
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://www.eurekaselect.com/134460/article

DOI: 10.2174/157017941206150828114416

Direitos autorais / Publisher's copyright statement:

©2015 by Bentham Science. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/


Send Orders for Reprints to reprints@benthamscience.ae 

830 Current Organic Synthesis, 2015, 12, 830-852  

 

The Morita-Baylis-Hillman Reaction: Advances and Contributions from Brazilian 
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Abstract: The Morita-Baylis-Hillman reaction is an organocatalyzed chemical transformation 

that allows access to small poly-functionalized molecules and has considerable synthetic potential 

and promising biological profiles. In this review, we report the efforts made by Brazilian research 

groups in recent years on the development of Morita-Baylis-Hillman chemistry. The review cov-

ers these contributions, with a focus on mechanistic studies, improvement of the experimental 

conditions, and the use of Morita-Baylis-Hillman adducts as building blocks for the synthesis of 

heterocycles, natural products and drugs.  
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1. INTRODUCTION 

In 1968, Ken-ichi Morita reported the discovery of a new vinyl 
monomer in low yield as a product of a reaction between acryloni-

trile or methyl acrylate with aliphatic or aromatic aldehydes cata-
lyzed by tertiary phosphines [1]. Four years later, Anthony B. Bay-
lis and Melville Ernest D. Hillman performed the same transforma-
tion; however they used a tertiary amine as the catalyst [2]. This 
modification provided a meaningful change in the profile of the 
reaction by increasing its efficiency (conversion and yield) and 
facilitating access to promising products for organic synthesis.  
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The Morita-Baylis-Hillman (MBH) reaction can be defined as a 
chemical transformation between the an -position of an 
alkene/alkyne activated by electron withdrawing groups and an 

electrophile (aldehydes, activated ketones and activated imines) in 
the presence of an organocatalyst, commonly, a tertiary amine or a 
phosphine (Scheme 1). The resulting product, named the MBH 
adduct, corresponds to a small poly-functionalized molecule with 
three vicinal functional groups [3]. 

The first mechanistic study for the MBH reaction was per-
formed in 1990 by Jonathan S. Hill and Neil S. Isaacs [4]. The ki-
netic profile demonstrates that the reaction starts by the Michael 
addition of the catalyst I to the -position of the activated alkene II 
to form the zwitterion enolate III, which attacks the carbonyl com-
pound to form the alkoxide V (Scheme 2). Subsequent proton mi-
gration and release of the catalyst lead to the final MBH product 
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Scheme 1. Essential components of the Morita-Baylis-Hillman reaction. 
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VIII. The aldolic addition was suggested as the rate-determining 
step. In 2004, McQuade [5] and Aggarwal [6] independently re-
ported new kinetic and theoretical studies to afford further clarifica-
tion for understanding the key stages in the MBH mechanism. In 
both cases, the elimination was considered to be the rate-
determining step (RDS). McQuade demonstrated the importance of 
a second molecule of the aldehyde in the MBH mechanism. Ac-
cording to this proposal, the nucleophilic attack by the alkoxy oxy-
gen atom of V on a second molecule of the aldehyde IV leads to a 
hemiacetal anion, which assists the intramolecular proton transfer 
through a six-membered transition state VII, because a 4-centered 
proton transfer process (alkoxide V) would be impossible due to 
geometrical restrictions. Subsequently, hemiacetal IX decomposes 
generating the final MBH adduct VIII (Scheme 2). This proposal 
could also explain the observation of dioxanone X in previous 
works about MBH reaction [7]. Furthermore, the achievements 
made by Aggarwal showed that the reaction initially proceed ac-
cording to the McQuade proposal and after 20% conversion, the 
concentration of the adduct is sufficiently high for auto-catalysis. In 
this case, elimination is mediated by the MBH adduct itself, which 
simultaneously donates a proton to the alkoxide and removes a 
proton from the -position of the carbonyl via a six-membered tran-
sition state XI. 

The great potential of this transformation is attributed to its 
fundamental characteristics such as carbon-carbon bond formation 
and the creation of a stereogenic center, as well as a high atomic 
economy, operational simplicity and mild reaction conditions. By 
virtue of these requirements, the interest in this reaction over the 
years by the scientific community has grown significantly and great 
contributions have been made in this area (Fig. 1) [3]. The studies 

are focused on developing new catalysts, using alternative solvents, 
expanding the scope of the reaction, and improving the rate and 
rationalization of a general asymmetric version. Furthermore, MBH 
adducts have had a broad applicability as a platform for the synthe-
sis of natural products, heterocycles and complex frameworks. 

 
Fig. (1). Items related to the MBH reaction published by year in the last 20 

years via the Web of Science database (accessed on March 25, 2015). 

Following this scenario, the Brazilian chemistry community has 
made outstanding contributions to MBH chemistry, which is the 
main focus of this review. 

2. PREPARATION OF MBH ADDUCTS 

Despite the numerous advantages of the Morita-Baylis-Hillman 
reaction, some drawbacks of this reaction include its low reaction 
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Scheme 2. Mechanistic proposals of the MBH reaction [8]. 
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rate and yields for some cases, which are dependent on the sub-
strates and experimental conditions. The literature has reported 
efforts directed towards overcoming these limitations, including the 
use of an ultrasound technique, high pressure, and microwave irra-
diation as well as the development of new catalysts and co-catalysts 
[9]. 

In Brazil, some research groups have dedicated their efforts to-
wards the development of methodologies to improve the yields and 
rate of the MBH reaction. In 2003, Vasconcellos et al. reported the 
efficient utilization of 4-(N,N-dimethylamino)pyridine (DMAP), as 
a catalyst for the Morita-Baylis-Hillman reaction between methyl 
acrylate and aromatic aldehydes under simple reaction conditions 
[10]. The adduct 3a was obtained in a quantitative yield (>99%) at 
76 °C in 5 hours (Table 1, entry 2). When ultrasound was used, the 
reaction was completed in 15 minutes with a yield of 93%. Surpris-
ingly, good rates were also observed when the reaction was per-
formed at -4°C (Table 1, entry 4). This unexpected behavior was 
observed for all of the tested aldehydes. 

The uncommon temperature effect on the reaction time was ob-
served again in a later work, wherein the catalytic activities of 
DMAP, 1,4-diazobicyclo [2.2.2]octane (DABCO) and imidazole 
were compared [11]. In general, DABCO was considered to be one 
of the best catalysts for the MBH reaction. However, at lower tem-
peratures, fast conversion was achieved with both DABCO and 
DMAP, as previously reported by Rafel [12]. This result was attrib-
uted to the formation of the preferential and kinetically more reac-
tive, Z enolate, which favors the nucleophilic attack on aldehyde 
(Fig. 2). 

These conclusions were subsequently refuted, when in a new 
protocol employing an excess of acrylonitrile, the reaction rate was 
considerably reduced at 0 °C in the presence of DABCO as a cata-
lyst [13]. Since E and Z geometrical isomerism does not exist for 
the acrylonitrile zwitterion intermediates, it was concluded that the 
theory presented previously for the enolates formed from methyl 

acrylate may not be correct. Authors suggested that due to the vol-
ume of activation of the MBH reaction (-70cm3/mol), which may be 
one of the highest in terms of absolute value among known reac-
tions, the entropy of activation must be a very important parameter 
[14]. 

Therefore, it is a reasonable assumption that the reduction in 
temperature from room temperature to 0 °C makes the entropic 
term (-T S  > 0) less important, reducing the Gibbs activation en-
ergy and thus improving the MBH reaction rate. At high tempera-
tures, H is the dominant term in accelerating the reaction and at 
lower temperatures (0 °C) S is the dominant term. 

A detailed study of the influence of the solvent on the behavior 
of the MBH reaction between aromatic aldehydes and acrylonitrile 
or methyl acrylate was described by de Souza et al. [9c]. The or-
ganic solvent/water system has been demonstrated to be more effi-
cient than with a single solvent. For example, t-BuOH: water (6:4) 
was the solvent mixture of choice, when acrylonitrile is used as 

nucleophilic component, whereas, for reactions with methyl acry-
late, the DMSO: water (6:4) system gave better results. 

In 2011, Sousa et al. [15] carried out the synthesis of hydro-

philic MBH adducts while applying microwave irradiation. Two 
reaction pathways were followed: first, the acrylate 4 was submitted 
to diol deprotection affording 5 in a quantitative yield which, after 
the MBH reaction mediated by microwave irradiation, produced 6 

in moderate yields and a short reaction time. In the second reaction, 
the acrylate 4 was submitted to the MBH reaction in the presence of 
aromatic aldehydes under microwave irradiation, and intermediate 
7 was generated in high yields (90–100%). After diol deprotection, 

the hydrophilic adducts (6) were furnished in yields that ranged 
from 40% to 90% (Scheme 3). 

In a paper published in the same year, Vasconcellos et al. re-
ported a comparative study between two synthetic protocols for the 
synthesis of MBH adducts (Fig. 3) [16].  
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In this study, it was observed that the successful use of micro-
wave irradiation was dependent on the aldehydes and the Michael 
acceptor employed. For reactions between aromatic aldehydes and 
acrylonitrile, the protocol performed at low temperature was more 
satisfactory, giving adducts in excellent yields (90-99%) and with-
out by-product formation.  

However, with methyl acrylate, only aromatic aldehydes con-
taining a nitro group or pyridine carboxaldehyde gave the MBH 
adducts in excellent yields and shorter reaction times (5-10 min-
utes). For less reactive aromatic aldehydes, only the low tempera-
ture protocol was able to afford the expected adducts in good to 
excellent yields (81-99%). For these cases, the use of protic polar 
solvents is necessary. 

All results obtained in this study were rationalized considering 
the possibility of thermodynamic control in the MBH reaction. In 
theoretical and experimental results described by Cantillo and 
Kappe, the MBH reaction between benzaldehyde and methyl acry-

late catalyzed by DABCO in methanol proved to be reversible at 
120 °C [14]. 

To prove the formation of equilibrium in these reactions, Vas-
concellos performed a comparative reaction where a methanol solu-
tion of pure methyl 2-[hydroxy(4-bromophenyl) methyl] acrylate 
adduct (Scheme 4) containing DABCO (2 equiv.) was heated under 
microwave irradiation at 120 °C for 2 h. 

In this case, the formation of methyl acrylate (2) and p-
bromobenzaldehyde (1b) in considerable amounts (ca. 55% by GC-
MS) was observed. The reaction temperature was then decreased to 
0 °C and the mixture was kept under magnetic stirring for 24 h. The 
equilibrium shifted once again to the formation of methyl 2-
[hydroxy(4-bromophenyl)methyl]acrylate (3b) confirming the re-
versible nature of this sophisticated reaction for some substrates. 

In 2012, Coelho's research group introduced a bicyclic imida-
zolyl alcohol, 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (DPI, 8), as 
a new catalyst for the MBH reaction between aromatic and aliphatic 
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Scheme 3. Reaction pathways employed for the synthesis of a hydrophilic MBH adduct. 
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aldehydes with cyclic , -unsaturated ketones [17]. Cyclic enones 
present low reactivities in the general experimental protocol em-
ployed for the MBH process. However, with the use of DPI (8) in 
the presence of water and a phase transfer catalyst (sodium dodecyl 
sulfate, SDS), MBH adducts were obtained in good yields (58-98%) 
and in reasonable reaction times (21-144h). The improvement of 
yields and rates for this type of system was attributed to possible 
hydrogen bonding interactions in the structure of the zwitterion 
intermediate resulting from the Michael addition of Lewis base to a 
cyclic ketone (Scheme 5). 

The same catalyst was employed in an efficient, simple and en-
vironmentally friendly protocol to aqueous MBH reactions between 
unprotected isatins and cyclic enones [18]. Reactions involving 
cyclopentenone were generally faster than those performed with 
cyclohexenone. Apparently, the electron-withdrawing or electron-
donating nature of the aromatic moiety in the isatin derivatives does 
not have relevant effect on the rate of the addition. The methodol-
ogy provides a variety of 3-substituted 3-hydroxy-2-oxindoles 14 in 
good yields (Scheme 6). 

3. MECHANISTIC STUDIES – MASS SPECTROMETRY AS 
A TOOL  

Coelho et al. have widely used mass spectrometry with elec-
trospray ionization (ESI-MS) as an efficient tool to screen for in-
termediates in the reaction solution and hence to provide mechanis-

tic details of the MBH reaction. The main advantage of the ESI 
process is the transfer of ions from the condensed phase to the gas 
phase as isolated entities [19]. 

The first mechanistic study of the MBH reaction, employing 
mass spectrometry, detected and characterized the zwitterion inter-
mediates proposed by Hill and Isaacs [4]. Monitoring reactions 
between methyl acrylate (2) and activated aldehydes, catalyzed by 
DABCO, intercepted and successfully structurally characterized the 
intermediates from the Michael addition [16+H]+ m/z 199, aldolic 
addition [18a+H]+ m/z 350 and [18c+H]+m/z 312. (Scheme 7) [20]. 

Later, a new mechanistic study of the MBH reaction using ESI-
MS (/MS) was performed, motivated by the discoveries introduced 
by McQuade [5] and Aggarwal [6] regarding the proton transfer 
step [22]. The target of this study was to intercept and characterize 
the new intermediates proposed (Scheme 8). 

The intermediate proposed by McQuade 21 in its sodiated form 
[21 + Na]+ of m/z 433 was able to be intercepted. It is resulting 
from the nucleophilic attack of the alkoxide 20 on the aldehyde 1d. 
In addition, the Aggarwal’s proposal was investigated employing -
naphthol as an external proton source.  The new specie [22 + H]+ of 
m/z 449 was intercepted and properly characterized, confirming that 
a proton source participates in the proton transfer step via a six-
membered ring intermediate and assists the elimination of the cata-
lyst.  
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One of drawbacks of the MBH reaction is the low reaction rate, 

which has stimulated the search for more efficient catalysts and 
optimal experimental conditions. In this aspect, ionic liquids (ILs) 
and N,N'-diarylthiourea have been reported as efficient promoters to 
increase MBH reaction rates. The catalytic effect from IL has been 
attributed to the stabilization of the zwitterion intermediates 
through different types of H-bonded supramolecular ion pairs 
(Scheme 9) [23]. 

In this study, ionic liquids based on the cation 1-N-butyl-3-
methylimidazolium (BMI+) were employed as co-catalysts in the 
MBH reaction between 2-thiazolecarboxaldehyde (1c) and methyl 
acrylate (2) catalyzed by DABCO (15). Reaction monitoring online 
by ESI-MS both in the positive and negative ion modes allowed for 
the interception and characterization of supra-molecular species 
resulting IL coordination with reactants and products [24]. Despite 
the fact that IL was associated with almost all of the molecules 
intercepted, its role in the increase of the reaction rate was attrib-
uted to: aldehyde activation, with it acting as a Lewis acid such as 
[24]+m/z 252; stabilizing effects on the intermediate 23; and shifting 
the equilibrium of the reaction towards the formation of the MBH 
adduct due to complex IL-adduct [25]+m/z 338. 

The behavior of thiourea as a co-catalyst in the MBH reaction 
was investigated through theoretical optimizations with 3LYP/6-

31+G(d) and ESI-MS(/MS) experiments. The theoretical study 
showed that in rate-determining transition state (TS), thiourea, in 
protic media, acts as a Brønsted acid and stabilizes the basic oxygen 
center through bidentate hydrogen bonding. In the ESI-MS(/MS) 
experiment, the MBH reaction co-catalyzed by thiourea showed 
intermediates bound to the thiourea. They were intercepted and 
characterized [25]. The results allowed the following proposal: 
thiourea facilitates the Michael addition of DABCO (26) during the 
first step of the MBH reaction, acts in stabilizing the zwitterion 
intermediates resulting from both the Michael addition and aldol 
addition (27 and 28) and decreases the activation barrier of the RDS 
(proton transfer step) due to bidentate hydrogen bonds with oxygen 
(28) (Scheme 10). 

To obtain additional evidence about the MBH mechanism, a 
charge-tagged acrylate derivative (Fig. 4) was used as the substrate 
in a MBH reaction monitored by ESI-MS. An imidazolium ion was 
used as the charge-tag because its ionic nature facilitates ESI trans-
fer of the intermediate to the gas phase allowing it to be used in 
neutral reactions. The results associated with theoretical studies 
were in accordance with the mechanistic views from McQuade and 
Aggarwal. DFT calculations provided information about the IL 
effect, which formed an electrostatic intermediate complex that led 
to a transition state with a lower energy barrier promoting the ongo-
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ing reaction. Additionally, stabilization occurs through ion-pairing 
and supra-molecular aggregates [26]. 

The aza-MBH reaction is a variation of the reaction in which 
imines are used as electrophiles. The mechanism of the aza-reaction 
has received less attention compared to the classical MBH, because 
of their supposed similarities. Recently, a mechanistic investigation 
was performed through monitoring the reaction between tosylamide 
and methyl acrylate catalyzed by DABCO [27]. The expected in-
termediates intercepted (33 and 35) gave additional information 
about the reaction pathways. The unknown intermediate detected 
[34+H]+ would be result of the nucleophilic attack of 33 on tosy-
limine 32 and the loss of a molecule of DABCO would then lead to 
intermediate [35+H]+. Additionally, the pyrimidone 37 (equivalent 
to dioxanone observed in previous works) was not detected in this 
study. These findings show differences in the proton transfer step 
compared with the traditional MBH and they can help to explain the 
good progress in the development of enantioselective versions of 
the aza-MBH (Scheme 11). 

4. APPLICATIONS OF MORITA-BAYLIS-HILLMAN AD-
DUCTS  

4.1. Synthesis of Derivatives 

MBH derivatives have been reported as important intermediates 
in the synthesis of different frameworks, representing a valuable 
class of substrates for synthetic purposes. 

In 2007, Sá et al. [28] introduced an alternative protocol for the 
synthesis of acetate derivatives from MBH adducts using recyclable 
solid catalysts and high temperature under solvent-free conditions. 
Several Morita-Baylis-Hillman adducts were acetylated with Ac2O 
and potassium exchange molecular sieves (13X/KCl) in high yields 
with regioselectivity (Scheme 12). The heterogeneous base-like 
catalyst 13X/KCl was important in the progress of the reaction and 
in the distribution of the possible products formed; moreover, it can 
be reused several times while maintaining its original activity.  

Allyl bromides were employed as precursors in the preparation 

of (E)-2-methylacrylates via reduction promoted by zinc and acetic 

acid [29]. (Z)-2-(bromomethyl)alk-2-enoates were obtained with 

high stereoselectivity, by the treatment of the MBH adducts with 

HBr and H2SO4. Bromo-methylacrylates 39, then, undergo reduction 

to the corresponding olefins by means of zinc in acidic medium, 

providing (E)-2-methyl-3-substituted acrylates 40 in very good 

yields (Scheme 13). 

The success of the reduction process depends on the solvent, 

the amount of zinc and the order in which the reactants are added.  

It was proposed that the reduction occurred via a 6-membered tran-

sition state involving acetic acid, zinc and the terminal carbon of 

the allylic framework. The observed E-stereochemistry was con-

firmed by X-ray crystallography. The synthetic applicability of this 

method  was  demonstrated  in the synthesis of pheromone (E)-2,4- 
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Scheme 10. Proposed mechanism for the MBH reaction co-catalyzed by di-substituted thiourea in the presence of methanol. 
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Fig. (4). Charge-tagged acrylate. 
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Scheme 11. Mechanistic proposal for the aza-MBH reaction based on the interception of the bis-sulfonamide intermediate 34. 
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Scheme 12. Acetate derivatives by heterogeneous catalysis. 
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Scheme 13. 2-methylalk-2-enoates by the zinc-promoted reduction of allylic bromides. 
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Scheme 14. Synthesis of pheromone (E)-2,4- dimethyl-2-hexenoic acid 41. 
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Scheme 15. (Z)-allylic bromides from MBH adducts. 
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Scheme 16. Synthesis of tiocyanates and thiazinones. 

 

dimethyl-2-hexenoic acid (41), an active substance found in gland 

secretions of male ants of the genus Camponotus (Scheme 14). 

Improvements in the preparation of  (Z)-allylic bromide were 
achieved when the MBH adduct was subjected to a mixture of 
LiBr/H2SO4 in acetonitrile (Scheme 15) [30]. Although some ad-
justments in the amounts of the reagents for chloro- and nitro-
substituted adducts are necessary, the generality of the method was 
clearly demonstrated. 

Allylic bromides were also explored in the synthesis of allylic 

thiocyanates, which in turn were employed in the preparation of 

sulphur-containing heterocycles [31]. Allylic bromides were ex-

posed to NaSCN in aqueous acetone in the absence of an external 
base, affording aromatic-substituted allylic thiocyanates. An equili-

brated mixture of allylic thiocyanates and isothiocyanates was ob-

served when aliphatic-substituted allylic bromides where subjected 

to the same conditions. The nucleophilic ambident character of 
thioureas was explored; they reacted with allyl bromide and after 

subsequent transformations, afforded a series of 2-amino-1,3-

thiazin-4-ones in good yields (Scheme 16). 

Later, the reaction of allylic bromides 39, with PPh3 in acetoni-
trile gave allylic phosphonium salts, which were employed as pre-
cursors in the synthesis of -methyl alkenoic acids 47 and esters 45 
[32] as well as in the preparation of functionalized dienes 49 and 50 
[33] (Scheme 17). Phosphonium salts reacted in the presence of 

sodium bicarbonate and water at room temperature to give -methyl 
alkenoic esters 45. The reaction time was incredibly reduced when 
the reaction was carried out under microwaves heating. The elec-
tronic nature of groups in the aromatic ring (R1) had effects on the 
distribution of products. Although there was exclusive formation of 
the desired product for compounds with electron-donating R groups 
on the aromatic ring, the compounds with electron-withdrawing R1 
groups on the aromatic ring led to the generation of the rearranged 
isomer 46. When NaHCO3 was replaced by NaOH or LiOH, the 
redox process also worked with additional ester saponification to 
give -methyl alkenoic acids 47. 

Functionalized 1,3-dienes 49 and 50 were synthesized with high 
stereoselectivity (E,E):(E,Z) through a Wittig reaction with an al-
lylic phosphonium salt, an aldehyde, NaHCO3 as the base and a 
combination of H2O/DMSO (7:3). The electronic nature of the sub-
stituents on the aromatic ring of the aldehyde influenced the pro-
gress of the reaction and the presence of an electron withdrawing 
group in ortho-position of the aldehyde aromatic ring favored selec-
tivity towards the (E,E)-diene. 

Inspired by the potential use of azide frameworks as substrates 
for building heterocycles and nitrogen-compounds having biologi-
cal and pharmacological activities. Sá et al. [34] have described a 
protocol for the synthesis of allyl azides from MBH bromides. In 
previous studies, -substituted- -(azidomethyl)acrylates were ob-
tained from acetylation of MBH adducts followed by treatment of 
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the MBH acetates with sodium azide [35]. In the presence of 
triphenylphosphine and an aldehyde, the allyl azides reacted via a 
Staudinger/aza-Wittig reaction, furnishing the N-allylic imines in 
good yields (Scheme 18). 

To circumvent some drawbacks of the method (long reaction 
times and the use of DMSO as a solvent), the authors proposed the 
use of allylic bromides, readily obtained by the direct bromination 
of MBH adducts, as substrates for the incorporation of azide. This 
bromination could be efficiently performed with amberlyst-
15®/LiBr (or NaBr) couple in mild reaction conditions. This method 
is an alternative for substrates incompatible with the previous 
strongly acidic conditions. The preparation of allylic azides from 
bromides was performed in a combination of acetone/water, which 
had an important role in the success of the reaction (Scheme 19). 

The allyl component in the structure of the MBH adduct is re-
sponsible to the high susceptibility to nucleophilic substitution reac-
tions, which allows several chemical transformations. The behavior 
of the allylic alcohol was investigated through studies of a Ritter-
type reaction (Scheme 20) [36]. Kinetic and theoretical studies 
suggested that the formation of acetamide 57 occurs via a stepwise 
SN1 type mechanism and that the product distribution is governed 
by kinetic contol.  

A protocol for the synthesis of noncoded -hydroxy- -amino 
esters and -amino esters/acids was designed based on one-pot 
ozonolysis and oximation of MBH derivatives. The silylated ad-
ducts 60a were exposed to oxidative cleavage conditions followed 
by condensation with hydroxylamine. The corresponding oxime 
was then reduced by a mixture of NaBH3CN/MoCl5/NaHSO4·H2O  
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Scheme 17. Allylic phosphonium as a precursor of -methylalkenoic esters, -methyl alkenoic acids and functionalized dienes. 

OH

N3

Ac2O

Pyr, r.t.

O

O

O

O

O

O

71% (2 steps)

OCOCH3

O

OCH3

O

OCH3

O

OCH3

N

O

O

O

OCH3

NO2

84%

3f
51

52f53

N3,

DMSO, r.t.

i. PPh3

ii. 3-Nitrobenzaldehyde

 

Scheme 18. Allylic azides from MBH acetates. 
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Scheme 19. Synthesis of (E)-allyl azides 52 from the corresponding allyl bromides. 
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Scheme 20. Acid-mediated Ritter-type reactions via a SN1’mechanism for the synthesis of the preferential acetamide. 
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Scheme 21. Noncoded -hydroxy- -amino ester and -amino ester/acid oxime reduction. 
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Scheme 22. Synthesis of vicinal tricarbonyl compounds from MBH adducts. 
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Scheme 23. Synthesis of 1,2,3,4-tetrahydro-1,8-naphthyridine framework. 
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Scheme 24. Synthesis of tetrahydroindolizidines and indolizidines by catalyzed hydrogenation. 

 
to give the -hydroxy- -amino ester derivatives 62 with high anti-
diastereoselectivity. This selectivity, resulting from steric hindrance 
caused by the silyl group, was supported by theoretical calculations. 
The acetylated derivatives 60b, after initial allylic acetate reduction, 
afforded -amino esters/acids such as the neurotransmitter DOPA 
(66) through a similar reactions sequence (Scheme 21) [37]. 

Vicinal tricarbonyl compounds (VTC) could be easily accessed 
from MBH adducts via two sequential oxidation steps [38]. There-
fore, 2-iodoxybenzoic acid (IBX) was chosen as the first oxidizing 
agent to afford -methylene- -keto carbonyl compounds in excel-
lent yields and with high purities. The methylene moiety was then 
exposed to oxidative cleavage conditions (ozonolysis) to provide 
the tricarbonyl frameworks 69 (Scheme 22). 

4.2. Synthesis of Heterocycles 

 Heterocycles are compounds of great interest for chemists, be-
cause they are present in the structure of many biologically active 
molecules and drugs. They also have been applied as ligand and 
catalysts in some reactions as well used to modify the polarity of 
the molecules. The high functionality of MBH adduct has stimu-

lated their use as building block for the preparation of a wide diver-
sity of heterocyclic systems. 

1,2,3,4-tetrahydro-1,8-naphthyridine derivatives are of great 
pharmaceutical importance, because several drugs possess this 
backbone. In 2010, Coelho et al. [39] reported an approach for the 
synthesis of 1,8-naphthyridine using a silylated MBH adduct as the 
substrate for a sequence of Michael addition and SNAr reactions 
(Scheme 23).  

The relative stereochemistry was controlled in the cyclization 
step affording 1,8-naphthydirines with good diastereoselectivity. 
The selectivity was attributed to the sterically bulky silyl group in 
cases where esters are the substituent (diastereoisomer syn); how-
ever, an inversion on the relative stereochemistry was observed 
(diastereoisomer anti) when R1 was replaced by a cyano group. 

Tetrahydroindolizines and indolizidines were obtained by the 
partial or total catalytic hydrogenation of indolizines derived from 
MBH adducts (Scheme 24).  

The indolizines were prepared by a sequence of acetylation and 
intramolecular cyclization promoted by heating. The catalyst se-
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lected for the hydrogenation step was PtO2, which afforded 5,6,7,8-
tetrahydroindolizines and indolizidines. The partial and complete 
hydrogenation reaction was dependent on the hydrogen pressure 
and the pH of the reaction mixture. Higher pressure and strong acid 
conditions was necessary to obtain indolizidines, which were syn-
thesized with high diastereoselectivity [40]. 

The pyrazolone nucleus has been present in the structures of 
several drugs such as dipyrone and phenazone. These compounds 
are currently used in medicine, due to their analgesic, antipyretic 
and anti-inflammatory activities [41].  

4-Substituted pyrazolones were synthesized by the treatment of 
a -ketoesters with hydrazine. The -ketoesters required for this 
transformation were, in turn, synthesized using two possible ap-

proaches. In the first, the secondary hydroxyl group of the MBH 
adduct was oxidized and the double bond was selectively reduced 
by treatment with borane dimethyl sulfide to afford -methyl sub-
stituted -ketoesters. Alternatively, -ketoesters having different 
substituents at -position were synthesized from MBH adducts 
using the Heck reaction. These methods to synthesize -ketoesters 
afforded pyrazolones with different level of functionalization with 
moderate to good yields (Scheme 25) [42]. 

An asymmetric approach for the synthesis of pyrrolizidinone 
and pyrrolizidine skeletons has been reported in two steps. Firstly 
the MBH reaction between N-Boc-4-hydroxyprolinal 81 and methyl 
acrylate followed by nitrogen deprotection and cyclization (Scheme 
26) [43]. The correct functional groups on the structures of the 
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Scheme 25. Synthesis of 4-substituted pyrazolones. 
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Scheme 26. Synthesis of highly substituted pyrrolizidinones and pyrrolizidines. 
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MBH adducts have allowed an intramolecular cyclization to afford 
the synthesis of highly functionalized pyrrolizidinones and pyrroliz-
idines. The high stereochemical control of the entire process was 
mediated directly by an intramolecular hydrogen bond between the 
hydroxyl and the aldehyde groups present in the structure of 81 

(Scheme 26). 

Oxygenated heterocycles such as pyranones and pyranonaph-
thoquinones were obtained by cascade reactions of 1,3-dicarbonyls 
88 with MBH acetates of nitroalkenes 89 [44]. The asymmetric 
synthesis is result of a reaction sequence beginning with an enanti-
oselective Michael addition of 1,3-dicarbonyls to MBH acetate (and 
elimination of the acetate, which correspond to a formal SN2’ reac-
tion), followed by a diastereoselective intramolecular oxa-Michael 
addition. Both reactions were catalyzed by a bifunctional quinine-
squaramide catalyst 90 which was responsible for the deprotonation 
of the dicarbonyl compound by the tertiary amine of the quinucli-
dine moiety and activation of the nitro group by two H-bond with 
the squaramide moiety (Scheme 27).  

The efficiency of this methodology is noteworthy, because of 
high yields and high diastereo- and enantioselectivities obtained for 
several aromatic MBH acetates, even in gram scale. In addition, the 
presence of a nitro group allowed increased functionalization of the 
heterocycle after suitable transformations of the amino and azido 
derivatives. 

Phthalides or 3H-isobenzofuran-1-one were synthesized using a 
palladium-catalyzed carbonylative cyclization of MBH adducts. 
This approach consists of the utilization of an o-brominated aro-
matic MBH adducts, which, in the presence of CO and 
Pd2(dba)3/P(tBu)3, give an acyl-palladium intermediate and, after 
reductive elimination, afforded 3-alkenyl phthalides 93 in good 
yields and with stereoselectivity in most cases (Scheme 28) [45]. 

-Benzyl- -keto-esters, prepared via a Mizoroki-Heck reaction 
between MBH adducts and iodophenol catalyzed by Nájera pallad-
acycle [46], were used as substrates in the synthesis of spiro-
hexadienones like 96, with diversified structural patterns. The key 
step in the synthesis of the spiro system was the phenolic oxidation 
promoted by the hypervalent iodine reagent PIFA [phenyliodine-
bis(trifluoroacetate)] which results in an oxidative dearomatization 
followed by cyclization in a unique step (Scheme 29) [47]. 

4.3. Synthesis of Natural Products and Drugs 

A formal synthesis of a Chloramphenicol derivative (100) was 
described employing an oxazolidinone as key intermediate, which 
can also be easily interconverted into aminoalcohols. MBH adducts 
were modified using a sequence of hydroboration, oxidation and 
manipulation of the protective groups to afford acid 97 and then to 
the corresponding isocyanate 98. Thus, the isocyanate gave the 
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Scheme 27. Synthesis of pyranones and pyranonaphthoquinones via a cascade reaction. 
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Scheme 28. Synthesis of 3-alkenyl phthalides from MBH adducts. 

R1

O O

OR2

OH
R3

O

O

R1 CO2R2R1 = alkyl, aryl

R2 = Me, Et
R3 = H, Br

PIFA

HFIP, 0°C, 3min

40-81%

R1

OH O

OR2

Nájera's catalyst

DMF, 110 ˚C
PhI, Et3N94 95

96

R3

 

Scheme 29. Synthesis of spiro-hexadienones. 
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substitute oxazolidin-2-one 99, after treatment with SnCl4 (Scheme 
30) [48]. 

The pharmacological relevance of Efaroxan stimulated the de-
velopment of an enantioselective strategy for preparation of R-(+)-
2-ethyl-2,3-dihydrofuran carboxylic acid, a direct precursor of (R)-
Efaroxan. The MBH adduct 3h derived from 2-fluorobenzaldehyde 
and methyl acrylate was used as the starting material. The genera-
tion of the stereogenic centers in a controlled fashion was per-
formed by a key Sharpless epoxidation step. After a sequence of 
oxidations and epoxide ring opening, the diidrobenzofuran ring was 
obtained via a nucleophilic aromatic substitution reaction (SNAr) 
(Scheme 31) [49]. 

The silylated MBH adducts such as 105 can be transformed to 
acyloins ( -hydroxyketones) via a Curtius rearrangement. This 
acyloin was used as advanced intermediate in the synthesis of ra-
cemic Bupropion. This compound is an antidepressant agent used in 
the treatment of smoking cessation [50]. The silylated acyloin 107 
was then transformed into a respective regioisomer 108 and submit-
ted to nucleophilic substitution conditions to provide Bupropion in 
25% overall yield (Scheme 32) [51]. 

A similar strategy was designed to synthesize racemic Spisulos-
ine. This marine natural product has a remarkable antitumor activity 
and was prepared from acyloin 110 obtained from the MBH adduct 
109 (Scheme 33) [52]. 

CO2H

OPG

OPG

NCO

OPG

OPG

NH

O

O

OPG

OH

OH

HN O

ClCl

Chloramphenicol derivative

O

O

O

O

O

O

O

O

PG = protective group

i. ClCO2Et, NEt3,
ii. NaN3, H2O
iii reflux in toluene

SnCl4 
CH2Cl2

30% overall yield

97 98

99
100

 

Scheme 30. Synthesis of a chloramphenicol derivative from 4,5-disubstituted oxazolidin-2-one. 
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Scheme 31. Enantioselective synthesis of 2-ethyl-2,3-dihydrobenzofuran carboxylic acid. 
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5. ALTERNATIVE APPROACHES FOR THE SYNTHESIS 
OF MBH ADDUCTS 

In 2009, Comasseto et al. [53] reported a protocol to prepare 
organochalcogen employing easily available and environmental 
friendly precursors. The application of this methodology allowed 
the preparation of MBH adducts through an electroselenylation 
followed by oxidation/elimination (Scheme 34). Lithium n-butyl-
selenolates generated in situ by reacting the selenium with n-
butyllithium reacted with acrylonitrile via a Michael addition. The 
resulting enolate intermediate was captured by the p-chloro-
benzaldehyde to give the corresponding  product 113, which, after 

the oxidation, triggered the selenoxide elimination to afford the 
corresponding MBH adduct 114. 

The scope of this method was expanded and the behavior of dif-

ferent chalcogenolates, aldehydes, and Michael acceptors under 

these conditions was evaluated [54]. The study showed the applica-

bility of sulfides, selenides and tellurides in the aldol reactions and 

could extend the scope for non-activated aldehydes and to -

substituted Michael acceptors. Furthermore, the reactions were 

carried out in short reaction times, overcoming a drawback of the 

traditional MBH reaction. The efficiency of this alternative method 
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Scheme 32. Synthesis of racemic bupropion via acyloins obtained from MBH adducts. 
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Scheme 33. Synthesis of (+)-spisulosine via an acyloin intermediate. 
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was demonstrated in the racemic synthesis of the natural product 

Acaterin (Scheme 35). 

This methodology works well for aromatic aldehydes having 
electron-releasing substituents, but it is much less efficient for elec-
tron-withdrawing substituted aromatic aldehydes. Thus, this proto-
col is a valid alternative for affording MBH adducts and is an im-
portant complement to the traditional MBH reaction, in which alde-
hydes having electron-releasing substituents are poor substrates. 

In addition, dos Santos et al. [55] reported a fast and high-
yielding methodology to synthesize MBH derivatives 116 via a 
one-pot Michael/aldol/O-functionalization/selenoxide elimination 
cascade thus expanding the synthetic utility of this MBH-type reac-

tion (Scheme 36). Good results were observed including Michael 
acceptors containing a methyl group at the  position, non-activated 
alkyl aldehydes and electron-rich aromatic aldehydes. The combi-
nation with different acid chlorides and anhydrides as electrophiles 
led to a broad series of acetates and carbonates derived from MBH 
adducts. 

Another serious drawback of the MBH reaction is the absence 
of a general asymmetric version. Although much progress in under-
standing the factors that govern this reaction has been achieved, the 
complete understanding of it remains lacking, and obtaining a gen-
eral chiral version of the MBH reaction is still a challenge. How-
ever, high enantiomeric purity can be accessed by biocatalysts such 
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Scheme 34. Morita-Baylis-Hillman adducts from highly functionalized organochalcogenides. 
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Scheme 36. Synthesis of MBH derivatives via organochalcogenides. 
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as lipases from Pseudomonas sp. (PSL) [56] and Candida antarc-
tica (CALB) [57] which have been efficiently employed in kinetic 
resolutions of MBH adducts and their acetate derivatives (Schemes 
37 and 38). 

6. BIOLOGICAL ACTIVITIES OF MBH ADDUCTS 

6.1. Biological Profiles 

Since the pioneering publication reporting the antimalarial ac-
tivities of some aromatic and hetero aromatic MBH adducts [58], 
considerable advances have occurred regarding the investigation of 
the biological profile of these poly-functionalized compounds. 
Lima-Junior and Vasconcellos highlight the broad spectrum of 
biological activities from MBH adducts such as antitumor, antibac-
terial, and antifungal activities as well as uses as herbicides. 
Moreover, several MBH adducts have been reported as bioactive 
compounds against neglected diseases such as malaria, leishmania-
sis, schistosomiasis and Chagas  (Fig. 5) [59]. 

 

Fig. (5). MBH adducts as promising drugs for neglected parasitic diseases. 

Due to its biological profile, the Morita-Baylis-Hillman reaction 
now appears not only as a source of intermediates for synthetic 
purposes, but also as a source of infinite classes of potential bioac-
tive compounds. For this reason, research groups have recently 
published more elaborate works that advance the expansion of the 
biological profile of MBH adducts. Furthermore, studies related to 
the rationalization of Quantitative Structure-Activity Relationship 
(QSAR) and of possible mechanisms of biological action against 
various diseases have been also published. 

Recently, theoretical conformational and QSAR studies involv-
ing 32 aromatic MBH adducts were described to rationalize the 
development of effective compounds against Leishmania ama-
zonensis [60]. The preferred conformations for these adducts were 
controlled by six and/or seven- membered intramolecular hydrogen 
bonds (Fig. 6), which are characterized by QTAIM calculations and 
spectroscopic data. The QSAR study provided a model with good 
values for parameter validation (R2 = 0.71, = 0.61 and Q2ext = 0.92) 
[60]. 

 

Fig. (6). (a) MBH adduct, (b and c) conformation controlled by intramolecu-

lar hydrogen bonds. 
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Fig. (7). Hybridized MBH adduct. 

A MBH adduct 121 designed by a molecular hybridization 
strategy between methyl salicylate and MBH adduct derivative 
from ortho-nitrobenzaldehyde (Fig. 7), presented a potent in vitro 
activity against amastigote and promastigote Leishmania (Viana) 
braziliensis [61]. Biological evaluation demonstrated the highest 
leishmanicide activity thus far (IC50 = 2.73 M) and a selectivity 
index (SI) equal to 5.55 for a reference strain MHOM/BR/1975/ 
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Scheme 37. Kinetic resolution of the MBH adduct using PSL. 
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M2903. After investigation of immunomodulatory properties, it was 
observed that MBH 121 decreased IL-6 and IL-10 production, re-
sulting in a reduction of the infection rate. 

In 2014, Sandes et al. [62] published a study of the adduct 122 
to understand the physiological changes and cell death mechanism 
induced by T. cruzi. Employing confocal microscopy and flow cy-
tometry, it was observed that high concentrations of the adduct 
induced a series of injuries such as damage to the parasite plasma 
membrane, loss of mitochondrial membrane potential, DNA frag-
mentation and cytoplasmic acidification resulting in a cell death by 
necrosis. 

In a pioneering work, Xavier et al., [57] made by kinetic resolu-
tion of 118 and 122 MBH adducts using Lipase B Candida antarc-
tica (Fig, 8). The MBH adducts were obtained with high optical 
purities (>99% e.e.) and the absolute configuration was determined 
using the Mosher methodology [63]. (±)-118, (±)-122, and its opti-
cally active enantiomers (R)-(+)-122 and (S)-(-)-122 were tested 
against promastigote forms of Leishmania (Viannia) braziliensis 
and curiously, it was found that the racemic compound, (±)-122, 
was more potent than either of the isolated enantiomers. Further-
more, peritoneal macrophage cytotoxicity in Swiss mice demon-
strated that racemic (±)-122, as well as (R)-(+)-122 and (S)-(-)-122 
enantiomers were absent of toxicity. 

Alencar-Filho et al. [64] in a structure-activity relationship 
from leishmanicidal MBH adducts described a rugged and predic-
tive QSAR model to help the search for new and more powerful 
MBH adducts as leishmanicide agents. In this study, the authors 
attributed the presence of the nitro group in the ortho position and 
larger molecular volumes in MBH adducts as important characteris-
tics for biological activity. 

Electrochemical methods are useful tools to simulate in vivo 
metabolic processes. The biological activity of nitrocompounds is 
associated to nitro group reduction that generates different interme-

diates. In a electrochemical study, carried out in a protic medium, 
the cyclic voltammetry (CV) on twelve nitro-substituted MBH ad-
ducts was evaluated (Fig. 9) [65]. This study aimed at looking for 
additional information for a better understanding of the behaviors of 
these compounds in a biological environment. It was observed a 
strong correlation between reduction potential and leishmanicidal 
activity. 

The perspectives of MBH adducts applied to drug design can be 
exponentially expanded, if we consider the derivatives that can be 
easily prepared from these adducts. For example, in a recent study, 
thirteen allylthiocyanates (Fig. 10) obtained from MBH adducts in 
two steps, showed moderate to high antimicrobial activities [66]. 
Coupled with the satisfactory activities presented, the authors have 
highlighted the facile and low cost preparation, of these thiocy-
anates derived from MBH adducts, making them a promising class 
of compounds for drug development. 

R O
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Fig. (10). Allylthiocyanates derived from MBH adduct. 

In another example, Cunha et al. [67] described the syntheses of 
2-substituted aromatic indolizines from MBH adducts. These com-
pounds have high potential activities as ionic channels blockers, 
according to the in silico evaluation performed using the free 
Molispiration software (Scheme 39). 

The Morita-Baylis-Hillman adducts should not be seen only as 
building blocks for the synthesis of different compounds but also as 
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Fig. (8). Racemates and enantiomers obtained by kinetic resolution. 
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a platform for the development of compounds with interesting bio-
logical properties. This broad spectrum of biological activities 
should be used as a stimulus in the search for more attractive syn-
thetic methodologies, using all possible combinations of electro-
philes and Michael acceptors. This open the possibility of accessing 
to a large collection of new small conjugated molecules having 
different biological activities. 
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Scheme 39. 2-Indolizines prepared from MBH adducts. 

6.2. Mechanism of Action 

As the MBH adducts present an unsaturated , -carbonyl por-
tion (Michael acceptor), their behavior as electrophiles in front of 
biological nucleophiles (receptors and enzymes) is quite obvious. A 
possible mechanism of action to explain the anti-malarial effect 
exhibited by the MBH adducts could be the inactivation of falcipain 
enzyme, through the nucleophilic addition of a thiol group on the 
adduct conjugated double bond. Concerning the antitumor activity, 
Vasconcellos et al. has suggested that MBH adducts could act as 
stimulators or inhibitors of GSH synthesis or possibly affect their 
intracellular concentration. Trying to contribute to the expansion of 
the biological profile and increase the understanding of the mecha-
nism of biological action of MBH adducts, Bertinaria et al. [68] 
recently published an elegant work in which a library of MBH ad-
ducts showed antipyroptotic activities. According to the authors 
who investigated the chemical reactivity of MBH adducts against 
glutathione (GSH), a covalent bond occurred between the GSH and 
the Michael-acceptor which characterizes the MBH adduct as a 
covalent, irreversible thiol-trapping agents. These results confirm 
the action of MBH adducts as electrophile in a biological environ-
ment, as proposed by Lima-Junior and Vasconcellos [60]. 

CONCLUSION AND PERSPECTIVES 

The Brazilian chemical community has given relevant contribu-
tions for the Morita-Baylis-Hillman chemistry, exploring several 
aspects of this amazing transformation. Thus, studies related to 
circumvent the drawbacks of this reaction by using different sol-
vents and Lewis bases, mechanistic investigations, development of 
new synthetic methods and the use of MBH adduct as platform for 
the synthesis of natural products and drugs. In addition to synthetic 
targets, MBH adducts have been applied in biological and medici-
nal chemistry and several studies exploring theirs biological profile 
have been reported. 

The Morita-Baylis-Hillman reaction is a young chemical trans-
formation and there is much more to be explored with these adducts 
in different area. 
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