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Current research indicates that near infrared (NIR) spectroscopy is the most promising alternative technique for the determination 
of soil organic carbon (SOC) in laboratories worldwide and that it may serve as a total or partial replacement for the traditional wet 
chemistry methods. In this research, NIR spectroscopy was developed and validated as a method for the determination of SOC aiming 
to promote the use of NIR technology in the soil laboratories of Brazil as a routine analysis method. To this end, multivariate calibra-
tion models were constructed from a large number of soil samples (1490 samples) that encompassed the variability of Brazilian soils. 
These models were validated by submitting the concentrations of soil organic matter (SOM) as determined by NIR spectroscopy to the 
proficiency assay for fertility laboratories, which is coordinated by the Brazilian Agricultural Research Corporation (Embrapa Soils). 
The proposed methodology using NIR spectroscopy received the excellence index of quality, which gives a certificate seal issued by 
the interlaboratory programme. Therefore, the robustness of the NIR method was proved in a conclusive way by a proficiency test pro-
gramme dedicated to evaluating the reference method for SOM determination employed by over a hundred soil laboratories in Brazil.

Keywords: soil carbon stock, figures of merit, PLS, routine soil analysis

Introduction
The continental dimensions of Brazil, the strong agricultural 
potential of the country and the lack of knowledge about 
Brazilian soils make the demand for research on soils a very 
strategic issue. Therefore, every year, millions of analyses 
of various attributes related to chemistry, fertility and clas-
sification of soil are performed in hundreds of laboratories 
throughout Brazil. Among all of these analyses, there is one 
that requires significant effort and time in soil laboratories: 
the determination of soil organic carbon (SOC). This attribute, 

among others, is traditionally used to evaluate soil fertility, 
and SOC is a diagnostic criterion that is used in the Brazilian 
System of Soil Classification.1

Analyses of SOC and seven other attributes related to soil 
fertility are performed by more than 500 Brazilian laboratories. 
Among these, 120 laboratories have the quality of their anal-
ysis attested and certified by a proficiency assay for fertility 
laboratories, which is coordinated by the Brazilian Agricultural 
Research Corporation (Embrapa Soils). Despite the large 
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number of SOC analyses performed every year in Brazil, 
most laboratories still employ a wet method in which the soil 
organic matter (SOM) is oxidised with potassium dichromate 
and is then indirectly quantified by titrating the remaining 
ferrous ammonium sulphate with potassium dichromate.2 
This reference method has some limiting aspects, including (i) 
the uncertainties associated with the stages of digestion and 
titration, (ii) the high consumption of chemical reagents such 
as potassium dichromate, sulphuric acid and ferrous ammo-
nium sulphate, (iii) the environmental impact due to the waste 
generated by this analysis and (iv) the time-consuming nature 
of the analysis.2

The limitations of the reference method that is currently 
employed by Brazilian soil laboratories and the need for a 
cheaper and faster alternative method have guided Embrapa 
to new paths in analytical chemistry. Current research has 
shown that the near infrared (NIR) spectroscopy method-
ology is the most promising alternative technique for routine 
soil analysis in total or partial replacement of traditional 
methods.3–5 The growing interest in the application of NIR 
technology to soil analysis can be justified by the numerous 
and remarkable benefits that NIR spectroscopy offers over 
conventional analysis: (i) it is a non-destructive technique, 
(ii) it is free from undesirable residues and thus has minimal 
environmental impact, (iii) it is a low-cost technique and (iv) it 
is a rapid and innovative technique that requires little sample 
handling when combined with chemometrics. However, the 
main limitation of NIR spectroscopy is its dependence on 
chemometrics for data treatment. Because of this depend-
ence on chemometrics and other factors, the NIR technique is 
not yet in wide use for routine soil analyses.

The innovative strategy of this work was to participate in the 
proficiency assay quality programme with the values of SOC 
determined by NIR spectroscopy rather than by the reference 
method and to obtain approval of the assay by earning a certif-
icate of excellence. The main objective of this approach was to 
validate the calibration model for measuring SOC concentra-
tion using NIR spectra such that it can be employed in routine 
analysis.

Materials and methods
Acronyms and common symbols
Throughout this work, lowercase letters are used to represent 
scalar quantities, lowercase bold letters are used to repre-
sent vectors and uppercase bold letters are used to represent 
matrices. Italicised letters are used to represent dimensions 
of vectors and matrices.

Acronyms
RMSEC – root mean square error of calibration
RMSEP – root mean square error of prediction
RDP – ratio of performance to deviation
SD – standard deviation
SEP – standard error of prediction

LD – limit of detection
LQ – limit of quantification
MSEC – mean square error of calibration
MSECV – mean square error in cross validation
CV – coefficient of variation
EI – excellence index

Common symbols
nGL– degrees of freedom
nC – number of calibration samples
K – number of variables used in a calibration model
yi – scalar reference value for the ith sample
ŷi – estimated y-value for ith sample based on a regression 
model
bk – regression coefficient for kth variable based on a regres-
sion model
n – concentration level
m – number of replicates at each concentration level.
SÊN – sensitivity
dX – estimation of noise level in the data
V(PEi) – variance of prediction error
ji – confidence limit
t – Student’s t-value
T – scores of all calibration samples
ti – score vector of a particular sample
a – significance level
A – number of latent variables
hi– leverage
hlimit – leverage limit
IC– number of calibration samples
J – number of spectral variables
xi,j – absorbance value of sample i at wavelength j
x̂i,j – estimated value with A latent variables
n – number of degrees of freedom
s(e) – standard deviation total residuals

Sample analysis
Complete profiles of the soils of the Brazilian territory (1490 
samples) were selected from the Embrapa Soil collection, 
considering the environmental representativeness of the 
samples according to the Brazilian System of Soil Classification.1

The soil samples were dried at 40 °C for 48 hours, a rubber 
mallet was used to break clusters and the granulometry of 
samples was controlled by passing them through a sieve, with 
the samples ground to a size fraction <2 mm.2

The reference method employed was the dichromate oxida-
tion method, where 0.5 g of soil sample was transferred to 
a 250 mL Erlenmeyer flask, to which was added 10 mL of 
0.4 mol L−1 potassium dichromate solution. After this proce-
dure, a test tube (25 mm in diameter and 250 mm in height) 
filled with water was put into the Erlenmeyer flask containing 
the soil and potassium dichromate solution. This combination 
formed a system condenser. The system was heated using 
an electric hot plate until the sample was boiling lightly for 
five minutes. After cooling, 80 mL of distilled water, 2 mL of 
orthophosphoric acid and 3 drops of diphenylamine indicator 
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were added to the system. The system was titrated using a 
ferrous ammonium sulphate solution (0.1 mol L−1) until the 
colour changed from blue to green. A white race titration was 
also performed. The SOC (g kg−1) was calculated using the 
following equation:

    SOC = �(40 – volume in mL used in the system titration) 
× f ×0.6		  (1)

where f is 40/volume (in mL) used in the white race titration.2

In order to participate in the proficiency assay it was 
necessary to transform the values of SOC into SOM. 
The relationship between SOC and SOM is convention-
ally expressed by multiplying SOC by a conversion factor 
of 1.724.2 This is based on the assumption that organic 
matter is 58% carbon, and this factor is known as the “van 
Bemmelen factor”.6 This conversion was made by all the 
laboratories that participated in the proficiency assay of soil 
fertility employed in this study.

Diffuse reflectance measurements were carried out using 
a Fourier transform spectrophotometer (Spectrum 100N; 
https://www.perkinelmer.com/lab-solutions/), equipped 
with a diffuse reflectance accessory (NIRA). The equipment 
and integrating sphere were equipped with DTGS/AsInGa 
detectors, respectively. The spectra were acquired in the 
range 4000–10,000 cm−1, with a spectral resolution of 4 cm−1, 
using 64 scans, in the percentage of reflectance mode.

Development of calibration and validation 
models
Spectral preprocessing was performed using the first deriva-
tive of Savitzky–Golay, with a second-order polynomial and 
a 15 point window.7 Partial least squares regression (PLSR) 
models were developed with a selection of the most important 
NIR wavelengths. This variable selection was performed using 
the variable importance in projection (VIP) method.8 The VIP 
method computes a score for each wavelength. VIP scores are 
a measure of the importance of each explanatory variable (i.e. 
wavelength). Because the average of the squared VIP scores 
equals 1, only influential wavelengths with a VIP score greater 
than 1 were kept in the model,8,9 thus reducing the number of 
variables (from 6001 to 1033) used in the models. The subsets 
of calibration and validation data (2/3 to 1/3 for calibration and 
validation) were built by the Kennard and Stone algorithm.10 
Outliers were identified in the models based on data with 
extreme leverage, unmodelled residuals in spectral data11 and 
unmodelled residuals in the dependent variable.12

Empirical local models were built aiming to achieve better 
predictive capability when compared with the global model. 
The SOC range was used to build the 11 PLSR local calibration 
models as follows (g kg−1): (M0) 0.1 < y < 36.4; (M1) 5 < y < 10; 
(M2) 10 < y < 15; (M3) 15 < y < 20; (M4) 20 < y < 25; (M5) 
25 < y < 40; (M6) 25 < y < 70; (M7) 10 < y < 50; (M8) 5 < y < 70; 
(M9) 5 < y < 55; (M10) 3 < y < 60. Each PLSR model was tuned 
to minimise the root mean square error of cross validation 
(RMSECV) obtained by 10 samples in a contiguous block cross 
validation to maximise the determination coefficient value 

(which gives the predicting ability of the model) and the ratio of 
performance to deviation (RPD) obtained from each model.13

The performance of the PLS models was evaluated by deter-
mining figures of merit such as accuracy, sensitivity, analytical 
sensitivity, detection and quantification limits, adjustment 
and linearity (Table 1). The figures of merit such as accu-
racy, precision, sensitivity, analytical sensitivity, adjustment 
and confidence interval were calculated according to previous 
research.14–17 The precision of the reference method was 
determined by the analysis of 23 concentration levels of soil 
samples covering the range of 0.1 to 43.8 g kg−1 of SOC, with 
six replicates at each level analysed by different analysts on 
different days.18

All models, routines and calculations used in this study 
were performed in Matlab R2013b (The MathWorks, Natick, 
MA, USA) and PLS_Toolbox 7.9 (R7.9.5; Eigenvector Research, 
Wenatchee, WA, USA).

Interlaboratory analysis of reference method
The database of the proficiency assay from 2013 was 
employed via simulation to evaluate the quality of the SOM 
analysis determined by the dichromate method (the refer-
ence method). In total, 111 laboratories were evaluated, and 
the statistical method and the calculation are described as 
follows. During the year, 12 (215, 216, 217, 218, 219, 220, 
221, 222, 223, 224, 225, 226) blind samples were analysed by 
each laboratory member of the programme, where two of 
the samples were triplicates. The laboratory then received 6 
unique samples and 2 replicates, which resulted in 12 deter-
minations of SOM. The resulting SOC concentration for each 
sample per laboratory was compiled in an Excel spreadsheet, 
and the calculation of mean, standard deviation(s), coeffi-
cient of determination (CV), minimum and maximum values 
was performed in three steps.

In the first step, all laboratories participated in the calcu-
lation, but in the next two steps, some criteria for penalties 
were employed based on the tolerance limits presented in 
Table 2. Every time that a laboratory was penalised because 
the SOC concentration of a sample was outside the toler-
ance limit, the laboratory received one asterisk. Because 
the calculation could be performed at most three times per 
sample, a laboratory could be penalised with up to three 
asterisks per sample because this sample was not a replicate 
sample. If the sample was a replicate sample, each asterisk 
was weighted by 3; thus, a laboratory could be penalised by 
up to nine asterisks per replicate sample.

Two important parameters for the quality evaluation of the 
laboratories (imprecision and inaccuracy) were computed 
employing the sample replicates and the number of aster-
isks (simple and weighted) received for each sample (Table 2). 
Because these two parameters are computed, they can be 
used to calculate the excellence index (a rank of quality) 
that will be employed to classify each laboratory in an excel-
lence group. The laboratories classified in A and B excellence 
groups will be able to receive a certificate of quality (seal) 
from the quality programme.
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Table 1. Figures of merit and outlier detection equations employed in this work.11,14
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Results and discussion
Calibration results
The NIR spectra of the soil samples are shown in Figure 1(A). 
No relevant information was removed by correcting the spec-
tral baseline with the Savitsky–Golay algorithm, as shown 
in Figure 1(B). The spectral region between 10,000 cm−1 and 
7500 cm−1 was removed because this region did not present 
relevant information. Figure 1(C) presents the average NIR 
spectra of the complete matrix of soil samples employed in 
this study.

Table 3 presents a compilation of several figures of merit 
and the number of outliers removed during the construction of 
all 10 calibration models built in this work. Also some informa-
tion about the concentration range of SOC, SD and minimum, 
maximum and medium concentration is also presented in 
Table 3. First, the models can be more or less restrictive 
based on the range of SOC concentrations presented. The less 
restrictive models such as M0, M5 to M10 presented worse 
accuracy based on the values of RMSEP and RMSEC than the 
restrictive models such as M1, M2, M3 and M4 due to the 
narrow range of SOC concentrations. The explanation of this 
result is related to the lack of complexity and the narrow range 
of concentration of the restrictive models that results in more 
accuracy, i.e. the larger the range, the larger is the standard 
error of prediction.5 Consequently, the same behaviour was 
observed based on the values of the coefficient of variation.

The accuracy index (RPD) and the R2 values were always 
better for the models with the larger range of SOC concentra-
tions (less restrictive models). Thus, these observations were 
very contradictory because larger values of RPD and R2 indi-
cated better fitting models; thus, the best performance was 
expected for the more restrictive models. A reasonable expla-

nation of this observation relies on the fact that the relevance 
of these parameters is highly questionable because it depends 
on the range and distribution of the population,5 respectively. 
This hypothesis was demonstrated here because the distribu-
tion of the SOC concentrations in the more restrictive models 
was more like a binomial distribution than a Gaussian distri-
bution.

The number of latent variables in the multivariate calibra-
tion models varied from 5 to 20 (Table 3). High values of latent 
variables are characteristic of NIR-based modelling of soil 
samples according to the heterogeneity and complexity of this 
type of sample. Therefore, the accuracy of both the reference 
method and the NIR method was assessed at the level of 
intermediate precision, where samples over a large range of 
SOC concentrations representative of the calibration models 
were employed. The reference method presented an accuracy 
of 5.8%, whereas the accuracy of the NIR method ranged 
between 0.1% and 4.8%. These results demonstrate that the 
method based on NIR spectra was more accurate than the 
reference method for the determination of SOC. This result 
can be explained by the high repeatability of NIR spectropho-
tometers and by the errors in the reference method that arise 
from the steps of oxidation, digestion and titration with potas-
sium dichromate.

The sensitivity (SEN), which is a fraction of the signal 
resulting in the addition of a unit of concentration of the prop-
erties of interest and is estimated by the inverse of the vector 
regression norm of the PLSR, showed values very close to 
zero (of the order of 10−5). The results for sensitivity were 
not simple to judge because of the preprocessing adopted.17 
However, the analytical sensitivity (calculated by the relation-
ship between the sensitivity and the instrumental noise) was 
more informative for comparison and for judging the sensi-

Table 2. Equations employed by the interlaboratory proficiency test to evaluate the quality of the reference method (oxidation of soil organic 
matter with dichromate) used by 114 laboratories for soil analysis in Brazil.19

Interlaboratory analysis Equation
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tivity of a multivariate calibration method. The inverse of this 
parameter (analytical sensitivity−1) permits one to establish a 
minimum concentration difference that is discernible by the 
analytical method in the range of concentrations where the 
minimum concentration difference was applied.

The model with the highest sensitivity was M4, which was 
capable of distinguishing a 0.1 g kg−1 concentration difference 
in SOC. Model M6 showed the lowest sensitivity because it 
could distinguish only 1.5 g kg−1 concentration differences 
between the soil samples.

The obtained LD and LQ values were adequate for the 
range of SOC concentrations employed in most calibration 
models, with the exception of model M0, because the lowest 
SOC concentration of this model was smaller than LD and 
LQ. The intervals of confidence found were also more suitable 
for those calibration models that had a larger range of SOC 
concentrations (less restrictive models).

The next section describes how these NIR spectrum cali-
bration models built herein are employed to determine the 
SOC concentration of 12 samples of the proficiency assay 
programme. Finally, the models that are able to achieve an 
acceptable performance in the programme evaluation are 
considered as validated.

Validation results
Figure 2 shows the concentration profile of the SOM concen-
tration (SOC concentration × 1724)2 per sample calculated 

from the data evaluation of the proficiency assay programme 
of 2013.

To qualitatively estimate the representativeness of the profi-
ciency assay samples, a principal components analysis (PCA) 
was conducted by joining the calibration and validation sets. 
Figure 3(A) shows the PC1 scores (61.5%) versus the PC2 
scores (18.4%) for the calibration sets, validation sets and 
proficiency assay samples. The graph of the scores of the first 
two principal components demonstrated that the proficiency 
assay samples had a good representation on the calibration 
and validation datasets. However, the empty spaces on the 
right-hand side of PC1 indicated that the representativeness 
of the proficiency assay samples can be improved by inserting 
samples with higher SOM concentrations. The weights (or 
loadings) on PC1 (greater percentage of explained variance) 
shown in Figure 3(B) reveal the most important variable for the 
score configurations (Figure 2) that are characterised by CH 
bonding overtones of the aromatic groups (n1 C–H 7200 cm−1, 
or ±1388 nm) and the combination bands of the fundamental 
transitions due to the aliphatic CH bond groups (n1 C–H 
4600 cm−1, or ±2173 nm). Assignments are as per Stenberg 
et al.4

Figure 4 shows the penalties for each calibration model 
in the proficiency assay sample evaluation: the number 
of simple asterisks [Figure 4(A)], the number of asterisks 
with repetition [Figure 4(B)] and the number of weighted 
asterisks [Figure 4(C)]. Some models were responsible 

Figure 1. (A) NIR spectra of soil samples. (B) After preprocessing by the Savitzky–Golay first derivative with a 15 point window and 
second-order polynomial. (C) The average NIR spectra of the soil samples representative of the Brazilian territory.
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Table 3. Figures of merit, with outliers removed, that were used to evaluate the PLS calibration models.14

Figure of merit M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Accuracy RMSEC 2.7 0.8 0.8 0.8 1.0 2.0 5.0 2.4 2.6 2.5 2.3

RMSEP 2.5 0.9 0.9 1.0 0.9 2.7 6.2 2.5 2.3 2.3 2.1

Coefficient of 
variation

CV (%) 36.4 12.6 7.3 5.5 4.0 9.2 15.6 16.1 21.4 21.5 23.6

RPD RPD 2.1 1.1 1.1 1.1 1.0 0.9 1.6 1.4 1.9 1.9 2.2

Precision (%) 0.5 0.4 0.3 0.3 0.1 0.2 2.1 1.1 0.6 0.6 0.5

Sensitivity SEN (g kg−1) 4.1 × 10−5 8.2 × 10−5 1.5 × 10−4 2.5 × 10−4 7.2 × 10−4 3.0 × 10−4 3.4 × 10−5 4.0 × 10−5 4.7 × 10−5 5.0 × 10−5 5.1 × 10−5

Analytical sensitivity SEN(A) (g kg−1) 1.5 3.4 4.2 5.1 11.8 3.9 0.7 1.5 1.7 1.8 1.8

Inverse of analytical 
sensitivity

1/SEN(A) (kg g−1) 0.7 0.3 0.2 0.2 0.1 0.3 1.5 0.6 0.6 0.5 0.6

Limit of detection LD (g kg−1) 2.1 0.9 0.7 0.6 0.3 0.8 4.4 1.9 1.8 1.6 1.7

Limit of 
quantification

LQ (g kg−1) 6.8 2.9 2.4 2.0 0.8 2.6 14.5 6.5 5.9 5.4 5.6

Adjustment Coefficient of 
determination

0.83 0.65 0.61 0.69 0.67 0.70 0.86 0.75 0.77 0.80 0.83

Confidence interval Maximum 5.5 1.7 1.8 1.8 2.3 5.1 12.7 5.2 5.6 5.1 4.7

Minimum 5.3 1.5 1.6 1.6 2.0 4.2 10.3 4.8 5.1 4.9 4.5

Outlier analysis M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Latent variables vl 20 20 13 9 6 5 9 17 17 17 18

Number of samples cal 1986 484 260 138 81 36 54 528 1026 1026 1368

Number of samples val 994 243 130 70 41 18 28 264 513 505 684

Outliers removed 1 cal 1772 405 217 116 70 32 47 463 908 898 1181

Outliers removed 1 val 936 210 106 49 26 2 16 246 481 470 632

Outliers removed 2 cal 1544 351 185 104 57 32 47 396 780 758 992

Outliers removed 2 val 871 188 73 32 19 2 16 222 441 430 575

Minimum SOC 
(g kg−1)

Min. 0.1 5.1 10.1 15.1 20.1 26.2 25.8 10.1 5.1 5.1 3.1

Maximum SOC 
(g kg−1)

Max. 36.4 9.9 14.9 19.9 24.9 37.5 66.5 34.4 34.4 34.4 34.4

Mean SOC (g kg−1) Mean 7.7 7.1 12.2 17.3 22.0 31.4 36.4 16.0 11.7 11.6 9.5

Standard deviation SD 3.6 1.0 1.0 1.2 1.4 2.7 4.3 3.3 3.7 3.7 3.5
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for making the NIR calibration method outperform the 
reference method due to low penalties, where models M8 
and M10 (Figure 5) presented the best performance. This 
observation can be supported by the diagnostic param-
eters presented in Table 4, where the best performances of 
models M8 and M10 were justified by their higher accuracy 
due to low penalties.

Conclusions
From the evaluation of the figures of merit, the calibration 
models constructed from the spectral database of repre-
sentative samples of Brazilian soil types have a high poten-
tial for application. The results achieved in the validation step, 
which used the interlaboratory test to evaluate the reference 

Figure 2. Average concentration of SOM for samples obtained from the results of 111 participating laboratories in the interlaboratory 
programme of 2013. The samples with repetitions (triplicate) are represented by M1 (217, 219 and 225) and M2 (220, 223 and 226).

Figure 3. (A) PCA score plot of the first two principal components of the NIR spectra of calibration datasets, validation and 12 samples 
from the interlaboratory programme of 2013. (B) Loading graphics corresponding to the PCA plot.
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method that is employed by more than 100 laboratories in 
Brazil, show that the NIR spectroscopy method is a suit-
able replacement for the reference method and thus obtains 
approval in this proficiency programme. Furthermore, the 
calibration models were shown to provide even better results 
by creating local models to make a prediction for a specific 
sample. In addition, after implementing the NIR spectros-
copy method in routine analysis, the spectral bank may 

grow daily and could reach even more significant levels of  
robustness.

Finally, the data treatment step is considered one of the 
bottlenecks in using a NIR spectroscopy method because the 
development of robust models is rather laborious and indis-
pensable. Data analysis requires expertise in chemometrics to 
check that the best method is selected, and this fact hinders 
the implementation of NIR spectroscopy as a routine soil anal-

Figure 4. Bar graphs of the penalties for each calibration model submitted in the interlaboratory programme of 2013: (A) number of 
simple asterisks, (B) number of asterisks with repetition and C) number of weighted asterisks.

Figure 5. The concentrations of SOM measured by the reference method versus the concentrations of SOM predicted by NIR 
spectroscopy.
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Table 4. Performance of each calibration model for predicting the SOM concentrations by NIR spectroscopy in samples from the interlaboratory programme of 2013 and the performance 
of the wet method (reference method).

Proficiency assay samples Number of asterisks Performance of calibration models
Model Simple 

asterisks
Asterisks with 

repetition
Weighted 
asterisks

Inaccuracy 
(%)

Imprecision 
(%)

Excellence 
index

Classification Classification 
groups

Reference method 8 1 11 79 7 57 79 C
M0 10 8 34 243 2 −22 95 C
M1 9 17 60 429 1 −115 104 C
M2 14 13 53 379 1 −90 103 C
M3 13 6 31 221 1 −11 92 C
M4 13 0 13 93 0 53 80 C
M5 12 12 48 343 1 −72 103 C
M6 14 10 44 314 1 −58 102 C
M7 9 0 9 64 4 66 76 C
M8 5 0 5 36 2 81 63 B
M9 9 0 9 64 2 67 76 C
M10 6 0 6 43 2 77 67 B
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ysis method. Those responsible for spectra-based analyses 
must have different technical skills compared with the skillset 
required by analysts traditionally employed in soil laboratories. 
Thus, issues such as the availability of professionals with 
knowledge of chemometrics and the costs involved in hiring 
and training these professionals should also be considered 
and evaluated when seeking to implement NIR spectroscopy 
as a routine soil analysis method in Brazil.
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