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ngerprinting and chemometric
method applied to the evaluation of Camellia
sinensis leaves from different harvests

Elis Daiane Pauli,a Roy Edward Brunsb and Ieda Spacino Scarminio*a

UV-Vis spectral fingerprinting was used to discriminate Camellia sinensis leaves of two different harvests

and multivariate data analysis was applied to determine the relevant metabolites for separation. First

statistical mixture designs of pure ethanol, ethyl acetate, dichloromethane and chloroform solvents as

well as their binary, ternary and quaternary mixtures extracted larger varieties and amounts of C. sinensis

leaf metabolites than would be obtained from classical solvent extractions. UV-Vis spectral fingerprints

of crude extracts were subjected to Orthogonal Signal Correction and Partial Least Squares-

Discrimination Analysis (OSC-PLS-DA) for classification. The spectra were all correctly identified and

classified, showing that the OSC-PLS-DA model possesses a good predictive ability to separate spectral

fingerprints of different harvests. VIP score values showed that bands at 272, 410 and 663 nm were

responsible for separation. These metabolites were identified by HPLC-DAD as caffeine and pheophytin

a. According to the mixture model, the maximum values of relative abundances of both caffeine and

pheophytin a can be extracted with pure dichloromethane.
1. Introduction

Tea (Camellia sinensis (L.) O. Kuntze) is one of the most widely
consumed beverages and an important agricultural product.1–4

Green, oolong and black are three general classes of tea based
on minimum, partial and full fermentation.5,6 In the
manufacturing process of green tea, fresh leaves are manually
or mechanically picked and heat processed (steamed or roas-
ted). The oxidation process, commonly known as fermentation,
is interrupted, preserving the active components of the leaves.
These leaves are then rolled and consequently the enzymes are
inhibited and oxidation is prevented.7 In Brazil, harvesting and
full production of C. sinensis leaves begins in September. First,
the bushes are completely pruned and two weeks aer the
development of buds, the rst leaves are harvested which are
called the “rst harvest leaves”. Aer about two weeks the
“second harvest leaves” are collected and so on until the middle
of April, allowing about twelve crops during that period.

Metabolites have a wide variety of physiological and
ecological functions in plants. Green tea provides benecial
effects to human health. These effects have been attributed to
their complex chemical compositions consisting of phenolic
compounds, volatile compounds, amino acids, carbohydrates,
s Naturais, Departamento de Qúımica,
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proteins, trace elements, etc.8–12 Fresh green tea leaves are very
rich in catechins and have antioxidant properties. Antioxidants
and their constituent catechins have been reported to prevent
cancer and cardiovascular and neurodegenerative diseases.13

Already caffeine is the main purine alkaloid accounting for
about 3 to 6% of the dry weight in C. sinensis leaves.14,15 There
are two hypotheses about the importance of caffeine in plants:
chemical defense and allopathic function. The rst hypothesis
states that young leaves possess a higher caffeine content to
protect their tissues from mold pathogens and herbivores. The
second hypothesis attributes this to an autotoxic effect, i.e.
when leaves fall to the ground they release germination inhib-
itors of other plants.14–16 The consumption of this alkaloid
increases alertness, reduces fatigue17 and has diuretic effects.18

Besides the compounds mentioned above, tea leaves contain
lipophilic pigment metabolites such as chlorophyll a and b.19 A
study by Lee et al. suggested that heat applied during the
manufacture of green tea can activate the chlorophyllase
enzyme and thus increase the concentration of pheophytin.20

According to Harpaz-Saad et al. this enzyme is responsible for
the degradation of chlorophyll.21 Furthermore, the conversion
of chlorophyll into pheophytin may occur during the storage of
green vegetables.22 Even though pheophytin gives green tea
a darker color upon processing, studies show that this deriva-
tive has antioxidant activities as well as being antigenotoxic.23,24

The composition of green tea leaves is very similar to that of
the leaves before they are harvested. However, this depends on
a variety of factors such as weather, season, culture techniques,
type, plant age, and also leaf processing.25,26 The variation in the
Anal. Methods, 2016, 8, 7537–7544 | 7537
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Table 1 Mixture design solvent proportions used for extraction (given
in mL)

Extract
notation

Solvents

Ethanol
(mL)

Ethyl acetate
(mL)

Dichloromethane
(mL)

Chloroform
(mL)

e 6 0 0 0
a 0 6 0 0
d 0 0 6 0
c 0 0 0 6
ea 3 3 0 0
ed 3 0 3 0
ec 3 0 0 3
ad 0 3 3 0
ac 0 3 0 3
dc 0 0 3 3
ead 2 2 2 0
eac 2 2 0 2
edc 2 0 2 2
adc 0 2 2 2
eadc1 1.5 1.5 1.5 1.5
eadc2 1.5 1.5 1.5 1.5
eadc3 1.5 1.5 1.5 1.5
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amounts of metabolites related to harvested C. sinensis leaves
has also been studied,27,28 but needs to be further investigated.
Plant metabolites are known to be susceptible to environmental
and genetic changes and their responses can be evaluated by
metabolomic analysis.29 The metabolome represents a critical
aspect of a plant's physiology, growth characteristics and, ulti-
mately, economic value.30 A more global metabolomics
approach is called metabolic ngerprinting that can be used for
purposes such as quality control of plants and characterization
and classication of medicinal plants.31

Studies using faster and simple instrumental techniques
such as ultraviolet-visible, infrared and near infrared spectros-
copy associated with chemometric methods have been con-
ducted as alternatives to the discriminant analysis and/or
classication between caffeinated and decaffeinated coffee,32

classication and authenticity determination of virgin olive oils
from different geographical regions,33–35 as well as wines,36

varieties of vinegar,37 and varieties of tea,38 among others.
Metabolic ngerprinting of an herbal sample is a character-

istic prole of chromatographic or spectroscopic origin, which
represents its composition.39 Compared with conventional
analytical approaches, this technique emphasizes the integral
characterization of a complex system with a quantitative degree
of reliability.40 It is an untargeted approach and aims at
assessing global metabolic proles without the knowledge of
the classes of compounds. It can reveal the variability in the
metabolic composition of plants grown under the same condi-
tions, and in combination with multivariate methods can
identify the metabolites important to sample discrimination.
1H NMR, HPLC and IR spectroscopy are the most commonly
used techniques for ngerprinting with the purpose of sample
classication. UV-Vis spectrophotometry is a simple, cheap and
easy to handle technique, but is rarely used for the purpose of
metabolic ngerprinting.

In this study the objective was to evaluate the potential of
UV-Vis spectrophotometry ngerprinting associated with
Orthogonal Signal Correction and Partial Least Squares-
Discrimination Analysis (OSC-PLS-DA) for discriminating
C. sinensis leaves of two harvests and identify the most impor-
tant metabolites for the discrimination. In addition, an
exploratory analysis was performed to investigate the effects of
extraction solvent mixtures on the identied metabolites using
a four component simplex-centroid mixture design.

2. Experimental
2.1. Plant materials

Two sets of leaf samples from Camellia sinensis (L.) Kuntze were
kindly provided by the Agrochá Boa Vista farm (Araucária, PR,
Brazil). The rst sample set was collected in September 2011
and corresponds to the rst harvest aer pruning. Eighteen
days later, the second set of samples was collected, when the
new shoots were ready to be picked. Since the tea leaves contain
oxidizing enzymes, they were subjected to steaming prior to
oxidation, thus disabling oxidizing enzymes, while retaining the
color of chlorophyll as well as the active components contained
in tea. A voucher specimen catalogued as FUEL 49288 has been
7538 | Anal. Methods, 2016, 8, 7537–7544
stored in the Herbarium of the Universidade Estadual de Lon-
drina (UEL). The species was identied by A. O. Vieira, Depar-
tamento de Biologia, UEL.
2.2. Chemicals and reagents

For plant extraction, all organic solvents were of analytical grade
and obtained from F. Maia (São Paulo, Brazil). All crude extracts
were ltered with 25 mm PTFE 0.2 mm syringe lters purchased
from Chromal (Macherey-Nagel, Düren, Germany). HPLC
grade acetonitrile and methanol were purchased from J. T.
Baker (Phillipsburg, USA). HPLC grade water (18.2 MU cm) was
prepared using a Millipore Milli-Q Gradient purication system
(Bedford, USA) and used for the mobile phases.
2.3. Extract preparation

C. sinensis leaves were ground in a blender with the aim of
obtaining small fragments for subsequent extraction. The crude
extracts were prepared using mixtures of (e) ethanol, (a) ethyl
acetate, (d) dichloromethane and (c) chloroform whose
proportions were varied according to the simplex-centroid
mixture design presented in Table 1. Extraction consisted of
four pure solvents, their six binary 1 : 1 mixtures, four ternary
1 : 1 : 1 mixtures and a quaternary 1 : 1 : 1 : 1 mixture. These
mixtures were prepared in a random order including three
replicates for the quaternary mixture (center point) to estimate
experimental error. The selection of each solvent was made
considering Snyder's solvent selectivity triangle, since solvents
from different groups in the triangle have different selectivity
characteristics.41

Each crude extract was prepared by adding 6 mL of extrac-
tion solvent to 2.0 g of crushed leaves. Themixtures remained in
an ultrasound bath for 30 min with the bath water being
This journal is © The Royal Society of Chemistry 2016
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changed to maintain temperature. This procedure was repeated
fourteen more times, for a total of 15 repetitions for each point
of the simplex-centroid design. The extracts were le to rest
under forced ventilation until they reach a constant weight.

2.4. Spectroscopic ngerprint measurements

UV-Vis spectral ngerprinting was carried out with 20 mg of
each crude extract dissolved in 10 mL of respective extraction
solvent (Table 1). The absorptions were performed in a 1 cm
quartz cuvette, with a Thermo Scientic, Evolution 60S model
UV-Vis spectrophotometer, coupled with Vision Lite soware
and monitored in the 200–800 nm range with a resolution of
1 nm.

2.5. HPLC analysis

For HPLC analysis, 2.00 mg of extract were dissolved in 2.0 mL
of methanol and 100 mL of this solution was diluted in 400 mL of
initial mobile phase ACN/H2O (95 : 5, v/v) and ltered through
a 0.2 mm polytetrauoroethylene membrane (PTFE, Chromal).
These analyses were conducted on a Finnigan Surveyor 61607
system coupled with a Finnigan Surveyor PDA Plus photodiode
array detector (PDA) and manual sample injector with a 20 mL
loop. The metabolites were separated by using a Hilic C18

column (150� 4.6 mm, Kinetex model with 2.6 mmparticle size)
from Phenomenex equipped with a security guard holder. The
ow rate was 0.7 mL min�1. The mobile phase consisted of
a combination of solvent A (acetonitrile) and solvent B (water).
The gradient elution was as follows: t ¼ 0.00 min, 5% B; t ¼
1.00 min, 5% B; t ¼ 1.01 at 4.00 min, 19.35% B; t ¼ 4.01 at
7.00 min, 35.50% B; t ¼ 7.01 at 10.00 min, 50% B; t ¼ 10.01 at
15.00 min, 5% B. The photodiode detector continuously recor-
ded absorbance from 190 to 800 nm. The data were processed
using ChromQuest 4.2 soware.

2.6. Data analysis

2.6.1. Response surface analysis. Response surface analysis
has been used to model and optimize the extraction of vegetal
materials.42 A four component polynomial model was adjusted
to the experimental data:43

ŷ ¼
X4

i

bixi þ
X

i

X4

\j

bijxixj þ
X

i

X

\j

X4

\k

bijkxixjxk þ.

þ b1234x1x2x3x4 (1)

where ŷ is the predicted absorbance value of the analyzed
metabolite, and xi is the ith solvent proportion. bi is the linear
coefficient representing the expected response for the pure
component i, bij is the coefficient of the interaction between i
and j components, bijk is the coefficient of the interaction
between the i, j and k components and b1234 is the coefficient of
interaction between all four components. Here linear, quadratic
and special cubic models were tested and ANOVA regression
results were obtained using Statistica 6.0 (Statistica for
Windows 6.0, Statso, Tulsa, OK, USA).

2.6.2. Orthogonal Signal Correction for Partial Least
Squares-Discrimination Analysis (OSC-PLS-DA). Pre-processing
This journal is © The Royal Society of Chemistry 2016
treatments, OSC-PLS-DA model calculations, cross validation
and predictions were performed using Matlab R2007a (Math-
works Inc. Natick, MA, USA) functions included in PLS Toolbox
5.8.1 (Eigenvector Research Inc., Wenatchee, WA, USA).

Spectral ngerprints of crude extracts of C. sinensis leaves
from the rst and second harvests were monitored in the 200 to
800 nm region. However the low and high spectral wavelengths
contained no information and the analysis region was reduced
to the 250–720 nm range. This ngerprint matrix, with 34 (crude
extracts, 17 for each harvest) � 471 (wavelengths) dimensions,
was called the X matrix. Different pretreatments were tested on
the raw spectroscopic data, such as the Standard Normal
Variate (SNV), Multiplicative Scatter Correction (MSC), rst and
second derivatives (performed according to the Savitzky-Golay
method), Orthogonal Signal Correction (OSC) ltering and
mean centering, in order to get the most suitable Partial Least
Squares-Discriminant Analysis (PLS-DA) model.

PLS-DA44 is a supervised method used for classication
purposes. It is developed from algorithms for Partial Least
Squares (PLS) regression employing a set of predictor variables
X and a categorical response y of binary variables expressing
class membership.45 PLS-DA estimates in an efficient way the
best linear combinations of the independent original X-values,
called latent variables (LVs), that correlate with the observed
changes of the dependent variable, y.46 In this case, the better
option for spectral pretreatment was the application of the
Orthogonal Signal Correction (OSC)47 lter with the data mean-
centered based on the maximum number of samples correctly
classied (sensitivity) and misclassied (specicity). OSC
removes systematic variations in the X matrix that are not
correlated with the class variable, y. OSC-PLS-DA regression was
applied to optimally model the class variable y (rst harvest
extracts categorized in class 0 and second harvest ones in
class 1). Furthermore, a threshold value is calculated between
the predicted values, and values above this threshold value
indicate the sample t to the modeled variable.48

For the OSC-PLS-DA application spectral ngerprints were
divided into calibration (26 samples) and validation (eight
samples) groups, with the Kennard-Stone algorithm.49 Both sets
contained crude extracts from the rst and second harvests. For
OSC-PLS-DA model interpretation, the selection of the more
relevant variables (wavelengths) having an effect on the sepa-
ration between the crude extract spectral ngerprints was done
using Variables Importance in Projection (VIPs) scores50 that are
a weighted sum of squares of PLS weights for each variable and
measure the contribution of each predictor variable to the
model.46 When the VIP value is greater than one its variable is
generally considered as being important for the model.51

3. Results and discussion

Fig. 1 shows that the distinction between spectra is quite
complicated owing to spectral band overlap. OSC-PLS-DA is
recommended for attempting to nd the best correlation
between the X (UV-Vis spectral ngerprints of crude extracts of
C. sinensis leaves) and y (rst or second harvest class) matrices
when the variability within groups is greater than the variability
Anal. Methods, 2016, 8, 7537–7544 | 7539
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Fig. 1 UV-Visible spectral fingerprinting of crude extracts of
C. sinensis leaves from first and second harvests obtained for the
simplex-centroid mixture design.
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among groups. The calibration model was composed of 12
spectra from the rst harvest and 14 from the second harvest.
The dimensionality of the model was determined by venetian
blind cross-validation, based on the lowest RMSECV value. The
classication model was developed using two latent variables,
containing 94.54% of the variance explained in X and 77.27% of
the variance in the y.

Fig. 2a shows the OSC-PLS-DA results applied to the spectral
ngerprints of the crude extracts from the two harvests. The
weights plot in Fig. 2b shows the bands that contribute to the
discrimination between harvests. The spectral regions which
can be considered important for OSC-PLS-DA performance and
thus discriminate between classes are observed in the VIP plot
of Fig. 2c showing scores with values greater than 1 (ref. 45
and 51) for three bands centered at 272, 410 and 663 nm. Most
of the second harvest extracts were discriminated by the positive
part of the LV1. The weights of these three absorptions were
positive on LV1, where the spectral bands of the corresponding
metabolites have a higher intensity characterizing the second
harvest extracts. The values of the negative weights of LV2
indicate that for leaves from the rst harvest the band at 272 nm
was more evident. The positive values of the same latent vari-
able demonstrate the inuence of the bands at 410 and 663 nm,
in the extracts from the second harvest leaves. However the
intensities of all three bands were higher for the second harvest
extracts. The positive values of the same latent variable
demonstrate the inuence of the bands at 410 and 663 nm, in
the extracts from the second harvest leaves. Therefore, the
results above suggest that the difference between the harvests
can be attributed to spectral intensity variations of metabolites
corresponding to the 272, 410 and 663 nm bands.

This OSC-PLS-DA model was then applied for external vali-
dation, with a set of 5 spectral ngerprints of the C. sinensis
leaves from the rst harvest and 3 from the second. The
prediction performance can be observed in Fig. 3, where the
spectral ngerprints of the rst harvest are above the threshold
value of 0.5550 and the second harvest points are below it.
7540 | Anal. Methods, 2016, 8, 7537–7544
Sensitivity and specicity were determined from data in Fig. 3.
Sensitivity is the model’s ability to classify the validation
samples belonging to a particular class. For the model, the
sensitivities were 1.00 for both harvests. Based on these results,
the model was able to classify the two different harvests from
C. sinensis samples. The specicity is related to the incorrect
prediction of validation samples of other classes in a particular
class. Both harvest classes present specicity equal to 1.00; this
result means that no rst harvest sample was classied in the
second harvest class and vice versa. These results show that the
OSC-PLS-DA model showed a good ability to discriminate
between the spectral ngerprints of the different harvests
analyzed.

In the case of C. sinensis leaves the absorption band at
272 nm can be associated with caffeine. According to Souto et al.
absorbance in this region may be attributed to caffeine's n /

p* transition, in particular, to the chromophore C]O.32 The
two other bands, 410 and 663 nm, probably correspond to
pigments present in the C. sinensis leaves. Pheophytin is
a degradation product of chlorophyll, which is found in tea, and
has a Soret band at 410 nm (blue region), followed by other
weaker bands at longer wavelengths, called Q bands at around
665 nm. Between the Soret and Q bands, there are minor bands
at 505, 535 and 606 nm.52 These bands are characteristic of the
porphyrin ring and occur on promotion of the ligand p elec-
trons to p* antibonding orbitals.

In order to obtain more information on the metabolites
suggested by discrimination in OSC-PLS-DA, the crude extracts
were analyzed by high performance liquid chromatography
(HPLC) coupled with diode array detection (DAD). Each crude
extract was analyzed at the apices of the caffeine and pheo-
phytin peaks, with maximum absorbances at 272 and 410 nm,
respectively. According to Milenkovic et al. the ratios between
the intensities of the absorbance involving the Soret and Q
bands (ASoret/AQ) for pheophytin a and b are about 2.33 and 5.30,
respectively.52 The mean ratio of the intensities of these bands
obtained in our experiments was 2.49 � 0.09 (a.u.) for the crude
extracts from the rst harvest and 2.45 � 0.18 (a.u.) from the
second, once again suggesting the presence of pheophytin
a (Phya).

Paired t-tests were applied to the absorption intensity values
at 272 nm for caffeine and 410 nm for Phya of all crude extracts.
The results showed signicant differences at the 95% con-
dence level between the relative abundances for caffeine and
Phya in the two harvests. This was based on the calculated t
values of 3.51 (caffeine) and 2.43 (Phya) that are higher than the
critical value of 2.12. Therefore, this provides statistical
evidence that the quantities of these two metabolites are
signicantly different being higher for extracts of the second
harvest leaves.

These results conrm those obtained by spectrophotometry
in the UV-Visible region described above. The intensity values at
272 and 410 nm were analyzed as a function of the extraction
solvent composition to optimize the caffeine and Phya extracted
amounts. According to Ashihara et al. caffeine is produced in
younger leaves.14 Just as for the caffeine results, the Phya results
showed higher values for extracts from the second harvest. The
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 OSC-PLS-DA results of the spectral fingerprint analysis of crude extracts of C. sinensis leaves from first and second harvests were
recorded in the 250 to 720 nm region for simplex centroid mixture design extracts: (a) scores plot (LV1 versus LV2); (b) LV1 and LV2 weight plot
(wavelength); (c) variable importance (VIP) scores plot.
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Fig. 3 Results of the calibrations and validation set of the OSC-PLS-DA model of the UV-visible spectral fingerprinting of the C. sinensis leaves
from first and second harvests.
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fact that a second stress occurred in the plants related to leaf
cutting leads us to believe that this triggers increased produc-
tion of caffeine as well as chlorophyll and its derivatives.

Linear, quadratic and special cubic models were t to the
absorption intensities at 272 and 410 nm, for the peaks sepa-
rated and identied by HPLC-DAD. The quadratic model quality
for caffeine and the special cubic one for Phya from the rst and
second harvests were determined by ANOVA, which showed no
evidence of lack of t at the 95% condence level. These models
are given below:

Caffeine1st harvest ¼ 0:31e
ð�0:07Þ

þ 0:25a
ð�0:07Þ

þ 0:59d
ð�0:07Þ

þ 0:26c
ð�0:07Þ

þ 0:20ea
ð�0:29Þ

� 0:14ed
ð�0:29Þ

þ 0:67ec
ð�0:29Þ

� 0:77ad
ð�0:29Þ

� 0:33ac
ð�0:29Þ

� 0:50dc
ð�0:29Þ

(2)

Caffeine2nd harvest ¼ 0:59e
ð�0:07Þ

þ 0:28a
ð�0:07Þ

þ 1:11d
ð�0:07Þ

þ 0:30c
ð�0:07Þ

þ 0:62ea
ð�0:31Þ

� 0:31ed
ð�0:31Þ

� 0:13ec
ð�0:31Þ

� 1:18ad
ð�0:31Þ

� 0:44ac
ð�0:31Þ

� 1:44dc
ð�0:31Þ

(3)

Pheophytina1st harvest ¼ 0:41e
ð�0:08Þ

þ 1:50a
ð�0:08Þ

þ 1:55d
ð�0:08Þ

þ 1:40c
ð�0:08Þ

� 0:07ea
ð�0:39Þ

� 0:74ed
ð�0:39Þ

þ 1:28ec
ð�0:39Þ

þ 0:13ad
ð�0:39Þ

� 1:33ac
ð�0:39Þ

� 1:59dc
ð�0:39Þ

� 19:99ead
ð�2:50Þ

þ 9:15eac
ð�2:50Þ

þ 4:96edc
ð�2:50Þ

þ 5:47adc
ð�2:50Þ

(4)

Pheophytina2st harvest ¼ 0:67e
ð�0:10Þ

þ 1:50a
ð�0:10Þ

þ 1:55d
ð�0:10Þ

þ 1:40c
ð�0:10Þ

� 1:11ea
ð�0:51Þ

þ 0:78ed
ð�0:51Þ

� 1:99ec
ð�0:51Þ

� 4:16ad
ð�0:51Þ

� 1:26ac
ð�0:51Þ

� 4:30dc
ð�0:51Þ

þ 4:51ead
ð�3:23Þ

þ 0:08eac
ð�3:23Þ

� 4:76edc
ð�3:23Þ

þ 23:10adc
ð�3:23Þ

(5)

where e, a, d and c represent the ethanol, ethyl acetate,
dichloromethane and chloroform proportions, respectively.
Standard error estimates are presented in parenthesis below
their corresponding model coefficients. Signicant model
coefficients at this level are presented in boldface.

The linear dichloromethane coefficients (d) were highest and
signicant at the 95% condence level in the quadratic model
7542 | Anal. Methods, 2016, 8, 7537–7544
for caffeine. By analyzing the other coefficients in eqn (2) and (3)
one can observe an antagonistic interaction effect between ethyl
acetate and dichloromethane on caffeine extraction for both
harvests. However, for crude extracts from the second harvest
there was also an antagonistic effect between dichloromethane
and chloroform (eqn (3)). Fig. 4a and b show the corresponding
response surfaces for the absorption intensity of caffeine in
crude extracts of the rst and second harvests. The highest
absorption intensities are predicted for proportions near the
pure dichloromethane vertex (darker region). These results are
conrmed by literature studies testing various solvents which
show that dichloromethane is more efficient for extracting
caffeine.53–55 Moreover, it is also used as a solvent in the decaf-
feination of tea.54

As for caffeine, the linear dichloromethane coefficients (d)
were highest for the Phya special cubic model. The model
predictions for Phya from the rst harvest (eqn (4)) showed the
existence of a binary synergistic effect between ethanol and
chloroform as well as a ternary synergistic effect involving
ethanol, ethyl acetate and chloroform predicting improved
yields compared to the one predicted by only the linear coeffi-
cients. However interactions between the ethyl acetate–chloro-
form, dichloromethane–chloroform and ethanol–ethyl acetate–
dichloromethane extraction solvent mixture are antagonistic for
Phya intensities. Of the solvent interactions of the crude
extracts of the second harvest (eqn (5)) the ternary synergistic
interaction involving ethyl acetate–dichloromethane–chloro-
form improved the extraction over that expected based on only
pure solvent effects. Binary mixtures involving ethanol–chloro-
form, ethyl acetate–dichloromethane and dichloromethane–
chloroform had an antagonistic effect on the extraction of Phya,
i.e. absorption intensity was lower than expected. Fig. 4c and
d show the response surface models for the apex absorbance for
Phya peaks of crude extracts from the rst and second harvests.
The highest predicted absorption intensities are obtained by
pure dichloromethane and chloroform (darker region). The
This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Response surfaces for the intensity values of caffeine absorption at 272 nm for the (a) first and (b) second harvests and at 410 nm for Phya
absorption for the crude extracts of C. sinensis leaves of the (c) first and (d) second harvests.
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region close to the ethanol vertex (lighter region) indicates lower
predicted intensities for both harvests.
4. Conclusion

This work showed the potential of UV-Vis spectral nger-
printing coupled with suitable chemometric tools, in this case
OSC-PLS-DA, to discriminate C. sinensis leaves of rst and
second harvests. The advantage of using spectrophotometry is
attributed to the ease of handling and quick data acquisition in
addition to being inexpensive and simple to use. Thus, it was
possible to distinguish the rst and second harvest samples,
even with large data variations owing to the four solvent
simplex-centroid design used to prepare crude extracts. The VIP
values from the spectral data indicated that caffeine and Phya
were important to distinguish leaves of the two harvests. Pure
dichloromethane was the most efficient solvent extractor of
both metabolites. These results suggest that the Phya and
caffeine may be potential quality markers of C. sinensis leaves,
since they proved to be sensitive to stress such as pruning. The
proposed method is a viable alternative for the evaluation of
rst and second harvest leaf samples. Future work could
investigate spectral ngerprinting combined with the PLS-DA
This journal is © The Royal Society of Chemistry 2016
method for other plants and discriminate other factors besides
harvests.
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