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Abstract—We show that every Lie point symmetry of semilinear Kohn–Laplace equations with
a power-law nonlinearity on the Heisenberg group H1 is a divergence symmetry if and only if
the corresponding exponent takes a critical value.
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1. INTRODUCTION

Recently, there has been a renewed significant and steadily increasing interest in Heisenberg
groups in both analysis and geometry. In the last decades, a number of authors studied partial
differential equations (PDE) on such groups by various methods. We note only some of the nu-
merous results. Results on the existence, regularity, and absence of solutions for PDE containing
Kohn–Laplace operators were obtained in [1]. General results on the absence of solutions of differ-
ential inequalities on Heisenberg groups were obtained in [2]. The work [3] represented a review of
a number of results dealing with critical semilinear equations on the Heisenberg group.

In the present paper, we use the symmetry theory of Lie differential equations [4, 5] for the inves-
tigation of a sample Kohn–Laplace equation on a Heisenberg group. Namely, we consider variational
and divergent symmetries of the following differential equation on the Heisenberg group H1 :

ΔH1u + up = 0, (1)

where ΔH1 = X2 + Y 2 is a Kohn–Laplace operator,

X = ∂/∂x + 2y ∂/∂t, Y = ∂/∂y − 2x ∂/∂t

generate a left multiplication in H1. More precisely, Eq. (1) with u = u(x, y, t) : R
3 → R has the

form
uxx + uyy + 4(x2 + y2)utt + 4yuxt − 4xuyt + up = 0. (2)

In [6] we constructed a complete group classification of Kohn–Laplace semilinear equations
on H1. In the case of a power-law nonlinearity, the result implies that the group of symmetries (1)
with p �= 0 and p �= 1 consists of displacements with respect to t, rotations in the plane x− y, right
multiplications in the Heisenberg group H1, and an elongation induced by

T =
∂

∂t
, R = y

∂

∂x
− x

∂

∂y
, X̃ =

∂

∂x
− 2y

∂

∂t
, Ỹ =

∂

∂y
+ 2x

∂

∂t
(3)

and
Z = x

∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
+

2
1 − p

u
∂

∂u
. (4)
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Moreover, if p = 3, then the group of symmetry can be complemented by the following generating
elements:

V1 = (xt − x2y − y3)
∂

∂x
+ (yt + x3 + xy2)

∂

∂y
+ (t2 − (x2 + y2)2)

∂

∂t
− tu

∂

∂u
,

V2 = (t − 4xy)
∂

∂x
+ (3x2 − y2)

∂

∂y
− (2yt + 2x3 + 2xy2)

∂

∂t
+ 2yu

∂

∂u
,

V3 = (x2 − 3y2)
∂

∂x
+ (t + 4xy)

∂

∂y
+ (2xt − 2x2y − 2y3)

∂

∂t
− 2xu

∂

∂u
.

The aim of the present paper is to clarify what of the above-listed symmetries are variational
or divergent.

By G we denote the five-parameter Lie group of pointwise transformations generated by T , R,
X̃ , Ỹ , and Z. Then our first result can be formulated as the following.

Theorem 1. The Lie group G of pointwise symmetries of the Kohn–Laplace equation (1) is
a variational group of symmetries if and only if p = 3.

Recall that the homogeneous dimension of the Heisenberg group Hn is equal to Q = 2n+2, and
the Sobolev critical exponent is equal to (Q + 2)/(Q − 2). Therefore, Theorem 1 implies that the
elongation Z is a variational symmetry if and only if p is equal to the critical exponent. Virtually,
this property is valid for Hn, n > 1, and we return to this situation later.

Next we show that the additional symmetries V1, V2, and V3 are divergent in the critical case.
To this end, we find a close form of vector-valued potentials defining V1, V2, and V3 as divergent
symmetries.

The following assertion is the main result of the present paper.

Theorem 2. Any Lie pointwise symmetry of the Kohn–Laplace equation

ΔH1u + u3 = 0 (5)

is divergent.

It is well known that divergent symmetries generate conservation laws by the Noether theo-
rem [4]. Therefore, the following investigation stages imply to find conservation laws [7] corre-
sponding to considered variational and divergent symmetries and to analyze invariant solutions of
the Kohn–Laplace equations.

Note that, by Theorem 2, all Lie pointwise symmetries of the Kohn–Laplace equation (5) are
divergent. This justifies the general property proved in [8], that property implies that Lie pointwise
symmetries of critical quasilinear differential equations with power-law nonlinearities are divergent.
The conjecture on the validity of this property for differential equations on Heisenberg groups was
suggested by E. Mitidieri in June, 2003.

In Sections 2 and 3, we prove Theorems 1 and 2, respectively, and in Section 3, we discuss the
generalization of obtained results to the Heisenberg group Hn, n > 1.

2. VARIATIONAL SYMMETRIES

Firstly, we note that the Kohn–Laplace equation ΔH1u+f(u) = 0 is an Euler–Lagrange equation
for the functional ∫

L(x, y, t, u, ux, uy, ut) dx dy dt,

where the integration is performed over R
3, the Lagrange function is given by the formula

L =
1
2
(Xu)2 +

1
2
(Y u)2 −

u∫

0

f(s) ds

DIFFERENTIAL EQUATIONS Vol. 47 No. 8 2011



1212 BOZHKOV, FREIRE

or, which is equivalent,

L =
1
2
u2

x +
1
2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut −

u∫

0

f(s) ds, (6)

and the function u is assumed to satisfy proper decreasing conditions as d = (t2+(x2+y2))1/4 → ∞.
Proof of Theorem 1. By the general symmetry theory of differential equations [4], it suffices

to show that generating elements G define variational symmetries.
Indeed, by the infinitesimal invariance criterion [4, p. 257], G is a group of variational symmetry

if and only if
W (1)L + L(Dxξ + Dyφ + Dtτ) = 0 (7)

for all (x, y, t, u, ux, uy, ut) and for any infinitesimal generator

W = ξ
∂

∂x
+ φ

∂

∂y
+ τ

∂

∂t
+ η

∂

∂u
.

(Recall that W (1) is a first-order extension of W , see [4].)
To prove relation (7) for T , R, X̃ , Ỹ , and Z, we firstly evaluate the corresponding first-order

extensions with the use of formulas for extended infinitesimal operators [4] :

T (1) = T, R(1) = R + uy

∂

∂ux

− ux

∂

∂uy

, X̃(1) = X̃ + 2ut

∂

∂uy

, Ỹ (1) = Ỹ − 2ut

∂

∂ux

, (8)

Z(1) = Z +
1 + p

1 − p
ux

∂

∂ux

+
1 + p

1 − p
uy

∂

∂uy

+
2p

1 − p
ut

∂

∂ut

.

Then from (3), (6), and (8), one can readily find that T , R, X̃, and Ỹ satisfy (7). Therefore,
they define variational symmetries for an arbitrary f(u).

Next, let ξ = x, φ = y, τ = 2t, and η = 2u/(1−p) be infinitesimal generators of the elongation Z.
Then the left-hand side of relation (7) with W = Z acquires the form

Z(1)L + L(Dxξ + Dyφ + Dtτ)

=
[
x

∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
+

2
1 − p

u
∂

∂u
+

1 + p

1 − p
ux

∂

∂ux

+
1 + p

1 − p
uy

∂

∂uy

+
2p

1 − p
ut

∂

∂ut

]
L + 4L,

where
L =

1
2
u2

x +
1
2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut −

1
p + 1

up+1.

After the differentiation and simplifications, we obtain

Z(1)L + L(Dxξ + Dyφ + Dtτ)

=
3 − p

1 − p
(u2

x + u2
y + 4(x2 + y2)u2

t + 2yuxut − 2xuyut) +
2(3 − p)
p2 − 1

up+1.

Therefore, Z is a variational symmetry if and only if p = 3, which completes the proof of the
theorem.

3. DIVERGENT SYMMETRIES

Let us prove Theorem 2. Recall that a pointwise transformation with the infinitesimal generator

W = ξ
∂

∂x
+ φ

∂

∂y
+ τ

∂

∂t
+ η

∂

∂u
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is a divergent symmetry for
∫

L if and only if there exists a vector function ϕ = (ϕ1, ϕ2, ϕ3) of u
and its derivatives up to some finite order such that

W (1)L + L(Dxξ + Dyφ + Dtτ) = Div ϕ. (9)

Since variational symmetries are divergent symmetries with ϕ = 0, it follows from Theorem 1
that it suffices to show that V1, V2, and V3 are divergent symmetries. To this end, we find the
corresponding potentials ϕ.

For the symmetry V1, we have ξ = xt − x2y − y3, φ = yt + x3 + xy2, τ = t2 − (x2 + y2)2, and
η = −tu. Let us evaluate the first-order extension of V1 :

V
(1)
1 = V1 + η(1)

x

∂

∂ux

+ η(1)
y

∂

∂uy

+ η
(1)
t

∂

∂ut

,

where extensions of infinitesimal operators are given by the formulas

η(1)
x = 2(xy − t)ux − (3x2 + y2)uy + 4x(x2 + y2)ut,

η(1)
y = (x2 + 3y2)ux − 2(t + xy)uy + 4y(x2 + y2)ut, η

(1)
t = −u − xux − yuy − 3tut.

Next, after some manipulations, we obtain

V (1)
1 L + L(Dxξ + Dyφ + Dtτ) = 2xuuy − 2yuux − 4(x2 + y2)ut. (10)

Therefore, V1 is not a variational symmetry. Let

A1 = −yu2, A2 = xu2, A3 = −2(x2 + y2)u2. (11)

Then, by virtue of relations (10) and (11), we have

V
(1)
1 L + L(Dxξ + Dyφ + Dtτ) = Div(A),

where A = (A1, A2, A3). Therefore, V1 is a divergent symmetry. Similarly, for the symmetries V2

and V3, we obtain

V
(1)
2 L + L(Dxξ + Dyφ + Dtτ) = 2uuy − 4xuut, (12)

V
(1)
3 L + L(Dxξ + Dyφ + Dtτ) = −2uux − 4yuut. (13)

Now we set
B = (0, u2,−2xu2), C = (−u2, 0,−2yu2). (14)

Then it follows from relations (12)–(14) that V2 and V3 satisfy relation (9) with ϕ replaced by B
and C, respectively. Therefore, V2 and V3 are divergent symmetries.

4. ON THE GENERALIZATION TO Hn, n > 1

Here we outline possibilities of the generalization of the above-suggested approach to the Heisen-
berg group Hn, n > 1.

Note firstly that the Kohn–Laplace equation

ΔHnu + f(u) = 0 (15)

or, which is equivalent,

uxixi
+ uyiyi

+ 4(x2
i + y2

i )utt + 4yiuxit − 4xiuyit + f(u) = 0,
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is an Euler–Lagrange equation for the functional J [u] =
∫

L with

L =
1
2
(Xiu)2 +

1
2
(Yiu)2 −

u∫

0

f(s) ds

=
1
2
u2

xi
+

1
2
u2

yi
+ 2(x2

i + y2
i )u

2
t + 2yiuxi

ut − 2xiuyi
ut −

u∫

0

f(s) ds,

where Xi =
∂

∂xi

+ 2yi

∂

∂t
, Yi =

∂

∂yi

− 2xi

∂

∂t
, and the summation is performed over i = 1, 2, . . . , n.

By using the definition of a Lie pointwise symmetry of a differential equation, one can show that
the scaling transformation

x∗
j = λxj, y∗

j = λyj, t∗ = λ2t, u∗ = λ2/(1−p)u

preserves the equation
ΔHnu + up = 0. (16)

Then, by performing this substitution in the functional J , one can readily find that the elongation

Z = xi

∂

∂xi

+ yi

∂

∂yi

+ 2t
∂

∂t
+

2
1 − p

u
∂

∂u

is a variational symmetry if and only if

p =
n + 2

n
=

Q + 2
Q − 2

.

Therefore, Eq. (16) admits a group of variational symmetries containing Z if and only if p takes
the critical value.

In conclusion, we note that the complete classification of groups of Kohn–Laplace equations (15)
has been constructed only for n = 1 (see [6]).
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