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Abstra
t

Intensive broiler produ
tion requires of a

urate 
ontrol systems aimed to maintain

ideal 
onditions inside the fa
ilities. The a
hievement of an appropriate environ-

ment guarantees good performan
e and sustainability of the produ
tion. Control

and monitoring of temperature is a key fa
tor during the produ
tion 
y
le. In


ountries with tropi
al and subtropi
al 
limate, su
h as Brazil, high values of tem-

peratures 
an a�e
t negatively the broiler produ
tion. Based on a temperature


ontrol model developed by the authors, this resear
h is fo
used on the determina-

tion and �tting of the intrinsi
 parameters of the model. Conse
utive exe
utions
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of the model and 
hanges in the fa
ilities suggest adapting parameters 
onstantly

under the perspe
tive of real-time systems. Four strategies of derivative-free opti-

mization were applied to adjust the parameters of the model. Experiments were


ondu
ted with data 
olle
ted from a pilot farm in South-eastern Brazil. Results

demonstrated that the pro
ess of updating parameters needs to be implemented on

the temperature 
ontrol model. BOBYQA method resulted to be the best strategy

to be taken into 
onsideration for the improvement of the system.

Keywords: Parameter optimization, broiler produ
tion, 
ontrol of temperature,

derivative-free methods, real-time.

1 Introdu
tion

Livesto
k produ
tion requires 
ontrol, monitoring and surveillan
e of oper-

ating 
onditions in order to guarantee good performan
e, produ
tivity, sus-

tainability and animal 
omfort. Basi
ally, these operating 
onditions are re-

lated to thermal variables: temperature, relative humidity, air velo
ity/wind

speed amongst other fa
tors and their intera
tion with automated or semi-

automated devi
es inside the fa
ilities (ventilation systems and 
ontrollers).

Temperature is one of the key variables to be kept under 
ontrol during a

rearing pro
ess [1℄. For intensive broiler produ
tion (
hi
ken meat), temper-

ature inside the fa
ilities (broiler houses) is a 
ru
ial fa
tor that needs to be


ontrolled and monitored almost in real-time [2, 3℄.

Brazil is one of the top three broiler produ
ers in the world together with

United States of Ameri
a and China. In 
ountries where 
limate is tropi
al

and subtropi
al, su
h as Brazil, variations of temperature a�e
ts the rearing

pro
ess by putting at risk the thermal 
omfort of the animals. Dis
omfort

produ
es heat stress and high rates of mortality [4℄; in 
onsequen
e, produ
-

tion is a�e
ted negatively in terms of weight 
onversion, feed e�
ien
y and

animal welfare [5℄. Therefore, an e�
ient 
ontrol of thermal 
onditions is

ne
essary to maximize the produ
tion and guarantee its sustainability.

An e�
ient 
ontrol of thermal 
onditions is 
ommonly supported by ven-

tilation systems and 
ontrollers inside the fa
ilities. The a
hievement of ideal


onditions is asso
iated to the intera
tion with automated 
ontrollers and op-

erating poli
ies whi
h respond to the 
urrent 
onditions (thermal variables)

by swit
hing on or o� devi
es (exhaust fans, 
ooling pads and humidi�ers).

The 
hallenge is to guarantee the most 
omfortable mi
ro
limate inside the

broiler houses. Keeping a good mi
ro
limate is a 
omplex problem. Some
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approa
hes deal with quantitative methods in data-driven models whi
h use

Computation Fluid Dynami
s (CFD), Statisti
s, Data Mining, Arti�
ial In-

telligen
e and Applied Mathemati
s in order to understand, 
ontrol and sup-

port a

urately the thermal 
onditions at the fa
ilities by intera
ting with

automated devi
es. All these approa
hes are 
alled as pre
ision livesto
k

farming (PLF). Some interesting resear
hes 
an be found in [6�10℄.

Re
ently, authors of this resear
h developed a temperature 
ontrol model

aimed to support thermal 
onditions inside broiler houses. The model 
om-

bines applied mathemati
s, optimization and some empiri
al 
onsiderations

in order to equilibrate a

ura
y with fast exe
ution for real-time pra
ti
e.

The developed model, des
ribed in details in [11℄, uses a one-dimensional

representation of the broiler house, with left and right walls, in whi
h the

temperature is propagated by a di�usion pro
ess, subje
t to boundary 
on-

ditions given by external temperature and initial 
onditions provided by sev-

eral sensors pla
ed along the house. The ventilation system (Exhaust fans)

is modeled as heat sour
es that 
ontribute to balan
e the temperature in-

side the fa
ilities. This model would require of the determination/ �tting of

three parameters asso
iated to it for its 
orre
t use as a supporting tool. The

�tting pro
ess is ne
essary when 
hanges or stru
tural modi�
ations of the

broiler house are eviden
ed. These 
hanges and the real-time approa
h 
ould

produ
e signi�
ant variations of the 
oe�
ients, so the update of parameters

be
omes a key task to be implemented.

In this resear
h, the determination and �tting of the parameters asso
i-

ated to the temperature 
ontrol model [11℄ is managed by using 
ontinuous

derivative-free optimization. This family of optimization methods tries to

a
hieve the optimal value of an obje
tive fun
tion without evaluating or ap-

proximating its derivatives. They are used, for example, when a bla
k-box

obje
tive fun
tion is present, i.e., when the a
tual equation of the obje
tive

fun
tion is not available, so its derivatives are also not available. Parameter

optimization problems usually �t in this family of problems.

Some related problems are 
ited in Audet and Orban [12℄. They proposed

an obje
tive fun
tion to optimize the parameters of a trust region method in

terms of the pro
essing time of the method. Cervelin [13℄ proposed some vari-

ations of the obje
tive fun
tion and optimized the parameters of a derivative-

free method in relation to the number of fun
tion evaluation performed by

it. These two works fo
us more in the optimization pro
ess than the appli
a-

tion of the te
hniques in real-world problems. Wild [14℄ used derivative-free

te
hniques to solve the parameter estimation of problems related to nu
lear
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physi
s, and Mukherjee [15℄ enun
iates some derivative-free te
hniques that

are implemented for metal 
utting pro
esses.

Under these premises, the paper is aimed to des
ribe how 
ontinuous

derivative-free optimization is applied to the temperature 
ontrol model. Pa-

rameters asso
iated to the model 
orrespond to the di�usion 
oe�
ient inside

the house, the di�usion 
oe�
ient in the walls and the e�e
t of ea
h exhaust

fan on the variation of the temperature in one unit of time. Fitting these 
o-

e�
ients to a
tual data is a task that may be a

omplished by minimization

algorithms. The temperature model is part of a 
ontrol model and, sin
e it


an be modi�ed in order to improve the 
ontrol model e�
ien
y, the merit

fun
tion that measures the quality of the approximation 
an 
hange. So,

even if it is not impossible to 
ompute the derivatives of the merit fun
tion,

the ne
essity of 
hanging the model stru
ture led us to the use of derivative-

free methods. These methods allow taking advantage of enough �exibility

and satisfa
tory speed of exe
ution for real-time situations.

The stru
ture of the paper is presented as follows: Se
tion 2 des
ribes a

summarization of the temperature 
ontrol model obtained from [11℄ together

with the 
ontrol pro
ess and its relation with derivative-free te
hniques, Se
-

tion 3 gives a basi
 des
ription with �ow
harts of the 
ontinuous derivative-

free optimization te
hniques used in the resear
h. In Se
tion 4 the 
ase

study for a Brazilian broiler house is detailed with its 
orresponding results

and dis
ussion. Finally, the paper is 
losed in Se
tion 5 with the 
on
lusions.

2 The temperature 
ontrol model

2.1 Basi
s of the model

The Broiler House is represented as a segment [0, L], where L represents the

length of the house, the segments [−a, 0] and [L, L+a] represent the left-wall
and the right-wall respe
tively. Thus, a may be thought as the thi
kness of

ea
h wall. The 
ontrol devi
es have the property of de
reasing the internal

temperature (T ) u Celsius degrees per time unit, where u = u(x, t) is a

fun
tion that depends on the 
ontrol de
isions. So, the Partial Di�erential

Equation (PDE) problem is given by:

∂T

∂t
(x, t) = p2

∂2T

∂x2
(x, t) if x ∈ [−a, 0],
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∂T

∂t
(x, t) = p1

∂2T

∂x2
(x, t)− u(x, t) if x ∈ [0, L],

∂T

∂t
(x, t) = p2

∂2T

∂x2
(x, t) if x ∈ [L, L+ a],

T (x, 0) given for all x ∈ [−a, L+ a],

T (−a, t) = T (L+ a, t) given for all t ≥ 0,

∂2T

∂x2
(0, t) =

∂2T

∂x2
(L, t) = 0 for all t ≥ 0.

The 
ontrol fun
tion will be assumed to depend on the 
ontrol devi
es

(here, the ventilation system or exhaust fans). Moreover, it is assumed that

the 
ontrol devi
es have a �nite number of possible states d0, d1, . . . , dN . For
example, dj indi
ates that the number of 
onne
ted exhaust fans is j. To

ea
h possible state of the 
ontrols dj a fun
tion udj(x, t) is asso
iated and

de�ned as follows:

udj (x, t) = α− 0.05jp3.

So, in the absen
e of 
onne
ted exhaust fans, the internal temperature

in
reases α degrees per time unit but the a
tivation of ea
h fan de
reases the

temperature 0.05p3 degrees per time unit.

The one-dimensional PDE model des
ribed has three parameters that

need to be �tted to real data before (or during) the exe
ution in broiler

houses. As mentioned before, the three parameters 
orrespond to the di�u-

sion 
oe�
ient inside the house, the di�usion 
oe�
ient in the walls and the

e�e
t of ea
h exhaust fan on the variation of the temperature in one unit of

time. Fitting of these parameters is performed by derivative-free algorithms.

2.2 The Control Pro
ess and Fitting of Parameters

The PDE des
ribed in Se
tion 2.1 predi
ts the temperature inside the broiler

house using predi
tions of the external one. To do so, the PDE uses some

internal parameters (di�usion 
oe�
ients and fans e�e
ts). These parame-

ters were previously estimated for a parti
ular broiler house, but, sin
e they

depend on several other parameters that are not 
onsidered in the model

(quantity and size of the birds, broiler house wall material, the maintenan
e

of the exhaust fans and other spe
i�
 parameters of the house), they should be

adjusted for ea
h broiler house. And more, sin
e some of the non-
onsidered

parameters are time dependent, it is reasonable to re
alibrate the parameters
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during the simulation. The parameters are updated if the predi
ted internal

temperature is very di�erent from the observed one.

During the rearing pro
ess, a set of sensors are strategi
ally positioned

inside the broiler house. These sensors provide the temperature in real time.

Human operator or an automated operator (
ontroller) reads these 
urrent

temperatures. In addition, an external sensor 
olle
ts the outside tempera-

ture and its fore
asted values for a next period. These values are also trans-

mitted and read by the operator. A

ording to the values of the registered

temperatures the operator de
ides to swit
h on or o� the 
orre
t number of

exhaust fans in order to approximate the internal temperature to the ideal

one whi
h depends basi
ally on the infrastru
ture of the fa
ility, age and

breed of the animal. For that purpose, the operator fore
asts the internal

temperature for a period of (say) one hour and, based on this predi
tion,

de
ides how to pro
eed with the exhaust fans.

To make the de
ision, the operator 
ompares the results of 
onne
ting or

dis
onne
ting every 
ombination of the exhaust fans along the period under


onsideration and 
hooses the 
ombination that, a

ording to the predi
tion,

produ
es the best pro�le of internal temperatures in terms of animal 
omfort.

The pro
ess of 
hoosing the 
on�guration of 
onne
ted fans is a 
ombi-

natorial optimization problem where a 
omfort fun
tion, represented by the

di�eren
e between the a
hieved temperature and the ideal one is optimized.

In turn, the evaluation of the 
omfort-like fun
tion involves the experien
e

of the operator (if human), the 
onsolidated advi
e in some operation sheet

(also re�e
ting human experien
e) or the exe
ution of a predi
tion model, in

the 
ase that the 
ontrol is automati
.

In the temperature 
ontrol model, the predi
tion is given by the solution

of the one-dimensional PDE system brie�y des
ribed in Se
tion 2.1. As said

above, the parameters of the PDE may be modi�ed during the pro
ess, and

for appli
ability of the temperature 
ontrol model, it must be done in real-

time.

In fa
t, the whole system involves permanent 
olle
tion of data and par-

allel �tting of the parameters to updated data. This self-
orre
ting s
heme

should improve the su

ess of the operation as far as time goes on in a single

broiler house. However, stru
tural modi�
ations of the broiler house may

produ
e signi�
ant variations of the �tted 
oe�
ients. Therefore, it is im-

portant to implement e�
ient and reasonably fast �tting algorithms to the

parameters of the temperature 
ontrol model.

In 
onsequen
e, the main goal is to minimize a measure fun
tion m. This
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fun
tion gives the performan
e of the method. In this spe
i�
 
ase, it will be

represented by the 2-norm of the di�eren
e of the predi
ted temperature and

the observed one at several instants of times. Usually this kind of problem has

a bla
k-box obje
tive fun
tion, i.e., the equation that de�nes the obje
tive

fun
tion is not known. Sin
e there is no a

ess to its expression, then there

is no a

ess to its derivatives, so derivative-free methods 
an be used to

optimize the fun
tion.

It also supposed that fun
tion m depends on some parameters p of the

method and the set of problems used to �nd the optimal parameters is 
alled

training set. In this resear
h, the measure fun
tion m is the error performed

by the �rst order PDE when solving the problems on the training set. The

main parameters of the PDE model are the di�usion of temperature in the

broiler house (p1), the di�usion temperature in the walls (p2), and the e�e
t

of ea
h exhaust fan on the variation of temperature in one time unit (p3). For
instan
e, if the predi
ted variation of temperature a

ording to the di�usion

model at the position x from time t to t+1 in the absen
e of exhaust fans is

α, the predi
ted variation with one 
onne
ted exhaust fan will be α−0.05p3.
The optimization problem whi
h tries to �nd the values of parameters

that best �ts the data is:

minimize m(p) ≡
‖TS(p)− Tr‖

2
2

n
such that 0 ≤ pi ≤ 40 i = 1, 2, 3,

(1)

where n is the number of simulated temperatures, p is the ve
tor with the

parameters in whi
h we are interested, TS(p) is a ve
tor with simulated tem-

peratures for di�erent instants of time using the parameters p and Tr is a

ve
tor with the observed temperatures at the same times. Note that the

upper limit 40 for p3 means that ea
h exhaust fan de
reases the temperature

2 degrees Celsius per unit of time.

Three main strategies were sele
ted to solve the problem: the �rst one

uses BOBYQA [16�18℄ that optimizes the obje
tive fun
tion using a trust

region model based on quadrati
 interpolation; the se
ond one uses Pattern

Sear
h [19℄ whi
h tries to �nd the optimal point moving through a positive

generating set of dire
tions, and �nally the third strategy uses SID-PSM

[20℄ whi
h 
ombines the Pattern Sear
h approa
h with trust regions based

on simplex derivatives. These strategies are able to deal with multidimen-

sional derivative-free problems, as it happens in this resear
h. An optional

(the fourth one) strategy was also in
luded whi
h deals with Golden Se
tion
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Sear
h [21℄. Although, this last method is appli
able only for one-dimensional

problems, it was used by optimizing the parameters in a sequential way, i.e.,

ea
h parameter at a time.

Results found by ea
h of the four strategies will help to determine the

�nal de
ision about the type of minimization method that should be used

in pra
ti
al situations from now on. This de
ision is made by establishing a


omparison/ben
hmarking pro
ess within the whole set of strategies.

3 Basi
 ba
kground of 
ontinuous derivative-free

optimization te
hniques

3.1 BOBYQA

BOBYQA (Bound Optimization BY Quadrati
 Approximation) was pre-

sented in [18℄. Some theoreti
al properties are des
ribed in [16, 17℄. As its

name states, it tries to optimize a problem approximating the obje
tive fun
-

tion by quadrati
 models, whi
h are built using interpolation points. These

points are the ones where the obje
tive fun
tion was already evaluated at

previous iterations.

In ea
h iteration we build a model, optimize it in a trust region and

verify if the minimizer of the model de
reases the value of the obje
tive

fun
tion. If it happens, we a

ept this point as the new approximation to

the minimizer and update the points of the interpolation and the trust region

size; otherwise, we update the points of the interpolation and de
rease the

trust region size.

Figure 1 shows the BOBYQA pro
ess.

3.2 Pattern sear
h

Pattern Sear
h [19℄ is a derivative-free optimization method that tries to

�nd the optimal point of an obje
tive fun
tion f moving through some �xed

dire
tions of a set D.

D must be a positive spanning set, i.e., any ve
tor of the work spa
e 
an

be des
ribed as a positive linear 
ombination of the dire
tions in D.

For ea
h iteration, there is an approximation xk of the minimizer and it is

updated by evaluating f(xk+αdi) where di is a ve
tor of D and α is the step

parameter of the method. If this fun
tion value is less than f(xk), then set
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Fig. 1: Flow
hart of the BOBYQA method.

xk+1 = xk+αdi and it is possible to update the step parameter in
reasing its

size, otherwise, another dire
tion in D should be used. If all the dire
tions

were used and there is no improvement in the fun
tion value, then the step

parameter sizeshould be de
reased.

Usually, the stop 
riteria of this method is the step parameter, if it is

smaller than a value at iteration k, then xk is an approximation of the mini-

mizer of f .
Figure 2 shows a �ow
hart des
ribing the method.

3.3 SID-PSM

The SID-PSM (Simplex Derivatives in Pattern Sear
h Method) method was

presented at [20℄. It is a 
ombination of Pattern Sear
h with trust region

method.

In ea
h iteration the points in whi
h the fun
tion is evaluated are stored.

Then, given an approximation xk for the minimizer of f and a positive span-

ning set D, the method 
an be des
ribed in three steps:

1. Look for a subset of the stored points with a good geometry to approx-
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Fig. 2: Flow
hart of the pattern sear
h method.

imate the obje
tive fun
tion;

2. If there is a set of points with good geometry, we build a model m, and

minimize it. If its minimizer de
reases the obje
tive fun
tion value,

we a

ept this point as the new approximation for the minimizer of f .
Else, go to step 3.

3. In the last step we perform the Pattern Sear
h. Also, one 
an try to

improve the behavior of the Pattern Sear
h by adding some dire
tions

using data from the model.

As in the Pattern Sear
h method, if the iteration is su

essful we 
an

in
rease the step size parameter; otherwise, we must de
rease it.

Figure 3 des
ribes the �ow
hart of the method.

3.4 Golden Se
tion

The Golden Se
tion Sear
h method is an one-dimensional derivative-free op-

timizationmethod [21℄. This method shrinks an initial interval [a, b], in whi
h
it is known to have a lo
al minimizer of the obje
tive fun
tion f .
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Fig. 3: Flow
hart of the SID-PSM method.

At ea
h iteration, we 
ompute the points c and d (where c < d) that

divides the original interval by the golden ratio, then if c gives a better

obje
tive fun
tion than d, we set b = d, and restart the pro
ess, otherwise

we update a making it equals to c.

The reason to use the golden ratio is that the point not used in the

update pro
ess will be the c or d of the next iteration, so we must evaluate

the obje
tive fun
tion in only one point at ea
h iteration. The stop 
riterion

for this method is usually used as the distan
e between a and b.

As mentioned before, this method is used to optimize one-dimensional

problems. Here, our target refers to multidimensional problems. However,

the method was used as an alternative strategy. In order to apply this

method, we optimized ea
h variable at a time. Also, it is important to noti
e

that there is no mathemati
al guarantee that this strategy will 
onverge to

a stationary point.
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4 Case study

4.1 Material & Methods

Experiments were 
arried out in a pilot farm situated near the 
ity of Cabreuva,

State of São Paulo, South-eastern Brazil. The broiler house has the following

spe
i�
ations: 150 m of length, 15 m of width and 2.5 m of height. 24, 000
birds (Cobb breed) in average are rearing there in a produ
tion 
y
le with

an estimated duration of 42 days. The fa
ility has ventilation system whi
h


ontains 9 exhaust fans, an automati
 
ontroller and other devi
es whi
h help

on the environmental 
ontrol inside the house.

Four temperature/relative humidity sensors are strategi
ally pla
ed in

the fa
ility, three of them to register the inside temperature and one of them

to register the outside temperature, respe
tively. These sensors transmit

the temperature values at ea
h 5 minutes whi
h are re
orded in a simple

datasheet of type 
sv or txt.

For this resear
h a total of 10803 valid values were used to perform the

experiments. The datasheet has 3 
olumns labeled as: Number of exhaust

fans (number of fans), average of temperature in Celsius degrees from the

three inside sensors (int temp

◦C) and outside temperature in Celsius de-

grees (ext temp

◦C). The information 
orresponding to ea
h instant t (rows)
involves the average number of exhaust fans turned on in the interval be-

tween t and t + 5 minutes, the average internal temperature 
onsidering 3
di�erent positions of sensors in the house, and the external temperature at

instant t. Table 1 presents a view of the data 
onsidering a sample of 6 rows.

Tab. 1: A Datasheet sample.

Number of fans int. temp.

◦C ext. temp.

◦C
0.57 29.57 23.12
0.23 29.26 22.12
0.13 29.49 21.80
0.13 29.74 21.50
0.12 29.89 21.50
0.14 30.11 21.86

For instan
e, in the �rst line, Table 1 presents the average internal tem-

perature 29.57 ◦C, the external temperature 23.12 ◦C and one of the exhaust
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fan was turned on 57% of the time (2 minutes, 51 se
onds).

Due to that ideal thermal 
onditions (ideal temperature) depend on the

infrastru
ture of the fa
ility, age and bird breed, the original datasheet was

divided into three subsets as follows: Matrix A (datasheet A) with 3601 rows
whi
h 
orresponds to the �rst third of the broilers' life, Matrix B with 3601
rows whi
h 
orresponds to the se
ond third of the broilers' life and, �nally,

Matrix C with 3601 rows whi
h 
orrespond to the last third of the broilers'

life. Therefore, ea
h of the matri
es A, B and C involve 300 hours (or 12.5
days).

Three sets of parameters were estimated 
orresponding to the three peri-

ods of the bird's life.

Therefore, the four strategies of derivative-free optimization are imple-

mented in the three datasets. The pro
ess began by giving trial values of

the parameters p1, p2, p3. Then, the �rst obje
tive fun
tion was evaluated in

the following way: We ran the PDE (Partial Di�erential Equation) model

des
ribed in [11℄ from t = 0 to t = 60 minutes employing the real internal

temperature at t = 0 as initial 
ondition, and we 
all Tmodel(60) as the av-

erage temperature at minute 60. Then, we ran the PDE model from t = 60
to t = 120 using the real internal temperature at t = 60 as initial 
ondition,


alling Tmodel(120) as the average temperature 
omputed by the model at

minute 120. The observed average internal temperature provided by ma-

trix A at minutes 60 and 120 are 
alled Tobs(60) and Tobs(120), respe
tively.
We pro
eed in the same way in the interval times [120, 180], [180, 240], . . . ,
[17940, 18000].

For these 
al
ulations we used the trial parameters, the data given by

external temperatures, and the exhaust fan information given in A. The

obje
tive fun
tion value is the sum of squares of the di�eren
es between

the predi
ted temperatures Tmodel(t) and the observed temperature Tobs(t),
divided by the number of predi
ted temperatures, in this 
ase 300. In a

similar way we 
omputed the obje
tive fun
tions that 
orrespond to the

se
ond and third part of the data.

Even though the temperatures for every 5 minutes were available, only

the temperatures at ea
h hour were used at the obje
tive fun
tion. This


hoi
e was made 
onsidering that the PDE model is proposed as a tool to

predi
t the internal temperatures for a reasonably large time interval. If the

parameters are optimized using the predi
tions for every 5 minutes, they 
an

be not properly �tted for predi
tions of larger time intervals.

Let us emphasize that the PDE model is restarted for every 60 minutes



Fitting param for temp 
ontrol model: 
ase study in a broiler house 130

of simulation, that is, to predi
t the internal temperature at instant 60, we
use the real internal temperature at instant 0, to predi
t the temperature

at instant 120 we use the real one at instant 60, and so on. Finally, we

estimated another set of parameters, 
orresponding to the whole broilers'

life. The 
orresponding data set was stored at matrix D.

Pattern Sear
h was exe
uted by using the routine �patternsear
h� (default

parameters, ex
ept for toleran
e) in MatLab. �SID-PSM version 2.0� (default

parameters, ex
ept for toleran
e and the step of the in
remental parameter,

in this 
ase value of 2) in MatLab for the SID-PSM method. BOBYQA was

exe
uted in FORTRAN (default parameters, ex
ept for the toleran
e) and

Golden Se
tion was implemented in MatLab by setting the distan
e between


onse
utive points to de�ne the stopping 
riterion. For the whole set of

strategies, the parameter that de�nes the stopping 
riterion was set to 10−8
.

4.2 Results and dis
ussion

Results of the optimization for ea
h training set and ea
h method are pre-

sented in Tables 2 to 5. The improvement with respe
t to the initial ap-

proximation given by p1 = 1, p2 = 0.5, p3 = 1, is also shown. The initial

approximation has been obtained from [11℄ by trial and error.

Tab. 2: Optimization of m(p) using A. This table shows the fun
tion opti-

mal value, the optimal parameters obtained, the improvement with

respe
t to the initial approximation (%) and the number of fun
tion

evaluations performed by ea
h method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 1.50 1.00 0.50 1.00 0.0 −
Pattern Sear
h 1.29 4.39 40.00 1.19 14.1 491

SID-PSM 1.29 4.39 40.00 1.19 14.1 513
BOBYQA 1.29 4.39 40.00 1.19 14.1 103

Golden Se
tion 1.33 2.48 40.00 2.04 11.7 144

From Tables 2 to 5 we derive the following 
on
lusions.

1. All the optimization methods were su

essful in terms of improving the

approximation given by trial-and-error.
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Tab. 3: Optimization of m(p) using B. This table shows the fun
tion opti-

mal value, the optimal parameters obtained, the improvement with

respe
t to the initial approximation (%) and the number of fun
tion

evaluations performed by ea
h method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 2.13 1.00 0.50 1.00 0.0 −
Pattern Sear
h 1.06 18.76 40.00 0.34 50.2 1140

SID-PSM 1.06 18.76 40.00 0.34 50.2 716
BOBYQA 1.06 18.76 40.00 0.34 50.2 184

Golden Se
tion 1.09 16.67 40.00 0.47 48.7 144

Tab. 4: Optimization of m(p) using C. This table shows the fun
tion opti-

mal value, the optimal parameters obtained, the improvement with

respe
t to the initial approximation (%) and the number of fun
tion

evaluations performed by ea
h method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 4.00 1.00 0.50 1.00 0.0 −
Pattern Sear
h 1.99 13.07 40.00 0.31 50.2 1088

SID-PSM 1.99 13.07 40.00 0.31 50.2 577
BOBYQA 1.99 13.07 40.00 0.31 50.2 107

Golden Se
tion 2.02 11.20 40.00 0.39 59.7 144

2. All the methods found the same solutions, ex
ept Golden Se
tion, that

obtained poorer approximations.

3. BOBYQA was the most e�
ient method sin
e it always obtained the

lowest fun
tional values and the smallest number of fun
tional evalua-

tions.

4. The optimal parameter p2 always rea
hed its upper bound. This means

that, in the best 
ase, the model runs essentially �without walls�. This

is a limitation of the one-dimensional formulation.

Using the fourth training set (D) as an example, the fun
tion values
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Tab. 5: Optimization of m(p) using D. This table shows the fun
tion opti-

mal value, the optimal parameters obtained, the improvement with

respe
t to the initial approximation (%) and the number of fun
tion

evaluations performed by ea
h method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 2.54 1.00 0.50 1.00 0.0 −
Pattern Sear
h 1.50 9.43 40.00 0.35 41.2 903

SID-PSM 1.50 9.43 40.00 0.35 41.2 506
BOBYQA 1.50 9.43 40.00 0.35 41.2 153

Golden Se
tion 1.51 8.76 40.00 0.43 40.7 144

versus the number of iterations for ea
h method was plotted (Figure 4).

In Figure 4, it is possible to observe that the optimal point is obtained at

the beginning of the iterative pro
esses; most iterations are used to 
on�rm

that the point is optimal.

In order to improve the understanding of the results, some pro�les of

the obje
tive fun
tions were plotted. For this, we �xed two variables as the

optimum values found by SID-PSM and let one to vary. In Figure 5, the

pro�les using A are presented while in Figure 6, pro�les using Matrix B are

shown.

These pro�les show that m, as a fun
tion of p2, tends asymptoti
ally to a

horizontal line and the un
onstrained optimization problem has no (global)

minimizer. Also, it 
an be seen that m is well-behaved and seems to have

no stationary points other than the solution of the problem. Although these

graphi
s were plotted using the �xed variables as the optimal values found

using SID-PSM, similar behavior is obtained when they are �xed as the

optimal values found by Pattern Sear
h or BOBYQA.

5 Con
lusions

The real-time features of the temperature 
ontrol model make it ne
essary

to sele
t the fastest method for parameter estimation and �tting. Corre
tion

of the parameters (p1, p2 and p3) should o

ur during the operation of the

system and 
onsequently, speed (
omputing time) is 
ru
ial for 
ompatibility
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(a) Pattern Sear
h. (b) SID-PSM.

(
) BOBYQA. (d) Golden Se
tion.

Fig. 4: Graphi
s of the fun
tion value per iteration for di�erent methods

using the fourth training set.

with the growing, rearing and dynami
s pro
ess of the broilers by itself. As

was mentioned before, the 
ontrol of thermal environment inside the broiler

houses is a 
omplex problem. A strategy related to impose �xed param-

eters for 
onse
utive exe
ution in real-time of the model is unfeasible and

unreliable. So, self-optimization and in
orporation of the estimation/�tting

software into the 
ontrol model is 
ru
ial for the e�e
tive and a

urate re-

sponse of the system.

In this sense and after being evaluated the results of the four strategies

with derivative-free methods, Powell's software BOBYQA seems to be the

most adequate tool for this type of parameter estimation. The reason for the

superiority of BOBYQA is that, as shown in �gures 5 and 6, the obje
tive

fun
tion is well-behaved and does not seem to present attra
tive stationary
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points, other than the solutions of the problem. BOBYQA pro
eeds inter-

polating quadrati
 models, so its 
omparative performan
e improves when

the fun
tion is smooth and presumably unimodal. The derivatives of the

obje
tive fun
tion with respe
t to the parameters are 
omputable, either by

hand-
al
ulation or by automati
 di�erentiation. However, the human 
ost

of these tasks are rather dis
ouraging, espe
ially at a level of development

in whi
h one 
hanges frequently the stru
ture of the model. The friendliness

of derivative-free software makes it preferable to more sophisti
ated alter-

natives. Moreover, the 
ommer
ial feasibility of temperature 
ontrol model

imposes that our own solver for real time optimization must be developed.

Thus, the present resear
h allowed dete
ting the best type of software and

adjustments that should be implemented.

In addition to the de
ision on the best solver for parameter estimation, the

present numeri
al study provided the understanding of the stru
ture of the

problem. The fa
t that the best wall di�usion parameter is in�nity revealed

that something is inadequate in the formulation of the PDE model. This is

not surprising be
ause the PDE model 
omes from a radi
al one-dimensional

simpli�
ation of a Fluid Me
hani
s problem whose solution in real time is

impossible, at least subje
t to the budget restri
tions of this proje
t in terms

of 
omputing time. Sin
e 3D models are 
ertainly una�ordable, it 
an be


onje
tured that 2D models should be developed. Our present feeling is that

models based on a parallel plane to the �oor 
ould re�e
t adequately the

di�usion through di�erent types of walls.
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(a) The average squared error as

fun
tion of p1 has a unique minimizer

at p1 = 4.39.

(b) The average squared error as

fun
tion of p1 in a smaller interval,

p1 varying from 3 to 5.

(
) The average squared error as

fun
tion of p2 has no minimizer, it

tends asymptoti
ally to a horizontal

line.

(d) The average squared error as

fun
tion of p2 in a larger interval

showing how the error tends to an

horizontal line.

(e) The average squared error as

fun
tion of p3 has a unique minimizer

at p3 = 1.19.

(f) The average squared error as

fun
tion of p3 in a smaller interval,

p3 varying from 0 to 2.

Fig. 5: Pro�les using Matrix A, these graphi
s have two variables set as the

optimum value found by SID-PSM and the other one is free. They

show how the average error behaves when we 
hange just one of the

variables.
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(a) The average squared error as

fun
tion of p1 has a unique minimizer

at p1 = 18.76.

(b) The average squared error as

fun
tion of p1 in a smaller interval,

p1 varying from 18 to 20.

(
) The average squared error as

fun
tion of p2 has no minimizer, it

tends asymptoti
ally to a horizontal

line.

(d) The average squared error as

fun
tion of p2 in a larger interval

showing how the error tends to an

horizontal line.

(e) The average squared error as

fun
tion of p3 has a unique minimizer

at p3 = 0.34.

(f) The average squared error as

fun
tion of p3 in a smaller interval,

p3 varying from 0 to 1.

Fig. 6: Pro�les using Matrix B, these graphi
s have two variables set as the

optimum value found by SID-PSM and the other one is free. They

show how the average error behaves when we 
hange just one of the

variables.


