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Abstract

Intensive broiler production requires of accurate control systems aimed to maintain
ideal conditions inside the facilities. The achievement of an appropriate environ-
ment guarantees good performance and sustainability of the production. Control
and monitoring of temperature is a key factor during the production cycle. In
countries with tropical and subtropical climate, such as Brazil, high values of tem-
peratures can affect negatively the broiler production. Based on a temperature
control model developed by the authors, this research is focused on the determina-
tion and fitting of the intrinsic parameters of the model. Consecutive executions
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of the model and changes in the facilities suggest adapting parameters constantly
under the perspective of real-time systems. Four strategies of derivative-free opti-
mization were applied to adjust the parameters of the model. Experiments were
conducted with data collected from a pilot farm in South-eastern Brazil. Results
demonstrated that the process of updating parameters needs to be implemented on
the temperature control model. BOBYQA method resulted to be the best strategy
to be taken into consideration for the improvement of the system.

Keywords: Parameter optimization, broiler production, control of temperature,
derivative-free methods, real-time.

1 Introduction

Livestock production requires control, monitoring and surveillance of oper-
ating conditions in order to guarantee good performance, productivity, sus-
tainability and animal comfort. Basically, these operating conditions are re-
lated to thermal variables: temperature, relative humidity, air velocity /wind
speed amongst other factors and their interaction with automated or semi-
automated devices inside the facilities (ventilation systems and controllers).
Temperature is one of the key variables to be kept under control during a
rearing process [1]. For intensive broiler production (chicken meat), temper-
ature inside the facilities (broiler houses) is a crucial factor that needs to be
controlled and monitored almost in real-time |2, 3].

Brazil is one of the top three broiler producers in the world together with
United States of America and China. In countries where climate is tropical
and subtropical, such as Brazil, variations of temperature affects the rearing
process by putting at risk the thermal comfort of the animals. Discomfort
produces heat stress and high rates of mortality [4]; in consequence, produc-
tion is affected negatively in terms of weight conversion, feed efficiency and
animal welfare [5]. Therefore, an efficient control of thermal conditions is
necessary to maximize the production and guarantee its sustainability.

An efficient control of thermal conditions is commonly supported by ven-
tilation systems and controllers inside the facilities. The achievement of ideal
conditions is associated to the interaction with automated controllers and op-
erating policies which respond to the current conditions (thermal variables)
by switching on or off devices (exhaust fans, cooling pads and humidifiers).
The challenge is to guarantee the most comfortable microclimate inside the
broiler houses. Keeping a good microclimate is a complex problem. Some
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approaches deal with quantitative methods in data-driven models which use
Computation Fluid Dynamics (CFD), Statistics, Data Mining, Artificial In-
telligence and Applied Mathematics in order to understand, control and sup-
port accurately the thermal conditions at the facilities by interacting with
automated devices. All these approaches are called as precision livestock
farming (PLF). Some interesting researches can be found in [6-10].

Recently, authors of this research developed a temperature control model
aimed to support thermal conditions inside broiler houses. The model com-
bines applied mathematics, optimization and some empirical considerations
in order to equilibrate accuracy with fast execution for real-time practice.
The developed model, described in details in [11], uses a one-dimensional
representation of the broiler house, with left and right walls, in which the
temperature is propagated by a diffusion process, subject to boundary con-
ditions given by external temperature and initial conditions provided by sev-
eral sensors placed along the house. The ventilation system (Exhaust fans)
is modeled as heat sources that contribute to balance the temperature in-
side the facilities. This model would require of the determination/ fitting of
three parameters associated to it for its correct use as a supporting tool. The
fitting process is necessary when changes or structural modifications of the
broiler house are evidenced. These changes and the real-time approach could
produce significant variations of the coefficients, so the update of parameters
becomes a key task to be implemented.

In this research, the determination and fitting of the parameters associ-
ated to the temperature control model [11]| is managed by using continuous
derivative-free optimization. This family of optimization methods tries to
achieve the optimal value of an objective function without evaluating or ap-
proximating its derivatives. They are used, for example, when a black-box
objective function is present, i.e., when the actual equation of the objective
function is not available, so its derivatives are also not available. Parameter
optimization problems usually fit in this family of problems.

Some related problems are cited in Audet and Orban [12]. They proposed
an objective function to optimize the parameters of a trust region method in
terms of the processing time of the method. Cervelin [13| proposed some vari-
ations of the objective function and optimized the parameters of a derivative-
free method in relation to the number of function evaluation performed by
it. These two works focus more in the optimization process than the applica-
tion of the techniques in real-world problems. Wild [14]| used derivative-free
techniques to solve the parameter estimation of problems related to nuclear
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physics, and Mukherjee [15] enunciates some derivative-free techniques that
are implemented for metal cutting processes.

Under these premises, the paper is aimed to describe how continuous
derivative-free optimization is applied to the temperature control model. Pa-
rameters associated to the model correspond to the diffusion coefficient inside
the house, the diffusion coefficient in the walls and the effect of each exhaust
fan on the variation of the temperature in one unit of time. Fitting these co-
efficients to actual data is a task that may be accomplished by minimization
algorithms. The temperature model is part of a control model and, since it
can be modified in order to improve the control model efficiency, the merit
function that measures the quality of the approximation can change. So,
even if it is not impossible to compute the derivatives of the merit function,
the necessity of changing the model structure led us to the use of derivative-
free methods. These methods allow taking advantage of enough flexibility
and satisfactory speed of execution for real-time situations.

The structure of the paper is presented as follows: Section 2 describes a
summarization of the temperature control model obtained from [11] together
with the control process and its relation with derivative-free techniques, Sec-
tion 3 gives a basic description with flowcharts of the continuous derivative-
free optimization techniques used in the research. In Section 4 the case
study for a Brazilian broiler house is detailed with its corresponding results
and discussion. Finally, the paper is closed in Section 5 with the conclusions.

2 The temperature control model

2.1 Basics of the model

The Broiler House is represented as a segment [0, L], where L represents the
length of the house, the segments [—a, 0] and [L, L+ a| represent the left-wall
and the right-wall respectively. Thus, a may be thought as the thickness of
each wall. The control devices have the property of decreasing the internal
temperature (7') u Celsius degrees per time unit, where u = u(z,t) is a
function that depends on the control decisions. So, the Partial Differential
Equation (PDE) problem is given by:

or 0T .
E(x,t) = pgw(x,t) if z € [—a,0],
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oT 0*T :
g(x,t) —plw(%t) —u(x,t) if z € [0, L],
oT 0*T

E(x,t) = pgﬁ(x,t) if v € [L, L+ al,

T(z,0) given for all z € [—a, L + a],
T(—a,t) =T(L+ a,t) given for all t > 0,

2 2
%(0,1&) = %(L,t) =0 forallt > 0.

The control function will be assumed to depend on the control devices
(here, the ventilation system or exhaust fans). Moreover, it is assumed that
the control devices have a finite number of possible states dg, d1, ..., dy. For
example, d; indicates that the number of connected exhaust fans is j. To
each possible state of the controls d; a function wug(z,t) is associated and
defined as follows:

ug, (z,t) = a — 0.05;ps.

So, in the absence of connected exhaust fans, the internal temperature
increases v degrees per time unit but the activation of each fan decreases the
temperature 0.05p3 degrees per time unit.

The one-dimensional PDE model described has three parameters that
need to be fitted to real data before (or during) the execution in broiler
houses. As mentioned before, the three parameters correspond to the diffu-
sion coefficient inside the house, the diffusion coefficient in the walls and the
effect of each exhaust fan on the variation of the temperature in one unit of
time. Fitting of these parameters is performed by derivative-free algorithms.

2.2 The Control Process and Fitting of Parameters

The PDE described in Section 2.1 predicts the temperature inside the broiler
house using predictions of the external one. To do so, the PDE uses some
internal parameters (diffusion coefficients and fans effects). These parame-
ters were previously estimated for a particular broiler house, but, since they
depend on several other parameters that are not considered in the model
(quantity and size of the birds, broiler house wall material, the maintenance
of the exhaust fans and other specific parameters of the house), they should be
adjusted for each broiler house. And more, since some of the non-considered
parameters are time dependent, it is reasonable to recalibrate the parameters
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during the simulation. The parameters are updated if the predicted internal
temperature is very different from the observed one.

During the rearing process, a set of sensors are strategically positioned
inside the broiler house. These sensors provide the temperature in real time.
Human operator or an automated operator (controller) reads these current
temperatures. In addition, an external sensor collects the outside tempera-
ture and its forecasted values for a next period. These values are also trans-
mitted and read by the operator. According to the values of the registered
temperatures the operator decides to switch on or off the correct number of
exhaust fans in order to approximate the internal temperature to the ideal
one which depends basically on the infrastructure of the facility, age and
breed of the animal. For that purpose, the operator forecasts the internal
temperature for a period of (say) one hour and, based on this prediction,
decides how to proceed with the exhaust fans.

To make the decision, the operator compares the results of connecting or
disconnecting every combination of the exhaust fans along the period under
consideration and chooses the combination that, according to the prediction,
produces the best profile of internal temperatures in terms of animal comfort.

The process of choosing the configuration of connected fans is a combi-
natorial optimization problem where a comfort function, represented by the
difference between the achieved temperature and the ideal one is optimized.
In turn, the evaluation of the comfort-like function involves the experience
of the operator (if human), the consolidated advice in some operation sheet
(also reflecting human experience) or the execution of a prediction model, in
the case that the control is automatic.

In the temperature control model, the prediction is given by the solution
of the one-dimensional PDE system briefly described in Section 2.1. As said
above, the parameters of the PDE may be modified during the process, and
for applicability of the temperature control model, it must be done in real-
time.

In fact, the whole system involves permanent collection of data and par-
allel fitting of the parameters to updated data. This self-correcting scheme
should improve the success of the operation as far as time goes on in a single
broiler house. However, structural modifications of the broiler house may
produce significant variations of the fitted coefficients. Therefore, it is im-
portant to implement efficient and reasonably fast fitting algorithms to the
parameters of the temperature control model.

In consequence, the main goal is to minimize a measure function m. This
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function gives the performance of the method. In this specific case, it will be
represented by the 2-norm of the difference of the predicted temperature and
the observed one at several instants of times. Usually this kind of problem has
a black-box objective function, i.e., the equation that defines the objective
function is not known. Since there is no access to its expression, then there
is no access to its derivatives, so derivative-free methods can be used to
optimize the function.

It also supposed that function m depends on some parameters p of the
method and the set of problems used to find the optimal parameters is called
training set. In this research, the measure function m is the error performed
by the first order PDE when solving the problems on the training set. The
main parameters of the PDE model are the diffusion of temperature in the
broiler house (p;), the diffusion temperature in the walls (p2), and the effect
of each exhaust fan on the variation of temperature in one time unit (p3). For
instance, if the predicted variation of temperature according to the diffusion
model at the position x from time ¢ to £+ 1 in the absence of exhaust fans is
«, the predicted variation with one connected exhaust fan will be v — 0.05ps.

The optimization problem which tries to find the values of parameters
that best fits the data is:

Ts(p) — T2
minimize m(p) = w

suchthat 0<p; <40 i=1,2,3,

(1)

where n is the number of simulated temperatures, p is the vector with the
parameters in which we are interested, T (p) is a vector with simulated tem-
peratures for different instants of time using the parameters p and 7T, is a
vector with the observed temperatures at the same times. Note that the
upper limit 40 for p; means that each exhaust fan decreases the temperature
2 degrees Celsius per unit of time.

Three main strategies were selected to solve the problem: the first one
uses BOBYQA [16-18] that optimizes the objective function using a trust
region model based on quadratic interpolation; the second one uses Pattern
Search [19] which tries to find the optimal point moving through a positive
generating set of directions, and finally the third strategy uses SID-PSM
[20] which combines the Pattern Search approach with trust regions based
on simplex derivatives. These strategies are able to deal with multidimen-
sional derivative-free problems, as it happens in this research. An optional
(the fourth one) strategy was also included which deals with Golden Section
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Search [21]. Although, this last method is applicable only for one-dimensional
problems, it was used by optimizing the parameters in a sequential way, i.e.,
each parameter at a time.

Results found by each of the four strategies will help to determine the
final decision about the type of minimization method that should be used
in practical situations from now on. This decision is made by establishing a
comparison/benchmarking process within the whole set of strategies.

3 Basic background of continuous derivative-free
optimization techniques

3.1 BOBYQA

BOBYQA (Bound Optimization BY Quadratic Approximation) was pre-
sented in [18]. Some theoretical properties are described in [16,17]. As its
name states, it tries to optimize a problem approximating the objective func-
tion by quadratic models, which are built using interpolation points. These
points are the ones where the objective function was already evaluated at
previous iterations.

In each iteration we build a model, optimize it in a trust region and
verify if the minimizer of the model decreases the value of the objective
function. If it happens, we accept this point as the new approximation to
the minimizer and update the points of the interpolation and the trust region
size; otherwise, we update the points of the interpolation and decrease the
trust region size.

Figure 1 shows the BOBYQA process.

3.2 Pattern search

Pattern Search [19] is a derivative-free optimization method that tries to
find the optimal point of an objective function f moving through some fixed
directions of a set D.

D must be a positive spanning set, i.e., any vector of the work space can
be described as a positive linear combination of the directions in D.

For each iteration, there is an approximation x; of the minimizer and it is
updated by evaluating f(xy + ad;) where d; is a vector of D and « is the step
parameter of the method. If this function value is less than f(zy), then set



125 Cervelin, Conti, Detsch, Diniz-Ehrhardt, Martinez

Accept the
Is there a minimizer of the
sufficient model as the
decrease in f? new iterate.

Minimize the
model ina
trust region

Update the
interpolation points
and the trust region

ratio

Build a
quadractic
model

Fig. 1: Flowchart of the BOBYQA method.

Trs1 = T+ ad; and it is possible to update the step parameter increasing its
size, otherwise, another direction in D should be used. If all the directions
were used and there is no improvement in the function value, then the step
parameter sizeshould be decreased.

Usually, the stop criteria of this method is the step parameter, if it is
smaller than a value at iteration k, then xj is an approximation of the mini-
mizer of f.

Figure 2 shows a flowchart describing the method.

3.3 SID-PSM

The SID-PSM (Simplex Derivatives in Pattern Search Method) method was
presented at [20]. It is a combination of Pattern Search with trust region
method.

In each iteration the points in which the function is evaluated are stored.
Then, given an approximation z;, for the minimizer of f and a positive span-
ning set D, the method can be described in three steps:

1. Look for a subset of the stored points with a good geometry to approx-
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Xy = X +ad,
Update a
kek+1

Is fix Have

Evaluate smaller used all
fix = flxg + ad)) than directions
flxe)? inD?

Use another
direction in D

X1 = X
Decrease «
k—=k+1

Xy Is an approximation Is @ too
to the minimizer small?

Fig. 2: Flowchart of the pattern search method.

imate the objective function;

2. If there is a set of points with good geometry, we build a model m, and
minimize it. If its minimizer decreases the objective function value,
we accept this point as the new approximation for the minimizer of f.
Else, go to step 3.

3. In the last step we perform the Pattern Search. Also, one can try to
improve the behavior of the Pattern Search by adding some directions
using data from the model.

As in the Pattern Search method, if the iteration is successful we can
increase the step size parameter; otherwise, we must decrease it.
Figure 3 describes the flowchart of the method.

3.4 Golden Section

The Golden Section Search method is an one-dimensional derivative-free op-
timization method [21]. This method shrinks an initial interval [a, b], in which
it is known to have a local minimizer of the objective function f.
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Build a model Evaluate X, the
m of the minimizer of m
function f. in a trust region

Does x
decreases the
Pattern Search objective
function
value?

Is there a
subset with

good
geometry?

Accept ¥ as the
new
approximation
to the minimizer

Fig. 3: Flowchart of the SID-PSM method.

At each iteration, we compute the points ¢ and d (where ¢ < d) that
divides the original interval by the golden ratio, then if ¢ gives a better
objective function than d, we set b = d, and restart the process, otherwise
we update a making it equals to c.

The reason to use the golden ratio is that the point not used in the
update process will be the ¢ or d of the next iteration, so we must evaluate
the objective function in only one point at each iteration. The stop criterion
for this method is usually used as the distance between a and b.

As mentioned before, this method is used to optimize one-dimensional
problems. Here, our target refers to multidimensional problems. However,
the method was used as an alternative strategy. In order to apply this
method, we optimized each variable at a time. Also, it is important to notice
that there is no mathematical guarantee that this strategy will converge to
a stationary point.
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4 Case study

4.1 Material & Methods

Experiments were carried out in a pilot farm situated near the city of Cabreuva,
State of Sao Paulo, South-eastern Brazil. The broiler house has the following
specifications: 150 m of length, 15 m of width and 2.5 m of height. 24,000
birds (Cobb breed) in average are rearing there in a production cycle with
an estimated duration of 42 days. The facility has ventilation system which
contains 9 exhaust fans, an automatic controller and other devices which help
on the environmental control inside the house.

Four temperature/relative humidity sensors are strategically placed in
the facility, three of them to register the inside temperature and one of them
to register the outside temperature, respectively. These sensors transmit
the temperature values at each 5 minutes which are recorded in a simple
datasheet of type csv or txt.

For this research a total of 10803 valid values were used to perform the
experiments. The datasheet has 3 columns labeled as: Number of exhaust
fans (number of fans), average of temperature in Celsius degrees from the
three inside sensors (int temp °C') and outside temperature in Celsius de-
grees (ext temp °C'). The information corresponding to each instant ¢ (rows)
involves the average number of exhaust fans turned on in the interval be-
tween t and ¢ + 5 minutes, the average internal temperature considering 3
different positions of sensors in the house, and the external temperature at
instant ¢. Table 1 presents a view of the data considering a sample of 6 rows.

Tab. 1: A Datasheet sample.
Number of fans int. temp. °C'  ext. temp. °C

0.57 29.57 23.12
0.23 29.26 22.12
0.13 29.49 21.80
0.13 29.74 21.50
0.12 29.89 21.50
0.14 30.11 21.86

For instance, in the first line, Table 1 presents the average internal tem-
perature 29.57 °C', the external temperature 23.12 °C' and one of the exhaust
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fan was turned on 57% of the time (2 minutes, 51 seconds).

Due to that ideal thermal conditions (ideal temperature) depend on the
infrastructure of the facility, age and bird breed, the original datasheet was
divided into three subsets as follows: Matrix A (datasheet A) with 3601 rows
which corresponds to the first third of the broilers’ life, Matrix B with 3601
rows which corresponds to the second third of the broilers’ life and, finally,
Matrix C" with 3601 rows which correspond to the last third of the broilers’
life. Therefore, each of the matrices A, B and C involve 300 hours (or 12.5
days).

Three sets of parameters were estimated corresponding to the three peri-
ods of the bird’s life.

Therefore, the four strategies of derivative-free optimization are imple-
mented in the three datasets. The process began by giving trial values of
the parameters pq, po, p3. Then, the first objective function was evaluated in
the following way: We ran the PDE (Partial Differential Equation) model
described in [11] from ¢ = 0 to ¢ = 60 minutes employing the real internal
temperature at ¢ = 0 as initial condition, and we call T},,4¢,(60) as the av-
erage temperature at minute 60. Then, we ran the PDE model from ¢ = 60
to t = 120 using the real internal temperature at ¢ = 60 as initial condition,
calling T,04e1(120) as the average temperature computed by the model at
minute 120. The observed average internal temperature provided by ma-
trix A at minutes 60 and 120 are called T,,,(60) and T,,5(120), respectively.
We proceed in the same way in the interval times [120, 180], [180, 240}, ...,
[17940, 18000].

For these calculations we used the trial parameters, the data given by
external temperatures, and the exhaust fan information given in A. The
objective function value is the sum of squares of the differences between
the predicted temperatures T),04(t) and the observed temperature T,,s(t),
divided by the number of predicted temperatures, in this case 300. In a
similar way we computed the objective functions that correspond to the
second and third part of the data.

Even though the temperatures for every 5 minutes were available, only
the temperatures at each hour were used at the objective function. This
choice was made considering that the PDE model is proposed as a tool to
predict the internal temperatures for a reasonably large time interval. If the
parameters are optimized using the predictions for every 5 minutes, they can
be not properly fitted for predictions of larger time intervals.

Let us emphasize that the PDE model is restarted for every 60 minutes
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of simulation, that is, to predict the internal temperature at instant 60, we
use the real internal temperature at instant 0, to predict the temperature
at instant 120 we use the real one at instant 60, and so on. Finally, we
estimated another set of parameters, corresponding to the whole broilers’
life. The corresponding data set was stored at matrix D.

Pattern Search was executed by using the routine “patternsearch” (default
parameters, except for tolerance) in MatLab. “SID-PSM version 2.0” (default
parameters, except for tolerance and the step of the incremental parameter,
in this case value of 2) in MatLab for the SID-PSM method. BOBYQA was
executed in FORTRAN (default parameters, except for the tolerance) and
Golden Section was implemented in MatLab by setting the distance between
consecutive points to define the stopping criterion. For the whole set of
strategies, the parameter that defines the stopping criterion was set to 1075,

4.2 Results and discussion

Results of the optimization for each training set and each method are pre-
sented in Tables 2 to 5. The improvement with respect to the initial ap-
proximation given by p; = 1,ps = 0.5,p3 = 1, is also shown. The initial
approximation has been obtained from [11] by trial and error.

Tab. 2: Optimization of m(p) using A. This table shows the function opti-
mal value, the optimal parameters obtained, the improvement with
respect to the initial approximation (%) and the number of function
evaluations performed by each method.

Method m(p) m Do D3 %  fevals
Initial approx. 1.50 1.00 0.50 1.00 0.0 —
Pattern Search 1.29 4.39 40.00 1.19 14.1 491

SID-PSM 1.29 4.39 40.00 1.19 14.1 513
BOBYQA 1.29 4.39 40.00 1.19 14.1 103
Golden Section 1.33 2.48 40.00 2.04 11.7 144

From Tables 2 to 5 we derive the following conclusions.

1. All the optimization methods were successful in terms of improving the
approximation given by trial-and-error.
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Tab. 3: Optimization of m(p) using B. This table shows the function opti-
mal value, the optimal parameters obtained, the improvement with
respect to the initial approximation (%) and the number of function

evaluations performed by each method.

Method m(p) P2 P3 %  fevals
Initial approx. 2.13 1.00 0.50 1.00 0.0 —
Pattern Search 1.06 18.76 40.00 0.34 50.2 1140

SID-PSM 1.06 18.76 40.00 0.34 50.2 716
BOBYQA 1.06 18.76 40.00 0.34 50.2 184
Golden Section 1.09 16.67 40.00 0.47 48.7 144

Tab. 4: Optimization of m(p) using C. This table shows the function opti-
mal value, the optimal parameters obtained, the improvement with
respect to the initial approximation (%) and the number of function

evaluations performed by each method.

Method m(p) Do D3 %  fevals
Initial approx. 4.00 1.00 0.50 1.00 0.0 —
Pattern Search 1.99 13.07 40.00 0.31 50.2 1088

SID-PSM 1.99 13.07 40.00 0.31 50.2 577
BOBYQA 1.99 13.07 40.00 0.31 50.2 107
Golden Section 2.02 11.20 40.00 0.39 59.7 144

2. All the methods found the same solutions, except Golden Section, that

obtained poorer approximations.

3. BOBYQA was the most efficient method since it always obtained the
lowest functional values and the smallest number of functional evalua-

tions.

4. The optimal parameter p, always reached its upper bound. This means
that, in the best case, the model runs essentially “without walls”. This
is a limitation of the one-dimensional formulation.

Using the fourth training set (D) as an example, the function values
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Tab. 5: Optimization of m(p) using D. This table shows the function opti-
mal value, the optimal parameters obtained, the improvement with
respect to the initial approximation (%) and the number of function
evaluations performed by each method.

Method m(p) m D2 P3 %  fevals
Initial approx. 2.54 1.00 0.50 1.00 0.0 —
Pattern Search 1.50 9.43 40.00 0.35 41.2 903

SID-PSM 1.50 9.43 40.00 0.35 41.2 506
BOBYQA 1.50 9.43 40.00 0.35 41.2 153
Golden Section 1.51 8.76 40.00 0.43 40.7 144

versus the number of iterations for each method was plotted (Figure 4).

In Figure 4, it is possible to observe that the optimal point is obtained at
the beginning of the iterative processes; most iterations are used to confirm
that the point is optimal.

In order to improve the understanding of the results, some profiles of
the objective functions were plotted. For this, we fixed two variables as the
optimum values found by SID-PSM and let one to vary. In Figure 5, the
profiles using A are presented while in Figure 6, profiles using Matrix B are
shown.

These profiles show that m, as a function of ps, tends asymptotically to a
horizontal line and the unconstrained optimization problem has no (global)
minimizer. Also, it can be seen that m is well-behaved and seems to have
no stationary points other than the solution of the problem. Although these
graphics were plotted using the fixed variables as the optimal values found
using SID-PSM, similar behavior is obtained when they are fixed as the
optimal values found by Pattern Search or BOBYQA.

5 Conclusions

The real-time features of the temperature control model make it necessary
to select the fastest method for parameter estimation and fitting. Correction
of the parameters (p;, po and p3) should occur during the operation of the
system and consequently, speed (computing time) is crucial for compatibility
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Fig. 4. Graphics of the function value per iteration for different methods
using the fourth training set.

with the growing, rearing and dynamics process of the broilers by itself. As
was mentioned before, the control of thermal environment inside the broiler
houses is a complex problem. A strategy related to impose fixed param-
eters for consecutive execution in real-time of the model is unfeasible and
unreliable. So, self-optimization and incorporation of the estimation/fitting
software into the control model is crucial for the effective and accurate re-
sponse of the system.

In this sense and after being evaluated the results of the four strategies
with derivative-free methods, Powell’s software BOBYQA seems to be the
most adequate tool for this type of parameter estimation. The reason for the
superiority of BOBYQA is that, as shown in figures 5 and 6, the objective
function is well-behaved and does not seem to present attractive stationary
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points, other than the solutions of the problem. BOBYQA proceeds inter-
polating quadratic models, so its comparative performance improves when
the function is smooth and presumably unimodal. The derivatives of the
objective function with respect to the parameters are computable, either by
hand-calculation or by automatic differentiation. However, the human cost
of these tasks are rather discouraging, especially at a level of development
in which one changes frequently the structure of the model. The friendliness
of derivative-free software makes it preferable to more sophisticated alter-
natives. Moreover, the commercial feasibility of temperature control model
imposes that our own solver for real time optimization must be developed.
Thus, the present research allowed detecting the best type of software and
adjustments that should be implemented.

In addition to the decision on the best solver for parameter estimation, the
present numerical study provided the understanding of the structure of the
problem. The fact that the best wall diffusion parameter is infinity revealed
that something is inadequate in the formulation of the PDE model. This is
not surprising because the PDE model comes from a radical one-dimensional
simplification of a Fluid Mechanics problem whose solution in real time is
impossible, at least subject to the budget restrictions of this project in terms
of computing time. Since 3D models are certainly unaffordable, it can be
conjectured that 2D models should be developed. Our present feeling is that
models based on a parallel plane to the floor could reflect adequately the
diffusion through different types of walls.
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Fig. 5: Profiles using Matrix A, these graphics have two variables set as the
optimum value found by SID-PSM and the other one is free. They
show how the average error behaves when we change just one of the
variables.
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Fig. 6: Profiles using Matrix B, these graphics have two variables set as the
optimum value found by SID-PSM and the other one is free. They
show how the average error behaves when we change just one of the
variables.



