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We investigate the dynamics of fðRÞ gravity in Jordan and Einstein frames. First, we perform a phase-
space singularities analysis in both frames. We show that, typically, anisotropic singularities are absent in the
Einstein frame, whereas they may appear in the Jordan frame. We conciliate this apparent inconsistency by
showing that the necessary conditions for the existence of the Einstein frame are namely the same ones
assuring the absence of the anisotropic singularities in the Jordan frame. In other words, we show that, at least
in the context of Bianchi I cosmologies, the Einstein frame is available only when the original formulation
in the Jordan frame is free of anisotropic singularities. Furthermore, we present a novel dynamical system
formulation for anisotropic cosmologies in which both frames, provided they exist, will be manifestly
equivalent from the dynamical point of view, even though they fail to be diffeomorphic in general. Our results
could not only help the construction of viable (free of anisotropic singularities) fðRÞ cosmological models but
also contribute to the still active debate on the physical interpretation of the two frames.

DOI: 10.1103/PhysRevD.99.024020

I. INTRODUCTION

Alternative theories of gravity of the fðRÞ type have
been intensively investigated in the last years in connection
with several applications to cosmology and astrophysics;
see [1–4] for comprehensive reviews. In all these studies,
the dynamical analysis of the modified field equations
plays a prominent role, since many important issues as, for
instance, cosmological histories and stability questions of
certain astrophysical solutions, are directly related to
dynamical properties of the underlying model; see [5–8]
for some very recent analysis of this kind. Here, we are
concerned with the dynamical analysis of homogeneous but
anisotropic cosmological models in the standard fðRÞ
theory of gravity, which can be described in the so-called
Jordan frame by the action

SJ ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SM; ð1Þ

where κ ¼ 8πG, c ¼ ℏ ¼ 1, and SM stands for the usual
matter contributions to the total action, which, in the
present case, will be an anisotropic barotropic fluid. By
varying (1) with respect to the metric, one gets

ðgab□−∇a∇bÞFðRÞþFðRÞRab−
1

2
fðRÞgab¼ κTab; ð2Þ

where FðRÞ≡ f0ðRÞ and

Tab ¼ −
2ffiffiffiffiffiffi−gp δSM

δgab
: ð3Þ

Provided that F0 ¼ f00 ≠ 0, the Euler-Lagrange equa-
tions (2) are fully equivalent to those obtained from the
action

SJ ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½FðφÞR − VJðφÞ� þ SM ð4Þ

by considering variation with respect to the metric and to
the scalar field φ, where [9]

VJðφÞ ¼ φFðφÞ − fðφÞ: ð5Þ

Notice that the action (4) corresponds to the nonminimally
coupled scalar field case considered previously in [10],
but without the kinetic term of the scalar field, which
indeed prevents their dynamical contents to be equivalent.
We will assume hereafter that F0 ≠ 0, which implies from
(4) that φ ¼ R on the dynamical level. Actions such that
F0 > 0 are called also R-regular in the literature [9].
We will discuss the physical interpretation of this require-
ment below.
The action (4) can be cast in the so-called Einstein frame

by performing the conformal transformation

g̃ab ¼ FðφÞgab; ð6Þ
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which requires, by its own definition, that FðφÞ > 0. In
terms of the new metric g̃ab, the action of fðRÞ gravity in
the Einstein frame reads

SE¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
R̃−

1

2
∂aϕ∂aϕ−VEðϕÞ

�
þ S̃M; ð7Þ

where

ϕ ¼
ffiffiffiffiffi
3

2κ

r
lnFðφÞ ð8Þ

and

VEðϕÞ ¼
VJðφÞ
FðφÞ2 : ð9Þ

The tilde in (7) indicates that the quantities are calculated
with respect to the new metric g̃ab, defined by the conformal
transformation (6), under which the energy-momentum
tensor (3) of the matter contributions transforms as

T̃a
b ¼ Ta

b

F2
: ð10Þ

Notice that the assumption of an R-regular action assures
that (8) is invertible and, hence, that (9) and (10) are, in
principle, well defined. Situations in which F0 changes its
sign can be considerably more intricate. For example, in the
case of polynomial fðRÞ theories with the degree of the
polynomial higher than two, one in general gets multiple
Einstein frame descriptions, leading to various possible
ambiguities [11]. The condition F0 < 0, which would also
guarantee the invertibility of (8), is related to unbounded
growth of curvature perturbations in the presence of matter
[12,13], so the condition F0 > 0 (R-regularity) is usually
imposed in fðRÞ gravity. As for the condition F > 0, it is
also sometimes argued that the effective gravitational cou-
pling in fðRÞ gravity is played by the quantity κ=F, whose
positivity requires F > 0. However, it is indeed possible to
have regular isotropic cosmological solutions crossing
regions where F ¼ 0; see [14,15] for instance.
On the other hand, phase-space regions where F ¼ 0 are

known to be associated with severe and dynamically
unavoidable anisotropic singularities in the Jordan frame;
see [10,16,17]. As we will see, such singularities are, by
construction, absent in the Einstein frame, which could
indicate a physical incompatibility between the two
descriptions of the same theory. We figure out this apparent
inconsistency by showing that the necessary conditions for
the existence of the Einstein frame, namely F > 0 and
F0 > 0, are sufficient for assuring the absence of the
anisotropic singularities in the Jordan frame. Moreover,
we will show that, when both frames exist, they are fully
equivalent from the dynamical point of view, even though

the dynamical system formulation in the two frames are not
in general diffeomorphic or, in the dynamical system
language, topologically equivalent. Such results could
not only help the construction of viable fðRÞ cosmological
models but also contribute to the still active debate on the
physical interpretation of the two frames; see [17–28] for
other recent references on this issue and many of its
implications in different physical contexts. In particular,
for the question on the frame equivalence at the quantum
level, see [29–31].
In the next section, we will derive all the pertinent

equations, in the Jordan and Einstein frames, for a
Bianchi-I homogeneous but anisotropic universe filled with
an anisotropic barotropic fluid. Phase-spaces for both
frames are determined and we will prove that the existence
of the Einstein frame rests effectively on the conditions
F > 0 and F0 > 0, which, on the other hand, guarantee that
the Jordan frame description is free from anisotropic
singularities. In Sec. III, we present a novel dynamical
formulation for anisotropic cosmologies in both frames.
The new dynamical variables allow a one-to-one corre-
spondence between all dynamical quantities in both frames,
establishing their dynamical equivalence. We notice that
the dynamical system approach for homogeneous and
isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW)
spacetime filled with a perfect fluid in generic fðRÞ gravity
has traditionally been formulated in terms of expansion
normalized dynamical variables, see [6,32–34], although it
is also possible to formulate in alternative ways; see, for
instance, [5,35]. The dynamics of metric shear for Rn

gravity in vacuum and in presence of an isotropic fluid have
previously been also studied using the (1þ 3) covariant
formalism; see [36,37]. However, a more general dynami-
cal system formulation involving an anisotropic fluid was
still missing. Our new approach allows us to establish the
classical equivalence between the two frames in a new way
which has not been attempted before. The last section is
devoted to some concluding remarks.

II. BIANCHI-I COSMOLOGICAL DYNAMICS

We will focus on the dynamics of a generic fðRÞ theory
of gravity with an anisotropic fluid in both Jordan [Eqs. (1)
or (4)] and Einstein frames [Eq. (7)]. The homogeneous and
anisotropic Bianchi-I metric

ds2 ¼ −dt2 þ a21ðtÞdx21 þ a22ðtÞdx22 þ a23ðtÞdx23 ð11Þ

is the simplest situation where we can explore properly the
differences between the two frames. By introducing the
average expansion factor aðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a2a33
p

, we can para-
metrize the Bianchi-I metric as

ds2 ¼ −dt2 þ a2ðtÞ½e2β1ðtÞdx21 þ e2β2ðtÞdx22 þ e2β3ðtÞdx23�;
ð12Þ
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where, by construction,

β1 þ β2 þ β3 ¼ 0: ð13Þ

For further references on this parametrization, see [38,39].
The metric (12) has three independent dynamical variables
in fðRÞ gravity, and we choose them to be

H ¼ _a
a
; _β� ¼ _β1 � _β2: ð14Þ

The quantity

σ2 ¼ _β21 þ _β22 þ _β23 ¼
3

2
_β2þ þ 1

2
_β2− ð15Þ

measures the total amount of anisotropy of (12). Observe
that when σ ¼ 0, the spatial coordinates can be suitably
rescaled to recast (12) in the standard spatially flat FLRW
form. The Ricci scalar for the metric (12) reads simply

R ¼ 6 _H þ 12H2 þ σ2: ð16Þ

We will assume that the universe described by (12) is
filled with an anisotropic barotropic fluid with energy
momentum tensor parametrized as [40]

Ta
b ¼ diagð−ρ; p1; p2; p3Þ ¼ diagð−ρ;ω1ρ;ω2ρ;ω3ρÞ:

ð17Þ

We define the anisotropic equation of state as

pi ¼ ðωþ δiÞρ; ð18Þ

with i ¼ 1, 2, 3, where ω is the average barotropic
parameter and ωi ¼ ωþ δi, with δ1 þ δ2 þ δ3 ¼ 0 by
construction. We will parametrize our fluid by the constants
ω and δ� ¼ δ1 � δ2, whose meaning are rather clear.

A. The Jordan frame

For sake of completeness, we will write the fðRÞ
equations in both frames also for the isotropic fluid case.
However, from the dynamical point of view, our primary
interest is the phase-space anisotropic singularities, which
appear only for the anisotropic fluids. Of course, once we
establish the dynamical equivalence of both frames for
anisotropic fluids, the isotropic case follows naturally as a
simple corollary.

1. Isotropic fluid

The dynamics of the Bianchi-I metric (12) under fðRÞ
gravity in presence of such an isotropic fluid can be
described by the following set of equations [39,41],

3H2 ¼ κ

F

�
ρþ RF − f

2κ
−
3HF0 _R

κ

�
þ 1

2
σ2; ð19Þ

2 _H þ 3H2 ¼ −
κ

F

�
ωρþ

_R2F00 þ ð2H _Rþ R̈ÞF0

κ

−
RF − f

2κ

�
−
1

2
σ2; ð20Þ

_ρþ 3Hð1þ ωÞρ ¼ 0; ð21Þ

β̈i þ
�
3H þ

_RF0

F

�
_βi ¼ 0; ð22Þ

where i ¼ 1, 2, 3. It is easy to check that σ obeys the a
dynamical equation of the same form as obeyed by the _βi
themselves

_σ þ
�
3H þ

_RF0

F

�
σ ¼ 0: ð23Þ

If we know the form of the function fðRÞ and concentrate
only on the quantity σðtÞ, we see that there are now a total
of three functions of time HðtÞ, ρðtÞ, σðtÞ governing the
dynamics. The existence of the constraint equation (19)
implies that only two of them are independent. Without loss
of generality, we can choose them to be HðtÞ and σðtÞ.
Given some form of the function fðRÞ, they can be
determined by solving Eqs. (20) and (23), and then ρðtÞ
can then be found using the constraint equations (19).
Notice that, despite involving only the two dynamical
variables HðtÞ and σðtÞ, the underlying phase-space is
higher dimensional, since Eq. (20) involves the third
derivative of H. We will return to this point in the next
section.

2. Anisotropic fluid

As for the case of an anisotropic fluid, the dynamics of
the Bianchi-I metric (12) under fðRÞ is governed by a set of
equations analogous to (19)–(22), but now with

_ρþ ð3Hð1þ ωÞ þ δ · _βÞρ ¼ 0; ð24Þ

β̈i þ
�
3H þ

_RF0

F

�
_βi ¼

κρ

F
δi; ð25Þ

where i ¼ 1, 2, 3, and

δ · _β ¼ δ1 _β1 þ δ2 _β2 þ δ3 _β3 ¼
3

2
δþ _βþ þ 1

2
δ− _β−; ð26Þ

instead of (21) and (22). Observe that the quantity σ in
this case does not obey a simple equation like Eq. (23),
the reason being that the right hand sides of the three
β-equations (25) can be all different. In this case, knowing
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the form of the function fðRÞ, we cannot proceed concen-
trating only on the quantity σðtÞ. Instead, we see that there
are, in this case, a total of five functions of time HðtÞ, ρðtÞ,
β1ðtÞ, β2ðtÞ, β3ðtÞ governing the dynamics. The existence
of the constraint equations (13) and (19) implies that only
three of them are independent, and we choose them asHðtÞ
and β�ðtÞ; see (14). Given some form of the function fðRÞ,
HðtÞ and β�ðtÞ can be determined by solving Eqs. (20)
and (25). As for the isotropic case, ρðtÞ can then be found
using the constraint equation (19).

B. The Einstein frame

The construction of the Einstein frame is based on the
conformal transformation (6). One can also recast the
conformally related Einstein frame metric g̃μν in a
Bianchi-I form

ds̃2 ¼ Fds2 ¼ −dt̃2 þ ã2½e2β̃1dx21 þ e2β̃2dx22 þ e2β̃3dx23�;
ð27Þ

by using the redefinitions

dt̃ ¼
ffiffiffiffi
F

p
dt; ð28Þ

ãðt̃Þ ¼
ffiffiffiffi
F

p
aðtÞ; ð29Þ

β̃iðt̃Þ ¼ βiðtÞ; ð30Þ

with i ¼ 1, 2, 3. The Hubble parameter in the Einstein
frame is defined as

H̃ ¼ ã0

ã
ð31Þ

where the prime denotes here the derivative with respect to
the Einstein frame time variable t̃. The Hubble parameters
of the two frames are known to be related as [42]

H ¼
ffiffiffiffi
F

p �
H̃ −

ffiffiffi
κ

6

r
ϕ0
�
; ð32Þ

which for our purposes can be better expressed as

H̃ ¼ Hffiffiffiffi
F

p
�
1þ

_RF0

2HF

�
: ð33Þ

From (10) and (17), one can write

ρ̃ ¼ ρ

F2
; p̃i ¼

pi

F2
; ð34Þ

for an anisotropic fluid. Note that the barotropic equations
of state remains the same in both frames. It is also
straightforward to check that the total amount of anisotropy
σ̃ in the Einstein frame defined as

σ̃2 ¼ β̃021 þ β̃022 þ β̃023 ð35Þ

is related to total amount of anisotropy σ in the Jordan
frame as

σ̃2 ¼ σ2

F
; ð36Þ

from where one can envisage the possibility of having some
problems for anisotropic solutions when F ¼ 0. We will
return to this point below.

1. Isotropic fluid

The dynamics of the Bianchi-I metric (27) in the Einstein
frame formulation of fðRÞ gravity given by the action (7),
with an isotropic fluid, is governed by the following set of
equations

3H̃2 ¼ κ

�
1

2
ϕ02 þ VðϕÞ þ ρ̃

�
þ σ̃2

2
; ð37Þ

2H̃0 þ 3H̃2 ¼ −κ
�
1

2
ϕ02 − VðϕÞ þ ωρ̃

�
−
σ̃2

2
; ð38Þ

ρ̃0 þ
� ffiffiffi

κ

6

r
ð1 − 3ωÞϕ0 þ 3H̃ð1þ ωÞ

�
ρ̃ ¼ 0; ð39Þ

σ̃0 þ 3H̃ σ̃ ¼ 0; ð40Þ

ϕ00 þ 3H̃ϕ0 þ dV
dϕ

¼
ffiffiffi
κ

6

r
ð1 − 3ωÞρ̃: ð41Þ

We see that there are now a total of four functions of time
H̃ðt̃Þ, ρ̃ðt̃Þ, σ̃ðt̃Þ, ϕðt̃Þ governing the dynamics in Einstein
frame, whereas there were only three functions of time
governing the Jordan frame dynamics. The existence of the
constraint equation (37) implies that only three of them are
independent, as opposed to two in Jordan frame. Without
loss of generality, we can choose them to be H̃ðt̃Þ, ϕðt̃Þ and
σ̃ðt̃Þ. Given some form of the function fðRÞ, we can find the
Einstein frame scalar field potential VðϕÞ by using Eqs. (8)
and (9). We can then solve Eqs. (38), (41) and (40) to get
H̃ðt̃Þ, ϕðt̃Þ and σ̃ðt̃Þ. The fluid energy density ρ̃ðt̃Þ can then
be determined from Eq. (37).

2. Anisotropic fluid

Since for an anisotropic fluid the individual barotropic
constants ωi remain the same in both frames, the average
barotropic constant ω and the deviations δi from it also
remain unaltered. Moreover, we have β̃�ðt̃Þ ¼ β�ðtÞ and

β̃02� ¼
_β2�
F

: ð42Þ
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The dynamics of fðRÞ gravity in the Einstein frame with an
anisotropic fluid is governed by a set of equations analo-
gous to (37)–(41), but now with

ρ̃0 þ
� ffiffiffi

κ

6

r
ð1 − 3ωÞϕ0 þ 3H̃ð1þ ωÞ þ δ · β0

�
ρ̃ ¼ 0; ð43Þ

β̃00i þ 3H̃β̃0i ¼ κρ̃δi; ð44Þ

where δ · β0 is defined analogously to (26), instead of (39)
and (40). Again, given some form of the function fðRÞ, we
can find the Einstein frame scalar field potential VðϕÞ by
using Eqs. (8), (9). We can then solve Eqs. (38), (41), and
(44) to get H̃ðt̃Þ, ϕðt̃Þ and β̃�ðt̃Þ. The energy density of the
anisotropic fluid ρ̃ can then be determined from Eq. (37).

C. The F= 0 submanifold

The conformally related Einstein frame description
becomes invalid on the phase-space submanifold f0ðRÞ≡
FðRÞ ¼ 0, because the very definition of the conformal
transformation (6) does not hold there. Typically, the
Einstein frame scalar field (8) and its potential (9) becomes
singular at the submanifold given by F ¼ 0. Nevertheless,
it is indeed possible to have regular homogeneous and
isotropic cosmological solutions crossing such submani-
fold; see for some explicit examples [14,15]. However, the
situation is qualitatively different for the case of anisotropic
solutions. As we have mentioned in Sec. I, for anisotropic
cosmologies, the phase-space submanifold F ¼ 0 does
not only imply a mathematical difficulty, but is an actual
physical singularity which, typically, is dynamically
unavoidable, challenging the physical viability of the
underlying model. This issue was first discussed in [10]
for nonmimally coupled fðφÞR gravity theories, and then
was generalized in [16] for a more general fðR;φ; XÞ
gravity theories, where X ¼ − 1

2
∂μϕ∂μϕ is the canonical

kinetic term of the scalar field. Although in both the papers
the authors do not assume the presence of any hydro-
dynamic fluid, the conclusion remains the same even if we
add one. See also [17] for other instances of the singular-
ities on the F ¼ 0 submanifold. In what follows, we show
how these physical singularities also arise in the Jordan
frame of fðRÞ gravity theories with anisotropic fluids.
Let us introduce the Hubble parameter Hi associated

with the i-direction of the metric (12), i.e.,

Hi ¼
_ai
ai

¼ H þ _βi: ð45Þ

The Kretschman scalar I ¼ RabcdRabcd for the Bianchi-I
metric is given by

1

4
I ¼

X3
i¼1

ð _Hi þH2
i Þ2 þH2

1H
2
2 þH2

2H
2
3 þH2

3H
2
1: ð46Þ

It is clear that any divergence ofHi will imply a divergence
of the Kretschman scalar, meaning a real spacetime
singularity. From Eq. (25), we have

Fβ̈� ¼ −ð3HF þ F0 _RÞ _β� þ κρδ�: ð47Þ

Notice that, from (19), we have on F ¼ 0

F0 _R ¼ 2κρ − f
6H

: ð48Þ

It is clear that (47) is ill-defined on the submanifold F ¼ 0,
where the phase-space flow has a singularity which implies
divergence of _β� and, consequently, the divergence of the
Kretschman scalar I. Note the important role played by
metric anisotropy here. The physical singularity arises
because the metric anisotropy σ diverges. This kind of
singularity on the F ¼ 0 submanifold can be avoided in
homogeneous and isotropic spacetimes, although the math-
ematical difficulty to define an Einstein frame in such cases
still remains.
On the other hand, one might say, naively, that there are

no such physical singularities in the Einstein frame, since in
this case the theory is essentially general relativity where
this kind of an anisotropic singularity cannot arise. Indeed,
no singularity is apparent from the Eq. (44). This might cast
some doubts on the physical equivalence of the two frames
at the classical level. This naive conclusion, however, is
incorrect, as the Einstein frame description is itself broken
if we have F ¼ 0 somewhere in the phase-space. The very
conditions for the existence and uniqueness of an Einstein
frame are the same ones which assure the absence of
anisotropic singularities in the Jordan frame. Therefore,
the issue of conformal inequivalence does not arise here.
From now on, we assume that a well defined fðRÞ theory of
gravity requires F > 0 and F0 > 0. If this cannot be
guaranteed for all the phase-space, then our subsequent
consideration applies only in the domain where these
conditions are met.

III. DYNAMICAL SYSTEM ANALYSIS

Provided the requirements for the existence and unique-
ness of the Einstein frame hold, namely F > 0 and F0 > 0,
we can compare the dynamics of anisotropic cosmologies
in fðRÞ gravity in both the Jordan and Einstein frames. In
this section, we will introduce a novel formulation for the
dynamical variables which will allow us to introduce an
one-to-one correspondence between all dynamical quan-
tities in both frames, establishing their complete equiv-
alence from the dynamical point of view.

A. Jordan frame

As in the last section, for the sake of completeness and
comparison with previous works, we will also present the
explicit results for the isotropic case.
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1. Isotropic fluid

In presence of an isotropic fluid, one can rewrite the
Hamiltonian constraint equation (19) in the Jordan frame as

3FH2 ¼ RF − f
2

− 3H _RF0 þ κρþ σ2F
2

: ð49Þ

Notice that each term has a mass dimension ½M�2. Let us
now introduce our dimensionless dynamical quantities by
multiplying each term by κ

F2. Since F is a dimensionless
quantity by itself, it will have no effect on the dimension
(or, better to say, the dimensionlessness) of the dynamical
variables; it has been introduced only for future conven-
ience. Our set of dimensionless dynamical variables are as
follows

U1 ¼
3κH2

F
; ð50Þ

U2 ¼
κðRF − fÞ

2F2
; ð51Þ

U3 ¼
3κH _RF0

F2
; ð52Þ

U4 ¼
κσ2

2F
; ð53Þ

U5 ¼
κ2ρ

F2
: ð54Þ

The Hamiltonian constraint then reads

U1 − U2 þU3 − U4 ¼ U5: ð55Þ

Let us substitute in place of the cosmological time t the
monotonically increasing dimensionless variable N corre-
sponding to

ϵN ¼ ln a; ð56Þ

where ϵ is defined to be þ1 for expanding universe and
−1 for a contracting one. The variable N is called the
logarithmic time, and we choose the scale factor at t ¼ 0 to
be a0 ¼ 1. Therefore as time progresses in the forward
(positive) direction, N becomes positive and goes towards
þ∞ in case of both the expanding and contracting uni-
verses. We see that

ϵ _N ¼ H; ð57Þ

so that _N is always positive, i.e., N is always monotonically
increasing with time. This justifies taking N as the time
variable in both expanding and contracting universe.

Around a bounce or a turnaround point, this will not be
valid though.
There are five dynamical variables and, hence, the

underlying phase-space is five-dimensional. Since there
is a constraint, effectively there are only four independent
dynamical variables. Without loss of generality we can take
U1, U2, U3 and U4 as our independent variables, and U5

can be determined from the constraint equation Eq. (55).
The corresponding dynamical equations are found out by
taking the derivative of the dynamical variables with
respect to the dimensionless time variableN and comparing
with the Eqs. (19)–(22). They are:

dU1

dN
¼ ϵ½−4U1 þ 2U2 −U3 − 2U4 þ γðU2Þ�; ð58Þ

dU2

dN
¼ ϵ

U3

2U1

½−2U2 þ γðU2Þ�; ð59Þ

dU3

dN
¼ ϵ

�
ð1 − 3ωÞU1 þ ð1þ 3ωÞU2 − ð4þ 3ωÞU3

− ð1 − 3ωÞU4 þ
U3

U1

ðU2 − 2U3 −U4Þ

þ γðU2Þ
�
U3

2U1

− 1

��
; ð60Þ

dU4

dN
¼ −6ϵU4

�
1þ U3

2U1

�
: ð61Þ

where

γðU2Þ ¼
κf
F2

: ð62Þ

The function γðU2Þ is defined as follows. Notice that, by
construction, U2 is a function of R only and it could be, in
principle, inverted to find RðU2Þ. Since κf

F2 is a function of R
and, therefore, a function ofU2 only, we denote it by γðU2Þ.
We will return to the issue of the invertibility of U2 in the
last section.

2. Anistropic fluid

In the presence of an anisotropic fluid, one cannot use σ
as a dynamical variable anymore. Instead of U4 given
by (53), we need to introduce two new variables

Uþ
4 ¼ 3

4

κ _β2þ
F

; ð63Þ

U−
4 ¼ 1

4

κ _β2−
F

; ð64Þ

in terms of which the Hamiltonian constraint reads
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U1 −U2 þ U3 −Uþ
4 −U−

4 ¼ U5: ð65Þ

There are now six dynamical variables and one constraint
equation and so, effectively, there are five independent
dynamical variables. Without loss of generality we can take
U1, U2, U3 and U�

4 as independent variables, and U5 can
be determined from the constraint equation Eq. (65). The
dynamical equations for the anisotropic case are the same
Eqs. (58)–(60), remembering that U4 ¼ Uþ

4 þ U−
4 , and the

new pair of equations

dUþ
4

dN
¼ ϵ

"
−6Uþ

4

�
1þ U3

2U1

�
þ 3δþU5

ffiffiffiffiffiffiffi
Uþ

4

U1

s #
; ð66Þ

dU−
4

dN
¼ ϵ

"
−6U−

4

�
1þ U3

2U1

�
þ

ffiffiffi
3

p
δ−U5

ffiffiffiffiffiffiffi
U−

4

U1

s #
; ð67Þ

instead of (61).

B. Einstein frame

We will proceed for the Einstein frame in the same way
we did for the Jordan case. In particular, we will also
introduce a logarithmic time variable Ñ

ϵ̃Ñ ¼ ln ã; ð68Þ

where ϵ̃ is defined to be þ1 if the universe is expanding
from the Einstein frame point of view (i.e., ãðt̃Þ is
increasing with t̃) and −1 if the universe is contracting
from the Einstein frame point of view.

1. Isotropic fluid

In presence of an isotropic fluid, the Hamiltonian
constraint equation in the Einstein frame is given by
Eq. (37). Let us now define the dimensionless dynamical
variables in the Einstein frame as follows

Ũ1 ¼ 3κ

�
H̃ −

ffiffiffi
κ

6

r
ϕ0
�

2

; ð69Þ

Ũ2 ¼ κ2VðϕÞ; ð70Þ

Ũ3 ¼
ffiffiffiffiffiffiffi
6κ3

p �
H̃ −

ffiffiffi
κ

6

r
ϕ0
�
ϕ0; ð71Þ

Ũ4 ¼
κ

2
σ̃2; ð72Þ

Ũ5 ¼ κ2ρ̃: ð73Þ

Notice that we have, by construction,

Ũ2 ¼ U2; Ũ4 ¼ U4; Ũ5 ¼ U5: ð74Þ

The Hubble parameters H and H̃ in the two frames are
related by Eq. (33). This relation, when used in the
definition of Ũ1, gives back exactly the form of U1, i.e.,
we also have effectively Ũ1 ¼ U1. Regarding Ũ3, note that

ϕ0 ¼
ffiffiffiffiffi
3

2κ

r
d lnF
dt

dt
dt̃

¼ F0 _R
F

3
2

ð75Þ

The above relation, along with Eq. (33), when inserted in
the definition of Ũ3, it also takes the form of U3. Therefore
we have Ũi ¼ Ui, for all i, and here lies the great advantage
of constructing the dimensionless dynamical variables in
the particular way that we have taken. The dynamical
variables in the two frames have a one-to-one correspon-
dence, which of course implies that both phase-space are
diffeomorphic. Such one-to one-correspondence consider-
ably reduces our effort in finding out the constraint
equation and the dynamical equations in Einstein frame.
For example, the dynamical variables in the Einstein frame
satisfy the same constraint equation as the dynamical
variables in the Jordan frame, namely

Ũ1 − Ũ2 þ Ũ3 − Ũ4 ¼ Ũ5: ð76Þ

For the true dynamical equations (58)–(61), we need to take
into consideration the change from N to Ñ. For this
purpose, notice that

dN

dÑ
¼

_N

Ñ0
dt
dt̃

¼ ϵ̃

ϵ

�
2U1

2U1 þU3

�
¼ ΩðU1; U3Þ; ð77Þ

where (33) was used. Now, knowing the Jordan frame
dynamical equation

dUi

dN
¼ fiðU1; U2; U3; U4Þ ð78Þ

for the Jordan frame dynamical variable Ui, the corre-
sponding Einstein frame dynamical equation will be

dUi

dÑ
¼ f̃iðŨ1; Ũ2; Ũ3; Ũ4Þ ð79Þ

with

f̃iðŨ1;Ũ2;Ũ3;Ũ4Þ¼ΩðŨ1;Ũ3ÞfiðŨ1;Ũ2;Ũ3;Ũ4Þ: ð80Þ

Note the fundamental part played by the one-to-one
correspondence property. We could only exchange Ũi and
Ui in all expressions precisely because one has Ũi ¼ Ui for
all i.

2. Anisotropic fluid

The situation for the anisotropic fluid in the Einstein
frame is analogous to the Jordan case. Since one cannot use
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σ as dynamical variable anymore, the variable Ũ4 given
by (72) must be split as

Ũ4 ¼ Ũþ
4 þ Ũ−

4 ¼ 3κ

4
β̃02þ þ κ

4
β̃02− ; ð81Þ

in the same way we have done for the Jordan frame case.
The equations for the anisotropic fluid case are obtained in
the same way we did for the isotropic case, by means
of (79) and (80).

C. Dynamical equivalence

We are now ready to prove one of our central results, the
complete dynamical equivalence of both frames. Two
autonomous dynamical systems _x ¼ f1ðxÞ, x ∈ Rn, and
_y ¼ f2ðyÞ, y ∈ Rn, will be dynamically equivalent (or
topologically equivalent in the dynamical system language;
see, for instance, [43]) if there exists a homeomorphism
(diffeomorphism in the present case) y ¼ hðxÞ which maps
solutions xðtÞ into solutions yðtÞ preserving the direction of
time, meaning that if xðtÞ is a solution of the fist dynamical
set of equations, yðtÞ ¼ hðxðtÞÞ will be a solution of the
second one. The idea behind the concept of topological
equivalence for dynamical systems is rather simple: if two
systems are topologically equivalent, their dynamical con-
tents are equivalent in the sense that one can map the
evolution of any observable in both systems in a one-to-one
manner. In particular, all dynamical properties of certain
solutions as, for instance, fixed points and their attractive or
repulsive nature, periodic solutions, limit cycles, among
others, are preserved from one system to the other.
In our case, the dynamical variables were constructed in

order to assure that Ũi ¼ Ui, i.e., h is the identity map,
establishing that the phase space of the two frames are
trivially diffeomorphic. However, the dynamical equations
in the two frames are not topologically equivalent in
general. The condition of mapping solutions into solutions
of the type yðtÞ ¼ hðxðtÞÞ implies that the vector fields of
the two dynamical systems obey f2 ¼ ð∇xhÞf1, which is
not observed for our case, since we have (80). The
dynamical system formulation in the two frames will be
topologically equivalent, and consequently also dynami-
cally equivalent, if Ω ¼ 1. We will return to this
issue below.
However, the topological equivalence is a stronger than

necessary requirement to assure dynamical equivalence
in our case. Let us analyze more closely the function Ω.
We have

ΩðU1; U3Þ ¼
1ffiffiffiffi
F

p ϵ̃

ϵ

H

H̃
: ð82Þ

Since F > 0 and H
ϵ and H̃

ϵ̃ are positive quantities, we have
thatΩ is always positive. The positiveness ofΩ has a strong
consequence on the fixed points in both frames. Recalling,

in the Jordan frame, the fixed points are the solutions of the
set of equations

dUi

dN
¼ fiðUjÞ ¼ 0; ð83Þ

whereas the fixed points in the Einstein frame are the
solutions of

dŨi

dÑ
¼ f̃iðŨjÞ ¼ 0: ð84Þ

Hence, according to (80) and the positiveness of Ω, both
frames have exactly the same fixed points. Moreover, the
linear analysis of fixed points involves the Jacobian matrix,
whose eigenvalues reveal the dynamical nature of these
particular solutions. In our case, the ijth matrix element of
the Jacobian J½Ui� in the Jordan frame and of the Jacobian

J̃½Ũi� in the Einstein frame are ∂fi∂Uj
and ∂f̃i

∂Ũj
, respectively. We

can find the relationship between them as follows

∂f̃i
∂Ũj

¼ ∂Ωfi
∂Ũj

¼ Ω
∂fi
∂Uj

þ fi
∂Ω
∂Uj

; ð85Þ

and it is clear that, at a fixed point, we have

�∂f̃i
∂Ũj

�
¼ Ω

�∂fi
∂Uj

�
: ð86Þ

Since Ω is always positive, the signs of the eigenvalues
are preserved and, consequently, we can conclude that the
nature of the fixed points (stable, unstable or saddle) are
also the same in both the frames.
The equivalence between the two frames extends far

beyond the linear analysis of fixed point solutions. For
instance, suppose we have an attractive domain in one of
the frames, i.e., a region of the phase-space from where no
solution can escape. Such regions are typically character-
ized by means of a Lyapunov function [43]. A Lyapunov
function LðxÞ for a dynamical system _x ¼ f1ðxÞ is a
smooth positive function such that

_L ¼ ð∇xLÞf1 < 0 ð87Þ

along the solutions xðtÞ. It is clear from (87) that a closed
surface level around a local minimum of a Lyapunov
function can describe an attractive domain of the phase-
space since any solution, once crossing such surface,
cannot return. Repulsive domains can be defined analo-
gously. In our case, a Lyapunov function L in both frames
will obey

dL

dÑ
¼ Ω

dL
dN

: ð88Þ
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Since the level surfaces in both frames are identical, the
positiveness of Ω assures that attractive/repulsive domains
are exactly the same in the two frames. Notice that the
relation (88) is valid for any phase-space function, it is not
restricted to Lyapunov functions, and so any dynamical
observable will also obey (88) in both frames.
As already said, the equivalence will be complete,

meaning a topological equivalence, if Ω ¼ 1. A closer
inspection of (77) shows that this corresponds to U3 ¼ 0
and, from (52) we have that this corresponds the case of
constant R as, for instance, the case of de Sitter solutions.
Our dynamical system formulation can be effectively used
to determine under which conditions a general fðRÞ theory
of gravity will admit or not attractive asymptotic de Sitter
solutions among other cosmological scenarios, and these
issues are now under investigation [44].

IV. FINAL REMARKS

We have considered homogeneous but anisotropic
Bianchi-I universes with an anisotropic barotropic fluid
in fðRÞ gravity in both Jordan and Einstein frames. We
have shown that both frames are free from anisotropic
singularities and well defined when F ¼ f0ðRÞ > 0 and
F0 > 0 and, in this case, the introduction of a new set of
dynamical variables allowed us to establish a complete one-
to-one correspondence between the phase-spaces in the two
frames. Even though the dynamical formulation in the two
frames are not topologically equivalent, we have shown
that their dynamical behaviors are fully equivalent, with
preserved fixed points, attraction basins and any other
dynamical property which can be described as smooth
functions on the phase-spaces. Our results can help not only
the construction of viable fðRÞ cosmological models, but
also contribute to the still active debate on the physical

interpretation two frames. From the dynamical point of
view, if both exist, they are completely equivalent.
Let us return to the discussion of the invertibility of

U2ðRÞ given by (51), which was implicitly used in the
definition of γðU2Þ in (62). We can invert U2ðRÞ provided

U0
2 ¼

κfF0

2F3
≠ 0 ð89Þ

in the Jordan frame. It may seem that we need also to
assume f ≠ 0 in order to have a consistent formulation, but
this is not really necessary. If f changes its sign, we will
indeed have two possible branches to invertU2ðRÞ, and this
must be done judiciously taking into account the smooth-
ness of the solutions. However, the Einstein frame have
exactly the same problem, one needs to invert Ũ2ðϕÞ given
by (70), and from (9) we see that the situation is exactly the
same. Even these intricacies of the dynamical formulation
of both frames are completely equivalent.
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