini et al [137] is selected because it proved to be 

coherent with more complex models, such as those used by Orcaflex, for typical deep water 

subsea lifting scenarios [179]. 

The assumptions considered to construct this model are: (1) the system has one degree of free-

dom, which is the vertical displacement of the equipment (𝑤); (2) the vessel and the cable-

equipment system are  dynamically uncoupled; (3) the length of the cable is variable; and (4) 

the hydrodynamic forces act only on the equipment and are modelled by Morison’s equation 

[118]. The representation of this model is presented in Figure 4.2. The equation of motion for 

this system is given by: 

(𝑀 + 𝜌𝑉𝐶𝑎 +
1

3
𝑚𝐿) 𝑤̈ + (

𝑚𝐿̇

3
+

1

2
𝜌𝐶𝑑𝐴𝑝|𝑤̇|) 𝑤̇ +

𝐸𝐴

𝐿
𝑤

= −
𝑚𝑠𝑔𝐿

2
− (𝑀 − 𝜌𝑉)𝑔 +

𝐸𝐴

𝐿
𝑤0 −

𝑚𝐿̇

6
𝑤̇0 −

𝑚𝐿

6
𝑤̈0 

(4.1) 

where 𝑀, 𝑉, 𝐴𝑝 are respectively the mass, volume and projected area of the payload; 𝐶𝑎 and 𝐶𝑑 

are the added mass and drag coefficients; 𝑚, 𝑚𝑠, 𝐸𝐴, 𝐿 are respectively the mass per unit length, 

the equivalent submerged mass per unit length, the rigidity and the length of the cable; 𝜌 is the 

density of the water and 𝑔 is the gravity acceleration.  
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Figure 4.2: Representation of the one degree of freedom model for the evaluation of the deep water 

subsea lifting operations.  

The prescribed motion on the top of the cable is set as the boundary condition for this equation, 

which, in this case, is given by a function ℎ that specifies the vertical displacement of the lifting 

point, and by the integral of the payout speed 𝑉𝑐, which  is considered positive for hauling and 

negative for laying conditions, as shown in Eq. (4.2). In this study, the displacement of the 

lifting point is given by the product of the displacement RAO of the vessel and a JONSWAP 

spectrum fitted for the Santos Basin, Brazil. 

𝑤0 = ℎ + ∫ 𝑉𝑐𝑑𝑡 (4.2) 

It is also necessary to specify the equation for the variation of the cable length as a function of 

time: 

𝐿 = 𝐿0 − ∫ 𝑉𝑐𝑑𝑡 (4.3) 

The suspended length of the cable 𝐿 is equivalent to the current depth of the equipment, so these 

variables will be used as synonymous throughout this study. Finally, the force on a specific 

point of the cable is given by: 

𝐹(𝐿) =
𝐸𝐴

𝐿
[𝑤0 − 𝑤] +

𝑚𝑠𝑔𝐿[2𝛼 − 1]

2
 (4.4) 

In this case, 0 ≤ 𝛼 ≤ 1 is a ratio that defines the position of the cable which is being evaluated 

(𝛼 = 0 represents the lower end of the cable, and 𝛼 = 1 represents the upper end of the cable). 

Eq. (4.1) is solved in the time domain via a Newmark-β algorithm, leading to a time signal for 

the displacement of the equipment. Eq. (4.4) is then used to obtain the time signal for the forces 

on the cable, which is going to be the basis for the subsequent analyses. 
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4.3 Determination of the design loads from non-stationary series 

It is historically recognized that the ocean surface elevation constitutes a random process [180]. 

This characteristic introduces randomness on all structural response of systems that are excited 

by the ocean waves, including on the dynamics of cable-equipment systems during subsea lift-

ing operations. However, even though the ocean surface elevation may be classified as a sta-

tionary random process for some period, the forces on the cable will suffer from other effects 

that lead to a non-stationary response. 

As introduced previously, as time progresses during a subsea lifting operation, the suspended 

length of the cable varies. Consequently, two main effects are noticeable: (1) the variation of 

the suspended weight of cable, and (2) the variation of the fundamental resonance period of the 

cable-equipment system. These two behaviours are responsible to introduce the non-stationarity 

on the dynamic response of the cable. 

In order to separate the influence of each of these behaviours, Equation (4.4) may be split in 

two separate terms: 

𝐹(𝐿) = 𝑆(𝐿) + 𝐷(𝐿) (4.5) 

The first term is the static force (𝑆) acting on the cable, given by the submerged weight of the 

system and a drag force generated by the payout speed; the second term is the dynamic force 

(𝐷), which is generated by the axial vibration of the cable-equipment system. It is also important 

to mention that, in the sequence of this study, the suspended length of the cable (or the depth of 

the equipment) will be used as the independent variable, since the suspended length introduces 

the non-stationarity in the system, not the time. 

The static force is known previously, because it depends only on given data, such as the payout 

speed prescribed for the operation. So, it may be written as: 

𝑆(𝐿) = [𝑀 − 𝜌𝑉]𝑔 + 𝑚𝑠𝑔𝐿𝛼 +
1

2
𝜌𝐶𝑑𝐴𝑝|𝑉𝑐̇|𝑉𝑐 (4.6) 

This force is responsible only to represent the linear trend on the mean response of the cable, 

as represented in Figure 4.1. On the other hand, the dynamic force is a random variable with 

null mean5 and non-constant variance that is not known a priori. Consequently, its modelling 

                                                 
5 The mean force on the system might be different from zero in some scenarios due to nonlinear dynamic effects. 

In this study, this effect is considered negligible in comparison to the variation of the standard deviation throughout 

the depth when the payload crosses the fundamental resonance zone.  
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needs a different treatment. In this work, two approaches are considered and presented in the 

next sections. 

4.3.1 Evaluation of the dynamic forces via a direct approach 

The direct approach consists in obtaining the statistics of the dynamic force via parameter esti-

mation from a sample of 𝑛 random occurrences. In this case, each of the 𝑗-th occurrence is 

considered to be independent and represents the same scenario: combination of the type of 

equipment, cable, vessel, and environmental conditions. The generation of each of the 𝑛 random 

occurrences is done by considering random phases for the harmonic components of the ocean 

waves, as detailed by Chakrabarti [180] in chapter 4.7. More details regarding similar approach 

to calculate statistics of offshore operations may be found in [181]. 

Since the mean of the dynamic force is null, only its standard deviation needs to be obtained: 

𝜎𝐷(𝐿) = √∑ [
𝐷𝑗

2(𝐿)

𝑛 − 1
]

𝑛

𝑗=1

 (4.7) 

where 𝐷𝑗(𝐿) represents the dynamic force on the cable for 𝑗-th occurrence. Also, because the 

values of 𝐷𝑗(𝐿) at each depth are considered independent random variables, some random var-

iability will also be present in the standard deviation, resulting in a noisy signal. In order to 

obtain a smoother representation, a moving mean procedure is applied on 𝜎𝐷(𝐿). 

After obtaining the representation of the standard deviation of the dynamic force as a function 

of the depth, it is necessary to estimate the maximum forces on the cable in order to compare it 

against the structural limits of the system. According to Chakrabarti [180], the surface elevation 

and the amplitude of the ocean waves in a narrow-band spectrum is verified to follow, respec-

tively, a Gaussian and a Rayleigh distribution. Considering that the only source of randomness 

in the system is the ocean waves, it is assumed that the response of the system keeps a similar 

distribution after eliminating the non-stationarity. Therefore, the amplitude of 𝐷(𝐿)/𝜎𝐷(𝐿) is 

supposed to follow a Rayleigh distribution. Then, the maximum force on the cable is obtained 

by the most probable largest value for the dynamic load: 

𝐷𝑚𝑎𝑥(𝐿) = 𝜎𝐷(𝐿)√2 ln(𝜂) (4.8) 

where 𝜂 is the number of cycles of the dynamic force during the operation, which is considered 
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to be: 

𝜂 =
𝐿𝑚𝑎𝑥

𝑇𝑧𝑉𝑐
 (4.9) 

where 𝐿𝑚𝑎𝑥 is the final length of the cable during the operation and 𝑇𝑧 is the mean zero up 

crossing wave period. Consequently, the maximum and minimum forces on the cable as a func-

tion of the depth will be given by: 

𝐹𝑚𝑎𝑥(𝐿) = 𝑆(𝐿) + 𝜎𝐷(𝐿)√2 ln(𝜂) (4.10) 

𝐹𝑚𝑖𝑛(𝐿) = 𝑆(𝐿) − 𝜎𝐷(𝐿)√2 ln(𝜂) (4.11) 

The values of 𝐹𝑚𝑎𝑥(𝐿) and 𝐹𝑚𝑖𝑛(𝐿) may be seen as the envelope of the forces on the cable as 

a function of the depth of the equipment during the operation. These values should be compared 

against the acceptance criteria prescribed in DNV-RP-H103: the maximum forces should be 

lower than the safe working load (𝑆𝑊𝐿) of the system, and the minimum forces should be 

higher than 10% the static force. So, the algorithm to construct the weather window of a given 

subsea lifting operation using the direct approach is presented in Table 4.1. 

Table 4.1: Algorithm to evaluate a deep water subsea lifting operation via the direct approach. 

1. Set the data for the operation (type of equipment, cable, and vessel); 

2. For each sea state (significant height and peak period): 

a. For each of the 𝑛 cases, calculate: 

i. The motion of the equipment over the time according to Equation (4.1); 

ii. The forces on the cable over the time according to Equation (4.4); 

b. Calculate the static force according to Equation (4.6); 

c. Calculate the dynamic force according to Equation (4.5); 

d. Calculate the standard deviation of the dynamic force according to Equation 

(4.7); 

e. Calculate the maximum and minimum forces according to Equations (4.10) 

and (4.11);  

f. Check the acceptance criteria (𝐹𝑚𝑎𝑥 ≤ 𝑆𝑊𝐿, and 𝐹𝑚𝑖𝑛 ≥ 0.1𝑆): 

i. If both criteria are fulfilled, the sea state is acceptable; 

ii. Otherwise, the sea state is unacceptable; 

3. Build the operational weather window with the acceptable sea states. 
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4.3.2 Evaluation of the dynamic forces via a weighted least squares estimation 

A common methodology used to deal with time series of non-constant variance is to use trend 

decomposition via a regression model [168]. So, it is assumed that the dynamic force on the 

cable is given by a random variable (𝜓) multiplied by a normalizing function (𝜙) that depends 

on the depth (𝜙 = 𝜙(𝐿)): 

𝐷(𝐿) = 𝜙(𝐿)𝜓 (4.12) 

In this case, 𝜓 is assumed to be stationary and normally distributed, such that 𝜓 ∼ 𝑁(0, 𝜎𝜓
2); 

and 𝜙(𝐿) is a normalizing function that transforms the non-stationary signal 𝐷(𝐿) into a sta-

tionary one. The assumption that 𝜓 is normally distributed relies once again on the fact the only 

source of randomness in the system is the ocean waves, and that the response of the system 

keeps a similar distribution of the waves after eliminating the non-stationarity. 

Since the idea of the normalizing function is only to eliminate the variation with the cable length 

on the standard deviation of the dynamic force, we may assume that 𝜙(𝐿) is always greater 

than one without any loss of generality. In this way, the normalizing function will always in-

crease the random variable 𝜓. A typical function that follows this requirement, and which is 

recurrently used in this kind of procedure [168,169,182], is: 

𝜙(𝐿) = 1 + exp(𝛽0 + 𝛽1𝐿 + 𝛽2𝐿2) (4.13) 

The selection of this expression also relies on its flexibility to represent different scenarios of 

amplification of the dynamic force depending on the coefficients selected. Some possible forms 

of this function are presented in Figure 4.3, which illustrate scenarios of shallow-water, mid-

water, and deep-water resonances. Important to remark here that this function is not able to 

represent multiple peaks of the dynamic force throughout the depth, a limitation of the method 

presented. 

The problem, then, consists in determining the coefficients 𝛽1, 𝛽2, and 𝛽3 that leads to the 

correct representation of the resonance region. This may be achieved by minimizing the sum of 

all the time steps of the squared quotient 𝐷(𝐿)/𝜙(𝐿). In this way, the function 𝜙 tends to pre-

sent higher values where the value of the dynamic forces are also higher. This optimization 

problem may be stated in a weighted least squares form as follow: 
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minimize:     ∑ [𝜆(𝐿)
𝐷(𝐿)

𝜙(𝐿)
]

2𝑘

𝑖=1

 (4.14) 

 
Figure 4.3: Different forms of the normalizing function representing various resonance conditions.  

where 𝑘 is the number of time steps used to obtain the solution of Equation (4.1), and 𝜆(𝐿) is a 

weighting function. As the interest of this methodology is to represent the resonance area, the 

weighting function is considered to be equal to the dynamic forces: 𝜆 = 𝐷; therefore, higher 

weight is given at the zones of higher forces. 

Further, since the normalizing function appears in the denominator of the quotient, this optimi-

zation would lead to an arbitrarily high value for the coefficients 𝛽, forcing the minimized 

function to go to zero. This is not the objective of this procedure, since this resulting normaliz-

ing function would not be able to eliminate the non-stationarity from the dynamic force. 

A possible procedure to overcome this difficulty is to introduce some constrain to this minimi-

zation problem. In this case, restricting the area of the normalizing function would lead to a 

valid solution. So, the optimization problem becomes: 

minimize:     ∑ [
𝐷2(𝐿)

𝜙(𝐿)
]

2𝑘

𝑖=1

 

subject to:    ∫ 𝜙(𝐿)𝑑𝐿 = Φ 

(4.15) 

where Φ is a constant value. This problem may be solved by any constrained optimization 

technique. In this work, it was chosen to use the interior point algorithm [183] due to its relia-

bility. Further, in order to ease the convergence of the algorithm, the variables 𝐷 and 𝐿 are 
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scaled as follows: 

𝐿̅ =
𝐿

max(𝐿)
 (4.16) 

𝐷̅ =
𝐷

max(|𝐷|)
 (4.17) 

In this way, 0 ≤ 𝐿̅ ≤ 1 and −1 ≤ 𝐷̅ ≤ 1. Considering this scaling, an effective value for the 

area restriction is Φ = 2, which leads to an unitary area for the exponential part of the normal-

izing function.  

After the solution of this minimization problem, it is possible to calculate the standard deviation 

of the stationary random variable 𝜓 by: 

𝜎𝜓 = max(𝐷) √
1

𝑘 − 1
∑ [

𝐷̅(𝐿̅)

𝜙(𝐿̅)
]

2𝑘

𝑖=1

 (4.18) 

Similarly, as presented in the direct approach, the amplitude of the random variable 𝜓 is as-

sumed to follow a Rayleigh distribution, and the design loads are obtained by its most probable 

largest value. In this particular case, since the dynamic force is given by the product of 𝜙(𝐿) 

and 𝜓, the maximum dynamic forces must be written as: 

𝐷𝑚𝑎𝑥(𝐿) = 𝜙(𝐿)𝜎𝜓√2 ln(𝜂) (4.19) 

Consequently, the maximum and minimum forces on the cable may be estimated by: 

𝐹𝑚𝑎𝑥(𝐿) = 𝑆(𝐿) + 𝜙(𝐿)𝜎𝜓√2 ln(𝜂) (4.20) 

𝐹𝑚𝑖𝑛(𝐿) = 𝑆(𝐿) − 𝜙(𝐿)𝜎𝜓√2 ln(𝜂) (4.21) 

Finally, the algorithm considered to calculate the operational weather window using the 

weighted least square estimation for the design loads is presented in Table 4.2. 

 

 

 

 



77 

 

Table 4.2: Algorithm to evaluate a deep water subsea lifting operation via the weighted least square 

estimation. 

1. Set the data for the operation (type of equipment, cable, and vessel); 

2. For each sea state (significant height and peak period), calculate: 

a. The motion of the equipment over the time according to Equation (4.1); 

b. The forces on the cable over the time according to Equation (4.4); 

c. The static force according to Equation (4.6); 

d. The dynamic force according to Equation (4.5); 

e. Scale the variables according to Equations (4.16) and (4.17); 

f. Solve the optimization problem according to Equation (4.15) and obtain 𝛽1, 

𝛽2, and 𝛽3; 

g. Build the normalizing function according to Equation (4.13); 

h. Calculate the standard deviation of the stationary random variable 𝜓 

according to Equation (4.18); 

i. Calculate the maximum and minimum forces according to Equations (4.20) 

and (4.21);  

j. Check the acceptance criteria (𝐹𝑚𝑎𝑥 ≤ 𝑆𝑊𝐿, and 𝐹𝑚𝑖𝑛 ≥ 0.1𝑆): 

i. If both criteria are fulfilled, the sea state is acceptable; 

ii. Otherwise, the sea state is unacceptable; 

3. Build the operational weather window with the acceptable sea states. 

4.4 Numerical results and discussion 

In order to test the methodologies presented in this study, the installation of a typical WAG 

(Water Alternating Gas) Manifold used in the Pre-Salt fields is selected as the example scenario. 

The cable considered in the analysis is a multi-strand compact construction rope of six inches 

of diameter. The vessel responsible for the lifting operation is a PLSV (Pipe Laying and Support 

Vessel) that has a high capacity crane and A&R (Abandonment and Recover) winch to perform 

the installation or recovery of the equipment. Most of the Pre-Salt fields in Brazil are located at 

Santos Basin. At this location, nearly 80% of the sea states are within 5 to 13 s peak period 

(𝑇𝑝) and 1.0 to 3.0 m of significant height (𝐻𝑠); also, the typical water depth is 2200 m. So, the 

data considered for the vessel, the equipment, the cable, and the environmental conditions for 

this scenario are presented in Table 4.3. Furthermore, the vertical displacement RAO of the 

vessel at the lifting point is presented in Annex A. 
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Table 4.3: Input data for the evaluation of the methodologies presented in this study. 

Parameter Value 

Vessel 

(PLSV) 

Length overall 145.9 m 

Breadth moulded 29.9 m 

Max displacement 27012 ton 

Cable 

(Multi-strand – 6in) 

Linear mass (𝑚) 111 kg/m 

Subsea equivalent linear mass (𝑚𝑠) 98 kg/m 

Axial rigidity (𝐸𝐴) 1220 MN 

Safe Working Load (𝑆𝑊𝐿) 5900 kN 

Equipment 

(WAG manifold) 

Mass (𝑀) 190 ton 

Volume (𝑉) 24 m3 

Area (𝐴𝑝) 147 m2 

Added mass coefficient (𝐶𝑎) 73.1 

Drag coefficient (𝐶𝑑) 4 

Environmental            

conditions 

Peak period (𝑇𝑝) 5 to 13 s 

Significant wave height (𝐻𝑠) 1.0 to 3.0 m 

Water depth 2200 m 

Newmark-𝛽 method Time step  0.1 s 

4.4.1 Verification tests for the direct method 

The first analysis aims to verify the adequacy of the direct approach to estimate the design loads 

on the cable for this specific scenario. To this end, it is necessary, first of all, to evaluate how 

many simulations are necessary to obtain a converged solution for the statistics of the forces on 

the cable. The mean value of the force on the top of the cable at the beginning of the simulation 

is selected as the control parameter. In this case, since the mean value of the dynamic force is 

null, the mean value of the force on the cable should tend to the value of the static force, which 

is known a priori. The minimum number of simulations required for the mean force to become 

bounded by the limiting lines of  𝑆 ±  1% is selected as the convergence criterion. These results 

are presented in Figure 4.4, which shows that the convergence is achieved after 300 simulations 

for the scenarios considered. It is also remarkable that the convergence is faster for low excita-

tion periods and do not depend on the payout speed in this case. 
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(a) 

 

(b) 

 
(c)  

 

(d)  

 
Figure 4.4: Convergence tests of the direct method. The scenario for these tests considered the forces 

on the top of the cable at the beginning of the simulation for 𝐻𝑠 = 2 m and (a) 𝑉𝑐 = −0.1 m/s and 

𝑇𝑝 = 5 s; (b) 𝑉𝑐 = −0.1 m/s and 𝑇𝑝 = 13 s; (c) 𝑉𝑐 = −1 m/s and 𝑇𝑝 = 5 s; and (d) 𝑉𝑐 = −1 m/s 

and 𝑇𝑝 = 13 s.   

Illustratively, the convergence of the envelope of the force on the cable is presented in Figure 

4.5 for the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 = 13 s, and 𝑉𝑐 = −1 m/s, which is the slowest conver-

gence one. This figure shows that the envelope produced by using a reduced value of 𝑛 is some-

how similar to that obtained after convergence is achieved, but presents a noisy behaviour that 

is reduced as 𝑛 increases. 
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(a) 

 

(b) 

 
Figure 4.5: Convergence of the envelope of forces on the top of the cable obtained via the direct 

method for the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 = 13 s, and 𝑉𝑐 = −1 m/s. (a) Graph of the envelope and a 

time response for this scenario; (b) zoom of the previous graph.  

The next analysis is intended to verify the capacity of the direct method to predict the envelope 

of forces on the cable using the moving mean procedure. For this case, 𝑉𝑐 = −1 m/s, 𝐻𝑠 =

2 m, and 𝑇𝑝 = 5 s are considered. Figure 4.6a presents the envelope of the forces and one of 

the time responses for the force on the cable obtained during the analysis. It is possible to see 

that the maximum and minimum forces encompass the time response and describes the ampli-

fication region at the depths of nearly 500 m. Further, Figure 4.6b provides a zoom at this 

location showing the maximum force on the cable with and without the moving mean proce-

dure. The usage of the moving mean technique avoids the oscillation on the force without com-

promising the accuracy of the solution. Therefore, next results regarding the direct method will 

always consider the smoothing via the moving mean. 

(a) 

 

(b) 

 
Figure 4.6: Envelope of forces on the top of the cable obtained via the direct method for the scenario 

of 𝐻𝑠 = 2 m, 𝑇𝑝 = 5 s, and 𝑉𝑐 = −1 m/s. (a) Envelope and a time response for this scenario; (b) 

zoom of the previous graph showing how the moving mean procedure makes the envelop smoother.  
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Finally, it is verified the assumption that the amplitude of 𝐷/𝜎𝐷 follows a Rayleigh distribution. 

Figure 4.7 shows the probability plot for the Rayleigh distribution for scenarios considering 

𝑇𝑝 = 5 and 13 s, and 𝑉𝑐 = −0.1 and −1 m/s. In this graph, the variable is well represented by 

the distribution function if the points plotted in the graph form a straight line. Analysing this 

figure, one may notice some deviation at the tails of the distribution; however, accurate repre-

sentation is seen in the greatest part of the plot, especially for high payout speeds. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4.7: Rayleigh probability plot for the amplitude of 𝐷/𝜎𝐷 considering 𝐻𝑠 = 2 m and (a) 𝑉𝑐 =
−0.1 m/s and 𝑇𝑝 = 5 s; (b) 𝑉𝑐 = −0.1 m/s and 𝑇𝑝 = 13 s; (c) 𝑉𝑐 = −1 m/s and 𝑇𝑝 = 5 s; and (d) 

𝑉𝑐 = −1 m/s and 𝑇𝑝 = 13 s.   

Comparatively, the probability plot for other distributions is presented in Figure 4.8 considering 

the scenario of 𝑇𝑝 = 13 s and 𝑉𝑐 = −0.1 m/s. In this case, the Weibull and the Lognormal 

distributions are used because their data range are only positive values, which is reasonable to 

model amplitudes. The results obtained show a worse representation in comparison to the Ray-

leigh distribution. Further, the Weibull and Lognormal probability distributions do not have any 
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physical justification for their use. Therefore, the assumption that the amplitude of 𝐷/𝜎𝐷 fol-

lows a Rayleigh distribution is considered plausible in this study. 

(a) 

 

(b) 

 
Figure 4.8: Probability plots for the amplitude of 𝐷/𝜎𝐷 considering the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 =

5 s, and 𝑉𝑐 = −1 m/s. (a) Weibull distribution, and (b) Lognormal distribution.  

4.4.2 Verification tests of the least squares method 

Following the tests regarding the direct method, it is necessary to verify the adequacy of the 

weighted least square method to predict the design loads. For this analysis, the method to obtain 

the envelope of the forces on the cable is presented, and the assumptions considered to construct 

this method are tested. As a testing scenario, the case of 𝐻𝑠 = 2 m, 𝑇𝑝 = 8 s, and 𝑉𝑐 =

−0.4 m/s is selected. The force on the top of the cable as a function of the depth is plotted in 

Figure 4.9a, and the force on the equipment is plotted in Figure 4.9b. These responses typically 

represent the non-stationary pattern due to the variation of the cable’s length.  

(a) 

 

(b) 

 
Figure 4.9: Forces on the cable for the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 = 8 s, and 𝑉𝑐 = −0.4 m/s. (a) Force 

on the top of the cable, and (b) force on the equipment. 
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The dynamic force on the cable, obtained via Equation (4.5), is presented in Figure 4.10a. In 

the sequence, the normalized dynamic force (Figure 4.10b), found after the optimization pro-

cedure described in Equation (4.15), is plotted. Visually inspecting these figures, it is possible 

to see that the normalized dynamic force presents a more stationary behaviour over the depths 

evaluated in comparison to the untreated dynamic force.  

An assumption that was made to build this model was that the normalized dynamic force was 

normally distributed, so a possible test to verify the adequacy of this procedure is to check if 

this assumption holds. Figure 4.10c and Figure 4.10d present, respectively, the normal proba-

bility plot of the dynamic force and the normalized dynamic force. As expected, a high devia-

tion from normality is presented by the dynamic force (Figure 4.10c), since it is a non-stationary 

signal. After normalizing this variable, the adequacy to a normal distribution is more plausible 

(Figure 4.10d), even though some deviation is still observed, especially for  

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4.10: Results obtained by the least square method for the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 = 8 s, and 

𝑉𝑐 = −0.4 m/s. (a) Dynamic force; (b) normalized dynamic force; (c) normal probability plot of the 

dynamic force; and (d) normal probability plot for the normalized dynamic force. 

negative values of the variable. Also, this little deviation is expected, since the function selected 
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to normalize the dynamic force was arbitrary, and does not truly represent the influence of the 

depth on the dynamic forces for deep water subsea lifting operations. 

In the sequence, it is presented in Figure 4.11 the envelope of the forces on the top of the cable 

(Figure 4.11a) and on the equipment (Figure 4.11b) obtained via the weighted least squares 

procedure. It is possible to see that the envelope of forces correctly represents the shape of the 

resonance zone. For this specific scenario, the force on the bottom part of the cable (which is 

equal to the force on the equipment) is below zero near 900 m depth; so, during the planning 

phase of a real operation this scenario would not be marked as valid when building the opera-

tional weather window. 

(a) 

 

(b) 

 
Figure 4.11: Forces on the cable and their envelopes for the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 = 8 s, and 𝑉𝑐 =

−0.4 m/s. (a) Force on the top of the cable, and (b) force on the equipment. 

Further, it is necessary to check if the assumptions that the normalized dynamic force follows 

a Normal distribution and if its amplitude follows a Rayleigh distribution in different scenarios. 

Figure 4.12 and Figure 4.13 present, respectively, the Normal and the Rayleigh probability plot 

of 𝜓 and of its amplitude considering the payout speed varying from −0.2 to −1.0 m/s, and 

the peak period varying from 5 to 13 s. It is again considered the significant wave height of 

2.0 m. Analysing these figures, it is possible to assume that the variables are well represented 

by the distributions considered, confirming the assumptions made in the development of the 

weighted least squares method.  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4.12: Normal probability plot for 𝜓 considering 𝐻𝑠 = 2 m and (a) 𝑉𝑐 = −0.2 m/s and 𝑇𝑝 =

5 s; (b) 𝑉𝑐 = −0.2 m/s and 𝑇𝑝 = 13 s; (c) 𝑉𝑐 = −1 m/s and 𝑇𝑝 = 5 s; and (d) 𝑉𝑐 = −1 m/s and 𝑇𝑝 =

13 s.   
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4.13: Rayleigh probability plot for the amplitude of 𝜓 considering 𝐻𝑠 = 2 m and (a) 𝑉𝑐 =
−0.2 m/s and 𝑇𝑝 = 5 s; (b) 𝑉𝑐 = −0.2 m/s and 𝑇𝑝 = 13 𝑠; (c) 𝑉𝑐 = −1 m/s and 𝑇𝑝 = 5 s; and (d) 

𝑉𝑐 = −1 m/s and 𝑇𝑝 = 13 s.   

Finally, the influence of a particular wave occurrence in the determination of the envelope of 

the force by using the weighted least squares method is evaluated. To this end, 20 random seeds 

for a given sea state are used to obtain the normalizing function 𝜙 for different scenarios. The 

mean values obtained for 𝛽1, 𝛽2, and 𝛽3 plus or minus two standard deviations are presented in 

Table 4.4. In this case, the scenarios of higher payout speeds lead to greater variation on the 

coefficients, indicating a higher sensitive to the specific wave considered in the simulation. The 

reason for this behaviour comes from the fact that when the payout speed is high, the number 

of ocean waves cycles are reduced. Consequently, higher amplitude waves are less prone to 

occur during the resonance zone of the system. This makes more difficult for the weighted least 

squares method to identify the resonance zone accurately. This drawback may be circumvented 

by taking the mean coefficients obtained after running a few simulations, and using them to 

build the normalizing function. 
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Table 4.4: Statistical description of the normalizing function for different scenarios.  

Scenario Normalizing function 

𝑇𝑝 (s) 𝑉𝑐  (m/s) 𝛽0 𝛽1 𝛽2 

5 −0.1 −6.96 ± 0.81 62.23 ± 4.40 −110.75 ± 6.68 

9 −0.1 −2.96 ± 0.16 13.98 ± 0.66 −13.23 ± 0.64 

13 −0.1 −2.94 ± 0.22 8.72 ± 0.83 −5.39 ± 0.72 

5 −0.5 −3.57 ± 1.2 37.60 ± 8.41 −69.13 ± 13.68 

9 −0.5 −3.09 ± 0.95 15.64 ± 5.12 −15.73 ± 6.24 

13 −0.5 −3.29 ± 1.66 9.65 ± 6.57 −5.98 ± 5.68 

5 −1.0 −1.43 ± 1.06 22.02 ± 7.24 −43.96 ± 11.91 

9 −1.0 −2.18 ± 2.04 13.21 ± 10.35 −14.89 ± 11.66 

13 −1.0 −1.96 ± 0.86 7.46 ± 4.10 −5.83 ± 4.40 

Illustratively, Figure 4.14 presents the different envelopes obtained by considering random 

wave seeds for two specific scenarios. The envelope obtained by taking the mean coefficients 

of three random simulations are also presented. For the scenario of low payout speed (Figure 

4.14a), all the envelopes appear similar and equivalent to the mean envelope. On the other hand, 

for the scenario of high payout speed (Figure 4.14b), a greater scattering is noticeable. It is 

important to remark however that high payout speeds such as −1 m/s are extreme conditions, 

and most of the offshore vessels are not able to achieve this speed when lifting heavy equipment 

such as manifolds. 

(a) 

 

(b) 

  
Figure 4.14: Forces on the cable and their envelopes for the scenario of 𝐻𝑠 = 2 m, 𝑇𝑝 = 9 s, and (a) 

𝑉𝑐 = −0.1 m/s, and (b) 𝑉𝑐 = −1 m/s. 
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4.5 Comparison of the models 

Previous sections presented some tests to check the adequacy of the assumptions made to con-

struct the models presented in this study. Now, the adequacy of both models to predict the 

envelope of the forces on the cable during typical subsea lifting operations is checked. To this 

end, several cases considering the following scenarios are simulated: 𝐻𝑠 = 2.0 m, 𝑇𝑝 varying 

from 5 to 13 s, and 𝑉𝑐 varying from −0.1 to −1.0 m/s. The results considering the force on the 

top of the cable are presented in Figure 4.15. The envelope of the weighted least squares method 

is obtained by using the mean coefficients of 3 random time series, and all the 300 time series 

obtained when running the direct method are presented in order to verify the accuracy of the 

envelopes obtained. Firstly, the general forms of the envelope obtained by both models present 

similar behaviours, amplifying the envelope at the resonance zone. However, since the least 

squares approach uses a normalizing function that was arbitrarily selected, this method does not 

truly represent the shape of the envelope. Especially, the scenarios of low payout speed generate 

multiple peaks due to transient behaviours near the resonance zone; this behaviour is not fully 

represented by the weighted least squares method. This is expected since the normalizing func-

tion selected for this method is only able to represent one peak. In these scenarios, some load 

cycles trespass the envelope obtained by the least squares method, but not the one obtained by 

the direct method. Important to remark that, although the envelope of the direct method is vio-

lated in some points, the extreme loads predicted at the resonance by this method are still higher 

than the maximum loads obtained in the 300 simulations, which provides conservative results.  

For the scenarios of high payout speed, the envelopes obtained by both methods are eventually 

trespassed, especially for the scenario considering 𝑇𝑝 = 13 s. In this specific case, the total 

number of loading cycles used to build the envelope is equal to 231, the smallest value consid-

ered in this study. A minimum number of cycles may be considered by the analyst to increase 

the envelopes obtained and avoid these cycles to trespass the envelope. Also, instead of using 

the most probable largest value in the determination of design loads in Equations (4.8) and 

(4.19), percentile of extreme value distribution, based on the peak over threshold method, could 

be used to obtain larger safety margin.  Further, the recommended practice DNV-RP-H103 

states that it is necessary to consider also the largest and smallest loads on the system obtained 

during the time domain simulations as a design parameter. So, both the envelope and the ex-

treme loads on the time series should be compared against the limiting criteria to build the 

operational weather window. Notice again that 𝑉𝑐 = −1 m/s is an extreme speed at which most 
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of vessels are not able to perform heavy lifting operations. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 4.15: Envelope of forces for the direct and the weighted least squares methods, considering 

𝐻𝑠 = 2 m and (a) 𝑉𝑐 = −0.1 m/s and 𝑇𝑝 = 5 s; (b) 𝑉𝑐 = −1.0 m/s and 𝑇𝑝 = 5 s; (c) 𝑉𝑐 = −0.1 m/s 

and 𝑇𝑝 = 9 s; (d) 𝑉𝑐 = −1 m/s and 𝑇𝑝 = 9 s, (e) 𝑉𝑐 = −0.1 m/s and 𝑇𝑝 = 13 s; and (f) 𝑉𝑐 = −1 m/s 

and 𝑇𝑝 = 13 s. 
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4.6 Operational weather window assessment 

The final evaluation of the models presented in this study aims to compare the weather window 

obtained by both models for the operation of installing this manifold. The sea states considered 

for this analysis are 1.0 ≤ 𝐻𝑠 ≤ 3.0 m and 5 ≤ 𝑇𝑝 ≤ 13 s, and the payout speed considered 

ranges from 0.2 to 1.0 m/s. After running the analysis for each sea state, the availability of the 

vessel is calculated by summing the relative occurrence of each sea state that is considered valid 

according to the simulations. The results obtained are presented in Figure 4.16. It is possible to 

notice an agreement between the models both in the general shape of the curve and in the values 

found. In this case, a total of 495 scenarios have been analysed (11 significant wave heights, 9 

peak periods, and 5 payout speeds), and in only 25 of them (5% of the cases), the two methods 

presented different results regarding the approval of the operation. Moreover, the limiting cri-

terion of the operation is mainly the possibility of the occurrence of snap loads on the bottom 

part of the cable; and the increase in the payout speed leads to wider operational weather win-

dows and, consequently, higher availability for the vessel. 

  
Figure 4.16: Availability of the vessel for the installation of the Pre-Salt manifold obtained using the 

two methodologies presented in this study. 

Based on these results, it is possible to conclude that the models presented in this study to 

predict the design loads of deep water subsea lifting operations are coherent and present similar 

results for the scenario considered: the deep water phase of the installation of a manifold in the 

Pre-Salt fields, in Brazil. Further, it is important to point out that the weighted least squares 

method needs few time-domain simulations to predict the envelope of forces on the system. 

This is a significant feature of the method, since it may noticeably reduce the computational 
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effort needed to plan a real operation. A limitation of this method is the incapacity of represent-

ing multiple peaks of response throughout the depth, which can occur due to multimodal wave 

spectra or multi resonance frequencies of the vessel. On the other hand, the direct method pro-

vides better estimation of the form of the envelope of forces on the cable. Further, due to the 

great amount of time-domain simulations needed for each sea state, the extreme values obtained 

during all the time series generated can also be used as a design parameter in the direct method, 

leading to more reliable results. 

Finally, as a design guidance, the weighted least squares method may be used in the planning 

phase of the operation to perform an assessment of different methods to install a given equip-

ment, comparing the results obtained among different vessels and payout speeds. Once one 

operational procedure is selected, the direct method may be applied to evaluate the weather 

window to be considered during the real operation. In this way, the analyst can benefit from the 

speed of the weighted least squares method and from the reliability of the direct method to plan 

an optimized and safe operation. 

4.7 Conclusions 

Two methodologies were presented to predict the design loads of deep water subsea lifting 

operations. These methods are suitable to evaluate non-stationary time series that result from 

the increase of the suspended weight of the lifting cable and from the passage through a reso-

nance zone during the lifting procedure. In this case, the forces on the cable were split into a 

static and a dynamic part. The static force could be calculated a priori and was responsible for 

the variation on the mean force on the cable. The two methods were then used to predict the 

statistics of the dynamic force, which presented a non-constant standard deviation as a function 

of the suspended length of the cable. 

The first method presented, called the direct method, obtained the standard deviation of the 

dynamic force after running several simulations for the same scenario and calculating the sta-

tistics of the variable at each time step. The second method was based on a weighted least 

squares procedure that predicted a normalizing function which was used to calculate statistics 

of the dynamic force. The envelope of the forces, which is used as the design parameter, was 

constructed for both models assuming the largest most probable value for a Rayleigh distribu-

tion of the amplitude of the dynamic force. 

The direct method was evaluated and 300 simulations were considered necessary to obtain 
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convergence on the solution. Further, a moving mean procedure was used to smooth the enve-

lope of the forces obtained. The weighted least squares method was evaluated for different sea 

states and operational conditions indicating that the assumption that the normalizing function 

would lead to a stationary normal variable was valid. The comparison of the models, simulating 

a typical lifting operation on the Brazilian Pre-Salt fields, showed an agreement among the 

models in most of the scenarios when using three simulations to build the normalizing function 

of the weighted least squares method. The main limitation of the weighted least squares method 

was the incapacity of representing envelopes with multiple peaks due to the normalizing func-

tion selected.  

Finally, the availability of the vessel was assessed using both models. The results obtained were 

similar in 95% of the scenarios considered, which indicated that both models could be used in 

the planning of a real operation. Further, it was argued that the computational cost of the 

weighted least square method was considerable smaller than the direct method. It was then 

suggested that the least squares method could be used at early phases of the planning, in order 

to select the most suitable procedure for an operation. After selecting one procedure, the direct 

method could be used to provide more reliable results for the weather window to be considered 

in the real operation. 

4.8 Appendix 

Table 4.5 presents the vertical displacement RAO of the lifting point for a typical PLSV used 

in installation and retrieval operations. 
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Table 4.5: Vertical displacement RAO for the lifting point. 

𝝎 (𝒓𝒂𝒅/𝒔) 𝑹𝑨𝑶  

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.42 

0.43 

0.44 

0.45 

0.46 

0.47 

0.50 

0.55 

0.60 

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.70 

1.80 

1.90 

2.00 

0.9996 + 0.0090i 

0.9983 + 0.0202i 

0.9948 + 0.0359i 

0.9859 + 0.0386i 

0.9681 + 0.0627i 

0.9351 + 0.0577i 

0.8851 + 0.0734i 

0.8586 + 0.0717i 

0.8457 + 0.0783i 

0.8276 + 0.0712i 

0.8124 + 0.0780i 

0.7936 + 0.0852i 

0.7750 + 0.0788i 

0.7118 + 0.0877i 

0.5833 + 0.0917i 

0.4343 + 0.1011i 

0.1082 + 0.1587i 

-0.0794 + 0.2533i 

-0.0417 + 0.1761i 

-0.0393 + 0.0063i 

-0.0261 - 0.0332i 

0.0010 - 0.0092i 

0.0032 + 0.0067i 

-0.0029 + 0.0010i 

0.0009 - 0.0024i 

0.0017 + 0.0005i 

-0.0018 + 0.0002i 

0.0006 + 0.0001i 

0.0004 - 0.0001i 

-0.0008 - 0.0000i 
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5. THE DYNAMICS OF DEEP WATER SUBSEA LIFTING 

OPERATIONS IN SUPER-HARMONIC RESONANCE VIA THE 

HARMONIC BALANCE METHOD 

This Chapter is a pre-print of the study by R. B. Tommasini, T. L. Hill, J. H. G. Macdonald, R. 

Pavanello and L. O. Carvalho, accepted for publication in Marine Structures [184], addressing 

the objective n. 3 of this thesis (as per Section 1.2.3).  This study analyses the dynamics of deep 

water subsea lifting operations experiencing super-harmonic resonances. Building on the model 

developed in Chapter 3, a nonlinear non-dimensional equation of motion is presented and 

solved via the harmonic balance method. The aim is to address the impacts that super-harmonic 

resonances can have on the dynamics and planning of the operation. 

 

Abstract 

The dynamics of deep water subsea lifting operations experiencing super-harmonic resonance 

is analysed in this study. The harmonic balance method is used to solve the non-dimensional 

equation of motion of the system and the results are compared with time domain integration 

and with an equivalent energy dissipation model for typical subsea lifting scenarios. It is 

demonstrated that 1:3 and 1:5 super-harmonic resonances represent significant features of the 

response of the system and can lead to large dynamic forces in the cable, which may violate the 

structural limits of the system in real operations. The harmonic balance method presents results 

almost as accurate as the time domain integration but up to 25 to 35 times faster, while the 

equivalent energy dissipation model is not able to represent the super-harmonic resonances. 

Consequently, taking into account the dynamics introduced by super-harmonic resonances is 

necessary in the analysis of subsea lifting operations, as it can be the limiting design criterion 

in certain scenarios, and the harmonic balance method can be used as a fast and accurate method 

to solve this problem. 
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Nomenclature 

𝐴𝑖 Coefficients of the polynomial fit 

𝐴𝑝 Vertical projected area of the equipment 

𝐶𝑎 Added mass coefficient 

𝐶𝑑 Drag coefficient 

𝐸𝐴 Axial rigidity of the cable 

𝐹dyn Dynamic force on the cable 

𝑓 Dimensionless force on the cable 

𝑔 Gravity acceleration 

𝐻𝑠 Significant height of the ocean wave 

𝐿 Suspended length of the cable 

𝑀 Mass of the equipment 

𝑚 Mass per unit length of the cable 

𝑚𝑠 Equivalent submerged mass per unit length of the cable 

𝑁 Number of harmonic terms 

𝑛 Number of input cycles 

RAO Response Amplitude Operator of the vertical displacement at the lifting point 

𝑆 Energy density spectrum of the vertical displacement at the lifting point 

𝑆wave Energy density spectrum of the ocean waves 

𝑇𝑝 Peak period of the ocean waves 

𝑡 Time 

𝑉 Volume of the equipment 

𝑊0 Amplitude of the vertical displacement of the lifting point 

𝑤 Vertical displacement of the equipment 

𝑤0 Vertical displacement of the lifting point 

𝑤st Static vertical displacement of the equipment 

𝑤dyn Dynamic vertical displacement of the equipment 

𝑦 Dimensionless dynamic displacement 

𝑌𝑘 Amplitude of the kth dimensionless harmonic component 

𝛼 Dimensionless mass ratio 

𝛾 Dimensionless damping 

𝜙𝑘 Phase of the kth harmonic component 

Λ Dimensionless excitation frequency 

𝜌 Density of the sea water 
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Ω Excitation frequency 

𝜏 Dimensionless time 

𝜔𝑛 Natural frequency of the system 

𝜔𝑧 Mean zero up-crossing frequency of the vertical displacement of the lifting point 

𝜎 Standard deviation of the vertical displacement of the lifting point 

ℚ Non-conservative generalized force 

𝕋 Kinetic energy of the system 

𝕍 Potential energy of the system 

5.1 Introduction 

Many offshore activities require the installation and recovery of equipment from the seabed. 

Such equipment is used, for example, for the production of oil and gas, the exploration of wind 

and tidal energy, and for deep sea mining. An important consideration for such operations is 

the high cost related to it, especially due to the need for specialist vessels and the possibility of 

environmental restrictions for the operation. Because of this, precise assessment of the dynamic 

loads in the system is necessary to ensure minimum costs and to comply with safety require-

ments.  

Throughout previous decades, several works have been published focusing on different aspects 

of subsea lifting operations. Classical formulations for the problem can be encountered in the 

work of Niedzwecki and Thampi [71], Huang [72], and Driscoll et al. [74], where analytical 

models were proposed; and in the study by Driscoll et al. [76], where a finite element approach 

was used to calculate the dynamics of the system. More recently, the use of synthetic materials 

for the cable was covered by de Araújo Neto et al. [81], who presented a design methodology 

to avoid resonances via the use of a combined steel wire and polyester rope for the lifting line. 

Further, some authors [83,84,86,137,159] have focused their attention on the scenario where 

the length of the cable may vary, which has provided means to understand how the payout speed 

could influence the dynamics of the operation. The dynamics of the system in the wave zone 

has also been covered by some authors: Jeong et al. [65] developed a model to account for the 

possibility of collisions of the equipment with the vessel during this phase, while the influence 

of vessel shielding effects on the response of the system have been presented in other studies 

[59,61]. Additionally, a methodology for the assessment of the operational limits of marine 

operations was presented by Acero et al. [178].  

An important aspect of the dynamics of subsea lifting operations is the hydrodynamic forces 
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that act on the payload [124,125,129–132,135]. These forces are typically modelled via Mori-

son’s equation [118], which is a semi-empirical equation that considers the hydrodynamic force 

as the combination of an inertial term, proportional to the acceleration; and a drag term, pro-

portional to the squared velocity. Particularly, the drag term in this formulation is an odd non-

linear function and, consequently, generates odd harmonics when the body is oscillating in si-

nusoidal motion. This behaviour was observed by Tommasini et al. [137] through a theoretical 

model that predicted increased forces on the cable due to the third harmonic component when 

the input frequency was 1/3 of the natural frequency of the system, as illustrated in Figure 5.1. 

Also, the presence of these harmonics in the response of the system was observed in a real 

operation, as presented by Driscoll et al. [73] in their study about the motion of deep sea re-

motely operated vehicles. Although Tommasini et al. [137] and Driscol et al. [73] made some 

remarks regarding this phenomenon, a greater focus on this type of behaviour and its conse-

quences on real subsea lifting operations was absent in their studies. 

(a) 

 

(b) 

 
Figure 5.1: Illustration of the super-harmonic resonance on subsea lifting operations for sinusoidal 

excitation at 0.11 Hz; (a) time domain response, and (b) frequency domain response. Figure extracted 

from Tommasini et al. [137].  

The phenomenon observed in [137] is known as super-harmonic resonance and it has been 

widely studied in other fields. Much of the classical literature on nonlinear dynamics presents 

ways of dealing with this kind of phenomenon, such as in the book of Nayfeh and Mook [185]. 

More specific examples can be encountered in numerous works on different applications. For 

example, Hou et al. [186] detailed the local bifurcation characteristics of an aircraft cracked 

rotor for 2:1 and 3:1 super-harmonic resonances induced by manoeuvre loads. Masana and 

Daqaq [187] illustrated the use of a nonlinear twin-well oscillator in the super-harmonic fre-

quency band for energy harvesting, showing that it was possible to produce power levels similar 

to those near the fundamental resonance even from low frequency excitations. In the offshore 
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engineering area, Liaw et al. [188] and Liu et al. [189] respectively described the dynamics of 

an articulated tower and of a deep sea Spar platform hull, both numerically and experimentally, 

illustrating the possibility of super- and sub-harmonic resonance depending on the wave fre-

quency. Also, Hannan and Bai [64] investigated the dynamical response of a fully submerged 

payload hanging from a fixed crane vessel, showing that the motion of the payload exhibited 

various nonlinear phenomena, such as sub-harmonic responses. In this case, the focus was on 

the dynamics of the system in the wave zone, which resulted in constrained pendulum motions 

for the payload; this is in contrast to the scenario observed by Tommasini et al. [137], where 

the super-harmonic resonance was due to the axial vibration of the cable-equipment system in 

deep water. It is important to note that the nonlinearity in most offshore systems is due to a 

factor of velocity squared in the damping term. Other examples of studies dealing with this type 

of damping term can also be found in the literature [190,191]. These studies addressed the non-

linear response of moored structures, highlighting the possibility of occurrence of chaos and 

instabilities. In this case, the quadratic damping term controls the thresholds and limits of the 

stability domains.  

Whilst many works have been conducted regarding super-harmonic resonances, it seems there 

is a lack of any study dealing specifically with this phenomenon in the scenario of deep water 

subsea lifting operations. Furthermore, no specific mention is given on the possibility of super-

harmonic resonances in subsea lifting operations in the recommended practice DNVGL-RP-

N103 [192], which is the standard reference used by the industry for the modelling and analysis 

of marine operations. Therefore, the main objective of this paper is to conduct such a study, 

focusing on (1) the solution of the non-dimensional nonlinear equation of motion via the har-

monic balance method; (2) illustration of the features and implications of the super-harmonic 

resonance on the subsea lifting scenario; and (3) extending the solution procedure presented to 

be used as a design methodology to assess the operational weather window. This study consid-

ers conventional nonlinear dynamics methods to study an applied offshore dynamics problem 

not yet fully addressed in the literature. The originality of this study relies not only on the com-

prehension of the dynamics of the system in super-harmonic resonance, but also in the use of a 

non-dimensional formulation for the equation of motion, reducing the number of independent 

variables of the system; and in the use of an analytical approach to solve the nonlinear dynam-

ical problem, which decreases the computational effort required to solve the problem. These 

aspects are particularly important during the planning of subsea lifting operations, where nu-

merous combinations of environmental and operational conditions are necessary to be studied.  
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The sequence of this paper is as follows: an overview of the dynamics of subsea lifting opera-

tions, highlighting the presence of super-harmonic resonance in Section 5.2; the non-dimen-

sional equation of motion for the system in Section 5.3; the dynamics of the system using the 

harmonic balance method in Section 5.4; the numerical results obtained by the proposed method 

in Sections 5.5 and 5.6, and the assessment of the operational weather window for an example 

scenario in Section 5.7. The conclusions of this work are finally presented in Section 5.8. 

5.2 Overview of the dynamics of subsea lifting operations 

The first step to analyse the dynamics of subsea lifting operations is to construct a representative 

dynamical model for the system. Analysing measurements of the average coherence of the six 

degree-of-freedom of both the vessel and the payload in a real operation, Driscoll et al. [73] 

showed that the only significant relationship between the lifting vessel and the payload was the 

vertical motion variables; therefore a one-dimensional model was considered sufficient to pre-

dict the payload motion due to vessel forcing. This assumption was considered in several studies 

dealing with the dynamics of subsea lifting operations [71,72,74,76,85,86,137,193] and is also 

considered herein.  

Further, Tommasini et al. [137] showed that when the frequency of internal vibration modes of 

the cable are not within the waveband and are far from the fundamental axial vibration fre-

quency of the system, the results obtained by using single degree-of-freedom models were sim-

ilar to those obtained by discretized models (such as by using the commercial software Or-

caflex). This is the case in the example considered in this work, hence higher vibration modes 

are not represented. The use of single degree-of-freedom models is also recurrent in the litera-

ture [71,72,91,92,159,193] and is particularly useful to understand dynamical features of the 

system, which is the main objective of this study. 

Subsea lifting operations are typically classified as weather restricted and need to comply with 

the requirements of DNVGL-RP-N103 [192]. One criterion that should be fulfilled is that the 

cable does not go slack during the operation to avoid large snap loads in the system. Therefore, 

the scenarios analysed in this study do not result in compressive loads in the lifting line, and 

the cable is considered to be always taut, as in [74,86,137]. In applications where slack condi-

tions are not possible to be avoided, the model presented herein is not applicable and low ten-

sion dynamic models [141,142] should be used instead. 

The effects of subsea currents are also not considered in this study relying on reference [67] 
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that states that the tension in the cable and the offset of the payload are minor when the vertical 

force due to the submerged weight of the system is larger than the forces due to theses currents, 

which is the case in most of the typical applications and in the particular scenario analysed in 

this study. 

It is also assumed that the cable-payload system does not affect the dynamics of the vessel, such 

as done in [71,76,86,137]. Therefore, the vertical displacement of the lifting point is prescribed 

as an imposed displacement in the top of the cable. This assumption is in agreement with 

DNVGL-RP-N103 and it is applicable when the inertia of the vessel is much larger than the 

inertia of the payload.  

The hydrodynamic forces are considered to be present only on the payload and they follow 

Morison’s equation using constant hydrodynamic coefficients, as in [72,74,137,193]. Some re-

marks on the use of constant hydrodynamic coefficients to analyse super-harmonic resonances 

are given in Section 5.5. 

Finally, a constant length model is considered to allow transient effects of the cable payout to 

be neglected, as in [71,72,76]. This scenario is particularly important in procedures which re-

quire the equipment to be kept at certain depths for relatively long periods, such as in subsea 

load transfers [194] or when successive introduction of slings in the lifting system is considered 

[2]. 

 
Figure 5.2: Representation of the single degree-of-freedom model for the evaluation of subsea lifting 

operations.  

The equation of motion for the subsea lifting system (Figure 5.2) considering the assumptions 

presented above was derived in [137], so only the main details are presented here for clarity. 

The derivation was based on the application of Lagrange’s equation and it was assumed that 

the displacement of the payload was the only degree-of-freedom of the system. Assuming a 
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linear interpolation for the velocity field within the cable,  the kinetic energy of the system (𝕋) 

was considered to be the sum of the kinetic energy of the cable (obtained by integrating through-

out its length) and the payload: 

𝕋 =
𝑚𝐿

6
(𝑤̇0

2 + 𝑤̇0𝑤̇ + 𝑤̇2) +
1

2
𝑀𝑤̇2 (5.1) 

where 𝑚 is mass per unit length of the cable, 𝐿 is the suspended length of cable, 𝑀 is the mass 

of the payload, 𝑤̇0 is the velocity of the lifting point, and 𝑤̇ is the velocity of the payload.  

The potential energy of the system (𝕍) was considered to be sum of the potential energy of the 

cable and payload due to the gravity and the strain energy of the cable: 

𝕍 =
𝑚𝑠𝑔𝐿

2
(𝑤0 + 𝑤) + (𝑀 − 𝜌𝑉)𝑔𝑤 +

1

2

𝐸𝐴

𝐿
(𝑤0 − 𝑤)2 (5.2) 

where 𝑚𝑠 is the equivalent submerged mass per unit length of the cable, 𝑔 is the gravity accel-

eration, 𝜌 is the density of the sea water, 𝑉 is the volume of the payload, 𝐸𝐴 is the rigidity of 

the cable, 𝑤0 is the displacement of the lifting point, 𝑤 is the displacement of the payload. 

The hydrodynamic force on the payload was considered to be the only non-conservative gen-

eralized force (ℚ) acting on the system: 

ℚ = −𝜌𝑉𝐶𝑎𝑤̈ −
1

2
𝜌𝐴𝑝𝐶𝑑|𝑤̇|𝑤̇ (5.3) 

where 𝐶𝑎 and 𝐶𝑑 are, respectively, the added mass and drag coefficients, 𝐴𝑝 is the vertical 

projected area of the payload, and 𝑤̈ is the acceleration of the payload.  

Therefore, the resulting equation of motion for the single degree-of-freedom system was found 

to be: 

(𝑀 + 𝜌𝑉𝐶𝑎 +
1

3
𝑚𝐿) 𝑤̈ +

1

2
𝜌𝐴𝑝𝐶𝑑|𝑤̇|𝑤̇ +

𝐸𝐴

𝐿
𝑤

=
𝐸𝐴

𝐿
𝑤0 −

𝑚𝐿

6
𝑤̈0 − (𝑀 − 𝜌𝑉 +

𝑚𝑠𝐿

2
) 𝑔 

(5.4) 

The nonlinearity of this equation comes only from the quadratic drag term, which is a function 

of the equipment velocity. Due to this fact, the static displacement due to the weight of the cable 

and equipment does not influence the nonlinear behaviour of the system and, in this respect, the 

superposition principle may be applied to split the response of the system into a static and a 

dynamic term: 𝑤 = 𝑤st + 𝑤dyn. The static displacement is directly obtained by the equilibrium 
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condition: 

𝐸𝐴

𝐿
𝑤st = −(𝑀 − 𝜌𝑉 +

𝑚𝑠𝐿

2
)𝑔 (5.5) 

While the dynamic term comes from the solution of the equation of motion: 

(𝑀 + 𝜌𝑉𝐶𝑎 +
1

3
𝑚𝐿) 𝑤̈dyn +

1

2
𝜌𝐴𝑝𝐶𝑑|𝑤̇dyn|𝑤̇dyn +

𝐸𝐴

𝐿
𝑤dyn =

𝐸𝐴

𝐿
𝑤0 −

𝑚𝐿

6
𝑤̈0 (5.6) 

Further, the dynamic force acting on the cable can be computed as: 

𝐹dyn =
𝐸𝐴

𝐿
(𝑤0 − 𝑤dyn) (5.7) 

In order to present an introduction to the dynamical behaviour of this system, the installation of 

a small size manifold in the Campos Basin (Brazil) is considered as an example. The data used 

for the operation are presented in Table 5.1. Constant hydrodynamic coefficients are considered 

in this study, as in [72,74,137,193], and some remarks on this topic are given in Section 5.5. 

Table 5.1: Data considered for the example scenario. 

Parameter Value 

Cable 

(3 in six-stranded) 

Mass per unit length (𝑚) 24.6 kg/m 

Equivalent submerged mass per unit 

length (𝑚𝑠) 
20.4 kg/m 

Axial rigidity (𝐸𝐴) 315 MN 

Safe Working Load 1300 kN 

Equipment 

(Small size manifold) 

Mass (𝑀) 15 tonnes 

Volume (𝑉) 1.92 m3 

Vertical projected area (𝐴𝑝) 15 m2 

Added mass coefficient (𝐶𝑎) 30 

Drag coefficient (𝐶𝑑) 4 

Safe Working Load 200 kN 

Environmental            

conditions 

Wave peak period (𝑇𝑝) 5 to 13 s 

Wave significant height (𝐻𝑠) 1.0 to 3.0 m 

Water depth 700 m 

A typical engineering analysis would start by checking the natural frequency of this system as 

a function of the water depth, aiming to identify the risk of resonance: 
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𝜔𝑛 = √
𝐸𝐴

𝐿 (𝑀 + 𝜌𝑉𝐶𝑎 +
1
3 𝑚𝐿)

 (5.8) 

This result is presented in Figure 5.3 and reveals that the natural period (𝑇𝑛 = 2𝜋/𝜔𝑛) of the 

system is always below the wave peak periods found near the Brazilian shore (typically between 

5 and 13 s). Consequently, one could conclude that amplifications in the cable force due to 

resonance would not be a risk in this scenario, and that the maximum dynamic loads would 

occur at 700 m depth, since at this depth the natural period is closest to the excitation periods. 

However, this conclusion is not correct as it ignores the effects introduced by the nonlinear drag 

term in the dynamics of the system. 

 
Figure 5.3: Natural period of the system as a function of depth.  

A more accurate and useful representation of the dynamics of the system can be obtained by 

plotting the maximum value of the dynamic force on the cable as a function of depth. This way, 

it is possible to identify the zones where structural limits of the system may be violated during 

the operation. As an example, a sinusoidal input displacement (𝑤0) of amplitude 0.5 m and 

frequency (Ω) 1 rad/s is considered. 

The results, obtained using a fourth order Runge-Kutta algorithm to integrate Eq. (5.6) in the 

time domain, implemented via Matlab function ‘ode45’, are presented in Figure 5.4. The solu-

tion of an equivalent equation, substituting the quadratic drag term with a linear one that dissi-

pates the same amount of energy per cycle [71], is also presented. This last model is usually 

considered as a first guide to analyse subsea lifting operations [192] and is used as a compara-

tive model in this study. 
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Figure 5.4: Maximum dynamic force on the cable as a function of depth for the nonlinear equation of 

motion (Eq. (5.6)) and for an equivalent linear equation considering equivalent energy dissipation per 

cycle. Input frequency 1 rad/s and input amplitude 0.5 m.  

In this figure, the Runge-Kutta results exhibit two peaks in the dynamical response of the sys-

tem that do not occur for the equivalent energy dissipation model. The higher peak occurs at a 

depth of 450 m, where the natural frequency of the system is 3 rad/s (Ω = 𝜔𝑛/3), while the 

smaller peak occurs at 167 m, where the natural frequency is 5 rad/s (Ω = 𝜔𝑛/5). This in-

crease in the dynamical response of a system in zones where the input frequency is an integer 

fraction of the natural frequency is known as super-harmonic resonance [185], which is char-

acterized by the presence of higher harmonic components in the response of the system (as 

indicated in Figure 5.1).  

Considering that unexpected higher loads may violate the structural limits of the system, com-

prehension of the features of the super-harmonic resonance is necessary. The rest of this paper 

presents this study. 

5.3 Non-dimensional equation of motion 

Although Eq. (5.6) can be directly used to calculate the dynamics of the system, using an equiv-

alent non-dimensional equation permits the simplification of the problem by reducing the num-

ber of parameters necessary to evaluate it. So, assuming a harmonic input for the displacement 

on the top of the cable: 

𝑤0 = 𝑊0 cos(Ω𝑡) (5.9) 

and introducing the following dimensionless variables: 
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𝜏 = 𝜔𝑛𝑡 (5.10) 

Λ =
Ω

𝜔𝑛
 (5.11) 

𝑦 =
𝑤dyn

𝑊0
 (5.12) 

it is possible to re-write Eq. (5.6) in non-dimensional form: 

𝑦′′ + 𝛾|𝑦′|𝑦′ + 𝑦 = (1 + 𝛼Λ2) cos(Λ𝜏) (5.13) 

In this case, 𝑦′ and 𝑦′′ mean differentiation of 𝑦 with respect to 𝜏, and the new parameters of 

the system are defined as: 

𝛼 =
𝑚𝐿

6 (𝑀 + 𝜌𝑉𝐶𝑎 +
1
3 𝑚𝐿)

 (5.14) 

𝛾 =
𝜌𝐴𝑝𝐶𝑑

2 (𝑀 + 𝜌𝑉𝐶𝑎 +
1
3 𝑚𝐿)

𝑊0 (5.15) 

The dimensionless mass ratio (𝛼) represents 1/6 of the ratio of the mass of the cable to the 

effective mass of the system and the dimensionless damping (𝛾) relates the drag force to the 

effective mass of the system. It is interesting to note that it has been possible to incorporate the 

amplitude of the input in this last parameter, rather than needing a separate input parameter, as 

is usual. This representation of the equation of motion enables the analysis of the dynamics of 

this system as a function of only three parameters: 𝛼, 𝛾, and Λ, simplifying the understanding 

of the general behaviour of the system in different scenarios. 

Finally, as the interest in this type of analysis is to calculate the force on the cable, a non-

dimensional form of the dynamic force on the cable can be obtained by taking: 

𝑓 =
𝐹dyn

𝑊𝑜 (𝑀 + 𝜌𝑉𝐶𝑎 +
1
3 𝑚𝐿) Ω2

 (5.16) 

Applying this relation into Eq. (5.7), it is possible to obtain the dimensionless force as: 

𝑓 =
1

Λ2
(𝑦0 − 𝑦) (5.17) 

where 𝑦0 = cos(Λ𝜏). 
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5.4 Analysing the dynamics of the system via the harmonic balance method 

Despite the fact that Eq. (5.13) may be solved numerically in the time domain, analytical or 

semi-analytical approaches may be used to provide more rapid solutions and also insight into 

the mechanisms that underpin the nonlinear dynamical behaviour. Therefore, the focus of this 

section is to present the solution of the equation of motion in the super-harmonic zone analyti-

cally. 

Approximate solutions of nonlinear equations, such as Eq. (5.13), may be obtained using tech-

niques such as the method of multiple scales, the method of averaging or the harmonic balance 

method (HBM). These techniques represent the solution of the full problem by the first few 

terms of a perturbation or series expansion [195]. The procedure selected for this study is the 

harmonic balance method [196–199]. This choice is made due to its intuitive approach and also 

the fact that numerical simulations can be easily used to check the harmonic components that 

are present in the dynamic response of the system. 

The harmonic balance method employs the fact that the steady state response of the of system 

to sinusoidal excitation is periodic in the vicinity of a centre (the static equilibrium position, in 

this case) and, hence, it can be represented by a Fourier series. Therefore, the non-dimensional 

dynamic displacement is assumed to be equal to [185]: 

𝑦 = ∑ 𝑌𝑘 cos(𝑘Λ𝜏 + 𝜙𝑘)

𝑁

𝑘=1

 (5.18) 

This approximation is substituted into the equation of motion, and the amplitudes and phases 

are determined by balancing the harmonic terms with the same frequencies. 

5.4.1 Harmonic balance method considering 1 harmonic component 

A first approximation to solve the problem may be obtained by considering just one harmonic 

component for the response of the system. So, the non-dimensional displacement has the form: 

𝑦 = 𝑌1 cos(Λ𝜏 + 𝜙1) (5.19) 

In this case, the system responds at the same frequency as the excitation, but it has a different 

amplitude and phase. Substituting Eq. (5.19) into Eq. (5.13) leads to the following equation: 
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−𝑌1Λ2 cos(Λ𝜏 + 𝜙1) − 𝑌1
2Λ2𝛾|sin(Λ𝜏 + 𝜙1)| sin(Λ𝜏 + 𝜙1) + 𝑌1 cos(Λ𝜏 + 𝜙1)

= (1 + 𝛼Λ2) cos(Λ𝜏) 
(5.20) 

The quadratic term is a periodic function, and thus can be represented via a Fourier series: 

|sin(Λ𝜏 + 𝜙1)| sin(Λ𝜏 + 𝜙1)

=
8

3𝜋
sin(Λ𝜏 + 𝜙1) −

8

15𝜋
sin(3Λ𝜏 + 𝜙1) −

8

105𝜋
sin(5Λ𝜏 + 𝜙1)

+ ⋯ 

(5.21) 

Substituting Eq. (5.21) into Eq. (5.20), expressing the sines and cosines in imaginary exponen-

tial form and balancing the coefficients of the terms with frequency Λ, after some algebraic 

manipulation, the following equation is obtained: 

 −𝑌1Λ2 +
8𝑌1

2Λ2𝛾

3𝜋
j + 𝑌1 − (1 + 𝛼Λ2)e−j𝜙1 = 0 (5.22) 

Separating the real and imaginary parts of this equation results in: 

(1 − Λ2)𝑌1 = (1 + 𝛼Λ2) cos 𝜙1 (5.23a) 

−
8Λ2𝛾

3𝜋
𝑌1

2 = (1 + 𝛼Λ2) sin 𝜙1 (5.23b) 

The amplitude of the displacement can be obtained taking the square of both sides and adding 

the equations, which leads to: 

(
8Λ2𝛾

3𝜋
)

2

𝑌1
4 + (1 − Λ2)2𝑌1

2 − (1 + 𝛼Λ2)2 = 0 (5.24) 

This is a quadratic equation in 𝑌1
2, so it can be easily solved for 𝑌1. Then, the phase of the non-

dimensional displacement can be obtained from: 

𝜙1 = arctan [
−8Λ2𝛾𝑌1

3𝜋(1 − Λ2)
] (5.25) 

Eqs. (5.24) and (5.25), obtained to calculate 𝑌1 and 𝜙1, are the same as those found when the 

assumption of equivalent energy dissipation is made. Therefore, the results obtained using only 

one harmonic component to represent the dynamics of the system are equal to those obtained 

from the equivalent energy dissipation model, as presented in Figure 5.4, which is not able to 

represent the super-harmonic resonance that the system experiences.  
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5.4.2 Harmonic balance method considering 2 or 3 harmonic components 

The above analysis shows that selecting only one harmonic component is not sufficient to rep-

resent the super-harmonic resonance, so more harmonics are required in the assumed solution. 

Only odd harmonics need be included, since the only nonlinear term in the equation of motion, 

𝛾|𝑦′|𝑦′, is an odd function. Considering the results presented in Figure 5.1, a rational choice is 

the selection of two harmonic components for the response of the system. The first harmonic is 

assumed to have the same frequency as the excitation and the second one to have three times 

the excitation frequency. Therefore, the non-dimensional displacement has the form: 

𝑦 = 𝑌1 cos(Λ𝜏 + 𝜙1) + 𝑌3 cos(3Λ𝜏 + 𝜙3) (5.26) 

The direct substitution of Eq. (5.26) into Eq. (5.13) leads to algebraic difficulties in obtaining a 

Fourier series representation for the quadratic drag term, as obtained in Eq. (5.21) for one har-

monic. This is because there is no simple equation for the time at which 𝑦′, based on Eq. (5.26), 

changes sign, as the phase of each harmonic term is not known a priori. In order to retain the 

analytical treatment of the problem, the product 𝑦′|𝑦′| is approximated by an odd polynomial, 

due to the anti-symmetry of the function: 

𝑦′|𝑦′| = 𝐴1𝑦′ + 𝐴3𝑦′3
+ 𝐴5𝑦′5

+ ⋯ (5.27) 

Since the function 𝑦′|𝑦′| does not have smooth derivatives, the coefficients 𝐴𝑖 cannot be cal-

culated directly via a Taylor series. So, the coefficients may be found by fitting a regression 

model of the function 𝑦′|𝑦′| via a least squares technique [200]. In this case, the values of the 

coefficients are dependent on the range of values considered for the non-dimensional velocity 

when fitting the curve.  

Taking the maximum value of the non-dimensional velocity to perform this fit as the amplitude 

of the velocity of the first harmonic, the coefficients 𝐴𝑖 are obtained by solving the following 

minimization problem: 

min:    ∫ (𝑦′2
− 𝐴1𝑦′ − 𝐴3𝑦′3

− 𝐴5𝑦′5
− ⋯ )

2
d𝑦′

Λ𝑌1

0

 (5.28) 

Due to the anti-symmetry of 𝑦′|𝑦′|, only positive values of 𝑦′ need be included in the integral. 

The validity of the approach for dealing with the 𝑦′|𝑦′| term is addressed in Section 5.5. 

Taking only the two first terms of the polynomial approximation for the nonlinear function, and 

solving the least squares problem, leads to the following equation of motion: 
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𝑦′′ + 𝛾 (
5

16
Λ𝑌1𝑦′ +

35

48Λ𝑌1
𝑦′3

) + 𝑦 = (1 + 𝛼Λ2) cos(Λ𝜏) (5.29) 

Substituting Eq. (5.26) into Eq. (5.29), balancing the coefficients of the first and the third har-

monic components, and after some algebraic manipulation, the following system of nonlinear 

algebraic equation is obtained: 

64(1 − Λ2)𝑌1 − 105𝛾Λ2𝑌1𝑌3 sin(3𝜙1 − 𝜙3) − 64(1 + 𝛼Λ2) cos(𝜙1) = 0 (5.30a) 

55𝛾Λ2𝑌1
2 + 630𝛾Λ2𝑌3

2 − 105𝛾Λ2𝑌1𝑌3 cos(3𝜙1 − 𝜙3) + 64(1 + 𝛼Λ2) sin(𝜙1)
= 0 

(5.30b) 

192(1 − 9Λ2)𝑌3 + 35𝛾Λ2𝑌1
2 sin(3𝜙1 − 𝜙3) = 0 (5.30c) 

162𝑌1
2𝑌3 + 567𝑌3

3 − 7𝑌1
3 cos(3𝜙1 − 𝜙3) = 0 (5.30d) 

This is a nonlinear system of equations for 𝑌1, 𝜙1, 𝑌3 and 𝜙3 which can be solved numerically. 

The results for this study, shown in Section 5.5, uses the interior trust region method [201], 

implemented via the Matlab function ‘fsolve’, to compute the solutions of this system of equa-

tions assuming zero as initial estimates. 

Given the existence of another super-harmonic resonance when Ω = 𝜔𝑛/5 (Figure 5.4), it is 

also worth considering the solution of the system adding another harmonic term. In this case, 

the assumed solution for the dynamic displacement of the equipment is: 

𝑦 = 𝑌1 cos(Λ𝜏 + 𝜙1) + 𝑌3 cos(3Λ𝜏 + 𝜙3) + 𝑌5 cos(5Λ𝜏 + 𝜙5) (5.31) 

However, the expansion in Eq. (5.27) then needs to include the 𝐴5𝑦′5
 term, in order to generate 

the harmonic at five times the input frequency. So, solving the least squares minimization prob-

lem and substituting the polynomial approximation into the equation of motion leads to: 

𝑦′′ + 𝛾 (
105

512
Λ𝑌1𝑦′ +

315

256Λ𝑌1
𝑦′3

−
231

512Λ3𝑌1
3 𝑦′5

) + 𝑦 = (1 + 𝛼Λ2) cos(Λ𝜏) (5.32) 

Applying a similar procedure as presented in the case for two harmonics, it is possible to obtain 

a system of nonlinear algebraic equations for the variables 𝑌1, 𝜙1, 𝑌3, 𝜙3, 𝑌5 and 𝜙5. These 

expressions are presented in Appendix A. 
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5.5 Numerical results for the dynamics of the example system in super-

harmonic resonance 

Having presented the solution of the equation of motion via the harmonic balance method using 

different combinations of harmonic components, a deeper analysis of the dynamics of the sys-

tem in super-harmonic resonance can be conducted. To this end, the steady state maximum 

value of the dynamic force on the example cable is presented in Figure 5.5, using direct inte-

gration of Eq. (5.13) by a Runge-Kutta solver and using the HBM with different combinations 

of harmonic components. The dimensional form of the variables is obtained using Eqs. (5.10) 

to (5.12) and (5.16), following the solution of the non-dimensional equation of motion. The 

HBM using only the first harmonic (HBM 1) is unable to represent any of super-harmonic peaks 

(as addressed in Section 5.4.1), the HBM using the first and the third harmonics (HBM 1,3) 

reproduces the higher peak, and both peaks are reproduced using the HBM with the first, third, 

and fifth harmonics (HBM 1,3,5). Comparing the results obtained via the harmonic balance 

method to the Runge-Kutta solution, the values obtained are considered accurate: the error of 

the maximum value of the dynamic force, at 450 m depth, is 0.21 % for HBM 1,3 and 0.42 % 

for HBM 1,3,5, while the error at the other maximum, at 167 m, is 2.01 % for HBM 1,3,5. 

Furthermore, HBM 1,3 is around 35 times faster than the Runge-Kutta method when consider-

ing a total integration time of 50 dimensionless periods and a relative tolerance of 10−5 for the 

non-dimensional displacement and velocity; while HBM 1,3,5 is up to 25 times faster than the 

Runge-Kutta method in similar conditions. The increased speed with which the equation of 

motion is solved via the harmonic balance method is particularly important during the planning 

of subsea lifting operations, when several combinations of environmental and operational con-

ditions must be evaluated. For example, the construction of a typical operational weather win-

dow requires the evaluation of 3 vessel headings, 13 wave peak periods, 16 wave heights, and 

70 depths (considering the maximum water depth equal 700 m). This would lead to a total of 

43680 independent simulations. The total simulation time, considering a 1.7 GHz Core i7 pro-

cessor, would thus be around 8 hours for the time domain integration in comparison to few 

minutes for the harmonic balance method (12 min for the HBM 1,3 and 17 min for the HBM 

1,3,5). This is crucial if some analysis must be conducted whilst the operation is underway, 

where high daily rates are common for the vessels. 
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Figure 5.5: Maximum steady state dynamic force on the cable as a function of depth using different 

solutions. Input frequency 1 rad/s and input amplitude 0.5 m.  

The behaviour of the harmonic components near the super-harmonic resonances are presented 

in Figure 5.6 (in this case, the amplitude of each harmonic is scaled to its dimensional form: 

𝑊1 = 𝑌1𝑊0, 𝑊3 = 𝑌3𝑊0, and 𝑊5 = 𝑌5𝑊0 ). The amplitude of the first harmonic (𝑊1) is similar 

regardless of the number of harmonic components considered in the HBM, and it replicates the 

results obtained from the equivalent energy dissipation model. Further, when the equipment is 

at around 450 m depth, the value of 𝑊3 is a maximum, indicating a resonance condition (since 

the frequency of 𝑊3 matches the natural frequency of the system at this depth). Also, in this 

case, the phases 𝜙1 and 𝜙3 are both close to zero so the first and third harmonics reach their 

maxima simultaneously, which increases the total magnitude of the non-dimensional displace-

ment, and consequently increases the force on the system relative to the solution with only one 

harmonic (i.e. the equivalent energy dissipation model). Similar behaviour occurs at a depth of 

167 m, but in this case, the harmonic component that experiences a resonance condition is 𝑊5, 

which also has a phase close to zero at this depth, so adds to the maximum displacement and 

force. These conclusions explain the features of the super-harmonic resonance that the system 

experiences and also explains why the smaller peak is only reproduced using the harmonic 

balance method considering the first, third, and fifth harmonic components. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

  
(e) 

 

(f) 

 
Figure 5.6: Amplitude and phase of each harmonic component as a function of depth. Input frequency 

1 rad/s and input amplitude 0.5 m; (a) amplitude of the first harmonic, (b) phase of the first har-

monic; (c) amplitude of the third harmonic, (d) phase of the third harmonic, (e) amplitude of the fifth 

harmonic, and (f) phase of the fifth harmonic. 

More details of the dynamics of the system can be understood by observing the total magnitude 

of the dynamic displacement and of the velocity of the system as a function of depth for the 

different solutions, as presented in Figure 5.7. The maximum value of the dynamic displace-
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ment increases due to the third and the fifth harmonics in the zones where super-harmonic res-

onance occurs, but the maximum velocity actually decreases for the second peak. This can be 

explained by the combination of the first and third harmonic components both with phases close 

to zero. The maximum velocity of the first harmonic then coincides with the minimum velocity 

of the third harmonic and vice versa. It is also notable that, comparing with the equivalent en-

ergy dissipation model (equivalent to HBM 1), at 450 m depth, an increase of only 4% in the 

maximum dynamic displacement leads to an increase of 35% in the maximum dynamic force. 

This is because the majority of the displacement of the equivalent energy dissipation model is 

quasi-static, directly from the motion of the vessel, whereas all of the additional displacement 

in the nonlinear case is dynamic. Hence, although there is only a small increase in the absolute 

displacement of the equipment, there is a large increase in its displacement relative to the vessel, 

which is what governs the dynamic force. This effect is important since, in some scenarios, as 

a result, dynamic amplification due to super-harmonic resonance may actually be the limiting 

design criterion. This reinforces the importance of understanding this type of behaviour and to 

take it into consideration when planning real operations. This conclusion also supports the use 

of constant hydrodynamic coefficients (i.e. neglecting the influence of the amplitude of oscil-

lation via the Keulegan-Carpenter number) in this study since, in the super-harmonic reso-

nances zones, the amplitude of the response is only slightly changed (4% in this example), 

which translates to minor variations of the hydrodynamic coefficients due to the variation of 

the Keulegan-Carpenter number. 

(a) 

 

(b) 

 
Figure 5.7: Maximum value of (a) the displacement and (b) the velocity of the equipment as a function 

of depth for the different solutions. Input frequency 1 rad/s and input amplitude 0.5 m. 
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The application of the harmonic balance method considering two or three harmonic compo-

nents, as presented in Section 5.4.2, relies on the approximation of the quadratic drag term by 

an odd polynomial. This approximation depends on the maximum value considered for the ve-

locity when applying the least squares procedure in Eq. (5.28). Observing Figure 5.7(b), the 

maximum deviation between the velocity amplitude of the first harmonic (almost the same as 

the maximum velocity obtained by HBM 1) and the velocity found by the Runge-Kutta solver 

is around 12%, at a depth of 450 m. In this case, the error introduced by the least squares fit 

(discounting the error introduced by considering a finite number of terms in the harmonic bal-

ance method) is lower than 1% in the dynamic force. This is mirrored in the low errors observed 

in Figure 5.5 and validates the approximation of using the velocity amplitude of the first har-

monic as the range for the least squares fit in Eq. (5.28). 

For illustration, the time domain solutions, at a depth of 450 m, are presented in Figure 5.8.  As 

shown above, the deviations in the displacement for the different solutions are quite minor. The 

velocity plot shows a decrease in the peak values due to the combination of the odd harmonics; 

and the force plot exhibits a significant increase in its maximum values. Regarding the phase 

plane, the results obtained from the HBM 1,3, HBM 1,3,5, and Runge-Kutta solver deviate from 

the typical elliptical solution exhibited by the HBM using only the first harmonic, showing a 

flatter geometric form, indicating the presence of harmonics which are generated by nonlinear-

ity. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 5.8: Time history responses and phase plane of the response of the system at a depth of 450 m 

for the different solutions. Input frequency 1 rad/s and input amplitude 0.5 m, (a) time response of 

the displacement, (b) time response of the velocity, (c) time response of the dynamic force, and (d) 

phase plane. 

5.6 Dynamics of general subsea lifting systems under general conditions 

The results presented in Section 5.5 illustrate the details of the super-harmonic resonance ex-

perienced by the example system in one specific condition: input frequency equal to 1 rad/s 

and input amplitude equal to 0.5 m, which corresponds to 0.192 ≤ 𝛾 ≤ 0.205, 0.154 ≤ Λ ≤

0.421 and 0.006 ≤ 𝛼 ≤ 0.036. More general conclusions about the dynamics of general sub-

sea lifting systems and the accuracy of the harmonic balance method in different conditions can 

be obtained by plotting the maximum non-dimensional force as a function of the non-dimen-

sional parameters of the system. In this case, the analysis can be simplified by noting that the 

term 𝛼Λ2 (which is equal to 𝑚𝐿2Ω2/6𝐸𝐴) in Eq. (5.13) can often be neglected. The ratio 𝑚/𝐸𝐴 

is a constant value, being equal to 8 ∙ 10−8 s2/m2 for a typical six-stranded steel wire cable, 

and the maximum value of the input frequency is around 1.5 rad/s in the Campos Basin, Brazil, 
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for example. Based on these conditions, the term 𝛼Λ2 is less than 0.1 when the length of the 

cable is less than 1800 m, which is applicable to many locations, including the Campos Basin. 

Consequently, the term (1 + 𝛼Λ2) can be approximated to unity (i.e. 𝛼Λ2 can be neglected) in 

Eq. (5.13) and hence only the parameters Λ and 𝛾 are needed to construct contour plots of the 

maximum dimensionless force. 

The maximum dimensionless force and its percentage error when compared to the Runge-Kutta 

solution are presented in Figure 5.9 as a function of Λ and 𝛾. Observing Figure 5.9(a), which 

accounts for the solution using HBM 1, the dimensionless force monotonically increases as a 

function of both Λ and 𝛾. This is the expected behaviour of the equivalent energy dissipation 

model, which predicts higher forces when Λ approaches unity, but ignores the effects of the 

super-harmonic resonances. This lack of accuracy is highlighted in Figure 5.9(b), where the 

errors of HBM 1 compared to the Runge-Kutta solver are presented. In this case, the errors 

reach values up to −27 % when 𝛾 is lower than 0.4 and Λ is near 1/3. The results obtained 

using HBM 1,3 are presented in Figure 5.9(c), which represents the 1:3 super-harmonic reso-

nance by downward curves of the contour lines around Λ = 1/3. The other super-harmonic 

resonances are not represented, and the errors of HBM 1,3 (Figure 5.9(d)) are mainly observed 

around Λ = 1/5, reaching values up to 10 % when 𝛾 is close to 0.75. Finally, HBM 1,3,5 

(Figure 5.9(e)) captures the 1:3 and 1:5 super-harmonic resonances, and the errors for this 

method (Figure 5.9(f)) are near zero for the majority of the range analysed, the maximum value 

obtained being 4 %, when Λ = 1/7.  

The influence of the parameter 𝛾 on the dynamics of the system can be assessed by observing 

the results obtained using HBM 1,3,5 (Figure 5.9(e)). The impact of the super-harmonic reso-

nances on the amplification of the dimensionless force is relatively higher when 𝛾 is smaller. 

When 𝛾 tends to zero and Λ = 1/3, the dimensionless force increases from 1.2 to 1.5, an in-

crease of 25 % in a narrow range of Λ. 
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(a) 

 

(b) 

 
(c)  

 

(d) 

 
(e) 

 

(f) 

 
Figure 5.9: Dimensionless force and its percentage error in comparison to the Runge-Kutta solution 

as a function of the parameters Λ and 𝛾, and assuming 𝛼 = 0. (a) Dimensionless force obtained by 

HBM 1, (b) dimensionless force error obtained by HBM 1, (c) Dimensionless force obtained by HBM 

1,3, (d) dimensionless force error obtained by HBM 1,3, (e) Dimensionless force obtained by HBM 

1,3,5, (f) dimensionless force error obtained by HBM 1,3,5.  
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Based on these results, it is possible to conclude that the introduction of more harmonic com-

ponents reduces the errors of the harmonic balance method compared to the Runge-Kutta solu-

tion. Further, the introduction of higher harmonics in the HBM enables the representation of 

the super-harmonic resonance corresponding to the frequency of the harmonic components 

added. The 1:7 super-harmonic resonance and the subsequent ones could thus be represented 

by adding the harmonic term at seven times the input frequency and so on in the HBM. How-

ever, this would not lead to significant improvements in the results, as the HBM 1,3,5 has al-

ready presented errors close to zero in almost all the ranges of Λ and 𝛾 studied. Also, these 

higher super-harmonic resonances tend to occur in shallow waters (less than 100 m), where the 

influence of the ocean waves are important for the dynamical response of the system and, con-

sequently, the model presented in Eq. (5.4) is not applicable anymore. The dimensionless force 

obtained by HBM 1,3,5 (Figure 5.9(e)) can thus be used as a simple and effective representation 

of the dynamics of general subsea lifting operations. 

5.7 Operational weather window assessment 

The main objective of a subsea lifting engineering analysis is to calculate the weather window 

for the operation, that is: the maximum significant wave height (𝐻𝑠) where the operation can 

be performed safely as a function of the wave peak period (𝑇𝑝). The goal of this section is 

therefore to conduct this analysis for the scenario presented in Table 5.1, comparing the results 

obtained by direct time domain integration using the Runge-Kutta solver, by the harmonic bal-

ance method considering the first, third, and fifth harmonics, and by the equivalent energy dis-

sipation model (which is equivalent to HBM 1). 

The lifting operation is considered to be performed by a typical subsea construction vessel, 

modelled by its vertical displacement Response Amplitude Operator (RAO) at the lifting point 

(i.e. the vessel frequency response function). The analysis is conducted assuming an equivalent 

regular excitation, according to the recommendations of DNVGL-RP-N103 [192]. In this case, 

the spectral response of the lifting point is given by: 

𝑆 = |RAO|2𝑆wave (5.33) 

where 𝑆wave is modelled, in this example, by a JONSWAP spectrum fitted for the Campos 

Basin, Brazil. Next, the standard deviation and the mean zero-up crossing angular frequency of 

the vertical displacement of the lifting point can be obtained via the moments of the spectrum 
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of the response: 

𝜎 = √∫ 𝑆d𝜔 (5.34) 

𝜔𝑧 = √
∫ 𝜔2𝑆d𝜔

∫ 𝑆d𝜔
 (5.35) 

The equivalent regular excitation amplitude can be found by considering the most probable 

largest value of a Rayleigh distribution: 

𝑊0 = 𝜎√2 ln(𝑛) (5.36) 

where 𝑛 is the number of input cycles expected during the operation, and considered equal to 

1000, a common value used in real operations [180].  Further, the input frequency is considered 

equal to the mean angular frequency Ω =  𝜔𝑧. Finally, the weather window is obtained by cal-

culating the maximum significant wave height, as a function of the wave peak period, that does 

not violate the acceptance criteria: the maximum forces on the cable must be below the safe 

working loads of the system and the cable must always be taut. In this case, the equipment is 

considered to be initially positioned at 100 m depth since in shallower waters the effects of the 

ocean waves are relevant in the calculation of the hydrodynamic loads and, thus, the models 

presented in Sections 5.2 to 5.4 are not applicable. 

The results are presented in Figure 5.10. The operational weather window obtained by the 

Runge-Kutta solver and by the HBM 1,3,5 are equal, supporting the outcomes of Sections 5.5 

and 5.6, where low deviations between these models have been presented. On the other hand, 

the results obtained by the equivalent energy dissipation model predict higher values for the 

allowed significant wave height, especially in the range of wave peak periods varying from 6 

to 9 seconds. The reasons for this behaviour can be addressed by analysing the path followed 

by the system on the 𝛾 − Λ plot (Figure 5.11) as the equipment is lowered from 100 m to 700 

m (Λ increasing). When 𝐻𝑠 = 2 m and 𝑇𝑝 = 6 s, the equipment crosses the 1:5 and 1:3 super-

harmonic resonance zones, leading to a maximum non-dimensional force of 1.57 (Figure 

5.11(b)). Since the equivalent energy dissipation model is not able to predict the super-harmonic 

resonance, the maximum non-dimensional force obtained is 1.30 (Figure 5.11(a)), correspond-

ing to the maximum depth of 700 m. This explains the higher wave height limit found in the 
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weather window for this wave peak period using the equivalent energy dissipation model (Fig-

ure 5.10). When 𝐻𝑠 = 2.9 m and 𝑇𝑝 = 8 s, HBM 1,3,5 predicts a maximum non-dimensional 

force of 1.60, in contrast to the maximum of 1.22 obtained by the equivalent energy dissipation 

model, i.e. 23.8 % lower. This higher deviation of the dimensionless force between the models 

at this wave peak period (𝑇𝑝 = 8 s) is directly reflected in the operational weather window, 

where the equivalent energy dissipation model considers 𝐻𝑠 up to 2.9 m acceptable, while HBM 

1,3,5 and the Runge-Kutta method only allow 𝐻𝑠 up to 2.2 m. For the scenario when 𝐻𝑠 = 2 m 

and 𝑇𝑝 = 12 s, only the 1:5 super-harmonic resonance zone is crossed and the non-dimensional 

force obtained by all the models is 1.34. Consequently, at this peak period, the limiting 𝐻𝑠 is 

the same for all the models. 

  
Figure 5.10: Maximum allowed significant wave height for the subsea lifting operation as a function of 

wave peak period for different solutions.  

Based on these results, it is clear the importance of analysing the dynamics of the system by 

nonlinear models that are able to predict the amplification of forces due to the super-harmonic 

resonance. As presented in Figure 5.10, the use of equivalent energy dissipation models, typi-

cally used as a first guide to analyse subsea lifting operations [192], can lead to over-estimation 

of the safe operational wave height and thus could jeopardize the operation. Also, the assump-

tion that the maximum loads on the system occur at the deepest condition when the system does 

not cross the fundamental resonance zone is equally not correct, and again can lead to risks for 

the operation. In this context, the harmonic balance method considering the first, third and fifth 

harmonic components can be used as an accurate and effective method to assess the dynamics 

of the system, as it presents results similar to those obtained via time domain integration, but 

up to 25 times faster (as per Section 5.5). Further, the graph of the dimensionless force in the 
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Λ − 𝛾 space, such as presented in Figure 5.11(b), is an important tool for the analysis of subsea 

lifting operations, since the dynamic forces on the cable during a given operation can be directly 

obtained using this graph by just tracing the Λ − 𝛾 path that the system follows as the payload 

is transported. In this case, direct interpretation of the dynamics of the system and the critical 

scenarios are obtained in a clear and concise way. 

(a) 

  
(b) 

 
Figure 5.11: Path followed by the system, during a lowering operation, in 𝛾 − Λ space in different rep-

resentative sea states, with respect to contours of the dimensionless force, considering (a) the equivalent 

energy dissipation model and (b) the harmonic balance method using the first, third, and fifth harmonics.  

5.8 Conclusions 

The dynamics of deep water subsea lifting operations in super-harmonic resonance has been 

analysed in this study. Initially, a Runge-Kutta algorithm was used to integrate the nonlinear 

equation of motion of the system in the time domain. The results showed that the maximum 
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force on the lifting cable presented amplifications at depths where the input frequency was 

equal to an integer fraction of the natural frequency of the system, in contrast to the predictions 

obtained by the traditional equivalent energy dissipation model.  

Then, a non-dimensional form of the equation of motion was presented, and the harmonic bal-

ance method was used to solve it and to identify the features of the super-harmonic resonance. 

The use of only one harmonic component for the response of the system yielded equal results 

to those obtained via the equivalent energy dissipation model, which motivated the inclusion of 

more harmonic components in the response of the system. In order to ease the algebraic calcu-

lations to apply the harmonic balance method using more than one component, the nonlinear 

quadratic drag term was expanded as an odd polynomial, whose coefficients were obtained by 

the least squares method. 

For the scenario considered, the harmonic balance method using the first and third harmonic 

components was able to represent the 1:3 super-harmonic resonance, while the harmonic bal-

ance method considering the first, third, and fifth harmonic components could represent both 

the 1:3 and the 1:5 super-harmonic resonances. Further, in the super-harmonic resonance zones, 

the higher frequency harmonic terms showed an increase of their amplitudes, and their phases 

became equal to the phase of the first harmonic term, increasing the dynamic loads on the cable. 

In the example case, an increase of only 4 % in the maximum displacement of the equipment 

led to an increase of 35 % in the maximum force on the cable. 

Next, the general dynamical behaviour of a generic subsea lifting system was presented by 

plotting the dimensionless maximum dynamic force and its error relative to the Runge-Kutta 

solution as a function of the dimensionless excitation frequency and the dimensionless damping 

using the different solutions. The results showed that the errors of the harmonic balance method 

using the first, third, and fifth harmonics were close to zero, except in the zone of the 1:7 super-

harmonic resonance, where it could reach 4 %. This zone, however, is unlikely to be important, 

as it occurs in shallow waters where the influence of the ocean waves is important so different 

models are necessary. The use of the harmonic balance method considering the first and the 

third harmonics led to errors of up to 10 % in the zone of the 1:5 super-harmonic resonance, 

and less than 4 % otherwise. 

Finally, the operational weather window was presented for the example scenario, comparing 

the different solutions and assuming regular equivalent excitation. The Runge-Kutta results 

were equal to those presented by the harmonic balance method using the first, third, and fifth 
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harmonics. In contrast, the equivalent energy dissipation model presented higher operational 

limits. This deviation was due to the dynamic amplifications when the system crossed the super-

harmonic resonance zones, that were not represented by the equivalent energy dissipation 

model. This final result reinforced the importance of taking into account the super-harmonic 

resonances when analysing subsea lifting operations, as they can be the limiting design criterion 

in certain scenarios. In this context, the harmonic balance method considering the first, third 

and fifth harmonic components can be used as an accurate and effective method to assess the 

dynamics of the system, as it presented results similar to those obtained via time domain inte-

gration, but up to 25 times faster. 

5.9 Appendix 

This appendix presents the system of nonlinear algebraic equations for the harmonic balance 

method considering the first, third, and fifth harmonics as per Section 5.4.2. 

8192𝑌1
4

(1 − Λ2)

Λ2𝛾
− 8192𝑌1

3
(1 + 𝛼Λ2)

Λ2𝛾
cos(𝜙1) − 12285𝑌1

4𝑌3 sin(3𝜙1 − 𝜙3)

− 5775𝑌1
4𝑌5 sin(5𝜙1 − 𝜙5) − 88200𝑌1

3𝑌3𝑌5 sin(2𝜙1 + 𝜙3 − 𝜙5)
+ 187110𝑌1

2𝑌3
3 sin(3𝜙1 − 𝜙3)

+ 28350𝑌1
2𝑌3

2𝑌5 sin(𝜙1 − 2𝜙3 + 𝜙5)

+ 1039500𝑌1
2𝑌3𝑌5
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3𝑌5 sin(2𝜙1 + 𝜙3 − 𝜙5)
+ 5197500𝑌1𝑌3𝑌5

3 sin(2𝜙1 + 𝜙3 − 𝜙5)
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+ 1559250𝑌3
3𝑌5

2 sin(𝜙1 + 3𝜙3 − 2𝜙5)
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2𝑌5
3 sin(𝜙1 − 2𝜙3 + 𝜙5) = 0 

(5.37a) 
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3
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2
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8192𝑌1
2𝑌3
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(5.37c) 
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(5.37d) 
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(5.37e) 
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(5.37f) 
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6. NONLINEAR DYNAMICS OF DEEP WATER SUBSEA LIFTING 

OPERATIONS CONSIDERING KC-DEPENDENT HYDRODYNAMIC 

COEFFICIENTS 

The original version of this paper has been published in Ocean Engineering (v. 233, n. 109172, 

2021) by R. B. Tommasini, T. L. Hill, J. H. G. Macdonald, R. Pavanello and L. O. Carvalho 

[202] addressing the objective n. 4 of this thesis (as per Section 1.2.3).  This study analyses the 

dynamics of deep water subsea lifting operations considering KC-dependent hydrodynamic co-

efficients, building on the model proposed in Chapter 3 and on the analytical solution procedure 

described in Chapter 5. The aim is to address the impacts that variable hydrodynamic coeffi-

cients can have on the dynamics and planning of the operation. 

 

Abstract 

The dynamics of deep water subsea lifting operations considering hydrodynamic coefficients 

that depend on the Keulegan-Carpenter (KC) number are analysed in this study. Firstly, exper-

imental data from the literature is presented for a typical subsea manifold, relating the added 

mass and drag coefficients to the amplitude of oscillation, represented by the KC number. Then, 

the nonlinear non-dimensional equation of motion, that considers the variable hydrodynamic 

coefficients, is presented. The solution of this equation is obtained via the harmonic balance 

method and by iterative time domain integration, and the results are compared to those of a 

conventional model with constant hydrodynamic coefficients. The results obtained via the har-

monic balance method are considered almost as accurate as from the time domain integration, 

but require significantly less computational effort. Also, it is shown that the amplitude-depend-

ent model predicts variations in the natural frequency and damping of the system as a function 

of the amplitude of the response of the payload. This results in significant differences in the 

maximum cable tension and the payload depth at which it occurs, compared with the constant 

hydrodynamic coefficient model. Hence this shows the importance of considering variable hy-

drodynamic coefficients when analysing subsea lifting systems. 
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Nomenclature 

𝐴𝑝 Vertical projected area of the payload 

𝐶𝑎 Added mass coefficient 

𝐶𝑑 Drag coefficient 

𝐷 Characteristic dimension of the payload 

𝐸𝐴 Axial rigidity of the cable 

𝐹hyd Hydrodynamic force 

𝐹dyn Dynamic force on the cable 

𝑓 Dimensionless force on the cable 

𝑔 Gravity acceleration 

KC Keulegan-Carpenter number 

𝐿 Length of the cable 

𝑚 Mass per unit length of the cable 

𝑚𝑠 Equivalent submerged mass per unit length of the cable 

𝑀 Mass of the payload 

𝑁 Number of harmonic components in the Harmonic Balance Method 

Re Reynolds number 

𝑉 Volume of the payload 

𝑡 Time 

𝑤 Displacement of the payload 

𝑤st Static displacement of the payload 

𝑤dyn Dynamic displacement of the payload 

𝑤0 Displacement of the input on the top of the cable 

𝑊 Amplitude of the displacement of the payload 

𝑊0 Amplitude of the input displacement on the top of the cable 

𝑦 Dimensionless displacement of the payload 

𝑌 Amplitude of the non-dimensional displacement of the payload 

𝛼 Dimensionless mass ratio 

𝛽 Dimensionless amplitude-dependent drag coefficient 

𝛾 Dimensionless damping 

𝜇 Dimensionless amplitude-dependent added mass coefficient 

𝜙 Phase of the displacement of the payload 

Λ Frequency ratio 
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𝜌 Density of sea water 

Ω Input frequency 

𝜔𝑛0 Natural frequency of the system when KC → 0 

𝜏 Dimensionless time 

6.1 Introduction 

The exploration of offshore resources has progressively increased throughout past decades, led 

by the pioneering efforts of the oil and gas industry, and followed by the renewable energy and 

deep sea mining sectors. The construction of the subsea infrastructure required to enable these 

activities is usually done by subsea lifting operations via specialist barges or vessels, and cor-

respond to a major part of the capital expenditure necessary to start the production of the field. 

Therefore, there is a pursuit in the industry to continuously improve these operations and reduce 

their costs. According to Job et al. [11], the costs of subsea manifold installations in the Brazil-

ian shore has dropped by 86% since 2010 due to the improvements on the operational proce-

dures and to the use of new technologies such as passive heave compensation and synthetic 

ropes. Further, Lacal-Arantégui et al. [28] reported the reduction of up to 70% on the installa-

tion time of offshore wind turbines and their foundations, which is one of the reasons for the 

overall cost reduction of offshore wind electricity last years. These studies strengthen the im-

portance of new improvements to reduce the costs of subsea lifting operations and the positive 

impacts these enhancements can have on the viability of offshore exploration. 

A common approach to improve these operations is to conceive more accurate models to predict 

the dynamics of subsea lifting systems. This gives more confidence in predictions of maximum 

cable tensions to ensure safety of the operation and more accurately define the operational 

weather window, hence saving costs, which can be extremely high for specialist vessels. In this 

direction, several works have been published dealing with the dynamics of the system when the 

payload crosses the wave zone. Li et al. [61] considered the installation of a spool piece by 

taking into account the influence of vessel shielding and transient load effects; Jeong et al. [65] 

presented a model that accounts for the possibility of collisions between the payload and the 

vessel during the operation; and Hannan and Bai [64] studied the nonlinear dynamics of a barge 

and a submerged payload subjected to constrained pendulum motions. Further, crane flexibility 

effects during the lift off phase of operations was covered by Park et al. [43] and Hong et al. 

[44]. The dynamics of the system when the equipment is lowered into deep waters is also an 

important phase to be analysed due to the possibility of resonance of the cable-payload system 
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at certain water depths. Classical approaches for this problem can be found in the works by 

Niedzwicki and Thampi [71], Huang [72], Driscoll et al. [73,74,76] where the dynamics of the 

system were modelled considering constant length cables. More recently, variable length mod-

els have been presented by Tommasini et al. [137,159], Gao et al. [85], Quan et al. [203] and 

Quan and Chang [86] highlighting the influence of the winch speed in the response of the sys-

tem. Other examples of recent studies in this field cover the use of synthetic ropes to avoid 

resonance amplifications by de Araujo Neto et al. [81]; the development of a virtual reality 

simulation system to analyse the installation of subsea equipment by Zhang et al. [98]; and the 

analysis of the coupled dynamics of the vessel and the cable-equipment system, both numeri-

cally and experimentally, by Nam et al. [78]. Finally, a methodology for the assessment of the 

operational limits of marine operations was presented by Acero et al. [178]. 

A crucial aspect of the subsea lifting modelling is the hydrodynamic forces that are applied to 

the system due to the relative motion of the payload and the water. The traditional approach to 

model these forces is to use Morison’s equation [118], which is a semi-empirical equation that 

considers the hydrodynamic force as the combination of an inertial term, proportional to the 

acceleration; and a drag term, proportional to the squared velocity. The use of this equation 

requires the knowledge of two coefficients: the added mass and the drag coefficient, which are 

usually a function of the geometry of the equipment and of dimensionless quantities, such as 

the Reynolds (Re) or Keulegan-Carpenter (KC) numbers. 

Extensive research has been done describing these coefficients for simple geometries, espe-

cially for cylinders due to their recurrent use as a structural member in offshore structures. A 

classical reference on this subject is the book by Sarpkaya [120], which presented a review of 

the state-of-the-art on this topic and stressed the dependence of these coefficients on KC and Re 

in time-dependent flows. The hydrodynamics of flat plates have also been considered in several 

studies. Molin [124] presented a summary of his studies on the calculation of added mass and 

damping coefficients for perforated structures in oscillatory flows by using a theoretical model. 

His results indicated the dependence of the coefficients on the amplitude of oscillation and on 

the perforation of the plate, which was represented by a porous Keulegan-Carpenter number 

(KC̃). Further, An and Faltinsen [125] showed a numerical and experimental study to evaluate 

the added mass and damping coefficients of perforated rectangular plates, taking into account 

the effects of perforation ratio, plate submergence, forcing period, and KC. Especially, depend-

ence of the coefficients on KC was found to be higher than on the frequency when the plate was 
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deeply submerged. More recently, Mentzoni and Kristiansen [129–131] presented a series of 

numerical and experimental studies to evaluate the hydrodynamic coefficients of perforated 

plates. The results obtained were in agreement with previous references, reinforcing the de-

pendence on the amplitude of oscillation. Other examples of studies addressing the determina-

tion of the hydrodynamics of simple shapes that highlight the influence of KC can be found in 

[126–128,204]. 

Subsea structures are usually more complex, and correlation to simple geometries are not al-

ways possible when evaluating their hydrodynamic coefficients. Although more scarce, direct 

evaluation of the coefficients for specific cases can also be found in the literature, for example 

Fernandes and Mineiro [132] calculated the translational and rotational hydrodynamic coeffi-

cients of subsea manifolds. The hydrodynamic coefficients of an ROV (Remotely Operated 

Vehicle) were presented by Avila and Adamowski [205], who showed that the influence of the 

amplitude of oscillation was higher than that of the period on the coefficients. A similar con-

clusion was obtained in the study by Mentzoni et al. [206], where simplified subsea structures 

were experimentally tested, and by Du et al. [135], analysing the hydrodynamic coefficients of 

a subsea manifold. Further, Solaas and Sandvik [134] presented a series of results for the hy-

drodynamic coefficients of suction anchors; and Computational Fluid Dynamics (CFD) was 

used by Holmes et al. [207] to evaluate the hydrodynamics of Blow-Out Preventers (BOP) as 

a function of KC. Finally, a summary of hydrodynamic coefficients for subsea structures was 

presented by Oritsland [208]. 

According to these references, there is strong dependence of the hydrodynamic coefficients on 

the amplitude of the oscillation, which is commonly represented by the KC number. Despite 

this conclusion, the majority of studies dealing with the dynamics of deep water subsea lifting 

operations considers constant added mass and drag coefficients in their models [71–

74,76,85,86,137,159]. To the best knowledge of the authors, the only studies considering the 

influence of the amplitude of oscillation on the dynamics of the system are due to Ireland et al. 

[91] and Pestana et al. [136]. In the study by Ireland et al. [91], only the hydrodynamic damping 

was considered variable and the solution of the equation of motion was obtained iteratively. 

While in Pestana et al. [136], the dynamics of an example operation were assessed by running 

independent simulations considering all the pairs of added mass and drag coefficients obtained 

experimentally for different KC numbers. Therefore, the objective of this work is to extend the 

study about the dynamics of subsea lifting operations in deep waters considering the effects of 

KC-dependent hydrodynamic coefficients, focusing on (1) the deduction of a non-dimensional 
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nonlinear equation of motion for the system; (2) solution of the equation of motion by the har-

monic balance method and by an iterative time domain integration algorithm; and (3) illustra-

tion of the dynamical features of the system when the hydrodynamic coefficients are KC-de-

pendent. 

The sequence of this paper is as follows: an overview of the hydrodynamics of oscillating bod-

ies including the experimental results from the literature of the KC-dependent hydrodynamic 

coefficients of a typical subsea manifold in Section 6.2, the deduction of the non-dimensional 

nonlinear equation of motion in Section 6.3, the solution of the equation of motion via the har-

monic balance method and via the iterative time domain integration in Section 6.4, the results 

obtained in Section 6.5, and the conclusions in Section 6.6. 

6.2 KC-dependent hydrodynamics of a subsea manifold 

An object lifted in deep waters by typical crane vessels experiences an oscillatory motion as a 

result of the movement of the vessel being excited by the ocean waves. This oscillatory flow 

introduces hydrodynamic forces on the payload that must be assessed in order to predict the 

dynamics of the system during the operation. According to Sarpkaya [120], in time-dependent 

flows such as this, the direction of the wake changes from upstream to downstream as the ve-

locity of the payload changes sign, the flow may alter from laminar to turbulent regimes, and 

the equipment may oscillate inside its own wake. Due to the complexity of this flow and to the 

non-trivial geometry of real equipment, no closed solution is available to represent the hydro-

dynamic forces that are generated. The representation of these forces must rely on empirical or 

semi-empirical relations calibrated via experiments or Computational Fluid Dynamics (CFD). 

Historically, Morison’s equation [118] has been used to approximate these forces. In this for-

mulation, the hydrodynamic load is split into a term proportional to the acceleration and a term 

proportional to the squared velocity. Therefore, for a body oscillating in a stationary fluid, the 

hydrodynamic force is given by:  

𝐹hyd = −𝜌𝑉𝐶𝑎𝑤̈ −
1

2
𝜌𝐶𝑑𝐴𝑝𝑤̇|𝑤̇| (6.1) 

where 𝜌 is the density of the sea water, 𝑉 is the volume of the structure, 𝐴𝑝 is the vertical 

projected area, 𝑤̇ is the velocity, 𝑤̈ is the acceleration, 𝐶𝑎 is the added mass coefficient, and 𝐶𝑑 

is the drag coefficient. These two coefficients must be determined to represent the forces on the 

system.  
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Experimental data for KC-dependent added mass and drag coefficients of typical subsea mani-

folds were presented by Pestana et al. [136]. In their study, 1:35 scale models were used to 

perform oscillatory tests in a calm fluid for various KC = 2𝜋𝑊/𝐷, where 𝑊 is the amplitude 

of the oscillation and 𝐷 is the characteristic length of the body (i.e. its width). The influence of 

the frequency was not considered, relying on several references [205,206,209] that indicate the 

preponderance of the amplitude of oscillation in comparison to the frequency. The frequency 

of the tests was equal to 0.59 Hz, which corresponds to a period of 10 s in the true scale. The 

test water depth was 2.5 m and oscillations were performed horizontally. Each test consisted of 

twenty cycles that were repeated three times for each amplitude and the coefficients were ob-

tained via a least squares algorithm. The base plate of the manifold presents some small perfo-

rations, but they are less than 5% of the total vertical projected area. Further details of the 

experimental set-up and methodology can be found in Pestana et al. [136]. 

One piece of equipment analysed in [136] is considered as an example payload to evaluate the 

dynamics of the deep water subsea lifting operation. The geometric data for this subsea mani-

fold is presented in Table 6.1 and a photograph of the scale model is presented in Figure 6.1. 

Table 6.1: Geometric data for the manifold used as the example in this study 

(extracted from Pestana et al. [136]). 

Variable Value 

Subsea manifold 

Mass (𝑀) 170 tonnes 

Volume (𝑉) 21.8 m3 

Projected area (𝐴𝑝) 144.5 m2 

Length 14.9 m 

Width  9.7 m 

Height 3.8 m 

The experimental results obtained in Pestana et al. [136] for the added mass and drag coeffi-

cients as a function of KC are presented in Figure 6.2, together with the fitted curves obtained 

by using the least squares method. Note that, for consistency with the dynamic models used in 

this study, the inertia coefficient based on the envelope of the manifold (as in Pestana et al. 

[136]) is replaced by the added mass coefficient based on the actual volume of the manifold6. 

For the range of KC considered, a linear trend in the added mass coefficient and a shifted recip-

rocal behaviour for the drag coefficient as KC increases are observed. This general behaviour is 

                                                 
6 In this study, the added mass coefficients are larger than those presented by Pestana et al. [136] since the actual 

volume of the manifold is less than the envelope volume. Nonetheless, the added mass is still equal in both studies.  
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in agreement with the data for other pieces of equipment tested by Pestana et al. [136] and other 

results in the literature [126,128,129]. 

 
Figure 6.1: 1:35 scale model manifold considered in this study and analysed by Pestana et al. [136] 

(picture courtesy of Petrobras). 

(a) 

 

(b) 

 
Figure 6.2: Hydrodynamic coefficients for the subsea manifold as a function of KC: (a) added mass 

coefficient, and (b) drag coefficient (data extracted from Pestana et al. [136]). 

The general form of the equations for the hydrodynamic coefficients as a function of KC are 

given by: 

𝐶𝑎 = 𝐶𝑎0
+ 𝐶𝑎1

KC (6.2) 

𝐶𝑑 = 𝐶𝑑0
+ 𝐶𝑑1

(KC)−1 (6.3) 

The coefficients obtained experimentally for this manifold are 𝐶𝑎0
= 44.1, 𝐶𝑎1

= 21.2, 𝐶𝑑0
=

4.5, and 𝐶𝑑1
= 1.6. Constant added mass and drag coefficients are also evaluated in order to 

compare the results obtained from the KC-dependent model to the results obtained by using 

constant coefficients. In this case, the constant coefficients are chosen assuming a KC number 

of unity, such that 𝐶𝑎̅ = 65.3 and 𝐶𝑑̅ = 6.1. A summary of the coefficients considered in this 
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study is presented in Table 6.2. 

Table 6.2: Summary of the hydrodynamic coefficients considered for the subsea manifold in this 

study. 

Model Added mass (𝑪𝒂) Drag (𝑪𝒅) 

KC-dependent coefficients 44.1 + 21.2KC 4.5 + 1.6(KC)−1 

Constant coefficients 65.3 6.1 

6.3 The dynamics of deep water subsea lifting operations 

Section 6.2 presented the hydrodynamic modelling of the subsea manifold under steady state 

oscillatory motion in a calm fluid. It is now necessary to construct a model to predict the dy-

namics of the system that accounts for the KC dependence of the hydrodynamic coefficients 

(Figure 6.3).  

 
Figure 6.3: Representation of the single degree-of-freedom model for the evaluation of deep water 

subsea lifting operations.  

The first assumption in this direction is to consider only the deep water phase of the lowering 

operation, hence the influence of the ocean waves on the payload is not considered in this study. 

This is in agreement with the experimental set-up that considered the object oscillating in a 

calm fluid.  

Next, Driscoll et al. [73] showed, by analysing measurements from a real operation, that unidi-

mensional models were sufficient to predict the dynamics of the payload due to the vessel ex-

citation. Also, Tommasini et al. [137] showed that single degree-of-freedom and discretized 

models (e.g. the software Orcaflex) predict similar responses in typical subsea lifting scenarios. 

Therefore, a single degree-of-freedom model is considered in this study, which is also a com-

mon approach in the literature [71,72,137,159,193]. 
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Another recurrent assumption in the literature [71,76,137,203] is to consider the dynamics of 

the vessel to be independent of the dynamics of the cable-equipment system, due to a large 

difference in mass. Thus, the vertical displacement of the lifting point is prescribed as an im-

posed displacement to the top of the cable. 

Further, snap loads are not represented in this formulation, as in [74,86,137]. This is in agree-

ment with the recommended practice DNVGL-RP-N103 [192] that requires the cable to be 

always taut during subsea lifting operations. Scenarios that lead to slack conditions should then 

be classified as unsafe during the planning of the operation.  

Finally, the cable is assumed to have constant unloaded length during the analysis, such that 

evaluation of the full lowering into deep waters is conducted by running several independent 

simulations considering different depths for the payload. This is especially important in opera-

tions that require constant interruptions of the lowering process, such as in subsea load transfers 

[194] or when successive slings are added to the lifting line [2]. 

The equation of motion for this system, considering the assumptions presented above, was ob-

tained by Tommasini et al. [137]. In their study, the kinetic and potential energies were calcu-

lated for the cable and payload, and the hydrodynamic forces were assumed to be a non-con-

servative generalized force. Using Lagrange’s equation, the equation of motion obtained was: 

(𝑀 + 𝜌𝑉𝐶𝑎 +
1

3
𝑚𝐿) 𝑤̈ +

1

2
𝜌𝐴𝑝𝐶𝑑|𝑤̇|𝑤̇ +

𝐸𝐴

𝐿
𝑤

=
𝐸𝐴

𝐿
𝑤0 −

𝑚𝐿

6
𝑤̈0 − (𝑀 − 𝜌𝑉 +

𝑚𝑠𝐿

2
) 𝑔 

(6.4) 

where 𝑚 is the mass per unit length of the cable, 𝐿 is the suspended length of the cable, 𝐸𝐴 is 

the rigidity of the cable, 𝑤 is the displacement of the structure, 𝑤0 is the displacement of the 

lifting point, 𝑤̈0 is the acceleration of the lifting point, 𝑚𝑠 is the equivalent submerged mass of 

the cable, and 𝑔 is the gravitational acceleration. 

Substituting Eqs. (6.2) and (6.3) into Eq. (6.4) and considering KC = 2𝜋𝑊/𝐷, the equation of 

motion becomes: 

(𝑀 + 𝜌𝑉𝐶𝑎0
+

1

3
𝑚𝐿) 𝑤̈ +

2𝜋𝜌𝑉𝐶𝑎1
𝑊

𝐷
𝑤̈ +

1

2
𝜌𝐴𝑝𝐶𝑑0

|𝑤̇|𝑤̇ +
𝜌𝐴𝑝𝐶𝑑1

𝐷

4𝜋𝑊
|𝑤̇|𝑤̇

+
𝐸𝐴

𝐿
𝑤 =

𝐸𝐴

𝐿
𝑤0 −

𝑚𝐿

6
𝑤̈0 − (𝑀 − 𝜌𝑉 +

𝑚𝑠𝐿

2
) 𝑔 

(6.5) 

This equation presents two new nonlinear terms in addition to the traditional added mass and 
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quadratic drag terms. The first one is an amplitude-dependent term proportional to the acceler-

ation and the second term is inversely dependent on the amplitude and proportional to the square 

of the velocity.  

The solution of this equation can be split into static and dynamic parts (𝑤 = 𝑤st + 𝑤dyn) and 

the solution of Eq. (6.5) can be obtained by solving the following independent equations: 

𝐸𝐴

𝐿
𝑤st = − (𝑀 − 𝜌𝑉 +

𝑚𝑠𝐿

2
) 𝑔 (6.6) 

(𝑀 + 𝜌𝑉𝐶𝑎0
+

1

3
𝑚𝐿) 𝑤̈dyn + (

2𝜋𝜌𝑉𝐶𝑎1
𝑊

𝐷
) 𝑤̈dyn +

1

2
𝜌𝐴𝑝𝐶𝑑0

|𝑤̇dyn|𝑤̇dyn

+
𝜌𝐴𝑝𝐶𝑑1

𝐷

4𝜋𝑊
|𝑤̇dyn|𝑤̇dyn +

𝐸𝐴

𝐿
𝑤dyn =

𝐸𝐴

𝐿
𝑤0 −

𝑚𝐿

6
𝑤̈0 

(6.7) 

Next, the static force acting on the top of the cable can be directly obtained by the submerged 

weight of the cable and the payload. Meanwhile, the dynamic force acting on the cable is given 

by: 

𝐹dyn =
𝐸𝐴

𝐿
(𝑤0 − 𝑤dyn) (6.8) 

The static displacement of the equipment can be directly obtained from Eq. (6.6), but evaluation 

of the dynamic response is more challenging, since it requires the solution of a nonlinear dif-

ferential equation. In order to reduce the number of independent variables, Eq. (6.7) can be 

written in non-dimensional form. So, assuming a harmonic input for the displacement at the top 

of the cable: 

𝑤0 = 𝑊0 cos(Ω𝑡) (6.9) 

and introducing the following dimensionless variables: 

𝜏 = 𝜔𝑛0𝑡 (6.10) 

Λ =
Ω

𝜔𝑛0
 (6.11) 

𝑦 =
𝑤dyn

𝑊0
 (6.12) 

where 𝜔𝑛0 is the natural frequency of the system when KC → 0: 
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𝜔𝑛0 = √
𝐸𝐴

𝐿 (𝑀 + 𝜌𝑉𝐶𝑎0
+

1
3 𝑚𝐿)

 (6.13) 

it is possible to re-write Eq. (6.7) in the non-dimensional form: 

(1 + 𝜇𝑌)𝑦′′ + (𝛾 +
𝛽

𝑌
) |𝑦′|𝑦′ + 𝑦 = (1 + 𝛼Λ2) cos(Λ𝜏) (6.14) 

In this case, 𝑦′ and 𝑦′′ denote the single and double differentiation of 𝑦 with respect to 𝜏, re-

spectively, 𝑌 is the amplitude of 𝑦, and the new parameters of the system are defined as: 

𝛼 =
𝑚𝐿

6 (𝑀 + 𝜌𝑉𝐶𝑎0
+

1
3 𝑚𝐿)

 (6.15) 

𝛾 =
𝜌𝐴𝑝𝐶𝑑0

𝑊0

2 (𝑀 + 𝜌𝑉𝐶𝑎0
+

1
3 𝑚𝐿)

 (6.16) 

𝜇 =
2𝜋𝜌𝑉𝐶𝑎1

𝑊0

𝐷 (𝑀 + 𝜌𝑉𝐶𝑎0
+

1
3 𝑚𝐿)

 (6.17) 

𝛽 =
𝜌𝐴𝑝𝐶𝑑1

𝐷

4𝜋 (𝑀 + 𝜌𝑉𝐶𝑎0
+

1
3 𝑚𝐿)

 (6.18) 

The mass ratio (𝛼) and the dimensionless damping (𝛾) are related to the constant terms of the 

hydrodynamic coefficients (𝐶𝑎0
 and 𝐶𝑑0

). On the other hand, the dimensionless amplitude-de-

pendent added mass coefficient (𝜇) and the dimensionless amplitude-dependent drag coefficient 

(𝛽) are new parameters introduced in the system, and they are related to the KC-dependent terms 

of the hydrodynamic coefficients (𝐶𝑎1
 and 𝐶𝑑1

). Finally, the non-dimensional form of the dy-

namic force on the cable is given by: 

𝑓 =
𝐹dyn

𝑊𝑜 (𝑀 + 𝜌𝑉𝐶𝑎0
+

1
3 𝑚𝐿) Ω2

 (6.19) 

which can be presented in non-dimensional form as: 

𝑓 =
1

Λ2
(𝑦0 − 𝑦) (6.20) 

where 𝑦0 = cos(Λ𝜏).  
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6.4 Solution of the nonlinear equation of motion 

After presenting the non-dimensional equation of motion considering amplitude-dependent hy-

drodynamic coefficients, it is necessary to present the methods to solve this equation. To this 

end, this study considers two different approaches: an iterative procedure for the time domain 

integration, presented in Section 6.4.1; and an analytical approach based on the Harmonic Bal-

ance Method (HBM), presented in Section 6.4.2. 

Aiming to compare the results obtained by using KC-dependent hydrodynamic coefficients, the 

dynamics of the system with constant hydrodynamic coefficients is obtained directly from time 

domain integration of Eq. (6.14) considering 𝜇 = 𝛽 = 0 and substituting the constant coeffi-

cients from Table 6.2 for 𝐶𝑎0
 and 𝐶𝑑0

. A Runge-Kutta solver is used via the Matlab function 

‘ode45’. 

6.4.1 Iterative time domain integration 

The equation of motion presented in Eq. (6.14) is nonlinear, including the term 𝛾|𝑦′|𝑦′ and the 

amplitude-dependent terms 𝜇𝑌𝑦′′ and 𝛽𝑌−1|𝑦′|𝑦′. Due to the presence of these two amplitude-

dependent terms, time domain integration of Eq. (6.14) is not straightforward, as knowledge of 

the amplitude of the response is not available a priori. A simple way to deal with this fact is to 

use an iterative procedure, as presented in Table 6.3, where 𝜖 is the tolerance for the conver-

gence of the algorithm.  

Similarly to the constant coefficient case, time domain integration of Eq. (6.14) has been ob-

tained by using a Runge-Kutta solver, implemented via the ‘ode45’ function in Matlab. 

Table 6.3: Algorithm for the iterative time domain integration of the equation of motion. 

1. Set an initial value for 𝑌 

2. Solve Eq. (6.14) in the time domain 

3. Obtain the steady state amplitude of 𝑦: 𝑌new = [max(𝑦) − min(𝑦)]/2 

4. Check convergence of 𝑌 using |𝑌new − 𝑌| < 𝜖𝑌 

5. If convergence has been achieved, stop; otherwise, return to 2 using 𝑌 = 𝑌new 

6.4.2 Harmonic Balance Method  

The steady state response of Eq. (6.14) can also be obtained by using analytical procedures, 

which can provide deeper understanding of the dynamics of the system and faster results. In 

this study, the Harmonic Balance Method [197–199] is used to solve the equation of motion 
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analytically. The non-dimensional displacement is assumed to be represented by a truncated 

Fourier series: 

𝑦 = ∑ 𝑌𝑘 cos(𝑘Λ𝜏 + 𝜙𝑘)

𝑁

𝑘=1

 (6.21) 

This approximation is substituted into the equation of motion and the solution is obtained by 

determining the values of the amplitudes and phases of each harmonic component. 

6.4.2.1 Solution considering the first harmonic component 

A first approximation for the response of the system can be obtained by taking only the first 

harmonic as the response of the system: 

𝑦 = 𝑌1 cos(Λ𝜏 + 𝜙1) (6.22) 

Substituting Eq. (6.22) into Eq. (6.14) leads to: 

−(1 + 𝜇𝑌1)𝑌1Λ2 cos(Λ𝜏 + 𝜙1) − (𝛾𝑌1 + 𝛽)𝑌1Λ2|sin(Λ𝜏 + 𝜙1)| sin(Λ𝜏 + 𝜙1)
+ 𝑌1 cos(Λ𝜏 + 𝜙1) = (1 + 𝛼Λ2) cos(Λ𝜏) 

(6.23) 

The quadratic term |sin(Λ𝜏 + 𝜙1)| sin(Λ𝜏 + 𝜙1) can be approximated by a Fourier series keep-

ing only the first term, such that: 

|sin(Λ𝜏 + 𝜙1)| sin(Λ𝜏 + 𝜙1) ≅
8

3𝜋
sin(Λ𝜏 + 𝜙1) (6.24) 

Substituting Eq. (6.24) into Eq. (6.23) leads to: 

−(1 + 𝜇𝑌1)𝑌1Λ2 cos(Λ𝜏 + 𝜙1) −
8

3𝜋
(𝛾𝑌1 + 𝛽)𝑌1Λ2 sin(Λ𝜏 + 𝜙1)

+ 𝑌1 cos(Λ𝜏 + 𝜙1) = (1 + 𝛼Λ2) cos(Λ𝜏) 

(6.25) 

Making the variable substitution Λ𝜏 + 𝜙1 = Λ𝜏̂ and expanding the trigonometric function: 

(1 − Λ2 − 𝜇𝑌1Λ2)𝑌1 cos(Λ𝜏̂) −
8

3𝜋
(𝛾𝑌1 + 𝛽)𝑌1Λ2 sin(Λ𝜏̂)

= (1 + 𝛼Λ2) cos(Λ𝜏̂) cos(𝜙1) + (1 + 𝛼Λ2) sin(Λ𝜏̂) sin(𝜙1) 

(6.26) 

Equating the coefficients of cos(Λ𝜏̂) and sin(Λ𝜏̂) on both sides of the Eq. (6.26) results in: 
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(1 − Λ2 − 𝜇𝑌1Λ2)𝑌1 = (1 + 𝛼Λ2) cos 𝜙1 (6.27a) 

−
8

3𝜋
(𝛾𝑌1 + 𝛽)Λ2𝑌1 = (1 + 𝛼Λ2) sin 𝜙1 (6.27b) 

Adding the squares of these two equations leads to the following quartic equation for the am-

plitude of the non-dimensional displacement: 

[(
8𝛾Λ2

3𝜋
)

2

+ (𝜇Λ2)2] 𝑌1
4 + [2𝜇Λ4 − 2𝜇Λ2 +

128𝛾𝛽Λ4

9𝜋2
] 𝑌1

3

+ [(1 − Λ2)2 + (
8𝛽Λ

3𝜋
)

2

] 𝑌1
2 − (1 + 𝛼Λ2)2 = 0 

(6.28) 

Further, the phase of the response can be obtained by: 

𝜙1 = arctan [
−(𝛾𝑌1 + 𝛽)8Λ2

3𝜋(1 − Λ2 − 𝜇𝑌1Λ2)
] (6.29) 

The amplitude of the non-dimensional displacement (𝑌1) is obtained by solving Eq. (6.28) (via 

the Matlab function ‘roots’ in this study). This equation leads to four possible solutions; how-

ever, only positive real values are physically significant. The stability of each solution is as-

sessed by substituting it into Eq. (6.14) as an initial condition and checking if the response of 

the system maintains the calculated response or diverges to a different condition.  

The amplitude of the dimensionless dynamic force on the cable can then be obtained from Eq. 

(6.20) by considering the difference of two sine waves with the same frequency: 

𝑓max =
√1 + 𝑌1

2 − 2𝑌1 cos 𝜙1

Λ2
 (6.30) 

Finally, the maximum tension at the top and the maximum and minimum tension at the bottom 

of the cable can be obtained by combining the static weight of the system and the amplitude of 

the dynamic force (via Eq. (6.19)): 

𝐹topmax 
= (𝑀 − 𝜌𝑉 + 𝑚𝑠𝐿)𝑔 +

𝐸𝐴𝑊0

𝐿
√1 + 𝑌1

2 − 2𝑌1 cos 𝜙1 (6.31a) 

𝐹botmax
= (𝑀 − 𝜌𝑉)𝑔 +

𝐸𝐴𝑊0

𝐿
√1 + 𝑌1

2 − 2𝑌1 cos 𝜙1 (6.31b) 

𝐹botmin
= (𝑀 − 𝜌𝑉)𝑔 −

𝐸𝐴𝑊0

𝐿
√1 + 𝑌1

2 − 2𝑌1 cos 𝜙1 (6.31c) 
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The maximum forces must then be compared to the structural limits of the cable and payload 

and the minimum force should always be positive to comply with the safety requirements dur-

ing real operations. 

6.4.2.2 Solution considering the first and third harmonic components 

The quadratic term |𝑦′|𝑦′ is an anti-symmetric nonlinear function that introduces odd harmon-

ics in the response of the system when a sinusoidal input is considered. In order to increase the 

accuracy for the response of the system, and also to be able to represent super-harmonic reso-

nances (as presented in [137]), these higher harmonics can be included in the assumed solution 

for 𝑦. 

Considering the first and third harmonics, the non-dimensional displacement is represented by: 

𝑦 = 𝑌1 cos(Λ𝜏 + 𝜙1) + 𝑌3 cos(3Λ𝜏 + 𝜙3) (6.32) 

Substitution of Eq. (6.32) into Eq. (6.14) results in difficulties in representing the quadratic 

nonlinear term as a Fourier series, as presented in Eq. (6.24). This difficulty can be avoided by 

approximating the quadratic term by a cubic polynomial: 

𝑦′|𝑦′| ≅ 𝐴1𝑦′ + 𝐴3𝑦′3
 (6.33) 

As the function 𝑦′|𝑦′| does not have smooth derivatives, the coefficients 𝐴𝑖 cannot be calcu-

lated directly via a Taylor series. Alternatively, these coefficients may be found via a least 

squares fit of the nonlinear function. Considering the amplitude of the first harmonic as the 

maximum non-dimensional velocity to make the fit, the coefficients 𝐴𝑖 can be obtained by the 

following minimization problem: 

min:    ∫ (𝑦′2
− 𝐴1𝑦′ − 𝐴3𝑦′3

)
2

d𝑦′
Λ𝑌1

0

 (6.34) 

where only the positive non-dimensional velocities are needed in the evaluation of the integral 

due to the anti-symmetry of 𝑦′|𝑦′|.  

Furthermore, the amplitude of the response of the non-dimensional displacement is assumed to 

be equal to the amplitude of only the first harmonic term (𝑌 = 𝑌1), relying on the fact that, 

whilst higher harmonics contribute to the total force on the cable, they have a negligible con-

tribution to the total displacement of the payload. Therefore, the non-dimensional equation of 

motion becomes: 
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(1 + 𝜇𝑌1)𝑦′′ + (𝛾 +
𝛽

𝑌1
) (

5Λ𝑌1

16
𝑦′ +

35

48Λ𝑌1
𝑦′3

) + 𝑦 = (1 + 𝛼Λ2) cos(Λ𝜏) (6.35) 

Substituting Eq. (6.32) into Eq. (6.35) and applying a similar procedure as presented above for 

the solution with only one harmonic component, it is possible to obtain a nonlinear algebraic 

system of equations for the amplitudes and phases of each harmonic component: 

64(1 − 𝛬2 − 𝜇𝛬2𝑌1)𝑌1 − 105(𝛾𝑌1 + 𝛽)𝛬2𝑌3 sin(3𝜙1 − 𝜙3)
− 64(1 + 𝛼𝛬2) cos(𝜙1) = 0 

(6.36a) 

55(𝛾𝑌1 + 𝛽)𝛬2𝑌1
2 + 630(𝛾𝑌1 + 𝛽)𝛬2𝑌3

2 − 105(𝛾𝑌1 + 𝛽)𝛬2𝑌1𝑌3 cos(3𝜙1 − 𝜙3)
+ 64(1 + 𝛼𝛬2) sin(𝜙1) = 0 

(6.36b) 

192(1 − 9𝛬2 − 9𝜇𝛬2𝑌1)𝑌3 + 35(𝛾𝑌1 + 𝛽)𝛬2𝑌1 sin(3𝜙1 − 𝜙3) = 0 (6.36c) 

162𝑌1
2𝑌3 + 567𝑌3

3 − 7𝑌1
3 cos(3𝜙1 − 𝜙3) = 0 (6.36d) 

This nonlinear system of equations in 𝑌1, 𝜙1, 𝑌3 and 𝜙3 is solved numerically by using the 

Matlab function ‘fsolve’, which is based on the interior trust region method [201]. The maxi-

mum dynamic cable force is then found from Eqs. (6.19) and (6.20). 

6.5 Numerical results and discussion 

Aiming to evaluate the influence of the variable hydrodynamic coefficients on the dynamics of 

the lifting system, the subsea manifold presented in Section 6.2 is considered in combination 

with a 8.25 inch Braid Optimized for Bending (BOB®) 12x12 strand rope [210], as an example, 

as presented in Table 6.4. The choice of a synthetic rope construction in cases such as this is 

because of its lower submerged weight in comparison to traditional steel wire cables, thus al-

lowing greater structural capacity to withstand dynamic loads in ultra-deep water operations. 

Table 6.4: Geometric data for the cable used in this study [210]. 

Variable Value 

Cable 

(8.25 inch 

BOB®) 

Mass per unit length (𝑚) 36.3 kg/m 

Equivalent submerged mass per unit length (𝑚𝑠) 6.5 kg/m 

Axial rigidity (𝐸𝐴) 584 MN 

Safe working load 7300 kN 

Also, the results presented in the sequence consider a maximum water depth of 2200 m, which 

is a typical condition in the Pre-Salt fields, in Brazil, and cover most of the worldwide scenarios. 

Finally, the solutions obtained by the Harmonic Balance Method considering the first harmonic 
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are referred to as HBM 1, while the results obtained by considering the first and third harmonics 

are referred to as HBM 1,3. 

6.5.1 Overview of the dynamic response of the system 

The dynamic response of the system, as a function of the water depth, for the different solution 

procedures and considering an input amplitude equal to 1.0 m and input period equal to 

0.5 rad/s is presented in Figure 6.4. The maximum dynamic force in the steady state regime is 

presented in Figure 6.4(a). The results obtained by the KC-dependent hydrodynamic coefficient 

models clearly deviate from the results obtained by the constant coefficient model. The peak 

dynamic load in the system is higher for the KC-dependent models (1344 kN for the iterative 

Runge-Kutta, 1333 kN for the HBM 1,3, and 1284 kN for the HBM 1 compared to 1047 kN 

for the constant coefficients model) and it occurs in shallower depths (1020 m for the variable 

coefficients compared to 1115 m for the constant coefficients). On the other hand, the dynamic 

loads in the system in shallow waters and in the 1:3 super-harmonic resonance zone (around 

175 m depth) are higher for the constant coefficients model in comparison to the variable co-

efficients models. Further, the results obtained by the different solutions of the variable hydro-

dynamic coefficients model are in agreement with each other (error of the peak dynamic force 

compared to the Iterative Runge-Kutta equal to −0.82 % for HBM 1,3 and −4.46 % for HBM 

1), except for HBM 1 in the super-harmonic resonance, since this solution is not able to predict 

the amplifications of loads in this zone. For comparison, the static force due to the submerged 

weight of the payload is 1449 kN and the total submerged weight of the cable in 2200 m depth 

is 141 kN. Further, the general behaviour presented above is also observed in Figure 6.4(b) and 

(c), where the maximum dynamic displacement and the maximum velocity are presented.  

Reasons for this behaviour can be addressed by analysing the graphs of the added mass and 

drag coefficient as a function of the depth, as presented respectively in Figure 6.4(d) and Figure 

6.4(e). The added mass coefficient is linearly proportional to the amplitude of the response, so 

when the system reaches resonance, 𝑊 (and consequently 𝐶𝑎) reach a maximum. This higher 

added mass coefficient, increases the effective mass of the system, and thus brings the reso-

nance to shallower depths, as seen previously in Figure 6.4(a). 
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(a) 

 
(b) 

 

(c) 

 
(d) 

 

(e) 

 
Figure 6.4: Dynamics of the subsea lifting for different solutions considering 𝑊0 = 1.0 m and Ω =
0.5 rad/s: (a) maximum dynamic load in the cable, (b) maximum dynamic displacement (𝑤 = 𝑊0𝑦), 

(c) maximum velocity (𝑤̇ = 𝜔𝑛0𝑊0𝑦′), (d) added mass coefficient, and (e) drag coefficient.  
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Additionally, as the drag coefficient is inversely proportional to the amplitude of the response, 

𝐶𝑑 reaches a minimum in the resonance zone. Thus, the damping of the system is reduced and 

the maximum displacement and dynamic cable force in the resonance zone are higher in com-

parison to the constant coefficient model, as presented in Figure 6.4(a). This is not the only 

factor that leads to higher loads for the variable coefficients model. According to Eq. (6.8), the 

dynamic load on the cable depends on the stiffness and elongation of the cable. So, when the 

resonance occurs at shallower depth (due to an increase in the added mass), the stiffness of the 

cable is higher due to the shorter suspended length of cable, leading to higher forces on the 

cable even for the same displacement. This effect can be observed by comparing the higher 

deviation between the variable and constant coefficients models in the dynamic force (Figure 

6.4(a)) than in the dynamic displacement (Figure 6.4(b)), which is only due to the lower drag 

coefficient. 

Also, the variation of the added mass coefficient not only affects the depth at which the reso-

nance occurs but also creates a slight bending to the left in the dynamic response of the system 

at the resonance, which is a typical feature of a softening nonlinear system. In contrast to the 

more common case, where the stiffness is responsible for the nonlinear features of the system, 

in this problem, it is the inertial term that presents nonlinear behaviour, increasing its value as 

the amplitude of the response increases. 

6.5.2 Influence of the input amplitude and frequency 

The influence of the amplitude of the input on the dynamic forces in the cable is presented in 

Figure 6.5, where values of 0.1, 0.5, 1.0, and 1.5 m are used. The frequency of the input is kept 

constant at 0.5 rad/s. For clarity of the plots, in this Section, only the results obtained via the 

iterative Runge-Kutta method are presented for the variable coefficients model, since the solu-

tions obtained by using the harmonic balance method deviate by less than 5 % from the results 

from the iterative Runge-Kutta method (as presented in Section 6.5.1). 

Considering the variable hydrodynamic coefficients models, as the input amplitude increases, 

the maximum dynamic loads increase relative to the constant coefficients model results and 

they occur at shallower depths. The increase in the input amplitude increases the amplitude of 

the dynamic displacement of the payload, which reduces the drag coefficient and increases the 

added mass coefficient, as described in Section 6.5.1. Also, as presented previously, not only 
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the reduction of the damping coefficient, but also the increased stiffness of the cable in shal-

lower depths (when the cable is shorter), contribute to the higher dynamic loads when the res-

onance peak occurs in shallower depths. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.5: Maximum dynamic force in the cable as a function of depth for different input amplitudes. 

Results obtained considering Ω = 0.5 rad/s and (a) 𝑊0 = 0.1 m, (b) 𝑊0 = 0.5 m, (c) 𝑊0 = 1.0 m, 

(d) 𝑊0 = 1.5 m.  

The influence of the frequency of the input is highlighted in Figure 6.6 considering the frequen-

cies 0.4, 0.6, 0.8, and 1.0 rad/s, while the amplitude is equal to 1.0 m. In this case, the increase 

of the input frequency only brings the resonance to shallower depths in a similar way for both 

the variable and the constant coefficient models. The ratio of the maximum dynamic force at 

the resonance for the variable coefficients models and for the constant coefficient model are 

kept nearly constant when the input frequency is varied. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.6: Maximum dynamic force in the cable as a function of depth for different input frequencies. 

Results obtained considering 𝑊0 = 1.0 m and (a) Ω = 0.4 rad/s, (b) Ω = 0.6 rad/s, (c) Ω =
0.8 rad/s, (d) Ω = 1.0 rad/s.  

Another feature of the variable hydrodynamic coefficients model is the prediction of undamped 

resonance period curves that are dependent on the input, differently from the traditional ap-

proach considering constant hydrodynamic coefficients. The undamped resonance period of the 

cable-equipment system considering the KC-dependent hydrodynamic coefficient is given by:  

𝑇resonance = 2𝜋
√(𝑀 + 𝜌𝑉 (𝐶𝑎0

+
2𝜋𝐶𝑎1

𝐷 𝑊) +
1
3 𝑚𝐿) 𝐿

𝐸𝐴
 

(6.37) 

and is presented in Figure 6.7 considering various input frequencies and amplitudes. In this 

case, higher input amplitudes lead to higher values of 𝑊 and thus higher values for the reso-

nance period. The influence of the frequency is presented in the form of a further increase in 

the values of the resonance period in the depths when the system matches the input frequency. 

From a different perspective, for a given input frequency, the resonance occurs at shallower 
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depths when the input amplitude increases, in accordance with Figure 6.5. Furthermore, if the 

input frequency is higher, the resonance occurs in shallower depths, in accordance with Figure 

6.6. 

Differently from the constant coefficients model, the curves for the resonance period of the 

system can only be obtained after actually solving the equation of motion in the variable coef-

ficients case, since the amplitude of the response is necessary in this approach. 

(a) 

 

(b) 

 
Figure 6.7: Undamped resonance period as a function of the depth considering various input ampli-

tudes and (a) Ω = 0.5 rad/s and (b) Ω = 1.0 rad/s.  

6.5.3 Dynamics of the system under general conditions 

Sections 6.5.1 and 6.5.2 presented the results for the dynamics of the system in specific condi-

tions for the input. The aim of this section is to extend the results for more general scenarios, 

so deeper insight about the behaviour of the system can be obtained. To this end, the non-

dimensional response of the system is presented as a function of the non-dimensional variables: 

𝛼, 𝛽, 𝛾, 𝜇, and Λ. However, due to the high number of independent variables, some assumptions 

are taken to simplify the study.  

The first one is to consider the product 𝛼Λ2 (equal to 𝑚𝐿2Ω2/6𝐸𝐴) negligible in Eq. (6.14). In 

the example case, the term 𝛼Λ2 is less than 0.1 when 𝐿 < 2200 m and Ω < 1.4 rad/s (which 

is representative of most of scenarios) and, thus, the term (1 + 𝛼Λ2) can be approximated to 

unity in Eq. (6.14). The second assumption is to consider 𝜇 as a function of 𝛾, which can be 

obtained by dividing Eq. (6.17) by Eq. (6.16): 

𝜇 = (
4𝜋𝑉𝐶𝑎1

𝐴𝑝𝐷𝐶𝑑0

) 𝛾 (6.38) 
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Noting that the term inside the brackets in Eq. (6.38) is constant for a given payload, 𝜇 is linearly 

proportional to 𝛾 (i.e. 𝜇 = 0.9208𝛾 for the example manifold). Finally, 𝛽 varies from 0.1547 

to 0.1583 when 100 ≤ 𝐿 ≤ 2200 for the example considered. So, a constant value of 𝛽 =

0.1565 is taken as a simplification. Based on these assumptions, only Λ and 𝛾 are considered 

as independent variables when evaluating the non-dimensional response of this particular sys-

tem. 

The non-dimensional force as a function of Λ and 𝛾 obtained via the iterative Runge-Kutta 

solution is presented in Figure 6.8. For higher values of 𝛾 (i.e. higher input amplitude, according 

to Eq. (6.16)), the peak value of the non-dimensional force moves to lower values of the fre-

quency ratio, which translates to shallower depths as per Eq. (6.11). This is in agreement with 

the discussion presented in Section 6.5.2. Further, a ridge is observed for 0.5 < Λ < 1.0 and a 

saddle occurs at Λ = 0.77 and 𝛾 = 0.18. This behaviour is due to the combined influence of 

two effects. The first one is the reduction of the maximum non-dimensional force as 𝛾 increases, 

since 𝛾 controls the damping level of the system according to Eq. (6.14). This effect governs 

the dynamics of the system when 𝛾 < 0.1. On the other hand, the increase of 𝛾 brings the res-

onance to lower Λ, which increases the non-dimensional force as it is inversely proportional to 

Λ2, according to Eq. (6.20). This effect governs the dynamics of the system when 𝛾 > 0.2. 

These opposing effects on the non-dimensional force as 𝛾 increases leads to the saddle. Super-

harmonic resonance is also evident in Figure 6.8 when Λ ≅ 1/3 and at other integer fractions 

shown by downward inflexions of the contour lines. These super-harmonic resonances present 

amplifications in the non-dimensional force that are not preponderant in comparison to the 

forces obtained in the fundamental resonance of the system, as illustrated also in Figure 6.4. 

The non-dimensional force obtained from the constant coefficients model and for the variable 

coefficients model via the Harmonic Balance Method are presented in Figure 6.9, along with 

their percentage deviation in comparison to the results from the variable coefficients model 

using the iterative Runge-Kutta method.  The results obtained by the constant coefficient model 

(Figure 6.9(a-b)) show clear deviations from the results for the variable coefficients model ob-

tained via the iterative Runge-Kutta method, which is highlighted by non-dimensional forces 

under-predicted by up to 69% when Λ < 1 or over-predicted by up to 94% when Λ > 1. 
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Figure 6.8: Maximum dimensionless force (𝑓) obtained via the iterative Runge-Kutta solution as a 

function of the dimensionless damping (𝛾) and frequency ratio (Λ). Assuming 𝛽 = 0.1565, 𝜇 =
0.9208𝛾 and 𝛼Λ2 = 0. 

The non-dimensional force obtained via HBM 1 (Figure 6.9(c-d)) shows very small errors in 

comparison to the iterative Runge-Kutta solution, except in the super-harmonic resonance 

zones (Λ ≅ 1/3) where the force can be up to 27% lower. The results obtained by the HBM 

1,3 Figure 6.9(e-f)) improves the results obtained by the HBM 1 by predicting the dynamic 

amplifications in the 1:3 super-harmonic resonance (Λ ≅ 1/3), but higher super-harmonic res-

onances are still not represented, which translates in errors of the order of 9% at the 1:5 super-

harmonic resonance (Λ ≅ 1/5). Although deviations occur in the super-harmonic resonance 

zones for the harmonic balance method, the forces in these zones are not preponderant when 

the system is expected to cross the fundamental resonance zone. In this case, the HBM 1 solu-

tion can be used for accurate estimation of the dynamic loads in the system and, due to its 

analytical form, results are directly obtained with little computational effort. If 1:3 super-har-

monic resonances are expected to be important in the definition of the viability of the operation, 

HBM 1,3 can be considered as an accurate and fast method (up to 50 times faster than the 

iterative Runge-Kutta method considering 50 periods of simulation and a tolerance of 10−3 for 

𝑌). 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 6.9: Non-dimensional force for different solutions and their percentage deviations compared 

to the variable coefficients iterative Runge-Kutta solutions. (a-b) Constant coefficient model, (c-d) 

harmonic balance method considering the first harmonic, and (e-f) harmonic balance method consid-

ering the first and third harmonics. Assuming 𝛽 = 0.1565, 𝜇 = 0.9208𝛾 and 𝛼Λ2 = 0. 
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6.5.4 Influence of 𝝁 and 𝜷 on the dynamics of the system 

Given the high number of independent variables for the system, some of them were kept con-

stant in the above section and the results presented were only valid for the particular manifold 

presented in Section 6.2. The aim of this section is then to vary the variables that were kept 

constant previously in order to understand their influence in the dynamics of the system in 

different operational scenarios.  

The first analysis presents the non-dimensional dynamic force as a function of Λ and 𝛾 by con-

sidering different values of the dimensionless amplitude-dependent drag coefficient (𝛽) and a 

constant value of 𝜇 = 0.9208𝛾 and 𝛼Λ2 = 0  (the same as in Section 6.5.3). This study is pre-

sented in Figure 6.10, which assumes 𝛽 = 0.0782 (50% less compared to Figure 6.8) in Figure 

6.10(a) and 𝛽 = 0.2347 (50% higher compared to Figure 6.8) in Figure 6.10(b).  

(a) 

 

(b)  

 
Figure 6.10: Non-dimensional dynamic force obtained by the iterative Runge-Kutta solution. Assum-

ing 𝜇 = 0.9208𝛾, 𝛼Λ2 = 0 and (a) 𝛽 = 0.0782, and (b)  𝛽 = 0.2347. 

The maximum deviation between the results presented in Figure 6.8 and Figure 6.10 is less than 

10%, except when 𝛾 < 0.1 and 0.8 < Λ < 1.2, where the dimensionless force is increased by 

up to 38% in Figure 6.10(a) and reduced by up to 23% in Figure 6.10(b) in comparison to 

Figure 6.8. This is in agreement with the conclusions presented in Section 6.5.3, where it was 

shown that the influence of the damping level governed the response of the system near the 

resonance zone when 𝛾 < 0.1. In addition, the saddle moves to 𝛾 = 0.23 and Λ = 0.74 in Fig-

ure 6.10(a) and to 𝛾 = 0.12 and Λ = 0.81 in Figure 6.10(b). 

The second analysis considers the influence of the dimensionless amplitude-dependent added 

mass coefficient (𝜇) on the dimensionless force (Figure 6.11). The results are obtained by as-

suming 𝛽 = 0.1565, 𝛼Λ2 = 0 (the same as in Section 6.5.3) and (a) 𝜇 = 0.4604𝛾 (50% less 
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compared to Figure 6.8) and (b) 𝜇 = 1.3812𝛾 (50% higher compared to Figure 6.8). In this 

case, reducing the value of 𝜇 reduces the values of the dimensionless forces, especially on the 

ridge, where it can be up to 45% less in comparison to the results observed in Figure 6.8. Also, 

the ridge is not so steep as in Figure 6.8 and the saddle moves to 𝛾 = 0.41 and Λ = 0.73. On 

the other hand, increasing the value of 𝜇 tends to bring closer the contour lines to the left of the 

ridge, which is reflected in a steep increase in the non-dimensional forces when the system 

starts to cross the resonance zone from lower to higher values of Λ. Furthermore, the saddle 

moves to 𝛾 = 0.09 and Λ = 0.80 and the dimensionless force is majorly affected at the reso-

nance zone, where it can be increased by up to 108% in comparison to the results presented in 

Figure 6.8. 

(a) 

 

(b) 

 
Figure 6.11: Non-dimensional dynamic force obtained by the iterative Runge-Kutta solution. Assum-

ing 𝛽 = 0.1565, 𝛼Λ2 = 0 and (a) 𝜇 = 0.4604𝛾, and (b) 𝜇 = 1.3812𝛾. 

If even larger values of 𝜇 are considered, the non-dimensional force presents a fold to the left 

in the resonance zone, as presented in Figure 6.12. The results in this scenario consider 𝛽 =

0.1565, 𝛼Λ2 = 0, 𝛾 = 0.3, 𝜇 = 3.6832𝛾 and are obtained by HBM 1, since the unstable branch 

of the solution can be directly obtained by the analytical solution of Eq. (6.28), without the need 

for more sophisticated methods. According to this figure, when 0.38 < Λ < 0.41, the system 

has three possible solutions: the stable branches A-B and C-D, and the unstable branch B-C. 

Points A-B-C-D are the solutions of the system at Λ = 0.38 and Λ = 0.41, when the discrimi-

nant of Eq. (6.28) is null (adding one real solution for the system). The stability of each branch 

is obtained by substituting the solutions of Eq. (6.28) as initial conditions into Eq. (6.14) and 

checking if the response of the system maintains the calculated response or diverges to a dif-

ferent condition, depending on the domain of attraction of each stable solution. In this case, if 

the system slowly progresses forward in the frequency ratio (e.g. during lowering operations), 
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the non-dimensional force will follow the curve A-B and then jump directly to D. On the other 

hand, if the system slowly progresses backward in frequency ratio (e.g. during recovering op-

erations), the non-dimensional force will follow curve D-C and then drop directly to A. This is 

a typical hysteretic behaviour observed in nonlinear systems. Further details on this behaviour 

might be found in classical nonlinear dynamics literature, such as Nayfeh and Mook [185]. 

 
Figure 6.12: Maximum non-dimensional force as a function of the frequency ratio obtained via the 

HBM 1. Assuming 𝛽 = 0.1565, 𝛼Λ2 = 0, 𝛾 = 0.3 and 𝜇 = 3.6832𝛾. 

Based on the results presented in Section 6.5, it seems clear the importance of considering var-

iable hydrodynamic coefficients to model the dynamics of subsea lifting operations. The inclu-

sion of the amplitude-dependent coefficients in the equation of motion leads to some phenom-

ena that are not observed when considering constant coefficient models. In particular, variations 

in the natural frequency and damping of the system as functions of the amplitude of the response 

of the payload are apparent. This leads to shifts in the magnitude and corresponding depths of 

the maximum cable loads, and may even lead to multiple solutions in certain scenarios, such as 

presented in Figure 6.12. These outcomes reinforce the need to accurately predict the hydrody-

namic coefficients of subsea structures as a function of the Keulegan-Carpenter number to 

safely install or recover subsea structures. 

Finally, the conclusions obtained in this study were based on a linear law for the added mass 

coefficient and a reciprocal relation for the drag coefficient as a function of the KC number. In 

scenarios where the hydrodynamic coefficients follow different trends, deviations in the dy-

namics of the system might occur. For example, if the added mass decreases with the KC num-

ber, the system will act as a hardening nonlinear system and the resonant peak will increase in 

frequency as amplitude increases. More complex laws for the hydrodynamic coefficients might 
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need specific studies to understand the full dynamical behaviour of the system. Furthermore, 

comparison of the proposed models with data from real operations or experiments considering 

the coupled system (vessel, cable and payload) would be of great value for the analysis of the 

dynamics of the subsea lifting system. This might be considered in the scope of future works.  

6.6 Conclusions 

The dynamics of deep water subsea lifting operations considering KC-dependent hydrodynamic 

coefficients were analysed in this study. Initially, experimental data from the literature for the 

hydrodynamics coefficients of a typical subsea manifold was presented, indicating a linear trend 

in the added mass and a shifted reciprocal behaviour in the drag coefficient as a function of the 

amplitude of oscillation of the body, which was represented by the Keulegan-Carpenter num-

ber. Then, the non-dimensional equation of motion for a single degree-of-freedom system rep-

resenting deep water subsea lifting operations was presented. This equation included two am-

plitude-dependent terms that, in addition to the traditional quadratic drag term, are responsible 

for the nonlinear behaviour of the system.  

The solution of the nonlinear equation of motion was obtained by two different approaches. 

The first approach was based on an iterative time domain integration, while the second relied 

on an analytical technique known as the Harmonic Balance Method. The results obtained for 

the model with variable hydrodynamic coefficients were then compared with the results found 

for an equivalent model with constant coefficients.  

The first example presented the maximum dynamic force on the cable as a function of the depth. 

It was shown that the model with variable coefficients predicted a shift in the magnitude and 

depth where the peak forces occurred, which were due to the variation of the damping and 

natural frequency of the system as a function of the amplitude of oscillation of the payload. In 

this case, for a higher amplitude of oscillation of the payload, the drag decreased and the added 

mass (and natural period) increased, resulting in resonances at shallower depths with higher 

magnitude. Additionally, it was found that the reduction of the damping and the higher stiffness 

(due to shorter suspended length of cable) of the system led to increased loads in the resonance 

zone, when the resonance occurred at shallower depths. 

The general behaviour of the system was assessed by analysing the non-dimensional force on 

the cable as a function of the frequency ratio and non-dimensional damping coefficient. It was 
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noted that the natural resonance zone occurred at lower frequency ratio when the non-dimen-

sional damping was increased, creating a ridge in the dimensionless force map. Furthermore, 

the magnitude of the dimensionless force in the ridge was found to be influenced in two oppos-

ing ways as the dimensionless damping coefficient was increased, which led to the presence of 

a saddle point in the dimensionless force map. Variations of the nonlinear damping and added 

mass coefficients could change the location and magnitude of the dimensionless force in the 

ridge and saddle. Additionally, a fold of the map could occur, leading to multiple solutions in 

certain zones. 

Further, the accuracy of the Harmonic Balance Method solution and of the constant coefficient 

model in comparison to the iterative time domain integration method was presented. It was 

found that the use of the constant coefficient model could lead to overestimation of the dimen-

sionless force by up to 94% when the frequency ratio was greater than unity or underestimated 

by up to 69% when the frequency ratio was lower than unity. The Harmonic Balance Method 

presented negligible error in comparison to the iterative time domain integration, except in the 

super-harmonic resonance zones, where maximum errors reached 27% when considering only 

the first harmonic component, or 9% when considering both the first and third harmonic com-

ponents. However, the Harmonic Balance Method, particularly considering only the first har-

monic, requires much less computation effort than the iterative time domain integration due to 

its analytical form, which represents a significant advantage of this method when super-har-

monic resonances are not the critical zones of the operation. 

These results have demonstrated the importance of using amplitude-dependent hydrodynamic 

coefficients to safely plan and execute deep water subsea lifting operations, since several phe-

nomena introduced by this nonlinear behaviour are not represented by constant coefficient mod-

els. 
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7. CONCLUSION 

This Section presents the ultimate contributions of this thesis as well as suggestions for future 

studies.  

Chapter 2 presented a comprehensive literature review about offshore lifting operations, cover-

ing the historical perspective; the dynamic models considered for the lifting in air, lowering 

through the wave zone, lowering through deep waters and landing; the control methodologies 

to alleviate the dynamic loads or reduce motions of the payload; and the hydrodynamic model-

ling of oscillating bodies. It was shown that lifting operations were firstly focused on oil and 

gas applications, progressing to offshore renewable energy scenarios during the past decade. In 

addition, few studies addressing important aspects of the operation, such as variable length ca-

bles, non-stationary response, super-harmonic resonances and variable hydrodynamic coeffi-

cients, were found in the literature, motivating the research presented in this doctoral thesis. 

Chapter 3 presented a study on the dynamics of deep water subsea lifting operations considering 

a variable length cable, aiming to cover the objective n.1 of this thesis, as presented in Section 

1.2.3. The results showed that the proposed model was accurate in comparison with an Orcaflex 

model through all the depths evaluated, even at zones where super-harmonic response occurred. 

Furthermore, the results showed that the increase of the lowering speed tended to reduce the 

static force on the system, while the increase on the retrieval speed led to an increase of the 

static force. Regarding the dynamic forces, a transition point was noticed when the frequency 

ratio was about 0.75. After this point, the maximum dynamic force was reduced for increasing 

payout speeds and tented to occur at shallower depths. Before the transition point, the forces 

increased if the payout speed increased. Also, the maximum dynamic force could even occur 

before this point depending on the payout speed and drag coefficient considered. Finally, the 

operational weather window and, consequently, the availability of the vessel were directly in-

fluenced by the payout speed considered for the operation. Depending on the scenario and pay-

out speed, the availability of the vessel could be increased or decreased due to the combined 

effect of the variation on the static and dynamic forces, and the exposure time of the system 

under the influence of irregular waves. This was a key point, since the use of traditional models 

that consider only fixed length scenarios could not always lead to safe or cost effective opera-

tions. 
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Chapter 4 described two methodologies to predict the design loads in deep water subsea lifting 

operations that were modelled using variable length cables. The variable length formulation led 

to a non-stationary response for the system, as the standard deviation of the dynamic forces 

increased in the resonance zone. The first method, called direct method, was based on running 

several independent random simulations and calculating the statistics of the response at each 

time step. The second method, called weighted least squares method, used few random re-

sponses to calculate a normalizing function that could eliminate the non-stationarity of the sig-

nal. Three random simulations were found to be sufficient to achieve reasonable accuracy with 

the weighted least squares method in comparison with the direct method. As a limitation of the 

least squares method, the normalizing function could only predict one resonance peak during 

the time series, which could affect the accuracy of the method in scenarios where multiple res-

onances are present. Finally, both methods were compared for the prediction of the operational 

weather window, which resulted in an agreement of viability of the operation in 95 % of the sea 

states analysed. It was then argued that, due to the speed of the weighted least squares method, 

it could be used in the preliminary assessment of real operations, where multiple operational 

procedures are analysed. After selecting one procedure, the direct method could be used to 

provide more reliable results for the weather window to be considered in the real operation. 

Chapter 5 presented a study about super-harmonic resonances in deep water subsea lifting op-

erations. The equation of motion described in Chapter 3 was re-written in non-dimensional 

format for a constant length scenario and solved via the Harmonic Balance Method. It was 

shown that amplifications of the response of the system occurred when the input frequency was 

an integer multiple of natural frequency of the system. This was due to the quadratic drag term 

acting on the payload and, therefore, could not be reproduced in traditional equivalent energy 

dissipation models. Solutions were obtained considering the first, first and third, and first, third 

and fifth harmonic components in the response of the system. It was shown that inclusion of 

the third harmonic enabled the representation of the 1:3 super-harmonic resonance and inclu-

sion of the fifth harmonic enabled the representation of the 1:5 super-harmonic resonance. 

Higher harmonics could also be added to the solution to represent higher super-harmonic reso-

nances, but they were considered of minor importance as they occur at water depths where 

influence of the wave dynamics must be included in the analysis and the proposed model is not 

valid.  In addition, in the super-harmonic resonance zones, the higher frequency harmonic terms 

showed an increase of their amplitudes, and their phases became equal to the phase of the first 
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harmonic term, increasing the dynamic loads on the cable. For the example considered, an in-

crease of only 4% in the maximum displacement of the payload led to 35% increase of the 

maximum dynamic force on the cable. Lastly, the operational weather window for the example 

scenario was presented, comparing the response of an equivalent energy dissipation model to 

the results obtained via the nonlinear equation of motion. It was shown that super-harmonic 

resonance might restrict the weather window and that the Harmonic Balance Method could be 

used as a reliable and fast method to analyse the system. 

Finally, Chapter 6 describes the dynamics of the deep water subsea lifting operation considering 

amplitude-dependent hydrodynamic coefficients. The nonlinear non-dimensional equation of 

motion presented in Chapter 5 was expanded to include the KC-dependent terms and, once 

again, the solution was obtained via the Harmonic Balance Method. An iterative procedure was 

also presented to deal with the amplitude-dependent equation of motion. Comparing to the re-

sults obtained using constant coefficient models, the proposed model predicted a shift in the 

magnitude and depth where the peak forces occurred, which were due to the variation of the 

damping and natural frequency of the system as a function of the amplitude of oscillation of the 

payload. In this case, for a higher amplitude of oscillation of the payload, the drag decreased 

and the added mass (and natural period) increased, resulting in resonances at shallower depths 

with higher magnitude. Additionally, it was found that the reduction of the damping and the 

higher stiffness (due to shorter suspended length of cable) of the system led to increased loads 

in the resonance zone, when the resonance occurred at shallower depths. It was also found that 

increasing the KC-dependent added mass coefficient could lead to a fold on the dimensionless 

force map and, consequently, multiple solutions for the system. 

7.1 Summary of contributions 

 (Chapter 2) Comprehensive literature review on offshore lifting operations, covering 

the historical perspective, dynamic models, control methods and hydrodynamic model-

ling; 

 (Chapter 3) Development of a variable length single degree-of-freedom model to ana-

lyse the dynamics of deep water subsea lifting operations; 

 (Chapter 3) Description of the accuracy of single degree-of-freedom model when the 

superior modes of vibrations of the system were not excited by the input terms; 

 (Chapter 3) Description of the influence of the winch speed on the dynamics of deep 
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water subsea lifting operations, via modification of the static and dynamic forces on the 

system and time of exposure to random waves; 

 (Chapter 3) Description of the possibility of increasing the availability of the vessel by 

selecting an appropriate lowering/lifting speed; 

 (Chapter 3) Description of the possibility of non-conservative results when analysing 

continuous lowering/lifting operations by constant length models; 

 (Chapter 4) Development of two methods to predict the design loads on deep water 

subsea lifting operations modelled using variable length cables; 

 (Chapter 4) Description of the convergence limits of the direct method and of the 

weighted least squares method to predict the statistics of the non-stationary response; 

 (Chapter 5) Presentation of a non-dimensional nonlinear equation of motion for the dy-

namics of the system assuming constant length cable; 

 (Chapter 5) Solution of the nonlinear equation of motion via the Harmonic Balance 

Method considering the first, third and fifth harmonic components; 

 (Chapter 5) Description of the super-harmonic resonance as an outcome of the quadratic 

drag force acting on the payload; 

 (Chapter 5) Description of the dynamics of the system in super-harmonic resonance, via 

the increase of the amplitude of higher harmonic terms, whose phase became equal to 

the phase of the first harmonic; 

 (Chapter 5) Description of the limitations of using equivalent energy dissipation models 

or assuming maximum loads on the system at the deepest condition when the system 

does not crosses the fundamental resonance; 

 (Chapter 6) Development of a nonlinear non-dimensional equation of motion consider-

ing amplitude-dependent hydrodynamic coefficients; 

 (Chapter 6) Solution of the equation of motion via the Harmonic Balance Method and 

via an iterative time domain integration; 

 (Chapter 6) Description of the variation of the magnitude and depth where the peak 

forces occurred in the variable hydrodynamic coefficients model, via the variation of 

damping and natural frequency of the system as a function of the amplitude of oscilla-

tion of the payload; 

 (Chapter 6) Description of the possibility of multiple solutions due to the KC-dependent 

added mass coefficient; 
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 (Chapter 6) Description of the limitations of using constant coefficient models to ana-

lyse deep water subsea lifting operations 

7.2 Suggestions for future studies 

Building on the models presented in this thesis, several studies might be conducted to consoli-

date the knowledge on the dynamics of deep water subsea lifting operations. The following 

topics are listed as suggestions. 

7.2.1 Optimization of the lowering/lifting velocity profile 

The dynamic model presented in Chapter 3 for the analysis of the dynamics of the operation 

considering a variable length cable showed that the availability of the vessel could be maxim-

ized by selecting an appropriate lowering or recovering speed for the operation. The study, 

however, only considered constant velocities throughout the operation. Further improvements 

might be possible by developing an optimization method that builds an optimum velocity pro-

file for the operation. A reasonable approach could be the minimization of the operation time, 

using the structural limits (i.e. loads must be below the structural limits and snap loads must be 

avoided) as constraints for the optimization algorithm. 

7.2.2 Improved function to represent non-stationary response 

The normalizing function used to remove the non-stationarity of the signal in Chapter 4 were 

only able to account for one peak of resonance. However, in real operations, multiple peaks 

might be possible due to bi-modal sea states, vessel resonances or super-harmonic resonances 

of the cable-payload system. In order to take these phenomena into account, improved normal-

izing functions, that are able to represent multiple amplification peaks might be of interest. In 

addition, other phases of the operation (such as the wave zone crossing or the landing on the 

seabed) can lead to non-stationary responses for the system, particularly due to impact loads. 

Modelling of these phenomena might also be important for the accurate determination of the 

operational weather window. 

7.2.3 Variable length models considering KC-dependent hydrodynamic coefficients 

In Section 6, the KC-dependent model was used to show that several nonlinear phenomena 

could arise during the lifting procedure. Especially, the maximum loads and the depth where 
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they occur could be different in comparison to constant hydrodynamic coefficient models, 

which could affect the planning of the operation. However, this model was only applicable to 

the constant length scenario. In order to improve the modelling of the dynamics of the system 

also in the variable length scenario, it is still necessary to build a dynamic model that takes into 

account both the variable hydrodynamic coefficients and the variable length assumptions. A 

possible approach to this problem would be to consider the variation of the hydrodynamic co-

efficients directly into the time domain integration by checking the amplitude of the oscillation 

on previous time steps. In addition, attention should be given to the impact of the lowering/lift-

ing speed on the determination of the hydrodynamic coefficients. 

7.2.4 Modelling the dynamics of the operation considering snap loads 

An assumption used throughout this thesis was to consider the cable to be always taut during 

the operation. This is agreement with the guidance of the recommended practice DNVGL-RP-

N103. However, this is not always possible to be achieved during the operation, particularly 

when the payload is light (i.e. less than 10 tonnes) or when it has a high projected area in com-

parison to its weight (i.e. area (m2) divided by weight (tonnes) is more than one). Therefore, in 

order to accurately predict the dynamics of the system in these scenarios, it is necessary to 

include the modelling of snap loads throughout the simulation. These scenarios will typically 

need a discretized representation of the cable, as wave propagation will play an important role 

on the dynamics of the system. In this sense, the use of the finite element method is considered 

an appropriate tool for the modelling of the system; while reduce order modelling techniques 

might be used as a compromise solution, preserving the accuracy without increasing exces-

sively the computational effort.  

7.2.5 Advanced hydrodynamic modelling 

In Section 6, it was shown that KC-dependent hydrodynamic coefficients, based on Morison’s 

equation, were key for the accurate modelling of the operation. Although an analytical solution 

has been presented for this problem, when the assumptions considered to build the single de-

gree-of-freedom system are not applicable, the computationally expensive iterative procedure 

(described in Section 6.4.1) would be necessary to solve the problem. 

In order to obtain a more general representation of the hydrodynamic forces on the system and 

avoid the need for iterative solutions, coupling a CFD (Computational Fluid Dynamics) solver 
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to the cable-payload system would be of great interest for the modelling of the operation. This 

could also enable the understanding of other phenomena that could be important for the dynam-

ics of the system, such as vortex shedding. Furthermore, due to the high computational cost of 

CFD, reduced order techniques for fluid dynamics could be envisaged to speed up the simula-

tions. This study could also be used as a basis for predicting simplified relations (such as Mo-

rison’s equation) to represent the hydrodynamics forces on the subsea lifting scenario, consid-

ering only the actual or past dynamical state of the system.  

7.2.6 Experimental and field measurements 

The models presented in this thesis where mainly theoretical, building on consolidated assump-

tions used throughout past decades in the offshore lifting literature. In order to increase the 

knowledge on the dynamics of the system, experimental and field measurements are suggested 

for the future. In the laboratory perspective, coupled vessel-cable-payload systems could be 

envisaged to study the dynamics of the system under variable length scenarios, super-harmonic 

resonances and to assess the influence of the amplitude of the oscillation on the hydrodynamic 

forces. On the other hand, field measurements could be used to explore the influence of random 

seas on the system and as an overall validation for the dynamic models presented in this thesis. 
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