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Survival time of random walk in random environment

among soft obstacles
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Abstract

We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of
obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain
quenched and annealed bounds on the tails of the survival time in the general d-dimensional
case. We then consider a simplified one-dimensional model (where transition probabilities and
obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results
for the tail of the survival time. In addition, we study also the “mixed" probability measures
(quenched with respect to the obstacles and annealed with respect to the transition probabilities
and vice-versa) and give results for tails of the survival time with respect to these probability
measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of
Branching Random Walks in Random Environment (BRWRE).
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1 Introduction and main results

Random walk and Brownian motion among random obstacles have been investigated intensively in
the last three decades. For an introduction to the subject, its connections with other areas and an
exposition of the techniques used, we refer to the book [8]. Usually, one distinguishes hard obstacles,
where the particle is killed upon hitting them, and soft obstacles where the particle is only killed with
a certain probability. A typical model treated extensively in [8] is Brownian motion in a Poissonian
field of obstacles. The following questions arise for this model: what is the asymptotic behaviour
of the survival time? What is the best strategy of survival, i.e. what is the conditioned behaviour of
the particle, given that it has survived until time n? An important role in answering these questions
has been played by the concept of “pockets of low local eigenvalues” (again, we refer to [8] for
explanations). A key distinction in random media is the difference between the quenched probabil-
ity measure (where one fixes the environment) and the annealed probability measure (where one
averages over the environment).

In this paper, we are considering a discrete model with soft obstacles where there are two sources
of randomness in the environment: the particle has random transition probabilities (which are as-
signed to the sites of the lattice in an i.i.d. way and then fixed for all times) and the obstacles are
also placed randomly on the lattice and then their positions remain unchanged. We investigate the
tails of the survival time. Similar questions have been asked in [1] for simple random walk. The
“pockets of low local eigenvalues” are in our case “traps free of obstacles”: these are regions without
obstacles, where the transition probabilities are such that the particle tends to spend a long time
there before escaping. These regions are responsible for the possibility of large survival time. We as-
sume that the environments (transition probabilities and obstacles) in all sites are independent and
obtain quenched and annealed bounds on the tails of the survival time in the general d-dimensional
case. We then consider a simplified one-dimensional model (where transition probabilities and ob-
stacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for
the tail of the survival time. Having two sources of randomness in the environment, we study also
the “mixed" probability measures (quenched with respect to the obstacles and annealed with respect
to the transition probabilities and vice-versa) and give results for the tails of the survival time with
respect to these probability measures. Further, we develop the analogy with the branching random
walks in random environment (BRWRE) [4; 5], and provide quenched and annealed bounds for
hitting times in the BRWRE model.

Now we define the model formally. Denote by e1, . . . , ed the coordinate vectors, and let ‖ · ‖1 and
‖ · ‖2 stand for the L1 and L2 norms in Zd respectively. The environment consists of the set of
transition probabilities ω = (ωx(y), x , y ∈ Zd), and the set of variables indicating the locations
of the obstacles θ = (θx , x ∈ Zd), where θx = 1{there is an obstacle in x}. Let us denote by
σx = (ωx(·),θx) the environment in x ∈ Zd , and σ = (ω,θ ) = (σx , x ∈ Zd) stands for the (global)
environment. We suppose that jumps are uniformly bounded by some constant em, which means that
ωx(y) = 0 if ‖x − y‖1 > em. Let us denote byM the environment space where the σx are defined,
i.e.

M =
n�
(a(y))y∈Zd , b
�

: a(y)≥ 0,∀y ∈ Zd ,
∑

y∈Zd

a(y) = 1=
∑

y:‖y‖1≤em
a(y), b ∈ {0,1}

o
.
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We assume that (σx , x ∈ Zd) is a collection of i.i.d. random variables. We denote by P the cor-
responding product measure, and by E its expectation. In some cases these assumptions may be
relaxed, see Remark 1.3 below.

Let
p = P[θ0 = 1].

We always assume 0< p < 1.

Having fixed the realization of the random environment σ, we now define the random walk ξ and
the random time τ as follows. The discrete time random walk ξn starts from some z0 ∈ Zd and
moves according to the transition probabilities

P
z0
σ [ξn+1 = x + y | ξn = x] =ωx(y).

Here P
z0
σ stands for the so-called quenched probability (i.e., with fixed environment σ) and we

denote by E
z0
σ the corresponding expectation. Usually, we shall assume that the random walk starts

from the origin, so that z0 = 0; in this case we use the simplified notations Pσ,Eσ.

Fix r ∈ (0,1) and let Z1, Z2, . . . be a sequence of i.i.d. Bernoulli random variables with Pσ[Zi = 1] =
r. Denote by Θ= {x ∈ Zd : θx = 1} the set of sites where the obstacles are placed. Let

τ=min{n : ξn ∈ Θ, Zn = 1}.

Intuitively, when the RWRE hits an obstacle, it “disappears” with probability r, and τ is the survival
time of the particle.

We shall also consider the annealed probability law Pz0 = P×Pz0
σ [·], and the corresponding expecta-

tion Ez0 = EE
z0
σ . Again, when the random walk starts from the origin, we use the simplified notations

P,E.

Throughout this paper we suppose that that the environment σ satisfies the following two condi-
tions.

Condition E. There exists ǫ0 > 0 such that ωx(e)≥ ǫ0 for all e ∈ {±ei , i = 1, . . . , d}, P-a.s.

For (ω,θ) ∈M , let
∆ω =
∑

y

yω(y) (1)

be the drift of ω.

Condition N. We have

P[θ0 = 0,∆ω · a > 0]> 0 for all a ∈ Rd \ {0}.

Condition E is a natural (uniform) ellipticity condition; Condition N is a standard condition for
RWRE and assures that the environment has “traps” (i.e., pieces of the environment free from obsta-
cles from where it takes a long time to escape). Let us emphasize that in this paper the term “trap”
does not refer to the disappearing of the particle; on the contrary, by “the particle is trapped in some
place” we usually mean that the particle stays alive but is likely to remain in that place for a long
time. Observe that Condition N implies that the RWRE is (strictly) nestling, i.e. the origin is in the
interior of the convex hull of the support of ∆ω.
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Our goal is to study the quenched and annealed tails of the distribution of τ: Pσ[τ > n] and
P[τ > n].

First, we formulate the results on the tails of τ in the d-dimensional case under the above assump-
tions:

Theorem 1.1. For all d ≥ 1 there exist Ka
i
(d)> 0, i = 1,2, such that for all n

P[τ > n]≤ exp(−Ka
1 (d) ln

d n), (2)

and

P[τ > n]≥ exp(−Ka
2 (d) ln

d n). (3)

Theorem 1.2. For d ≥ 1 there exist K
q

i
(d) > 0, i = 1,2,3,4 (also with the property K

q

j
(1) < 1 for

j = 2,4), such that for P-almost all σ there exists n0(σ) such that for all n≥ n0(σ) we have

Pσ[τ > n]≤ exp
�
− K

q

1(d)n exp(−K
q

2(d) ln
1/d n)
�
, (4)

and

Pσ[τ > n]≥ exp
�
− K

q

3(d)n exp(−K
q

4(d) ln
1/d n)
�
. (5)

In fact (as it will be discussed in Section 2) the original motivation for the model of this paper came
from the study of the hitting times for branching random walks in random environment (BRWRE),
see [4]. The above Theorem 1.1 has direct counterparts in [4], namely, Theorems 1.8 and 1.9.
However, the problem of finding upper and lower bounds on the quenched tails of the hitting times
was left open in that paper (except for the case d = 1). Now, Theorem 1.2 of the present paper
allows us to obtain the analogous bounds also for the model of [4]. The model of [4] can be
described as follows. Particles live in Zd and evolve in discrete time. At each time, every particle
in a site is substituted by (possibly more than one but at least one) offspring which are placed in
neighbour sites, independently of the other particles. The rules of offspring generation (similarly to
the notation of the present paper, they are given by ωx at site x) depend only on the location of the
particle. Similarly to the situation of this paper, the collection ω of those rules (the environment) is
itself random, it is chosen in an i.i.d. way before starting the process, and then it is kept fixed during
all the subsequent evolution of the particle system. We denote by ω a generic element of the set of
all possible environments at a given point, and we distinguish ω with branching (the particle can
be replaced with several particles) and ω without branching (the particle can only be replaced with
exactly one particle). The BRWRE is called recurrent if for almost all environments in the process
(starting with one particle at the origin), all sites are visited (by some particle) infinitely often a.s.
Using the notations of [4] (in particular, Pω stands for the quenched probability law of the BRWRE),
we have the following

Proposition 1.1. Suppose that the BRWRE is recurrent and uniformly elliptic. Let T (0, x0) be the

hitting time of x0 for the BRWRE starting from 0. Then, there exist bKq

i
(d) > 0, i = 1,2,3,4, such that

for almost all environments ω, there exists n0(ω) such that for all n≥ n0(ω) we have

Pω[T (0, x0)> n]≤ exp
�
− bKq

1 (d)n exp(−bKq

2(d) ln
1/d n)
�
. (6)

Now, let G be the set of all ω without branching. Suppose that it has positive probability and the origin

belongs to the interior of the convex hull of {∆ω : ω ∈ G ∩ suppP}, where ∆ω is the drift from a site

with environment ω. Suppose also that there is ǫ̂0 such that

P
�
Pω[total number of particles at time 1 is 1]≥ ǫ̂0

�
= 1,
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i.e., for almost all environments, in any site the particle does not branch with uniformly positive proba-

bility. Then

Pω[T (0, x0)> n]≥ exp
�
− bKq

3(d)n exp(−bKq

4(d) ln
1/d n)
�
. (7)

Now, we go back to the random walk among soft obstacles. In the one-dimensional case, we are
able to obtain finer results. We assume now that the transition probabilities and the obstacles
are independent, in other words, P = µ ⊗ ν , where µ,ν are two product measures governing,
respectively, the transition probabilities and the obstacles. We further assume em= 1 and we denote
ω+x =ωx(+1) and ω−x = 1−ω+x =ωx(−1). Condition N is now equivalent to

inf{a : µ(ω+0 ≤ a)> 0}< 1/2,
sup{a : µ(ω+0 ≥ a)> 0}> 1/2,

(8)

i.e., the RWRE is strictly nestling. Let

ρi =
ω−

i

ω+
i

, i ∈ Z . (9)

Define κℓ = κℓ(p) such that

E
� 1

ρ
κℓ
0

�
=

1

1− p
(10)

and κr = κr(p) such that

E(ρ
κr

0 ) =
1

1− p
(11)

Due to Condition N, since 0< p < 1, κℓ and κr are well-defined, strictly positive and finite. Indeed,
to see this for κr , observe that for the function f (x) = E(ρx

0 ) it holds that f (0) = 1, f (x)→∞ as
x →∞, and f is convex, so the equation f (x) = u has a unique solution for any u > 1. A similar
argument implies that κℓ is well-defined.

We now are able to characterize the quenched and annealed tails of τ in the following way:

Theorem 1.3. For d = 1

lim
n→∞

lnP[τ > n]

ln n
= −(κℓ(p) + κr(p)). (12)

Theorem 1.4. For d = 1

lim
n→∞

ln(− lnPσ[τ > n])

ln n
=

κℓ(p) + κr(p)

1+ κℓ(p) + κr(p)
P-a.s. (13)

In our situation, besides the quenched and the annealed probabilities, one can also consider two
“mixed” ones: the probability measure Pz

ω
= ν × Pz

σ
which is quenched in ω and annealed in θ and

the probability measure Pz
θ
= µ× Pz

σ
which is quenched in θ and annealed in ω. Again, we use the

simplified notations Pω = P0
ω

, Pθ = P0
θ

.

Let

β0 = inf{ǫ : µ[ω+0 < ǫ]> 0}
β1 = 1− sup{ǫ : µ[ω+0 > ǫ]> 0}.

Due to (8) we have β0 < 1/2, β1 < 1/2. Then, we have the following results about the “mixed”
probabilities of survival:
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Theorem 1.5. For d = 1,

lim
n→∞

ln(− ln Pθ [τ > n])

ln n
=
| ln(1− p)|
| ln(1− p)|+ Fe

, ν-a.s., (14)

where

Fe =
ln
�

1−β1

β1

�
ln
�

1−β0

β0

�

ln
�

1−β1

β1

�
+ ln
�

1−β0

β0

� . (15)

Theorem 1.6. For d = 1, we have:

(i) If E(lnρ0) = 0, then, for each ǫ > 0, there exist sequences of positive random variables Rǫn(ω),

Rn(ω) and constants K1, K2 such that for µ-almost all ω,

Pω[τ > n]≤ e−K1Rǫn(ω), (16)

Pω[τ > n]≥ e−K2Rn(ω). (17)

These random variables have the following properties: there exists a family of nondegenerate

random variables (Ξ(ǫ),ǫ ≥ 0) such that

Rn(ω)

ln2 n
→ Ξ(0) and

Rǫn(ω)

ln2 n
→ Ξ(ǫ)

in law as n→∞. Also, we have Ξ(ǫ)→ Ξ(0) in law as ǫ→ 0.

(ii) If E(lnρ0) 6= 0, then

lim
n→∞

ln(− ln Pω[τ > n])

ln n
=

κ

κ+ 1
, (18)

where κ is such that E(ρκ0 ) = 1, in the case when E(lnρ0) < 0, or E
� 1
ρκ0

�
= 1, in the case when

E(lnρ0)> 0.

Remark 1.1. In fact, a comparison with Theorems 1.3 and 1.4 of [7] suggests that

lim sup
n→∞

Rǫn(ω)

ln2 n ln ln ln n
<∞, lim inf

n→∞

Rn(ω) ln ln ln n

ln2 n
> 0, (19)

and, in particular, for µ-almost all ω and some positive constants C1, C2,

lim sup
n→∞

ln Pω[τ > n]

ln2 n ln ln ln n
≤−C1, (20)

lim inf
n→∞

ln Pω[τ > n] ln ln ln n

ln2 n
≥−C2. (21)

However, the proof of (19)–(21) would require a lengthy analysis of fine properties of the potential V

(see Definition 3.1 below), so we decided that it would be unnatural to include it in this paper.

Remark 1.2. It is interesting to note that r does only enter the constants, but not the exponents in all

these results.

Remark 1.3. In fact, the proofs of (2) and (4) do not really use independence (and can be readily

extended to the finitely dependent case), but we will use independence for the proofs of the lower bounds

in (30). However, if one modifies Condition N in a suitable way, we conjecture that Theorem 1.1 and

Theorem 1.2 remain true if the environment is not i.i.d. but finitely dependent (for BRWRE, one can

find generalizations of this kind in [5]).
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2 Proofs: multi-dimensional case

In this section, we prove Theorems 1.1 and 1.2. In fact, the ideas we need to prove these results
are similar to those in the proofs of Theorems 1.8 and 1.9 of [4]. In the following, we explain the
relationship of the discussion in [4] with our model, and give the proof of Theorems 1.1 and 1.2,
sometimes referring to [4] for a more detailed account.

Proof of Theorems 1.1 and 1.2. The proof of (2) follows essentially the proof of Theorem 1.8 of [4],
where it is shown that the tail of the first hitting time of some fixed site x0 (one may think also of
the first return time to the origin) can be bounded from above as in (2). The main idea is that, as a
general fact, for any recurrent BRWRE there are the so-called recurrent seeds. These are simply finite
configurations of the environment, where, with positive probability, the number of particles grows
exponentially without help from outside (i.e., suppose that all particles that step outside this finite
piece are killed; then, the number of particles in the seed dominates a supercritical Galton-Watson
process, which explodes with positive probability). Then, we consider an embedded RWRE, until
it hits a recurrent seed and the supercritical Galton-Watson process there explodes (afterwards, the
particles created by this explosion are used to find the site x0, but here this part is only needed for
Proposition 1.1).

So, going back to the model of this paper, obstacles play the role of recurrent seeds, and the mo-
ment τ when the event {ξn ∈ Θ, Zn = 1} happens for the first time is analogous to the moment of
the first explosion of the Galton-Watson process in the recurrent seed. To explain better this analogy,
consider the following situation. Suppose that, outside the recurrent seeds there is typically a strong
drift in one direction and the branching is very weak or absent. Then, the qualitative behaviour of
the process is quite different before and after the first explosion. Before, we typically observe very
few (possibly even one) particles with more or less ballistic behaviour; after, the cloud of particles
starts to grow exponentially in one place (in the recurrent seed where the explosion occurs), and so
the cloud of particles expands linearly in all directions. So, the first explosion of one of the Galton-
Watson processes in recurrent seeds marks the transition between qualitatively different behaviours
of the BRWRE, and thus it is analogous to the moment τ of the model of the present paper.

First, we prove (2) for d ≥ 2. For any a ∈ Z, define Ka = [−a, a]d . Choose any α < (lnǫ−1
0 )
−1 (ǫ0

is from Condition E) and define the event

Mn = {σ : for any y ∈K emn there exists z ∈ Θ such that ‖y − z‖1 ≤ α ln n}

(recall that em is a constant such that ωx(y) = 0 if ‖x − y‖ > em, introduced in Section 1). Clearly,
we have for d ≥ 2

P[M c
n]≤ C1nd exp(−C2 lnd n). (22)

Now, suppose that σ ∈ Mn. So, for any possible location of the particle up to time n, we can find
a site with an obstacle which is not more than α ln n away from that location (in the sense of L1-
distance). This means that, on any time interval of length α ln n, the particle will disappear (i.e., τ
is in this interval if the particle has not disappeared before) with probability at least rǫα ln n

0 , where
ǫ0 is the constant from the uniform ellipticity condition. There are n

α ln n
such (disjoint) intervals in
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the interval [0, n], so

Pσ[τ > n]≤ (1− rǫα ln n
0 )

n

α ln n

≤ exp
�
−

C3n1−α lnǫ−1
0

ln n

�
. (23)

Then, from (22) and (23) we obtain (recall that α lnǫ−1
0 < 1)

P[τ > n]≤ exp
�
−

C3n1−α lnǫ−1
0

ln n

�
+ C1nd exp(−C2 lnd n),

and hence (2).

Let us now prove (4), again for the case d ≥ 2. Abbreviate by ℓd =
2d

d!
the volume of the unit sphere

in Rd with respect to the L1 norm, and let q = P[θ0 = 0] = 1− p. Choose a large enough bα in such
a way that ℓd bαd ln q−1 > d + 1, and define

bMn = {σ : for any y ∈K emn there exists z ∈ Θ
such that ‖y − z‖1 ≤ bα ln1/d n}.

By a straightforward calculation, we obtain for d ≥ 2

P[ bM c
n]≤ C4nd n−ℓd bα

d lnq−1
. (24)

Using the Borel-Cantelli lemma, (24) implies that for P-almost all σ, there exists n0(σ) such that
σ ∈ bMn for all n≥ n0(σ).

Consider now an environment σ ∈ bMn. In such an environment, in the L1-sphere of size n around
the origin, any L1-ball of radius bα ln1/d n contains at least one obstacle (i.e., a point from Θ). This
means that, in any time interval of length bα ln1/d n, the particle will disappear with probability at

least rǫbα ln1/d n
0 , where, as before, ǫ0 is the constant from the uniform ellipticity Condition E. There

are n

bα ln1/d n
such intervals on [0, n], so

Pσ[τ > n]≤ (1− rǫbα ln1/d n
0 )

n

bα ln1/d n ,

which gives us (4) in dimension d ≥ 2.

Now, we obtain (2) and (4) in the one-dimensional case. Since the environment is i.i.d., there
exist γ1,γ2 > 0 such that for any interval I ⊂ Z,

P[|I ∩Θ| ≥ γ1|I |]≥ 1− e−γ2|I |. (25)

We say that an interval I is nice, if it contains at least γ1|I | sites from Θ.

Define

h(σ) =min{m: all the intervals of length k ≥ m

intersecting with [−eγ2k/2, eγ2k/2] are nice}.

It is straightforward to obtain from (25) that there exists C5 > 0 such that

P[h(σ)> k]≤ e−C5k. (26)
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In particular, h(σ) is finite for P-almost all σ.

Now, define the event F = {maxs≤n |ξs| ≤ na}, where a =
γ2

4 lnǫ−1
0

. By Condition E, during any time

interval of length ln n

2 lnǫ−1
0

the random walk completely covers a space interval of the same length with

probability at least

ǫ

ln n

2 lnǫ−1
0

0 = n−1/2.

Assume that h(σ) < ln n

2 lnǫ−1
0

and observe that γ2

2
× 1

2 lnǫ−1
0
= a, so that all the intervals of length at

least ln n

2 lnǫ−1
0

intersecting with [−na, na] are nice. On the event F , the random walk visits the set Θ

at least O( n1/2

ln n
) times with probability at least 1− exp(−C6

n1/2

ln n
). Indeed, split the time into

2n lnǫ−1
0

ln n

intervals of length ln n

2 lnǫ−1
0

, and consider such an interval successful if the random walk completely

covers a space interval of the same length: we then have
2n lnǫ−1

0

ln n
independent trials with success

probability at least n−1/2, and then one can use Chernoff’s bound for Binomial distribution (see e.g.
inequality (34) of [4]). Hence we obtain for such σ

Pσ[τ > n, F] ≤ exp
�
− C7

n1/2

ln n

�
. (27)

Let us define the sequence of stopping times tk, k = 0,1,2, . . . as follows: t0 = 0 and

tk+1 =min{t ≥ tk + em : there exists z ∈ Θ such that |ξt − z| ≤ em− 1}

for k ≥ 1. Defining also the sequence of events

Dk = {there exists t ∈ [tk, tk + em− 1] such that ξt ∈ Θ and Zt = 1},

by Condition E we have
Pσ[Dk+1 | Fk]≥ rǫ em−1

0 , (28)

where Fk is the sigma-algebra generated by D0, . . . , Dk.

Observe that, for σ with h(σ) < ln n

2 lnǫ−1
0

, on the event F c we have tk′ < n, where k′ = γ1

2em2 na. Thus,

by (28),
Pσ[τ > n, F c]≤ exp(−C8na), (29)

and we obtain (4) from (27) and (29) (notice that in the one-dimensional case, the right-hand side
of (4) is of the form exp(−K

q

1(1)n
1−K

q

2 (1))). Then, the annealed upper bound (2) for d = 1 follows
from (4) and (26).

Now, let us prove the lower bound (3). This time, we proceed as in the proof of Theorem 1.9
from [4]. Denote by Sd−1 = {x ∈ Rd : ‖x‖2 = 1} the unit sphere in Rd , and, recalling (1), let ∆ω
be the drift at the point (ω,θ) ∈ M . One can split the sphere Sd−1 into a finite number (say,
m0) of non-intersecting subsets U1, . . . , Um0

and find a finite collection Γ1, . . . ,Γm0
⊆M having the

following properties: for all i = 1, . . . , m0,

(i) θ = 0 for all σ = (ω,θ) ∈ Γi ,

(ii) there exists p1 > 0 (depending only on the law of the environment) such that P[σ0 ∈ Γi]> p1,
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(iii) there exists a1 > 0 such that for any z ∈ Ui and any σ = (ω,θ) ∈ Γi we have z ·∆ω < −a1

(recall Condition N).

Intuitively, this collection will be used to construct (large) pieces of the environment which are free
of obstacles (item (i)) and have the drift pointing towards the center of the corresponding region
(item (iii)). The cost of constructing piece of environment of size N (i.e., containing N sites) with
such properties does not exceed pN

1 (item (ii)).

Consider any z ∈ Zd , B ⊂ Zd and a collection H = (Hx ⊆M , x ∈ B); let us define

S (z, B, H) = {σ : σz+x ∈ Hx for all x ∈ B}.

In [4], on S (z, B, H) we said that there is an (B, H)-seed in z; for the model of this paper, however,
we prefer not to use the term “seed”, since the role seeds play in [4] is quite different from the use
of environments belonging to S (z, B, H) here. Take G(n) = {y ∈ Zd : ‖y‖2 ≤ u ln n}, where u is a
(large) constant to be chosen later. Let us define the sets H(n)x , x ∈ G(n) in the following way. First,

put H
(n)

0 = Γ1; for x 6= 0, let i0 be such that x

‖x‖ ∈ Ui0
(note that i0 is uniquely defined), then put

H(n)x = Γi0
. Clearly, for any y ∈ Zd

P[S (y, G(n), H(n))]≥ p
(2u)d lnd n

1 . (30)

Denote
bp = sup

y:‖y‖1≤em
Py
σ
[ξ hits Zd \ G(n) before 0].

As in [4] (see the derivation of (42) there), we obtain that there exist C9, C10 such that for all
σ ∈ S (0, G(n), H(n)) we have

bp ≤
C9

nC10u
. (31)

So, choose u> 1
C10

, then, on the event that σ ∈ S (0, G(n), H(n)), (31) implies that

Pσ[ξi ∈ G(n) for all i ≤ n]≥ (1− bp)n ≥ C11 (32)

(if the random walk hits the origin at least n times before hitting Zd \ G(n), then ξi ∈ G(n) for all
i ≤ n). Since G(n) is free of obstacles, we obtain (3) from (30) and (32).

Now, it remains to prove (5). Define

bG(n) = {y ∈ Zd : ‖y‖2 ≤ v ln1/d n},

and let bH(n) = ( bH(n)x , x ∈ bG(n)) be defined in the same way as H(n) above, but with bG(n) instead
of G(n). Analogously to (30), we have

P[S (y, bG(n), bH(n))]≥ p
(2v)d ln n

1 = n−(2v)d ln p−1
1 . (33)

Choose v in such a way that b0 := (2v)d ln p−1
1 < d/2(d + 1). Then, it is not difficult to obtain (by

dividing Kpn into O(nd( 1
2
−b0)) subcubes of linear size O(nb0)) that

P
h ⋃

z∈Kpn

S (z, bG(n), bH(n))
i
≥ 1− exp(−C12n

d

2
−(d+1)b0)). (34)
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Using the Borel-Cantelli Lemma, P-a.s. for all n large enough we have

σ ∈
⋃

z∈Kpn

S (z, bG(n), bH(n)).

Denote by TB the first hitting time of a set B ⊂ Zd :

TB = inf{m≥ 1 : ξm ∈ B},

and write Ta = T{a} for one-point sets. Next, forσ ∈ S (0, bG(n), bH(n))we are going to obtain an upper
bound for qx := Px

σ
[ξ hits Zd \ bG(n) before 0] = Px

σ
[T0 > T

Zd\bG(n)], uniformly in x ∈ bG(n). To do this,

note that there are positive constants C13, C14 such that, abbreviating B0 = {x ∈ Zd : ‖x‖2 ≤ C13},
the process exp(C14‖ξm∧TB0

‖2) is a supermartingale (cf. the proof of Theorem 1.9 in [4]), i.e.,

Eσ
�

exp(C14‖ξ(m+1)∧TB0
‖2) | ξ j∧TB0

, j ≤ m
�
≤ exp(C14‖ξm∧TB0

‖2)

for all m. Denote
eG(n) = {x ∈ Zd : ‖x‖2 ≤ v ln1/d n− 1}.

For any x ∈ eG(n) and y ∈ Zd \ bG(n), we have ‖x‖2 ≤ ‖y‖2 − 1, so eC14‖x‖2 ≤ e−C14 eC14‖y‖2 . Keeping
this in mind, we apply the Optional Stopping Theorem to obtain that, for any σ ∈ S (0, bG(n), bH(n)),

qx exp(C14v ln1/d n)≤ exp(C14‖x‖2)≤ e−C14 exp(C14v ln1/d n),

so qx ≤ e−C14 for all x ∈ eG. Now, from any y ∈ bG(n) \ eG(n) the particle can come to eG(n) in a
fixed number of steps (at most

p
d + 1) with uniformly positive probability. This means that, on

S (0, bG(n), bH(n)), there exists a positive constant C15 > 0 such that for all x ∈ bG(n)

Px
σ
[T0 < T

Zd\bG(n)]≥ C15. (35)

Then, analogously to (31), on S (0, bG(n), bH(n)) we obtain that, for all y such that ‖y‖1 ≤ em

Py
σ
[ξ hits Zd \ bG(n) before hitting 0]≤

C16

ln1/d n
.

So, using (35) on S (0, bG(n), bH(n)) we obtain that there are C17 and C18 such that for all x ∈ bG(n)

Px
σ
[T
Zd\bG(n) ≥ exp(C17 ln1/d n)]≥ C18. (36)

Then, we use the following survival strategy of the particle (see Figure 1): provided that the event
S (z, bG(n), bH(n)) occurs for some z ∈ Kpn, first the particle walks there (using, for instance, the
shortest possible path) without disappearing in an obstacle; this happens with probability at least
(ǫ0(1− r))d

p
n. Then, it will spend time

n= exp(C17 ln1/d n)× n exp(−C17 ln1/d n)

in z + bG(n) with probability at least C
n exp(−C17 ln1/d n)

18 , so

Pσ[τ > n]≥ (ǫ0(1− r))d
p

nC
n exp(−C17 ln1/d n)

18 ,
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0

K√

n

σz+x ∈ Ĥx, ∀x ∈ Ĝ

v ln
1/d n

obstacles

Z-value = 0

Figure 1: The (quenched) strategy of survival used in the proof of (5)
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and this gives us (5).

Proof of Proposition 1.1. Now, we explain how to obtain Proposition 1.1. To prove (6), we proceed
as in the proof of (4). As noted in the beginning of this section, the disappearing of the particle in
an obstacle is analogous to starting an exploding Galton-Watson process in a recurrent seed. Denote
by eT the moment when this happens, i.e., at least eC19k new particles are created in this recurrent
seed by time eT + k. Thus, one can obtain a bound of the form

Pω[eT > n]≤ exp
�
− C20n exp(−C21 ln1/d n)

�
.

Then, using the uniform ellipticity, it is straightforward to obtain that, waiting C22n time units more
(with large enough C22), one of the newly created (in this recurrent seed) particles will hit x0 with
probability at least 1− e−C23n, and this implies (6).

To show (7), we note that, analogously to the proof of (5) that we are able to create a seed which is
free of branching sites of diameter C24 ln1/d n, which lies at distance O(

p
n) from the origin. Then,

the same idea works: the initial particle goes straight to the seed without creating new particles,
and then stays there up to time n. The detailed proof goes along the lines of the proof of (5) only
with notational adjustments.

3 Proofs: one-dimensional case

3.1 Preliminaries

We define the potential, which is a function of the transition probabilities. Under our assumptions
it is a sum of i.i.d. random variables. Recall (9).

Definition 3.1. Given the realization of the random environment, the potential V is defined by

V (x) =





∑x
i=1 lnρi , x > 0,

0, x = 0,∑0
i=x+1 ln 1

ρi
, x < 0.

Definition 3.2. We say that there is a trap of depth h located at [x − b1, x + b2] with the bottom at x

if

V (x) = min
y∈[x−b1,x+b2]

V (y)

V (x − b1)− V (x)≥ h

V (x + b2)− V (x)≥ h .

Note that we actually require the depth of the trap to be at least h. We say that the trap is free of
obstacles if in addition Θ∩ [x − b1, x + b2] = ;.

Define

ψ(h, b1, b2) = sup
λ>0

n
λh− b2 lnE(ρλ0 )

o
+ sup
λ>0

n
λh− b1 lnE
� 1
ρλ0

�o
(37)

and
eψ(h) = inf

b1,b2>0
{−(b1+ b2) ln(1− p) +ψ(h, b1, b2)}. (38)
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Lemma 3.1. Let Λx(h, b1, b2, n) be the event that there is a trap of depth h ln n, located at [x −
b1 ln n, x + b2 ln n] with the bottom at x. Let also Ax(h, b1, b2, n) be the event that there is a trap

of depth h ln n, free of obstacles, located at [x − b1 ln n, x + b2 ln n] with the bottom at x. For any

0< h−,h+, b−
i

, b+
i
<∞, we have

lim
n→∞

lnP[Λx(h, b1, b2, n)]

ln n
= −ψ(h, b1, b2), (39)

lim
n→∞

lnP[Ax(h, b1, b2, n)]

ln n
= (b1+ b2) ln(1− p)−ψ(h, b1, b2), (40)

uniformly in h ∈ (h−,h+), bi ∈ (b−i , b+
i
).

Proof of Lemma 3.1. Note that the part (b1+ b2) ln(1− p) in (40) corresponds to the probability that
the interval [x − b1 ln n, x + b2 ln n] is obstacle free.

For notational convenience, we often omit integer parts and write, e.g., b1 ln n instead of its integer
part. Using Chebyshev’s inequality, we have for λ > 0

P[V (x + b2 ln n)− V (x)≥ h ln n] = P
h

exp
�
λ

b2 ln n∑

i=1

lnρi

�
≥ exp(λh ln n)
i

≤ exp
�
− (ln n)(λh− b2 ln[Eeλ lnρ0])

�
.

Thus,

P[V (x + b2 ln n)− V (x)≥ h ln n]≤ exp
�
− (ln n) sup

λ>0

n
λh− b2 lnE(ρλ0 )

o�
.

Analogously, we obtain

P[V (x − b1 ln n)− V (x)≥ h ln n]≤ exp
�
−(ln n) sup

λ>0

n
λh− b1 lnE
� 1
ρλ0

�o�
.

So,

P[Ax(h, b1, b2, n)]≤ (1− p)(b1+b2) ln n

× exp
�
− (ln n)
h

sup
λ>0

n
λh− b2 lnE(ρλ0 )

o

+ sup
λ>0

n
λh− b1 lnE
� 1
ρλ0

�oi�
.

and

P[Λx(h, b1, b2, n)]≤ exp
�
− (ln n)
h

sup
λ>0

n
λh− b2 lnE(ρλ0 )

o

+ sup
λ>0

n
λh− b1 lnE
� 1
ρλ0

�oi�
.
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To show (39) and (40), we have to obtain now the corresponding lower bounds. To this end, note
first that, by Cramér’s Theorem,

lim
k→∞

1

b2k
lnP
h b2k∑

i=1

lnρi ≥ hk
i
= sup
λ>0

n
λh− b2 lnE(ρλ0 )

o
(41)

(recall that we treat b2k as an integer).

Define Sℓ =
∑ℓ

i=1 lnρi , and, for j ∈ [1, b2k]

S
( j)

ℓ
=

ℓ∑

i=1

lnρ(i+ j−2 mod b2k)+1.

We have (recall that h> 0)

b2kP
h

Sb2k ≥ hk,Sℓ ≥ 0 for all ℓ= 1, . . . , b2k
i

=

b2k∑

j=1

P
h

Sb2k ≥ hk,S( j)
ℓ
≥ 0 for all ℓ= 1, . . . , b2k

i

≥ P
h

Sb2k ≥ hk, there exists j such that S
( j)

ℓ
≥ 0 for all ℓ= 1, . . . , b2k

i

= P
h

Sb2k ≥ hk
i

,

since if
∑b2k

i=1 lnρi ≥ hk, then choosing j in such a way that S j ≤ Sℓ for all ℓ = 1, . . . , b2k, it is

straightforward to obtain that S
( j)

ℓ
≥ 0 for all ℓ= 1, . . . , b2k.

Hence

P
h

Sb2k ≥ hk,Sℓ ≥ 0 for all ℓ= 1, . . . , k
i
≥

1

b2k
P
h

Sb2k ≥ hk
i

,

which permits us to obtain a lower bound on

P[V (x + b2 ln n)− V (x)> h ln n, V (y)≥ V (x) for all y ∈ (x , x + b2 ln n)].

Then, one obtains (39) and (40) from (41) and the corresponding statement with b1 instead of b2

and 1/ρi instead of ρi .

Next, we obtain a simpler expression for the function eψ (recall (10), (11), and (38)).

Lemma 3.2. We have
eψ(h) = (κℓ(p) + κr(p))h. (42)

Proof. By (37) and (38), it holds that

eψ(h) = inf
b1>0

n
sup
λ>0

n
λh− b1 lnE(1− p)

� 1
ρλ0

�oo

+ inf
b2>0

n
sup
λ>0

n
λh− b2 lnE(1− p)(ρλ0 )

oo
.
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We will show that

inf
b2>0

n
sup
λ>0

n
λh− b2 lnE(1− p)(ρλ0 )

oo
= κrh= κr(p)h. (43)

In the same way, one proves

inf
b1>0

n
sup
λ>0

n
λh− b1 lnE(1− p)

� 1
ρλ0

�oo
= κℓ(p)h .

To show (43), note that taking λ= κr yields

inf
b2>0

n
sup
λ>0

n
λh− b2 lnE(1− p)(ρλ0 )

oo
≥ κrh.

Consider the function gb(λ) = λh− b lnE
�
(1− p)ρλ0
�
. Clearly, gb(0) = b ln 1

1−p
> 0 and an elemen-

tary calculation shows that for all b ∈ (0,∞) the function gb is concave (indeed, by the Cauchy-

Schwarz inequality, for any positive λ1,λ2 we obtain lnE
�
ρ
λ1+λ2

2
0

�
≤ 1

2
(lnE(ρ

λ1
0 ) + lnE(ρ

λ2
0 ))).

Taking

b = b2 =
h

E((1− p)ρ
κr

0 lnρ0)
,

we see that for this value of b, g ′
b
(λ)/h= 1− E((1−p)ρλ0 lnρ0)

E((1−p)ρ
κr
0 lnρ0)E((1−p)ρλ0 )

, and g ′
b
(λ) = 0 for λ= κr . We

conclude
inf

b2>0

n
sup
λ>0

n
λh− b2 lnE
�
(1− p)ρλ0
�oo
≤ κrh,

and so Lemma 3.2 is proved.

Lemma 3.3. Assume that E lnρ0 6= 0 and let κ be defined as after (18). Let γ > 0 and fix any ǫ < γ/κ.

Then, for µ-almost all ω, there is n0(ω,ǫ) such that for all n ≥ n0(ω,ǫ), there is a trap of depth�
γ

κ
− ǫ
�

ln n in the interval [0, nγ].

Proof. Recall (37) and Lemma 3.1, and keep in mind that the obstacles are independent from the
transition probabilities. We will show that

inf
b1,b2

ψ(h, b1, b2) = κh . (44)

By (39), this implies that

lim
n→∞

ln supb1,b2
P[Λx(h, b1, b2, n)]

ln n
=−κh . (45)

Take ǫ < γ/κ and chose b1, b2 such that for all n large enough

P
h
Λx
�γ
κ
− ǫ, b1, b2, n
�i
≥ n−(γ−

κǫ
2
)

(here we use (45)). Divide the interval [0, nγ] into nγ/((b1 + b2) ln n) intervals of length (b1 +

b2) ln n. Then,

P
h

there is at least one trap of depth
�γ
κ
− ǫ
�

ln n in the interval [0, nγ]
i

≥ 1−
�

1− n−(γ−
κǫ
2
)
� nγ

(b1+b2) ln n .
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Lemma 3.3 now follows from the Borel-Cantelli lemma.

Now, to prove (44), assume that E(lnρ0)< 0, hence κ is such that E(ρκ0 ) = 1 (the case E(lnρ0)> 0
follows by symmetry). Using Jensen’s inequality, lnE

� 1
ρλ0

�
≥ λE
�

ln 1
ρ0

�
> 0, hence we have

sup
λ>0

n
λh− b1 lnE
� 1
ρλ0

�o
≤ sup
λ>0

n
λh−λb1E
�

ln
1

ρ0

�o
,

and for b1 > h
�

E
�

ln 1
ρ0

��−1
,

sup
λ>0

n
λh−λb1E
�

ln
1

ρ0

�o
= 0,

so we obtain

inf
b1>0

n
sup
λ>0

n
λh− b1 lnE
� 1
ρλ0

�oo
= 0 .

It remains to show that
inf

b2>0

n
sup
λ>0

n
λh− b2 lnE(ρλ0 )

oo
= κh,

but here we can follow verbatim the proof of (43) from Lemma 3.2 with p = 0.

Next, we need to recall some results about hitting and confinement (quenched) probabilities for
one-dimensional random walks in random environment. Obstacles play no role in the rest of this
section. For the proof of these results, see [3] (Sections 3.2 and 3.3) and [6] (Section 4).

Let I = [a, c] be a finite interval of Z with a potential V defined as in Definition 3.1 and without
obstacles. Let b the first point with minimum potential, i.e.,

b =min{x ∈ [a, c] : V (x) = min
y∈[a,c]

V (y)}.

Let us introduce the following quantities (which depend on ω)

H− = max
x∈[a,c]

�
max

y∈[a,x]
V (y)− min

y∈[x ,c]
V (y)
�

,

H+ = max
x∈[a,c]

�
max

y∈[x ,c]
V (y)− min

y∈[a,x]
V (y)
�

,

and H = H− ∧ H+.

First, we need an upper bound on the probability of confinement in an interval up to a certain time:

Lemma 3.4. There exist Υ1,Υ2 > 0 (depending on ǫ0), such that for all u≥ 1

max
x∈[a,c]

Px
σ

h T{a,c}
Υ1(c − a)4eH

> u
i
≤ e−u,

for c − a > Υ2(ǫ0).

Proof. See Proposition 4.1 of [6] (in fact, Lemma 3.4 is a simplified version of that proposition, since
here, due to Condition E, the potential has bounded increments).

Next, we obtain a lower bound on the confinement probability in the following lemma.
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Lemma 3.5. Suppose that a < b < c and that c has maximum potential on [b, c] and a has maximal

potential on [a, b]. Then, there exist Υ3,Υ4 > 0, such that for all u≥ 1 and x ∈ (a, c)

Px
σ

h
Υ3 ln(2(c− a))

T{a,c}
eH
≥ u
i
≥

1

2(c− a)
e−u,

for c − a ≥Υ4.

Proof. See Proposition 4.3 of [6].

Let us emphasize that the estimates in Lemmas 3.4 and 3.5 are valid for all environments satisfying
the uniform ellipticity Condition E. An additional remark is due about the usage of Lemma 3.5
(lower bound for the quenched probability of confinement). Suppose that there is a trap of depth H

on interval [a, c], being b the point with the lowest value of the potential. Suppose also that a′ has
maximal potential on [a, b] and c′ has maximal potential on [b, c]. Then, for any x ∈ (a′, c′), it is
straightforward to obtain a lower bound for the probability of confinement in the following way:
write Px

σ
[T{a,c} ≥ t] ≥ Px

σ
[T{a′,c′} ≥ t], and then use Lemma 3.5 for the second term. This reasoning

will usually be left implicit when we use Lemma 3.5 in the rest of this paper.

3.2 Proofs of Theorems 1.3–1.6.

Proof of Theorem 1.3. By Lemma 3.1 and Lemma 3.5, we have for all b1, b2 ∈ (0,∞) and any ǫ > 0,

P[τ > n]≥ P[A0(1, b1, b2, n)]

× inf
σ∈A0(1,b1,b2,n)

Pσ[ξt ∈ (−b1 ln n, b2 ln n), for all t ≤ n]

≥ C1n(b1+b2) ln(1−p)−ψ(1,b1,b2)−ǫ

for all n large enough. Thus, recalling that

eψ(1) = inf
b1,b2>0

{−(b1+ b2) ln(1− p) +ψ(1, b1, b2)},

we obtain
P[τ > n]≥ C2n−

eψ(1)−ǫ. (46)

Let us now obtain an upper bound on P[τ > n]. Fix n, β > 0, 0 < δ < 1. We say that the
environment σ is good, if the maximal (obstacle free) trap depth is less than (1 − δ) ln n in the
interval [− ln1+β n, ln1+β n], that is, for all b1, b2 > 0, x ∈ [− ln1+β n, ln1+β n] the event Ax(1 −
δ, b1, b2, n) does not occur, and also

min{|Θ∩ [− ln1+β n, 0]|, |Θ∩ [0, ln1+β n]|} ≥
p ln1+β n

2
.

For any ǫ > 0 we obtain that for all large enough n

P[σ is not good]≤ C3n−
eψ(1−δ)+ǫ lnβ n+ e−C4 ln1+β n, (47)

by Lemma 3.1.
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Note that if σ is good, then for every interval [a, b] ⊂ [− ln1+β n, ln1+β n] such that a, b ∈ Θ,
Θ∩ (a, b) = ; we have

max
x∈[a,b]

V (x)− min
x∈[a,b]

V (x)≤ (1−δ) ln n.

Thus, for such an interval [a, b], on the event {σ is good}, Lemma 3.4 (with u = nδ/2) implies that
for any x ∈ [a, b] we have

Pσ
�
ξt /∈ [a, b] for some t ≤ n1− δ

2 | ξ0 = x
�
≥ 1− exp
h
−

nδ/2

16Υ1 ln4+4β n

i
. (48)

Let
G = {ξt /∈ [− ln1+β n, ln1+β n] for some t ≤ n}.

Then, by (48), on the event {σ is good}, we have (denoting X a random variable with

Binomial
�

nδ/2, 1− exp
h
− nδ/2

16Υ1 ln4+4β n

i�
distribution)

Pσ[τ > n] = Pσ[τ > n, G] + Pσ[τ > n, Gc]

≤ (1− r)
p

2
ln1+β n+ (1− r)

1
2

nδ/2 + Pσ

h
X ≤

nδ/2

2

i

≤ e−C5 ln1+β n. (49)

To explain the last term in the second line of (49), for the event {τ > n} ∩ Gc , split the time into
nδ/2 intervals of length n1−δ/2. By (48), on each such interval, we have a probability of at least

1− exp
h
− nδ/2

16Υ1 ln4+4β n

i
to hit an obstacle. Let X ′ count the number of time intervals where that

happened. Then, clearly, X ′ dominates X .

So, by (47) and (49), we have

P[τ > n]≤
∫

{σ: σ is good}
Pσ[τ > n] dP+

∫

{σ: σ is not good}
Pσ[τ > n] dP

≤ e−C5 ln1+β n+ C3n−
eψ(1−δ)+ǫ lnβ n+ e−C4 ln1+β n

≤ C6n−
eψ(1−δ)+ǫ lnβ n.

Together with (46) and Lemma 3.2, this implies (12).

Proof of Theorem 1.4. First we obtain a lower bound on Pσ[τ > n]. Fix a and let b1, b2 be such that

eψ(a) = −(b1+ b2) ln(1− p) +ψ(a, b1, b2).

Let us show that such b1, b2 actually exist, that is, the infimum in (38) is attained. For that, one may
reason as follows. First, since ψ≥ 0, for any M0 there is M1 > 0 such that if min{b1, b2} ≥ M1 then

− (b1+ b2) ln(1− p) +ψ(a, b1, b2)≥ M0. (50)

Then, it is clear that for any fixed h > 0 we have limb2↓0 supλ>0(λh− b2Eρλ0 ) = +∞, so (also with

the analogous fact for 1
ρ0

) we obtain that for any M0 there exists ǫ > 0 such that if min{b1, b2} < ǫ
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then (50) holds. Thus, one may suppose that in (38) b1 and b2 vary over a compact set, and so the
infimum is attained.

Let us call such a trap (with b1, b2 chosen as above) an a-optimal trap. Note that

− eψ(a) = lim
n→∞

lnP[A0(a, b1, b2, n)]

ln n
.

Note also that, since eψ(a) is an increasing function with eψ(0) = 0 and 1−a is a decreasing function,
there exists unique a such that 1− a = eψ(a).
Fix ǫ′ < ǫ

2
. Consider an interval [−n

eψ(a)+ǫ, n
eψ(a)+ǫ]. In this interval there will be at least one

a-optimal trap free of obstacles with probability at least

1− (1− n−
eψ(a)−ǫ′)

n
eψ(a)+ǫ

(b1+b2) ln n ≥ 1− exp
�
− C1nǫ/2
�
.

To see this, divide the interval [−n
eψ(a)+ǫ, n
eψ(a)+ǫ] into disjoint intervals of length (b1+ b2) ln n and

note that the probability that such an interval is an a-optimal trap free of obstacles, by Lemma 3.1,

is at least n−
eψ(a)−ǫ′ . So, a.s. for all n large enough, there there will be at least one a-optimal trap

free of obstacles in [−n
eψ(a)+ǫ, n
eψ(a)+ǫ]. If there is at least one a-optimal trap in [−n

eψ(a)+ǫ, n
eψ(a)+ǫ],

and ξt enters this trap, by Lemma 3.5, it will stay there for time na with probability at least
�
2(b1+

b2) ln n
�−(Υ3+1). We obtain

Pσ[τ > n]≥ (rǫ0)n
eψ(a)+ǫ�

2(b1+ b2) ln n
�−(Υ3+1)n1−a

≥ exp
�
− C2n
eψ(a)+ǫ
�

(51)

a.s. for all n large enough. The factor (rǫ0)
n
eψ(a)+ǫ

appears in (51) because the random walk should
first reach the obstacle free a-optimal trap, and on its way in the worst case it could meet obstacles
in every site.

To obtain the upper bound, take δ > 0 and consider the time intervals Ik = [(1+ δ)
k, (1+ δ)k+1).

If n ∈ Ik, we have
Pσ[τ > n]≤ Pσ[τ > (1+δ)

k].

Denote

B
(k)

1 = {the maximal depth of an obstacle free trap in

[−(1+ δ)k( eψ(a)−ǫ), (1+δ)k( eψ(a)−ǫ)] is at most ak ln(1+ δ)},

B
(k)

2 =
n
|Θ∩ [−(1+δ)k( eψ(a)−ǫ), 0]| ≥

p(1+δ)k(
eψ(a)−ǫ)

2

o
,

B
(k)

3 =
n
|Θ∩ [0, (1+δ)k(

eψ(a)−ǫ)]| ≥
p(1+ δ)k(
eψ(a)−ǫ)

2

o

B
(k)
4 =
n

the maximal length of an obstacle free interval in

[−(1+ δ)k( eψ(a)−ǫ), (1+δ)k( eψ(a)−ǫ)] is at most
2

ln 1
1−p

k ln(1+δ)
o

.
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First, we have that for some C3

P[B
(k)

i
]≥ 1− exp
�
− C3(1+δ)

k( eψ(a)−ǫ)�,

i = 2,3. Also,

P[B
(k)
4 ]≥ 1− 2(1+δ)k(

eψ(a)−ǫ))(1− p)

2

ln 1
1−p

k ln(1+δ)

= 1− 2(1+δ)k(−2+ eψ(a)−ǫ)

≥ 1− 2(1+δ)−k.

Note that, by Lemma 3.1, in the interval [−n
eψ(a)−ǫ, n
eψ(a)−ǫ] there will be an obstacle free trap of

depth a ln n with probability at most

2n
eψ(a)−ǫn−
eψ(a)+ǫ/2 ≤ C4n−ǫ/2.

So, for any n ∈ Ik, in the interval [−(1+ δ)k( eψ(a)−ǫ), (1+ δ)k( eψ(a)−ǫ)] there will be obstacle free
traps of depth ak ln(1+δ) with probability at most C4(1+δ)

−ǫk/2. Thus, the Borel-Cantelli lemma
implies that for almost all σ, a.s. for all k large enough the event B(k) = B

(k)

1 ∩ B
(k)

2 ∩ B
(k)

3 ∩ B
(k)
4

occurs. Analogously to (48), for any interval [a, b] ⊂ [−(1+δ)k( eψ(a)−ǫ), (1+δ)k( eψ(a)−ǫ)] such that
(a, b)∩Θ= ;, we have

Pσ[ξt /∈ [a, b] for some t ≤ (1+δ)k(a+γ) | ξ0 = x , B(k)]

≥ 1− exp
�
−

(1+δ)kγ

162Υ1

�
k ln(1+δ)
ln(1−p)

�4
�

(52)

for γ > 0 and any x ∈ [a, b]. Again, let

G(k) = {ξt /∈ [−(1+δ)k(
eψ(a)−ǫ), (1+δ)k(

eψ(a)−ǫ)] for some t ≤ (1+δ)k}.

With the same argument as in (49), we have, for all σ ∈ B(k)

Pσ[τ > (1+δ)
k, (G(k))c]≤ (1− r)(1+δ)

k(1−a−γ)
.

Using (52), for n ∈ [(1+δ)k, (1+δ)k+1), we obtain for all σ ∈ B(k)

Pσ[τ > n]≤ Pσ[τ > (1+ δ)
k]

= Pσ[τ > (1+ δ)
k, G(k)] + Pσ[τ > (1+ δ)

k, (G(k))c]

≤ (1− r)
p(1+δ)k(
eψ(a)−ǫ)

2 + (1− r)(1+δ)
k(1−a−γ)

≤ e−C3(1+δ)
k( eψ(a)−ǫ)

≤ e−C3n
eψ(a)−ǫ

. (53)

Since ǫ is arbitrary and, by Lemma 3.2, eψ(a) = κℓ(p)+κr(p)

1+κℓ(p)+κr(p)
, (51) together with (53) imply (13).
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Proof of Theorem 1.5. Denote

uβ =
ln
�

1−β0

β0

�

ln
�

1−β0

β0

�
+ ln
�

1−β1

β1

�

and

γ=
| ln(1− p)|
| ln(1− p)|+ Fe

, (54)

where Fe was defined in (15). We shall see that Fek is the maximal possible depth of a trap located
at [a, c] with c − a ≤ k. Let Bn,α be the event that in the interval [−nγ, nγ] there is (at least) one
interval of length at least α ln n which is free of obstacles and let In(θ ) be the biggest such interval.
For any α < γ| ln(1 − p)|−1, the event Bn,α happens a.s. for n large enough. Take an interval
I = [a, c] ⊂ In(θ ) and such that c − a = ⌊α ln n⌋. For small δ denote

Uδ =
�
ω+

i
≥ 1− β1−δ for all i ∈ [a, a+ uβ (c− a],

ω+
i
≤ β0+δ for all i ∈ (a+ uβ (c− a), c]

	
.

So, Uδ implies that on the interval [a, c] there is a trap of depth (Fe − δ′)α ln n, free of obstacles,
where δ′→ 0, when δ→ 0. Note that

µ[Uδ]≥ K1(δ)
α ln n = nα ln K1(δ),

where
K1(δ) =min{µ(ω+0 ≥ 1− β1−δ),µ(ω+0 ≤ β0+δ)}.

For ω ∈ Uδ, using Lemma 3.5, we obtain

Pσ[τ > n]≥ (ǫ0(1− r))n
γ

exp
�
− n1−α(Fe−2δ′)�. (55)

Now,

Pθ [τ > n]≥ µ[Uδ]
∫

{ω∈Uδ}

Pσ[τ > n]µ(dω)

≥ nα ln K1(δ)(ǫ0(1− r))n
γ

exp
�
− n1−α(Fe−2δ′)�. (56)

Note that, by definition (54) of γ, we have γ= 1−γFe| ln(1− p)|−1. Since α can be taken arbitrarily
close to γ| ln(1− p)|−1, we obtain

lim sup
n→∞

ln(− ln Pθ [τ > n])

ln n
≤
| ln(1− p)|
| ln(1− p)|+ Fe

. (57)

To obtain the other bound, we fix α > γ| ln(1− p)|−1. On the event Bc
n,α, in each of the intervals

[−nγ, 0), [0, nγ] there are at least nγ(α ln n)−1 obstacles. Since Fek is the maximal depth of a
trap on an interval of length k, the environment ω in the interval [−nγ, nγ] satisfies a.s. for large
n that the depth of any trap free of obstacles is at most Feα ln n. Thus, by Lemma 3.4, for any
δ > 0, the probability that the random walk stays in a trap of depth Feα ln n at least for the time
exp
�
(Feα+δ) ln n
�

is at most e−C1nδ/2 . We proceed similarly to (53). Consider the event

A= {ξt /∈ [−nγ, nγ] for some t ≤ n}.
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We then have

Pσ[τ > n] = Pσ[τ > n,A] + Pσ[τ > n,Ac]

≤ (1− r)n
γ(α ln n)−1

+ ((1− r)(1− e−C1nδ/2))n
1−Feα−δ

.

Since δ is arbitrary, analogously to the derivation of (57) from (56) one can obtain

lim inf
n→∞

ln(− ln Pθ [τ > n])

ln n
≥
| ln(1− p)|
| ln(1− p)|+ Fe

.

This concludes the proof of Theorem 1.5.

Proof of Theorem 1.6. Define

Rǫ,+n (ω) =min{x > 0 : in (0, x) there is a trap of depth (1− ǫ) ln n},
Rǫ,−n (ω) =min{x > 0 : in (−x , 0) there is a trap of depth (1− ǫ) ln n},

and let Rǫn(ω) = min{Rǫ,+n (ω), Rǫ,−n (ω)}. For ǫ = 0, denote Rn(ω) := R0
n(ω). The statements

for Rǫn(ω) and Rn(ω) now follow from the definition of these random variables and the invariance
principle.

Proof of (i). To obtain a lower bound, we just observe that by Lemma 3.5, when the random walk is
in a trap of depth ln n, it will stay there up to time n with a probability bounded away from 0 (say, by
C1). Further, with ν-probability (1− p)Rn(ω)+1 there will be no obstacles in the interval [0,Rn(ω)].
Thus, by the uniform ellipticity,

Pω[τ > n]≥ C1(1− p)Rn(ω)+1ǫ
Rn(ω)

0 ≥ e−K2Rn(ω).

To obtain an upper bound, we say that θ is k-good, if

¯̄
Θ∩ [− j, 0]
¯̄
≥

p j

2
and
¯̄
Θ∩ [0, j]
¯̄
≥

p j

2

for all j ≥ k. Then,
ν[θ is not Rǫn(ω)-good]≤ e−C2Rǫn(ω). (58)

By Lemma 3.4, for all large enough n

Pσ[ξt ∈ [−Rǫn(ω),R
ǫ
n(ω)] for all t ≤ n]≤ e−C3nǫ/2 ,

and so on the event {θ is Rǫn(ω)-good}, we have

Pσ[τ > n]≤ e−C3nǫ + (1− r)R
ǫ
n(ω)p/2.

Together with (58), this proves part (i), since it is elementary to obtain that Rǫn is subpolynomial
for almost all ω. Indeed, as discussed in Remark 1.1, a comparison to [7] suggests that, for C4

large enough, Rǫn(ω) ≤ C4 ln2 n ln ln ln n for all but finitely many n, µ-a.s. Anyhow, one can obtain a
weaker result which is still enough for our needs: Rǫn(ω) ≤ ln4 n µ-a.s. for all but finitely many n,
with the following reasoning: any interval of length ln2 n contains a trap of depth at least ln n with
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constant probability. So, dividing [− ln4 n, ln4 n] into subintervals of length ln2 n, one can see that
µ[ω : Rǫn(ω)≥ ln4 n]≤ e−C5 ln2 n and use the Borel-Cantelli lemma.

Proof of (ii). Take a = κ

κ+1
and 0 < ǫ < a/κ. In this case, by Lemma 3.3 there is a trap of

depth
�

a

κ
− ǫ
�

ln n on the interval [0, na), a.s. for all n large enough. Using Lemma 3.5, when

the random walk enters this trap, it stays there up to time n with probability at least 1
2na exp
�
−

Υ3 ln(2na)n1− a

κ
+ǫ�. Further, the probability that the interval [0, na) is free of obstacles is (1− p)n

a

,
and we obtain

Pω[τ > n]≥ (1− p)n
a

ǫna

0

1

2na
exp
�
−Υ3 ln(2na)n1− a

κ
+ǫ�

≥ e−C6na+2ǫ

= e−C6n
κ
κ+1+2ǫ

,

as a was chosen in such a way that a = 1− a

κ
= κ

κ+1
. Since ǫ > 0 was arbitrary, this yields

lim inf
n→∞

ln(− ln Pω[τ > n])

ln n
≥

κ

κ+ 1
.

To prove the corresponding upper bound, we proceed analogously to the proof of (12). We say that
the obstacle environment θ is good (for fixed n), if

min{|Θ∩ [−na, 0]|, |Θ∩ [0, na]|} ≥
pna

2
.

Note that
ν[θ is good]≥ 1− e−C7na

.

Let
G = {ξt /∈ [−na, na] for some t ≤ n}.

Observe that, by Theorem 1.2 from [6], we have Pω[G] ≤ e−C8n1− a
κ . Again, since for a = κ

1+κ
we

have a = 1− a

κ
, on the event {θ is good} we obtain

Pω[τ > n]≤ Pω[G] + Pω[τ > n, Gc]

≤ e−C8n1− a
κ
+ (1− r)

pna

2

≤ e−C9n
κ

1+κ .

This concludes the proof of Theorem 1.6.
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