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a b s t r a c t

This paper is an erratum to our paper Moduli spaces of framed sheaves and quiver varieties
(J. Geom. Phys., 2016). As a byproduct, we prove a result (Prop. 2.5) providing a description
of the fibre T∨

V Gr(a, r)⊕n−1, for each V ∈ Gr(a, r), as the space of isomorphism classes of
certain extensions of sheaves on Hirzebruch surfaces.

1. Introduction

The claim (ii) in Proposition 6.7 of [1] is incorrect, as next Example 2.3 will make clear. As a consequence, the claim (iii)
in Proposition 6.7 and Corollary 6.9 are false as well, whilst Proposition 6.8 must be replaced by a slightly weaker statement
(see Proposition 2.4). All results stated in Sections 2 to 5, in Subsections 6.1 to 6.3, and in Section 7 hold true, and their
proofs remain unchanged; also the final part of Section 6.4, after the proof of Corollary 6.9, remains valid as it stands. In the
Introduction, the sentence ‘‘the fibres of the direct sum of (copies of) the cotangent bundle classify the sheaves away from
the line at infinity’’ [1, p. 2] has to be replaced by the sentence ‘‘each fibre of the direct sum of (copies of) the cotangent
bundle can be identified with the vector space Ext1OΣn

(
O⊕r−a

Σn
,OΣn (E)

⊕a
)
’’.

If not otherwise stated, the notation is the same as in [1]. For the reader’s convenience, we briefly recall which is the
setting we are working in. We denote by Σn the n-th Hirzebruch surface, which can be defined as the projective closure
of the total space of the line bundle OP1 (−n); we assume the condition n > 0. The fibre of the natural ruling Σn → P1

determines a class F ∈ Pic(Σn) and we denote by H and E the classes of sections squaring, respectively, to n and −n. As it
is well-known, Pic(Σn) is freely generated on Z by H and F ; we put OΣn (p, q) = OΣn (pH + qF ). We fix a ‘‘line at infinity’’,
ℓ∞ ≃ P1, belonging to the classH and not intersecting E. A framed sheaf onΣn is a pair (E, θ ), where E is a rank r torsion-free
sheaf trivial along ℓ∞ and θ : E|ℓ∞

∼
−→ O⊕r

ℓ∞
is an isomorphism. Notice that the condition of being trivial at infinity implies

c1(E) ∝ E.
The moduli space Mn(r, a, c) parameterizing isomorphism classes of framed sheaves (E, θ ) on Σn with Chern character

ch(E) = γ = (r, aE, −c −
1
2na

2) has been extensively studied in [1–3]. It is a fine moduli space, which is nonempty if and
only if

c ≥
na(1 − a)

2
. (1.1)
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When the lower bound of the inequality (1.1) is attained, the moduli space Mn(r, a, na(1−a)
2 ) has a particularly simple and

explicit form.

Theorem 1.1 (= [1, Theorem 6.2]). There are isomorphisms

Mn
(
r, a,

na(1 − a)
2

)
≃

{
Gr(a, r) if n = 1;
T∨ Gr(a, r)⊕n−1 if n ≥ 2,

where Gr(a, r) is the Grassmannian of a-planes in Cr .

Themain resultwe shall prove in the next section – sc. Proposition 2.5 – provides a description of the fibre T∨

V Gr(a, r)⊕n−1,
for each V ∈ Gr(a, r), as the space of isomorphism classes of extensions of the form

0 →→ V ⊗ OΣn (E)
i →→ E

p →→ (Cr/V
)
⊗ OΣn

→→ 0

2. A description of the fibre T∨

V Gr(a, r)⊕n−1

Let us recall that, if a torsion-free sheaf E on Σn is trivial at infinity and satisfies the ‘‘minimality’’ condition (1.1), then it
is locally free. These sheaves can be explicitly realized as extensions.

Proposition 2.1. (= [1, Proposition 6.7(i)]) A torsion-free sheaf E is trivial at infinity and satisfies condition (1.1) if and only if
it fits into an extension of the form

0 →→ OΣn (E)
⊕a i →→ E

p →→ O⊕r−a
Σn

→→ 0 (2.1)

for some integers r > 0 and 0 ≤ a < r.

The following result replaces the erroneous claim [1, Proposition 6.7(ii)].

Proposition 2.2. Two vector bundles E and E ′ which are trivial at infinity and satisfy condition (1.1) are isomorphic if and only
if they fit into extensions of the form (2.1) which are isomorphic as complexes.

Proof. The ‘‘if’’ part is trivial. To prove necessity, we have to distinguish the case n = 1 from the case n ≥ 2. When n = 1, [2,
Lemma 3.1] implies that

Ext1OΣ1

(
O⊕r−a

Σ1
,OΣ1 (E)

⊕a)
= 0.

It follows that all extensions of the form (2.1) split, and this proves the claim in this case. Let us assume n ≥ 2 and let E and
E ′ be two isomorphic vector bundles which are trivial at infinity and satisfy condition (1.1). As shown in [1, § 6.1], E is the
cohomology of a monad of the form

0 →→ OΣn (1, −1)⊕na
⊕ O⊕r−a

Σn

β →→ OΣn (1, 0)
⊕(n−1)a →→ 0, (2.2)

where β is surjective (therefore, E ≃ kerβ); analogously for E ′. By [2, Lemma 4.7], an isomorphism Λ : E −→ E ′ lifts
uniquely to an isomorphism of monads. We proved in [1, § 6.3] that such an isomorphism is uniquely determined by an
invertible matrix

(
A B
0 C

)
, where A ∈ GL(a,C) and C ∈ GL(r − a,C). By using the diagram [1, eq. (6.18)] it can be shown that

there is an induced diagram

0 →→ OΣn (E)
⊕a i →→

A

↓↓

E
p →→

Λ

↓↓

O⊕r−a
Σn

→→

C
↓↓

0

0 →→ OΣn (E)
⊕a i′ →→ E ′

p′

→→ O⊕r−a
Σn

→→ 0

which is commutative. □

Example 2.3. It should be pointed out that two isomorphic complexes of the form (2.1) may fail to be isomorphic as
extensions. Indeed, if E fits into an extension of the form (2.1), of course it fits also into the extension

0 →→ OΣn (E)
⊕a λ i →→ E

p →→ O⊕r−a
Σn

→→ 0 , (2.3)

for any λ ∈ C∗. It is easy to see that the two sequences (2.1) and (2.3) are isomorphic as complexes, but, if λ ̸= 1, not as
extensions. □
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Let Xn = Σn \ℓ∞. This open subset can be naturally regarded as the total space of the line bundleOP1 (−n). The statement
of [1, Lemma 6.8] needs to be replaced by the following result; the proof we provided in [1], however, remains unchanged.

Proposition 2.4. Two extensions of the form (2.1) are isomorphic if and only if their restrictions to Xn are isomorphic as extensions
of OXn-modules.

Finally, as a substitute for [1, Corollary 6.9], one has the following proposition.

Proposition 2.5. For n ≥ 2, for each point V ∈ Gr(a, r), thought of as an a-dimensional subspace of Cr , there is a canonical
isomorphism

T∨

V Gr(a, r)⊕n−1
≃ Ext1OΣn

(
(Cr/V ) ⊗ OΣn , V ⊗ OΣn (E)

)
.

Proof. Let V ⊂ Cr be a point of Gr(a, r) and let W = Cr/V . It is well-known (see e.g. [4, Lemma 10.7]) that there is a
canonical isomorphism

TV Gr(a, r) ≃ HomC(V ,W ).

So, one has an induced (canonical) isomorphism

T∨

V Gr(a, r) ≃ HomC(V ,W )∗ ≃ HomC(W , V ).

Every morphism b ∈ HomC(W , V )⊕n−1 can be associated with an extension e(b) of the form

0 →→ V ⊗ OΣn (E)
i →→ E

p →→ W ⊗ OΣn
→→ 0 (2.4)

in the following way. We set

V =
[
V⊕n

⊗ OΣn (1, −1)
]
⊕ (W ⊗ OΣn ), W = V⊕n−1

⊗ OΣn (1, 0)

(notice that these sheaves are isomorphic to those in (2.2)) and define the morphism

βb : V −→ W
βb = χ ⊕ b s∞, (2.5)

where

χ = idV ⊗C

⎡⎣⎛⎝ 0

1n−1
.
.
.

0

⎞⎠ y1 +

⎛⎝ 0
.
.
. 1n−1
0

⎞⎠ y2

⎤⎦,

s∞ is a global section of OΣn (1, 0) whose zero locus is ℓ∞, and {y1, y2} is a basis for H0(OΣn (0, 1)) (cf. [1, eq. (6.7)]). The
morphismβb is surjective and fits into the commutative diagramE(b), which is analogous to that introduced in [1, eq. (6.18)]:

0

↓↓

0

↓↓
0 →→ V ⊗ OΣn (E)

i →→

κ

↓↓

kerβb
p →→

τ

↓↓

W ⊗ OΣn
→→ 0

0 →→ V⊕n
⊗ OΣn (1, −1)

j →→

χ

↓↓

V π →→

βb

↓↓

W ⊗ OΣn
→→ 0

W

↓↓

W

↓↓
0 0

(2.6)

where τ is the canonical injection,

j =

(
idV⊕n

0

)
, π =

(
0 idW

)
, κ = idV⊗

t (yn−1
2 , −y1yn−2

2 , . . . , (−y1)n−2y2, (−y1)n−1) ,

p = π ◦ τ , and i is induced by the other morphisms. The top row of the diagram (2.6) defines the extension e(b) (2.4) we
were looking for. Actually, by construction, the sheaf kerβb fits into a monad of the form (2.2), so that it is locally free and
trivial at infinity.
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The previous procedure enables us to define a map

ϕV : HomC(W , V )⊕n−1
−→ Ext1OΣn

(
W ⊗ OΣn , V ⊗ OΣn (E)

)
,

b ↦−→ [e(b)]

where we denote by [e(b)] the isomorphism class of the extension e(b). This map is canonical in the sense that it does not
depend on the choice of a basis for HomC(W , V )⊕n−1. Our purpose is now to prove that ϕV is a vector space isomorphism.
To this aim, we proceed in 5 steps.

Step 1. The diagram E(b) (2.6) can be regarded as a short exact sequence in the abelian category Cohb(Σn) of bounded
complexes of coherent sheaves on Σn. Explicitly, E(b) can be written in the form

0 →→ M−1
G →→ M0(b)

F →→ M1 →→ 0 ,

where

M−1: 0 →→ V ⊗ OΣn (E)
κ →→ V⊕n

⊗ OΣn (1, −1)
χ →→ W →→ 0,

M0(b): 0 →→ kerβb
τ →→ V

βb →→ W →→ 0,

M1: W ⊗ OΣn W ⊗ OΣn
→→ 0,

G = (i, j, idW ),
F = (p, π, 0).

Step 2. It is easy to define a vector space homomorphism

ξ : Ext1Cohb(Σn)(M1,M−1) −→ Ext1OΣn

(
W ⊗ OΣn , V ⊗ OΣn (E)

)
,

[E] ↦−→ [e]

where e is the top row of E. (Notice that the additive structure of both spaces is provided by the Baer sum.) At the same time,
one has a map ϕ̃V : HomC(W , V )⊕n−1

→ Ext1Cohb(Σn)(M1,M−1) given by b ↦→ [E(b)], so that ϕV = ξ ◦ ϕ̃V .
Step 3. Straightforward, though rather cumbersome computations show that the map ϕ̃V is a vector space homomor-

phism. As a consequence, the same is true for the map ϕV .
Step 4. Next, we prove the injectivity of the homomorphism ϕV . Let b ∈ Hom(W , V )⊕n−1 and suppose that ϕV (b) = 0,

i.e., that [e(b)] is the split extension class. In particular, this entails the existence of an isomorphism

Ψ :
(
V ⊗ OΣn (E)

)
⊕ (W ⊗ OΣn )

∼
−→ kerβb.

As a consequence, the morphism βb fits into the short exact sequence

0 →→ (V ⊗ OΣn (E)
)
⊕ (W ⊗ OΣn )

τ◦Ψ →→ V
βb →→ W →→ 0 .

It is easy to check that the morphism τ ◦ Ψ can be put into the block matrix form
(

⋆ 0
0 A

)
for some A ∈ AutC(W ). Therefore,

the condition

βb ◦ (τ ◦ Ψ ) = 0

implies b = 0 (cf. Eq. (2.5)), and ϕV is injective.
Step 5. To conclude the proof, it is enough to show that the vector spaces T∨

V Gr(a, r)⊕n−1 and Ext1OΣn

(
W ⊗ OΣn , V ⊗

OΣn (E)
)
have the same dimension. The former has dimension a(r − a)(n − 1). As for the latter, one has the canonical

isomorphism

Ext1OΣn

(
W ⊗ OΣn , V ⊗ OΣn (E)

)
≃ Hom(W , V ) ⊗ H1(OΣn (E)).

Since h0(OΣn (E)) = 1 and h2(OΣn (E)) = 0 (cf. [2, Lemma3.1]), the Riemann–Roch formula implies h1(OΣn (E)) = n−1. □
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