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individual cotton seeds with
respect to variety using near-infrared hyperspectral
imaging

Sófacles Figueredo Carreiro Soares,ab Everaldo Paulo Medeiros,c Celio Pasquini,d

Camilo de Lelis Morello,c Roberto Kawakami Harrop Galvãoe

and Mário César Ugulino Araújo*a

This paper proposes the use of Near Infrared Hyperspectral Imaging (NIR-HSI) as a new strategy for fast and

non-destructive classification of cotton seeds with respect to variety. A total of 807 seeds of four different

cotton varieties are employed in this study. For classification purposes, each seed is represented by an

average spectrum obtained by coaveraging the pixel spectra of the NIR-HSI image. Conventional NIR and

VIS-NIR spectra are also employed for comparison. By using Partial-Least-Squares Discriminant Analysis

(PLS-DA), correct classification rates of 98.0%, 89.7% and 91.7% were achieved in the NIR-HSI, conventional

NIR and conventional VIS-NIR datasets. The superiority of the NIR-HSI system can be ascribed to a more

comprehensive scan of the seed area, as compared to the conventional VIS-NIR spectrometer.
1. Introduction

Cotton is an agricultural commodity of worldwide importance,
with more than 60 producer countries and annual revenues of
approximately USD 12 billion.1 Therefore, technological inno-
vations that lead to productivity gains may have a signicant
economic and social impact. In particular, the development of
genetically superior cultivars is a key factor for increasing the
plantation yield. Important aspects include increased tolerance
to herbicides2 and pest attacks,3,4 as well as better germination,
vigour and cotton bre characteristics.5

New cultivars can be registered in order to obtain legal
protection of intellectual property rights.6 Plant characteristics
such as germination, vigour, productivity, leaf shape, ower
color and plant size7,8 can be used to identify seeds of registered
cultivars in cases of dispute or possible contamination of
batches (such as the mixture of conventional and genetically
modied seeds). However, these features can only be deter-
mined by planting the seed and waiting for the germination and
development of the plant, which is a destructive and time-
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nstituto de Qúımica, CEP 13083-970,

ão de Engenharia Eletrônica, 12228-900
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consuming method.9 An alternative consists of using molecular
biology tools to detect specic markers such as proteins,
enzymes, specic amino acid sequences and genomic DNA.10–14

Again, these techniques do not preserve the sample and may
only be available in a few laboratories far from production
centres.

In view of these drawbacks, there is a growing interest in the
use of near-infrared (NIR) and VIS-NIR diffuse reectance
spectroscopy with appropriate chemometric modelling. Exam-
ples reported in the literature include the classication of
Glycyrrhiza uralensis Fisch,15 soybeans,16 pistachios,17 and castor
seeds.9 However, in conventional NIR or VIS-NIR spectrometers
the analysis is restricted to a relatively small area of the seed,
which may lead to sampling problems in the monitoring of
chemical compounds and diseases that occur in specic areas
of the seed.18 Larger areas can be scanned by adjusting the
presentation of the sample, but this procedure may be too
cumbersome and time consuming for routine use. In view of
this inconvenience, a more practical approach may consist of
the use of imaging techniques.

NIR hyperspectral imaging (NIR-HSI) combines the advan-
tages of digital imaging and spectroscopy to acquire spatial and
spectral information simultaneously.19,20 The hyperspectral
image is formed by a spectrum of each pixel and an image of
each spectral bin (wavelength). NIR-HSI has been successfully
applied in several qualitative studies involving seeds, such as
classication of seed types,21–23 identication of geographical
origins,19 characterization of individual seeds,24 detection of
impurities,25 insect damage26–28 and colour defects.29

In this context, the present work proposes the use of NIR-HSI
coupled with Partial-Least-Squares Discriminant Analysis
This journal is © The Royal Society of Chemistry 2016
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(PLS-DA) for the classication of cotton seeds with respect to
variety. The results are compared with those obtained with
a conventional VIS-NIR spectrometer, in order to investigate the
possible benets of using an imaging system.

2. Experimental
2.1. Cotton seed samples

Cotton seeds of four different varieties were provided by
Embrapa Algodão (Campina Grande, Paráıba, Brazil). The seeds
were conditioned at room temperature (20 �C) and relative
Fig. 1 Examples of the four types of seeds under study.

Fig. 2 (a) Example of the image obtained after pre-processing. The colo
PC2 scores plot of the image pixels, with a vertical line indicating the thres
image with black and white regions corresponding to the pixels with ne

This journal is © The Royal Society of Chemistry 2016
humidity (65%) for at least one hour before spectral recording.
No chemical treatment was employed. Examples of the four
seed varieties are presented in Fig. 1. Despite the visual simi-
larity of the seeds, these varieties differ in terms of average ber
yield, cycle duration (short: 120 to 140 days; long: 150 to 180
days), plant size (short or tall), and resistance to disease, among
other morphological characteristics.

In this study, 409 and 398 seeds were randomly selected for
the acquisition of NIR-HSI images and conventional VIS-NIR
spectra, respectively. In what follows, the terms “Class” and
“Sample” will be employed to indicate each variety and each
individual seed, respectively.
2.2. Hyperspectral image acquisition and pre-processing

A Teon support of 10 � 20 cm was used to accommodate the
samples. The NIR-HSI images were acquired using a Sisu-
CHEMA SWIR chemical imaging workstation (Specim, Oulu,
Finland) with 30 mm fore lens (50–100 mm eld of view) and
a line-scan system, operating at a wavelength range of 928–2524
nm with 6 nm intervals. This wavelength range was segmented
into 256 slices, resulting in an NIR-HSI image cube with 256
images (one image per wavelength slice). The images outside
the range of 1100–2500 nm were discarded due to the low
intensity of the detector signal.
ur scale indicates the average reflectance value at each pixel. (b) PC1 �
hold for separation of the seed images from the background. (c) Binary
gative and positive PC1 scores, respectively.

Anal. Methods, 2016, 8, 8498–8505 | 8499
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The NIR-HSI data were transformed into pseudo-absorbance
values using a white reference standard and internal dark
reference (obtained with the light source off and the camera
lens completely covered with its opaque cap).19 For this purpose,
a logarithmic function was applied to the ratio between the total
reectance spectrum and the sample spectrum, both corrected
for the dark reference. To remove baseline features,30 a second-
derivative spectrum of each image pixel was calculated by using
a Savitzky–Golay lter with a second order polynomial and 21-
point window.

Fig. 2a presents an image obtained aer the pre-processing
procedures. In order to separate the individual seed images
from the Teon background, Principal Component Analysis
(PCA)31 was carried out. For this purpose, the NIR spectrum of
each pixel was regarded as an object. The resulting PC1 � PC2
Fig. 3 NIR-HSI spectra before (top) and after (bottom) the second
derivative calculation.

Fig. 4 VIS-NIR spectra before (top) and after (bottom) the boxcar and s

8500 | Anal. Methods, 2016, 8, 8498–8505
scores plot shown in Fig. 2b reveals the presence of two clusters,
corresponding to negative and positive values along the PC1
axis. By using a threshold of zero for the PC1 score, the binary
image in Fig. 2c was formed. As can be seen, the seeds were
clearly separated from the background. A manual selection was
carried out to outline the region of interest corresponding to
each seed.32

The average spectrum of the NIR-HSI pixels in each region of
interest was employed to represent the corresponding seed.
Since this coaveraging process tends to reduce the noise level in
the spectrum, the second-derivative Savitzky–Golay calculations
were repeated with a smaller window of 17 points. The resulting
spectra are presented in Fig. 3.
2.3. Acquisition and pre-processing of conventional VIS-NIR
spectra

Diffuse reectance spectra were obtained by using a XDS Rapid
ContentTM Analyzer VIS-NIR spectrophotometer (Foss Analyt-
ical, Hogans, Sweden), tted with a circular quartz cell of 3 cm
diameter. Each spectrum was acquired as the average of 32
scans in the range 400–2500 nm, with 0.5 nm intervals. A boxcar
smoothing window of 12 points was employed in order to
obtain a spectral resolution similar to the NIR-HSI spectra.
Finally, second-derivative spectra were calculated by using
a Savitzky–Golay lter with a second-order polynomial and 19-
point window. The results are shown in Fig. 4. It is worth noting
that the VIS-NIR spectra display a discontinuity at 1100 nm, due
to a change of detector in the spectrometer. For this reason, the
boxcar and second-derivative transformations were applied
separately to the spectral regions below and above 1100 nm.

In order to assess the full potential of the conventional VIS-
NIR system for the analytical problem under consideration, the
chemometric calculations were carried out by using the NIR
range 1100–2500 nm (as in the NIR-HSI system) and also the full
VIS-NIR range 400–2500 nm.
econd-derivative calculations.

This journal is © The Royal Society of Chemistry 2016
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Table 1 Number of training, validation and test samples in each class

Sets Class NIR-HSI
Conventional
NIR

Conventional
VIS-NIR

Training 1 50 50 51
2 54 51 51
3 51 50 51
4 49 51 49
Total 204 202 202

Validation 1 24 25 24
2 26 24 24
3 25 24 24
4 24 24 24
Total 99 97 96

Test 1 24 25 24
2 26 24 24
3 25 24 24
4 24 24 24
Total 99 97 96

Total number
of samples

402 396 394

Table 2 Confusion matrix for the classification of the test samples in
the NIR-HSI, conventional NIR and conventional VIS-NIR datasets. The
number of samples in each class is denoted by N

True
class N

NIR-HSI

N

Conventional
NIR

N

Conventional
VIS-NIR

Assigned class Assigned class Assigned class

1 2 3 4 1 2 3 4 1 2 3 4

1 24 23 1 — — 25 24 1 — — 24 23 1 — —
2 26 — 26 — — 24 2 18 — 4 24 1 21 2 —
3 25 — 1 24 — 24 — 1 23 — 24 — 1 22 1
4 24 — — — 24 24 — 2 1 21 24 — 2 — 22
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2.4. Removal of outliers

The values of leverage and residual sum of squares (Q) obtained
by Principal Component Analysis of the spectra were employed
to detect outliers.33,34 As a result, seven samples in the NIR-HSI
Fig. 5 Classification error rate in the validation set as a function of th
conventional NIR, and (c) conventional VIS-NIR datasets. The arrows ind

This journal is © The Royal Society of Chemistry 2016
dataset, four samples in the conventional VIS-NIR dataset and
two samples in the conventional NIR dataset were removed.
2.5. Training, validation and test sets

Aer the removal of the outliers, the samples were divided into
training, validation, and test sets by applying the classic Ken-
nard–Stone (KS)35 uniform sampling algorithm to each class
separately. The number of samples in each set is presented in
Table 1.
e number of latent variables in the PLS-DA model: (a) NIR-HSI, (b)
icate the selected point in each plot.

Anal. Methods, 2016, 8, 8498–8505 | 8501
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Fig. 6 Output of the PLS-DA models: (a) NIR-HSI, (b) conventional NIR and (c) conventional VIS-NIR datasets. The output values that resulted in
classification errors are indicated by star markers.
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2.6. Modelling procedures and soware

In order to build a PLS-DAmodel, the class index of each sample
in the training set is encoded as a vector y ¼ [y1y2y3y4] of four
8502 | Anal. Methods, 2016, 8, 8498–8505
binary variables. If the sample belongs to class i, the value of yi
is set to one and the remaining yj variables (js i) are set to zero.
As a result, the class indexes of the Ntrain training samples are
This journal is © The Royal Society of Chemistry 2016
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encoded in a matrix Ytrain of dimensions (Ntrain � 4). The PLS2
algorithm36,37 is then applied to this Ytrain matrix and the cor-
responding Xtrain matrix of spectra. The resulting PLS-DA model
can be used to classify new samples on the basis of the pre-
dicted y-values.38 In the present work, the sample is assigned to
the class corresponding to the largest predicted y-value.

The number of latent variables was chosen by evaluating the
classication performance of the PLS-DA model in the valida-
tion set. The test set was only employed in the nal comparison
of the NIR-HSI, conventional NIR and conventional VIS-NIR
results.

The PLS-DA calculations were carried out using the
MATLAB® 2010b soware by using functions from the classi-
cation toolbox package38 available at http://michem.disat.
unimib.it/chm/download/classicationinfo.htm.
3. Results and discussion
3.1. PLS-DA results

Fig. 5 presents the scree plots of the classication error rate that
were employed in the choice of an appropriate number of latent
Table 3 Sensitivity and specificity values obtained in the classification of
VIS-NIR datasets

Dataset

Sensitivity

Class 1 Class 2 Class 3

HSI-NIR 0.958 1 0.960
Conventional NIR 0.960 0.750 0.958
Conventional VIS-NIR 0.958 0.875 0.917

Fig. 7 Average NIR-HSI spectra obtained for each of the four classes,
apparent.

This journal is © The Royal Society of Chemistry 2016
variables in the PLS-DA models of the (a) NIR-HSI, (b) conven-
tional NIR and (c) conventional VIS-NIR datasets. As shown in
Fig. 5a, 16 latent variables were selected (error rate of 2.0%)
because the decrease in the error rate is very small beyond that
point. In Fig. 5b, the minimum point of the scree plot was
selected (26 latent variables, corresponding to an error rate of
3.1%). In Fig. 5c, 38 latent variables were selected (error rate of
6.2%) because the error rate does not decrease beyond that
point.

The X and Y variances explained by the latent variables were
99.84% and 72.68% in the NIR-HSI dataset, 99.97% and 70.95%
in the conventional NIR dataset, and 99.96% and 78.23% in the
conventional VIS-NIR dataset.

The resulting PLS-DA models were employed to classify the
samples in the test set. Table 2 presents the classication
outcome in the form of a confusion matrix. As can be seen, only
2 samples were incorrectly classied in the NIR-HSI dataset,
whereas 11 classication errors were obtained in the conven-
tional NIR dataset and 8 classication errors were obtained in
the conventional VIS-NIR dataset. Such results are better visu-
alized in Fig. 6, which presents the PLS-DA model outputs of the
the test samples using the NIR-HSI, conventional NIR and conventional

Specicity

Class 4 Class 1 Class 2 Class 3 Class 4

1 1 0.973 1 1
0.875 0.972 0.945 0.986 0.945
0.917 0.986 0.944 0.972 0.986

with enlarged views of regions in which the class separation is more

Anal. Methods, 2016, 8, 8498–8505 | 8503
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Table 4 Interpretation of spectral bands

Wavelength
(nm) Vibration bond Structure

1440 C–H combination cCH2

1450 O–H rst overtone Starch
C]O stretch third overtone C]O

1460 Sym N–H stretch rst overtone Urea
1930 O–H stretch/HOH deformation

combination
Starch
Cellulose
H2O

1940 O–H bend second overtone H2O
1950 C]O stretch second overtone –CO2R
2090 O–H combination Oil

cOH
2100 O–H bend/C–O stretch

combination
Starch

Asym C–O–O stretch third
overtone

Starch
or cellulose

2180 N–H bend second overtone Protein
C–H stretch C]O stretch
combination

Oil

C]O stretch/amide combination
2282 C–H stretch/CH2 deformation Starch
2344 C–H stretch/CH deformation Cellulose

CH2 bend second overtone
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(a) NIR-HSI, (b) conventional NIR and (c) conventional VIS-NIR
datasets. Indeed, the outputs in Fig. 6a provide a more clear
indication of the correct class for each sample, as compared to
Fig. 6b and c.

The superiority of the NIR-HSI results is also reected in
larger sensitivity and specicity values, as shown in Table 3.
Overall, correct classication rates of 98.0%, 89.7% and 91.7%
were obtained with the NIR-HSI, conventional NIR and
conventional VIS-NIR datasets, respectively.
3.2. Discussion

In order to interpret the spectral information involved in the
classication process, the average NIR-HSI spectra of the four
classes were compared, as shown in Fig. 7. The plots in the
bottom of this gure present enlarged views of spectral regions
in which the class separation was more apparent. Table 4
provides an interpretation in terms of the associated NIR bands,
as discussed elsewhere.39 Some of these spectral regions have
indeed been correlated with oil and protein content in cotton
seeds, as reported elsewhere.40
4. Conclusion

This paper presented a new strategy for fast and non-destructive
classication of cotton seeds with respect to variety, on the basis
of NIR-HSI images or conventional NIR and VIS-NIR spectra.
Good accuracy was obtained in the classication of the test
samples, with correct classication rates of 98.0%, 89.7% and
91.7% in the NIR-HSI, conventional NIR and conventional VIS-
NIR datasets, respectively. The superiority of the NIR-HSI
8504 | Anal. Methods, 2016, 8, 8498–8505
system can be ascribed to the more comprehensive scan of the
seed area, as compared to the conventional NIR spectrometer.

In view of the better classication rate obtained by using the
full VIS-NIR range compared to the NIR range in the conven-
tional spectrometer, it may be argued that the NIR-HSI results
could be further improved by using wavelengths below
1100 nm. In the present work, such a possibility could not be
exploited due to the low intensity of the detector signal outside
the range of 1100–2500 nm.

In future investigations, the Teon support for the presen-
tation of the samples could be divided into individual cells in
order to better separate the seeds. Such a modication would
greatly simplify the image segmentation process, dispensing
with the need for manual delineation of the regions of interest.
Acknowledgements

The authors acknowledge the support of CNPq (MSc scholar-
ship, research fellowships and Universal grant 475204/2004-2),
INCTAA (CNPq Proc. no. 573894/2008-6 and FAPESP Proc. no.
2008/57808-1) and Embrapa (03.15.00.051.00.00).
References

1 ABRAPA, http://www.abrapa.com.br/en/estatisticas/Paginas/
Algodao-no-Mundo.aspx, accessed July 2016.

2 C. Bayley, N. Trolinder, C. Ray, M. Morgan, J. E. Quisenberry
and D. W. Ow, Theor. Appl. Genet., 1992, 83, 645.

3 A. M. Showalter, S. Heuberger, B. E. Tabashnik and
Y. Carrière, J. Insect Sci., 2009, 9, 1.

4 J. B. Torres, J. R. Ruberson and M. Whitehouse, in Organic
Farming, Pest Control and Remediation of Soil Pollutants, ed.
E. Lichtfouse, Sustainable Agriculture Reviews 1,
Dordrecht, 2010, ch. 4, pp. 15–53.

5 J. Han, J. Tan, L. Tu and X. Zhang, Plant Biotechnol. J., 2014,
12, 861.

6 S. I. C. Carvalho, L. B. Bianchetti and F. J. B. Reifschneider,
Hortic. Bras., 2009, 27, 135.

7 E. J. Oliveira, N. L. P. Dias and J. L. L. Dantas, Euphytica,
2011, 185, 253.

8 G. G. Brito, N. D. Suassuna, V. N. Silva, V. Soatti, V. Diola
and C. L. Morello, Acta Sci., Agron., 2014, 36, 335.

9 M. B. H. Santos, A. A. Gomes, W. T. S. Vilar, P. B. A. Almeida,
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and M. C. U. Araújo, J. Braz. Chem. Soc., 2014, 25, 969.

10 J. Wang, L. W. Pembleton, R. C. Baillie, M. C. Drayton,
M. L. Hand, M. Bain, T. I. Sawbridge, G. C. Spangenberg,
J. W. Forster and N. O. I. Cogan, Mol. Breed., 2014, 33, 435.

11 I. G. Mylonas, A. Georgiadis, A. P. Apostolidis,
K. Bladenopoulos and M. Koutsika-Sotiriou, Rom.
Biotechnol. Lett., 2014, 19, 9421.

12 W. Dong, T. Cheng, C. Li, C. Xu, P. Long, C. Chen and
S. Zhou, Mol. Ecol. Resour., 2014, 14, 336.

13 M. Simon, A. Simon, F. Martins, L. Botran, S. Tisné,
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