



### UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://journals.iucr.org/e/issues/2017/07/00/wm5398/index.html

DOI: 10.1107/S2056989017008763

Direitos autorais / Publisher's copyright statement:

©2017 by Acta crystallographica section E. All rights reserved.





ISSN 2056-9890

Received 2 June 2017 Accepted 12 June 2017

Edited by M. Weil, Vienna University of Technology, Austria

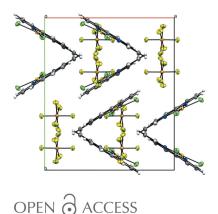
‡ Additional correspondence author, e-mail: raphael.enoque@gmail.com.

**Keywords:** gold(III); 1,10-phenanthroline ligand; square-planar coordination; anion- $\pi$  interactions; crystal structure.

CCDC reference: 1555623

**Supporting information**: this article has supporting information at journals.iucr.org/e

# Synthesis and crystal structure of dichlorido(1,10-phenanthroline- $\kappa^2 N, N'$ )gold(III) hexafluorido-phosphate


Raphael Enoque Ferraz de Paiva,‡ Douglas Hideki Nakahata and Pedro Paulo Corbi\*

Institute of Chemistry, University of Campinas - UNICAMP, Campinas - SP, Brazil. \*Correspondence e-mail: ppcorbi@iqm.unicamp.br

A gold(III) salt of composition [AuCl<sub>2</sub>( $C_{12}H_8N_2$ )]PF<sub>6</sub> was prepared and characterized by elemental and mass spectrometric analysis (ESI(+)–QTOF–MS), <sup>1</sup>H nuclear magnetic resonance measurements and by single-crystal X-ray diffraction. The square-planar coordination sphere of Au<sup>III</sup> comprises the bidentate 1,10-phenanthroline ligand and two chloride ions, with the Au<sup>III</sup> ion only slightly shifted from the least-squares plane of the ligating atoms (r.m.s. = 0.018 Å). In contrast to two other previously reported Au<sup>III</sup>-phenantroline structures that are stabilized by interactions involving the chlorido ligands, the packing of the title compound does not present these features. Instead, the hexafluoridophosphate counter-ion gives rise to anion·· $\pi$  interactions that are a crucial factor for the crystal packing.

### 1. Chemical context

AuIII is isoelectronic with PtII and forms compounds with similar coordination modes and structures. Therefore, the synthesis of Au<sup>III</sup>-based compounds has attracted much interest in the field of bioinorganic and medicinal chemistry after the successful application of cis-platin [cis-diamminedichloridoplatinum(II)] for cancer treatment (Siddik, 2003). Aromatic N-donors, such as 1,10-phenanthroline, are of interest given their planar structure that synergizes well with the typical square-planar coordination sphere of Au<sup>III</sup>, producing potent DNA-intercalating agents (Abbate et al., 2000; Zou et al., 2015). On the other hand, Au<sup>III</sup> compounds differ from Pt<sup>II</sup> compounds in terms of their interactions with biomolecules, their stability in biological media or their mechanism of action. A review on cytotoxic properties and mechanisms of Au<sup>III</sup> compounds with N-donors has been provided by Zou et al. (2015).



In this context we have prepared the title salt,  $[AuCl_2(C_{12}H_8N_2)]PF_6$ , that was characterized by elemental and mass spectrometric analysis (ESI(+)–QTOF–MS),  $^1H$  nuclear magnetic resonance measurements and by single crystal X-ray diffraction.

### 2. Structural commentary

All atoms in the title salt are on general positions. The Au<sup>III</sup> atom has a square-planar coordination environment, with the chlorido ligands in a *cis* configuration to each other. The Au<sup>III</sup> atom deviates from planarity (as determined based on the four coordinating atoms) by 0.018 Å (r.m.s.). The main bond lengths [Au–N1 = 2.032 (2), Au–N2 = 2.036 (2), Au–Cl1 = 2.251 (1) and Au–Cl2 = 2.255 (1) Å] are in the normal ranges for this kind of complexes (see *Database survey*). The bite angle of the 1,10-phenanthroline ligand is 81.75 (9)°, while the Cl1–Au–Cl2 angle is 89.28 (3)°. Despite the highly symmetrical nature of the hexafluoridophosphate counter-ion, this unit does not show any disorder. The structures of the molecular entities of the [AuCl<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)]PF<sub>6</sub> salt are shown in Fig. 1.

### 3. Supramolecular features

The molecular packing in the crystal is shown in Fig. 2. Despite the square-planar coordination environment around  $Au^{\rm III}$  and the presence of the highly conjugated and planar 1,10-phenanthroline ligand,  $\pi$ - $\pi$  interactions have little relevance

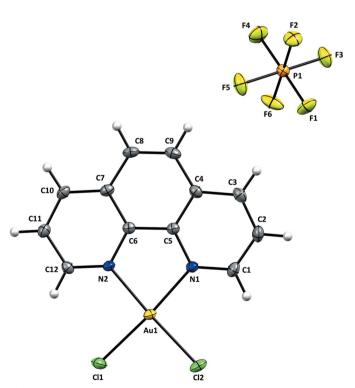



Figure 1 The molecular entities of the title salt  $[AuCl_2(C_{12}H_8N_2)]PF_6$ . Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms are not labelled for clarity.

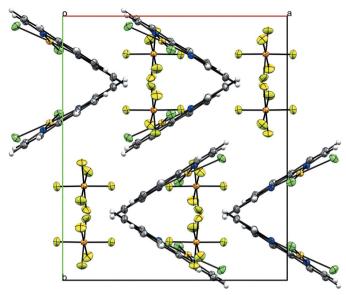



Figure 2 Packing of the crystal structure of  $[AuCl_2(C_{12}H_8N_2)]PF_6$  in a view along the c axis. Displacement ellipsoids are drawn at the 40% probability level.

to the stabilization of the crystal. The shortest  $\pi$ -like interaction between the centroids  $[Cg1\cdots Cg2^i;$  symmetry code: (i)  $\frac{1}{2} + x, y, \frac{1}{2} - z;$  Fig. 3] of two neighbouring 1,10-phenanthroline rings are associated with a distance of 4.2521 (15) Å, which is very close to the upper limit of the threshold established by Janiak (2000) for a relevant offset  $\pi$  interaction.

The interactions between the hexafluoridophosphate counter-ion and the 1,10-phenanthroline ligands constitute the major intermolecular interactions in the crystal and can be divided into two types. The first type corresponds to an anion-donor  $\cdots \pi$ -acceptor interaction (Chifotides & Dunbar, 2013),

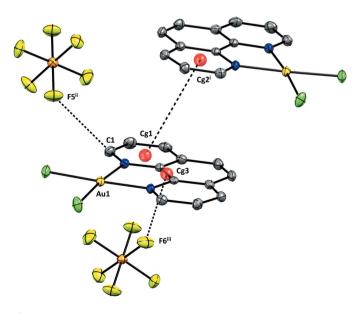



Figure 3 Intermolecular interactions present in the crystal structure. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms were omitted for clarity. [Symmetry codes: (i)  $\frac{1}{2} + x$ , y,  $\frac{1}{2} - z$ , (ii) x,  $\frac{1}{2} - y$ ,  $\frac{1}{2} + z$ , (iii)  $-\frac{1}{2} + x$ , y,  $\frac{1}{2} - z$ .]

with the shortest contact being C1···F5<sup>ii</sup>, of 3.096 (4) Å [symmetry code: (ii)  $x, \frac{1}{2} - y, \frac{1}{2} + z$ ; Fig. 3]. The second and unique type of interaction between the PF<sub>6</sub><sup>-</sup> anion and the  $\pi$  system of the phenanthroline ligand is observed where fluorine atoms point directly to the mid-point of an aromatic C—C bond. The distance between F6<sup>ii</sup> and the mid-point of C5 and C6 is 2.822 Å. The individual distances are C5···F6<sup>ii</sup> 2.925 (3) and C6···F6<sup>iii</sup> 2.894 (3) Å [symmetry code: (iii)  $-\frac{1}{2} + x, y, \frac{1}{2} - z$ ].

### 4. Database survey

A few structures of Au<sup>III</sup>-(1,10-phenanthroline) compounds have been reported in the literature with different counterions. Abbate et al. (2000) reported the monohydrate chloride structure that crystallizes in the space group type  $P2_1/n$ , with Au-N distances of 2.033 (8) and 2.056 (8) Å and Au-Cl distances of 2.266 (3) and 2.263 (3) Å, respectively. The N-Au-N angle is 82.0 (3)° and the Cl-Au-Cl angle 89.5 (1)°. Pitteri et al. (2008) determined the structure with a disordered  $[AuBrCl(CN)_2]^-$  unit as a counter-ion in space group type  $P\overline{1}$ . The Au-N distances are 2.05(1) and 2.05(1) Å, while the Au-Cl distances are 2.290 (5) and 2.299 (5) Å. The title compound has Au-N distances similar to that of the structure reported by Abbate et al. (2000), but slightly shorter than the one by Pitteri et al. (2008). Regarding the Au-Cl distances, [AuCl<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)]PF<sub>6</sub> and the structure reported by Abbate et al. (2000) have shorter ones than that reported by Pitteri et al. (2008). Although the  $[AuCl_2(C_{12}H_8N_2)]^+$  cations in the three structures exhibit no significant differences, their crystal packings vary greatly as a consequence of the intermolecular interactions with the different counter-ions. The structure reported by Abbate et al. (2000) has the Au<sup>III</sup>-(1,10-phenanthroline) units closer in space, with the shortest centroid-to-

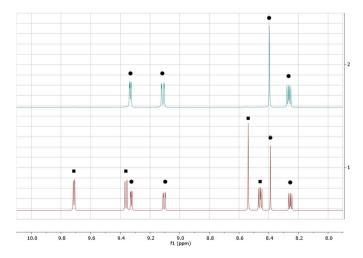



Figure 4  $^{1}$ H NMR spectra following the Cl replacement by DMSO- $d_{6}$  in the salt [Au(phen)Cl<sub>2</sub>]PF<sub>6</sub>, where phen = 1,10-phenanthroline. (Top) Spectrum obtained from a freshly dissolved sample and (bottom) 72 h after dissolution. Two populations were identified, [Au(phen)Cl<sub>2</sub>]<sup>+</sup> (symbolized by a black square) and a chloride replacement product, most likely [Au(phen)(dmso- $d_{6}$ )<sub>2</sub>]<sup>3+</sup> (symbolized by a black dot).

Table 1
Experimental details.

| Crystal data                                                               |                                |
|----------------------------------------------------------------------------|--------------------------------|
| Chemical formula                                                           | [AuCl2(C12H8N2)]PF6            |
| $M_{ m r}$                                                                 | 593.04                         |
| Crystal system, space group                                                | Orthorhombic, Pbca             |
| Temperature (K)                                                            | 150                            |
| a, b, c (Å)                                                                | 12.9983 (7), 15.2709 (10),     |
| , , ( )                                                                    | 15.5153 (10)                   |
| $V(\mathring{\mathbf{A}}^3)$                                               | 3079.7 (3)                     |
| Z                                                                          | 8                              |
| Radiation type                                                             | Μο Κα                          |
| $\mu \text{ (mm}^{-1})$                                                    | 10.07                          |
| Crystal size (mm)                                                          | $0.15 \times 0.13 \times 0.05$ |
| Crystal size (mm)                                                          | one work work                  |
| Data collection                                                            |                                |
| Diffractometer                                                             | Bruker APEX CCD detector       |
| Absorption correction                                                      | Multi-scan (SADABS; Bruker,    |
| Tessiphon correction                                                       | 2010)                          |
| $T_{\min}$ , $T_{\max}$                                                    | 0.576, 0.746                   |
| No. of measured, independent and                                           | 15573, 3822, 3192              |
| observed $[I > 2\sigma(I)]$ reflections                                    |                                |
| $R_{ m int}$                                                               | 0.027                          |
| $(\sin \theta/\lambda)_{\max} (\mathring{A}^{-1})$                         | 0.667                          |
| ,                                                                          |                                |
| Refinement                                                                 |                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.019, 0.040, 1.01             |
| No. of reflections                                                         | 3822                           |
| No. of parameters                                                          | 217                            |
| H-atom treatment                                                           | H-atom parameters constrained  |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 1.08, -0.56                    |
|                                                                            |                                |

Computer programs: *APEX2* and *SAINT* (Bruker, 2010), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2006) and *publCIF* (Westrip, 2010).

centroid distance being 3.820 Å, much closer than 4.2521 (15) Å observed in the title compound. Furthermore, the presence of a water molecule and the chloride counter-ion establish a classical hydrogen-bonding network, which is absent in the structure of the title compound. The structure determined by Pitteri *et al.* (2008) is the only one with an axial  $Au\cdots L$  interaction, namely  $Au\cdots Br$  (3.374 Å).

### 5. Synthesis and crystallization

[AuCl<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)]PF<sub>6</sub> was synthesized by a modification of a literature protocol (Casini et al., 2010): K[AuCl<sub>4</sub>] (0.25 mmol, 95.0 mg) was dissolved in 3 ml of  $H_2O/CH_3CN$  (1:5, v/v), and 1,10-phenanthroline, (0.25 mmol, 45 mg) dissolved in 0.5 ml of CH<sub>3</sub>CN was then added to the gold(III)-containing solution. Finally, NH<sub>4</sub>PF<sub>6</sub> (0.75 mmol, 124.6 mg) was added to the solution and the mixture was refluxed for 16 h. The obtained solid was isolated by filtration, washed with cold water and dried in vacuo. Elemental Analysis was performed on an Elemental Analyzer CHNS-O 2400 Perkin Elmer. Anal. Calcd. for  $C_{12}H_8AuCl_2F_6N_2P$  (593.04 g mol<sup>-1</sup>): C 24.30%, H 1.36%, N 4.72%. Found: C 24.08%, H 0.70%, N 4.73%. Mass spectra were acquired in a XEVO QTOF-MS instrument (Waters). The sample was dissolved in the smallest possible volume of DMSO and diluted in a 1:1 (v/v) mixture of water and acetonitrile containing 0.1% formic acid. ESI(+)-QTOF-MS  $(m/z, [AuCl_2(C_{12}H_8N_2)]^+, 100\%$  relative abundance): 446. 9707 (calculated 446.9730). Crystals suitable for single crystal

X-ray analysis were obtained by recrystallization from acetonitrile solution.

### 6. Solution stability

The stability of the [Au(1,10-phenanthroline)]<sup>3+</sup> moiety is critical for the biological properties of the compound, including cytotoxicity. The [AuCl<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)]PF<sub>6</sub> salt was dissolved in deuterated dimethylsulfoxide (DMSO-d6) and the solvent replacement was followed by <sup>1</sup>H NMR for 72 h (Fig. 4). <sup>1</sup>H NMR spectra were acquired on a Bruker Avance III 400 MHz. The labile chlorido ligands were replaced, as expected, but the [Au(1,10-phenanthroline)]<sup>3+</sup> moiety remained stable in the presence of the coordinating solvent (DMSO) throughout the period evaluated.

#### 7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were set in calculated positions, with C-H = 0.95 Å and  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eo}({\rm C})$ .

### Acknowledgements

The authors are grateful to Dr Déborah de Alencar Simoni, technician of the Institutional Single Crystal XRD facility – UNICAMP, Brazil, for the data collection and preliminary data refinements.

### **Funding information**

Funding for this research was provided by: Fundação de Amparo à Pesquisa do Estado de São Paulo (grant No. 2015/25114-4 to Pedro Paulo Corbi; grant No. 2015/20882-3 to Douglas Hideki Nakahata); Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 140466/2014-2 to Raphael Enoque Ferraz de Paiva).

#### References

Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). *Inorg. Chim. Acta*, **311**, 1–5.

Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Casini, A., Diawara, M. C., Scopelliti, R., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. (2010). *Dalton Trans.* **39**, 2239–2245.

Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894–906.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Pitteri, B., Bortoluzzi, M. & Bertolasi, V. (2008). *Transition Met. Chem.* **33**, 649–654.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Siddik, Z. H. (2003). Oncogene, 22, 7265–7279.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zou, T., Lum, C. T., Lok, C. N., Zhang, J. J. & Che, C. M. (2015). Chem. Soc. Rev. 44, 8786–8801.

### supporting information

Acta Cryst. (2017). E73, 1048-1051 [https://doi.org/10.1107/S2056989017008763]

## Synthesis and crystal structure of dichlorido(1,10-phenanthroline- $\kappa^2 N, N'$ )gold(III) hexafluoridophosphate

### Raphael Enoque Ferraz de Paiva, Douglas Hideki Nakahata and Pedro Paulo Corbi

### **Computing details**

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Dichlorido(1,10-phenanthroline-κ²N,N′)gold(III) hexafluoridophosphate

### Crystal data

[AuCl<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)]PF<sub>6</sub>  $M_r$  = 593.04 Orthorhombic, Pbca a = 12.9983 (7) Å b = 15.2709 (10) Å c = 15.5153 (10) Å V = 3079.7 (3) Å<sup>3</sup> Z = 8 F(000) = 2208

Data collection

Bruker APEX CCD detector

diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.3333 pixels mm $^{-1}$  phi and  $\omega$  scans

Absorption correction: multi-scan (SADABS; Bruker, 2010)  $T_{min} = 0.576$ ,  $T_{max} = 0.746$ 

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.019$   $wR(F^2) = 0.040$  S = 1.013822 reflections 217 parameters 0 restraints  $D_x = 2.558 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 119 reflections

 $\theta = 3.4-27.3^{\circ}$   $\mu = 10.07 \text{ mm}^{-1}$  T = 150 KPlate, yellow

 $0.15\times0.13\times0.05~mm$ 

15573 measured reflections 3822 independent reflections 3192 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int}=0.027$ 

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ 

 $h = -17 \rightarrow 15$  $k = -20 \rightarrow 15$ 

 $l = -15 \rightarrow 20$ 

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained  $\frac{1}{12} = \frac{1}{12} \left( \frac{1}{12} + \frac{1}{12} \left( \frac{1}{12} + \frac{1}{12} \right) \right)$ 

 $w = 1/[\sigma^2(F_0^2) + (0.0194P)^2]$ where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\text{max}} = 0.001$  $\Delta\rho_{\text{max}} = 1.08 \text{ e Å}^{-3}$ 

 $\Delta \rho_{\min} = -0.56 \text{ e Å}^{-3}$ 

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x            | y            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| Au1 | 0.44227 (2)  | 0.09568 (2)  | 0.04214 (2)  | 0.01802 (4)                 |
| C11 | 0.29239 (6)  | 0.03883 (5)  | -0.00417(5)  | 0.03186 (17)                |
| C12 | 0.48300 (6)  | 0.12866 (5)  | -0.09535 (5) | 0.02952 (17)                |
| N1  | 0.57092 (15) | 0.15008 (15) | 0.09387 (16) | 0.0184 (5)                  |
| N2  | 0.41395 (16) | 0.06735 (15) | 0.16813 (15) | 0.0170 (5)                  |
| C1  | 0.6465 (2)   | 0.1908 (2)   | 0.0529(2)    | 0.0254 (7)                  |
| H1  | 0.6468       | 0.1921       | -0.0083      | 0.030*                      |
| C2  | 0.7252(2)    | 0.2317 (2)   | 0.0982(2)    | 0.0295 (7)                  |
| H2  | 0.7786       | 0.2608       | 0.0677       | 0.035*                      |
| C3  | 0.7262 (2)   | 0.2303 (2)   | 0.1863 (2)   | 0.0270 (7)                  |
| Н3  | 0.7794       | 0.2591       | 0.2172       | 0.032*                      |
| C4  | 0.6474 (2)   | 0.18577 (19) | 0.2310(2)    | 0.0221 (6)                  |
| C5  | 0.57038 (18) | 0.14663 (18) | 0.18156 (19) | 0.0173 (6)                  |
| C6  | 0.48791 (19) | 0.10177 (17) | 0.22131 (18) | 0.0166 (5)                  |
| C7  | 0.4824(2)    | 0.09379 (18) | 0.31033 (19) | 0.0204 (6)                  |
| C8  | 0.5628 (2)   | 0.1336(2)    | 0.3608 (2)   | 0.0241 (6)                  |
| H8  | 0.5611       | 0.1288       | 0.4218       | 0.029*                      |
| C9  | 0.6403 (2)   | 0.1775 (2)   | 0.3226 (2)   | 0.0260 (7)                  |
| H9  | 0.6918       | 0.2036       | 0.3576       | 0.031*                      |
| C10 | 0.3993 (2)   | 0.04620 (19) | 0.3444 (2)   | 0.0230 (6)                  |
| H10 | 0.3929       | 0.0386       | 0.4050       | 0.028*                      |
| C11 | 0.3274 (2)   | 0.01083 (19) | 0.29003 (19) | 0.0240 (6)                  |
| H11 | 0.2715       | -0.0218      | 0.3129       | 0.029*                      |
| C12 | 0.3362(2)    | 0.02256 (17) | 0.20087 (19) | 0.0210 (6)                  |
| H12 | 0.2858       | -0.0019      | 0.1636       | 0.025*                      |
| P1  | 0.40487 (5)  | 0.14377 (5)  | 0.61776 (5)  | 0.01992 (16)                |
| F1  | 0.38930 (15) | 0.08895 (13) | 0.70331 (12) | 0.0412 (5)                  |
| F2  | 0.41427 (15) | 0.05546 (12) | 0.56412 (13) | 0.0362 (5)                  |
| F3  | 0.52589 (12) | 0.14548 (12) | 0.63152 (14) | 0.0399 (5)                  |
| F4  | 0.41879 (16) | 0.19932 (14) | 0.53096 (13) | 0.0443 (5)                  |
| F5  | 0.28305 (12) | 0.14421 (12) | 0.60406 (14) | 0.0410 (5)                  |
| F6  | 0.39496 (14) | 0.23393 (12) | 0.67051 (14) | 0.0423 (5)                  |

### Atomic displacement parameters $(\mathring{A}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| Au1 | 0.02348 (6) | 0.01722 (6) | 0.01336 (6) | 0.00051 (4) | -0.00115 (4) | -0.00098 (4) |
| C11 | 0.0364 (4)  | 0.0344 (4)  | 0.0249 (4)  | -0.0106(3)  | -0.0115(3)   | 0.0001 (4)   |
| Cl2 | 0.0419 (4)  | 0.0329 (4)  | 0.0138 (3)  | 0.0045 (3)  | 0.0028 (3)   | -0.0002(3)   |

### supporting information

| N1  | 0.0192 (11) | 0.0202 (12) | 0.0159 (12) | 0.0014 (9)   | 0.0006 (9)   | -0.0011 (10) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N2  | 0.0210(11)  | 0.0166 (11) | 0.0134 (12) | 0.0001 (9)   | -0.0008(10)  | -0.0012 (10) |
| C1  | 0.0246 (14) | 0.0276 (16) | 0.0239 (17) | 0.0031 (12)  | 0.0071 (13)  | 0.0020 (13)  |
| C2  | 0.0211 (14) | 0.0331 (18) | 0.0342 (19) | -0.0027(13)  | 0.0067 (13)  | 0.0066 (15)  |
| C3  | 0.0183 (14) | 0.0269 (16) | 0.0359 (19) | 0.0008 (12)  | -0.0035(13)  | -0.0017 (14) |
| C4  | 0.0189 (13) | 0.0219 (15) | 0.0256 (16) | 0.0023 (11)  | -0.0023(12)  | -0.0007(13)  |
| C5  | 0.0178 (13) | 0.0168 (13) | 0.0173 (14) | 0.0044 (10)  | -0.0005(11)  | -0.0010 (11) |
| C6  | 0.0177 (12) | 0.0140 (12) | 0.0182 (14) | 0.0043 (10)  | -0.0007(11)  | -0.0005 (12) |
| C7  | 0.0236 (13) | 0.0192 (13) | 0.0184 (15) | 0.0051 (11)  | -0.0007(12)  | 0.0011 (12)  |
| C8  | 0.0304 (15) | 0.0259 (15) | 0.0158 (15) | 0.0058 (12)  | -0.0056(13)  | -0.0020(13)  |
| C9  | 0.0252 (15) | 0.0277 (16) | 0.0250 (17) | 0.0017 (12)  | -0.0082(13)  | -0.0068 (14) |
| C10 | 0.0266 (14) | 0.0237 (15) | 0.0187 (15) | 0.0048 (12)  | 0.0022 (13)  | 0.0040 (13)  |
| C11 | 0.0261 (14) | 0.0233 (14) | 0.0227 (16) | -0.0014(12)  | 0.0034 (13)  | 0.0020 (13)  |
| C12 | 0.0208 (13) | 0.0178 (13) | 0.0244 (16) | -0.0014(11)  | -0.0016 (12) | -0.0007 (12) |
| P1  | 0.0199(3)   | 0.0183 (4)  | 0.0216 (4)  | -0.0015(3)   | 0.0008(3)    | -0.0005(3)   |
| F1  | 0.0531 (12) | 0.0476 (12) | 0.0228 (11) | -0.0131 (10) | -0.0014(9)   | 0.0103 (9)   |
| F2  | 0.0484 (11) | 0.0258 (10) | 0.0345 (12) | 0.0000 (9)   | -0.0003(9)   | -0.0105 (9)  |
| F3  | 0.0205 (8)  | 0.0374 (11) | 0.0619 (15) | -0.0024(8)   | -0.0029(9)   | -0.0005 (11) |
| F4  | 0.0583 (12) | 0.0407 (12) | 0.0340 (13) | -0.0018 (10) | 0.0028 (9)   | 0.0167 (10)  |
| F5  | 0.0221 (8)  | 0.0325 (11) | 0.0683 (15) | -0.0025(8)   | -0.0081(9)   | 0.0000 (10)  |
| F6  | 0.0387 (10) | 0.0321 (11) | 0.0560 (14) | -0.0106 (8)  | 0.0194 (10)  | -0.0224 (10) |
|     |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| Au1—N1      | 2.032 (2)  | C6—C7     | 1.388 (4)   |
|-------------|------------|-----------|-------------|
| Au1—N2      | 2.036 (2)  | C7—C10    | 1.406 (4)   |
| Au1—Cl1     | 2.2506 (7) | C7—C8     | 1.440 (4)   |
| Au1—Cl2     | 2.2549 (8) | C8—C9     | 1.348 (4)   |
| N1—C1       | 1.325 (3)  | C8—H8     | 0.9500      |
| N1—C5       | 1.362 (4)  | С9—Н9     | 0.9500      |
| N2—C12      | 1.322 (3)  | C10—C11   | 1.370 (4)   |
| N2—C6       | 1.372 (3)  | C10—H10   | 0.9500      |
| C1—C2       | 1.389 (4)  | C11—C12   | 1.400 (4)   |
| C1—H1       | 0.9500     | C11—H11   | 0.9500      |
| C2—C3       | 1.368 (4)  | C12—H12   | 0.9500      |
| C2—H2       | 0.9500     | P1—F1     | 1.582 (2)   |
| C3—C4       | 1.411 (4)  | P1—F3     | 1.5877 (17) |
| C3—H3       | 0.9500     | P1—F2     | 1.589 (2)   |
| C4—C5       | 1.396 (4)  | P1—F5     | 1.5976 (18) |
| C4—C9       | 1.430 (4)  | P1—F4     | 1.602 (2)   |
| C5—C6       | 1.414 (4)  | P1—F6     | 1.6070 (19) |
| N1—Au1—N2   | 81.75 (9)  | C10—C7—C8 | 124.8 (3)   |
| N1—Au1—Cl1  | 174.84 (7) | C9—C8—C7  | 120.9 (3)   |
| N2—Au1—Cl1  | 93.90 (6)  | C9—C8—H8  | 119.5       |
| N1—Au1—Cl2  | 95.11 (7)  | C7—C8—H8  | 119.5       |
| N2—Au1—Cl2  | 176.74 (6) | C8—C9—C4  | 122.0 (3)   |
| Cl1—Au1—Cl2 | 89.28 (3)  | C8—C9—H9  | 119.0       |

### supporting information

| G1 V1 G5     | 1001(0)     | G4 G0 TT0      | 110.0       |
|--------------|-------------|----------------|-------------|
| C1—N1—C5     | 120.1 (2)   | C4—C9—H9       | 119.0       |
| C1—N1—Au1    | 127.8 (2)   | C11—C10—C7     | 119.7 (3)   |
| C5—N1—Au1    | 112.00 (17) | C11—C10—H10    | 120.1       |
| C12—N2—C6    | 120.2 (2)   | C7—C10—H10     | 120.1       |
| C12—N2—Au1   | 128.12 (19) | C10—C11—C12    | 120.2 (3)   |
| C6—N2—Au1    | 111.69 (18) | C10—C11—H11    | 119.9       |
| N1—C1—C2     | 121.0 (3)   | C12—C11—H11    | 119.9       |
| N1—C1—H1     | 119.5       | N2—C12—C11     | 120.5 (3)   |
| C2—C1—H1     | 119.5       | N2—C12—H12     | 119.7       |
| C3—C2—C1     | 120.4 (3)   | C11—C12—H12    | 119.7       |
| C3—C2—H2     | 119.8       | F1—P1—F3       | 91.30 (11)  |
| C1—C2—H2     | 119.8       | F1—P1—F2       | 90.01 (11)  |
| C2—C3—C4     | 119.5 (3)   | F3—P1—F2       | 90.47 (10)  |
| C2—C3—H3     | 120.3       | F1—P1—F5       | 89.25 (11)  |
| C4—C3—H3     | 120.3       | F3—P1—F5       | 178.81 (11) |
| C5—C4—C3     | 117.2 (3)   | F2—P1—F5       | 90.58 (11)  |
| C5—C4—C9     | 117.5 (3)   | F1—P1—F4       | 179.13 (12) |
| C3—C4—C9     | 125.3 (3)   | F3—P1—F4       | 89.57 (11)  |
| N1—C5—C4     | 121.9 (3)   | F2—P1—F4       | 90.02 (11)  |
| N1—C5—C6     | 117.3 (2)   | F5—P1—F4       | 89.88 (11)  |
| C4—C5—C6     | 120.8 (3)   | F1—P1—F6       | 90.90 (11)  |
| N2—C6—C7     | 121.9 (3)   | F3—P1—F6       | 89.82 (10)  |
| N2—C6—C5     | 117.0 (3)   | F2—P1—F6       | 179.04 (12) |
| C7—C6—C5     |             | F5—P1—F6       |             |
|              | 121.0 (3)   |                | 89.13 (10)  |
| C6—C7—C10    | 117.4 (3)   | F4—P1—F6       | 89.06 (12)  |
| C6—C7—C8     | 117.8 (3)   |                |             |
| C5—N1—C1—C2  | -1.0 (4)    | C4—C5—C6—N2    | 178.2 (2)   |
| Au1—N1—C1—C2 | 174.1 (2)   | N1—C5—C6—C7    | 178.8 (2)   |
| N1—C1—C2—C3  | 0.2 (5)     | C4—C5—C6—C7    | -1.4(4)     |
| C1—C2—C3—C4  | 1.0 (5)     | N2—C6—C7—C10   | 2.1 (4)     |
| C2—C3—C4—C5  | -1.4 (4)    | C5—C6—C7—C10   | -178.4 (2)  |
| C2—C3—C4—C9  | 178.5 (3)   | N2—C6—C7—C8    | -178.9 (2)  |
| C1—N1—C5—C4  | 0.6 (4)     | C5—C6—C7—C8    | 0.7 (4)     |
| Au1—N1—C5—C4 |             | C6—C7—C8—C9    |             |
|              | -175.2 (2)  |                | 0.4 (4)     |
| C1—N1—C5—C6  | -179.7 (2)  | C10—C7—C8—C9   | 179.4 (3)   |
| Au1—N1—C5—C6 | 4.5 (3)     | C7—C8—C9—C4    | -0.8 (4)    |
| C3—C4—C5—N1  | 0.6 (4)     | C5—C4—C9—C8    | 0.1 (4)     |
| C9—C4—C5—N1  | -179.3 (3)  | C3—C4—C9—C8    | -179.8 (3)  |
| C3—C4—C5—C6  | -179.1 (2)  | C6—C7—C10—C11  | -0.7 (4)    |
| C9—C4—C5—C6  | 1.0 (4)     | C8—C7—C10—C11  | -179.7(3)   |
| C12—N2—C6—C7 | -2.3 (4)    | C7—C10—C11—C12 | -0.5 (4)    |
| Au1—N2—C6—C7 | 177.4 (2)   | C6—N2—C12—C11  | 1.0 (4)     |
| C12—N2—C6—C5 | 178.2 (2)   | Au1—N2—C12—C11 | -178.6(2)   |
| Au1—N2—C6—C5 | -2.2 (3)    | C10—C11—C12—N2 | 0.4 (4)     |
| N1—C5—C6—N2  | -1.6(3)     |                |             |
|              |             |                |             |