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Abstract

We study the Lie point symmetries of semilinear Kohn–Laplace equations on the Heisenberg group H1 and obtain a complete
group classification of these equations.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Heisenberg group Hn topologically is the real vector space R2n+1. Its Lie group structure is determined by the
product

(x, y, t)(x0, y0, t0) =

(
x + x0, y + y0, t + t0

+ 2
n∑

i=1

(yi x0
i − xi y0

i )

)
,

where (x, y, t), (x0, y0, t0) ∈ Rn
× Rn

× R = Hn . It is easy to verify that the operators

T =
∂

∂t
, X i =

∂

∂xi
+ 2y

∂

∂t
, Yi =

∂

∂yi
− 2x

∂

∂t
,

where i = 1, 2, . . . , n, form a basis of the left-invariant vector fields on Hn and satisfy the following commutation
relations:

[X i , Yi ] = −4δi j T, [X i , X j ] = [Yi , Y j ] = [X i , T ] = [Yi , T ] = 0.

These formulae present in an abstract form the commutation relations for the quantum-mechanical position and
momentum operators in n-dimensional configuration space. This justifies the name Heisenberg group.

In the last few decades the Heisenberg group Hn has been intensively and extensively studied by a considerable
number of authors using methods and approaches which come from algebraic and differential geometry, real and
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complex analysis, mathematical physics and applications. A big part of the corresponding work treats partial
differential equations on Hn . In this regard various authors have obtained existence and nonexistence results for
equations involving Kohn–Laplace operators. Recall that the Kohn–Laplace operator 1Hn is the natural subelliptic
Laplacian on Hn defined by

1Hn =

n∑
i=1

(X2
i + Y 2

i ).

Although there are similarities between 1Hn and the classical Laplacian they are essentially different. For
example, the Kohn–Laplace operator is not a strongly elliptic operator. It is a typical representative of the hypoelliptic
operators [19]. (Since the study of hypoellipticity properties is not the subject of this paper we shall not comment
further on this point.)

In [18] Garofalo and Lanconelli established existence, regularity and nonexistence results for the Kohn–Laplace
equation

1Hn u + f (u) = 0

in an open bounded or unbounded subset of Hn with homogeneous Dirichlet boundary conditions. One of the
motivations for studying such semilinear equations is the fact that they may arise as Euler–Lagrange equations in
some variational problems on Cauchy–Riemann (CR) manifolds as in the works of Jerison and Lee [25,26] on the CR
Yamabe problem. The existence of weak solutions is proved in [18] provided the nonlinear term satisfies some growth
conditions of the form f (u) = o(|u|

(Q+2)/(Q−2)) as |u| → ∞, where Q = 2n + 2 is the so-called homogeneous
dimension of Hn [15]. The exponent (Q + 2)/(Q − 2) is the critical exponent for Stein’s Sobolev space [26]. The
nonexistence results follow from remarkable Pohozaev identities established in [18] for the solutions of Kohn–Laplace
equations on the Heisenberg group. The Dirichlet problem for the Kohn Laplacian on Hn was studied before by
Jerison in [23,24]. See also [4] for the existence of classical nonnegative solutions of semilinear Kohn–Laplace
equations. General nonexistence results for solutions of semilinear differential inequalities on the Heisenberg group
were obtained by Pohozaev and Veron in [29]. Since there are a huge number of works dedicated to Heisenberg groups
(see [1]) and the study of PDE on Hn , in order not to increase the volume of this paper, we shall not present here
further details, directing the interested reader to the already cited works as well as to [2,3,5,6,14–17,20,21] and the
references therein.

The purpose of the present paper is to illuminate the properties of the Kohn–Laplace equations from the point
of view of the S. Lie Symmetry Theory, which to our knowledge has not been previously done. We shall obtain a
complete group classification of semilinear partial differential equations on H1 of the following form:

1H1 u + f (u) = 0, (1)

where 1H1 is the Kohn–Laplace operator on H1 and f is a generic function.
The importance of group classification of differential equations was first emphasized by Ovsiannikov in

1950s–1960s, when he and his school began a systematic research program of successfully applying modern group
analysis methods to wide range of physically important problems. Following Olver ([27], p. 182), we recall that to
perform a group classification on a differential equation involving a generic function f consists of finding the Lie
point symmetries of the given equation with arbitrary f , and, then, to determine all possible particular forms of f for
which the symmetry group can be enlarged. It is worth observing that for problems which arise from physics, quite
often there is physical motivation for considering such specific cases.

The Heisenberg group H1 itself possesses the rich properties of Hn (see [3]) and the calculations of the symmetry
group of this model problem give insights for the general case n > 1. For this reason, and for the sake of simplicity
and clarity we restrict ourselves to H1.

We write the Kohn–Laplace operator as

1H1 = X2
+ Y 2, (2)

where

X =
∂

∂x
+ 2y

∂

∂t
(3)



2554 Y. Bozhkov, I.L. Freire / Nonlinear Analysis 68 (2008) 2552–2568

and

Y =
∂

∂y
− 2x

∂

∂t
. (4)

Then Eq. (1) for u = u(x, y, t) in more detail reads

uxx + u yy + 4(x2
+ y2)ut t + 4yuxt − 4xu yt + f (u) = 0. (5)

We shall not present preliminaries concerning Lie point symmetries of differential equations, supposing that the
reader is familiar with the basic notions and methods of contemporary group analysis [8,22,27,28].

The main result in this paper is the following

Theorem. The widest Lie point symmetry group of the Kohn–Laplace equation (1) with an arbitrary f (u) is
determined by the operators

T =
∂

∂t
, R = y

∂

∂x
− x

∂

∂y
, X̃ =

∂

∂x
− 2y

∂

∂t
, Ỹ =

∂

∂y
+ 2x

∂

∂t
, (6)

that is, by a translation in t, a rotation in the x–y plane and the generators of right multiplication in the Heisenberg
group H1.

For some special choices of the right-hand side f (u) it can be extended in the cases listed below. We shall write
only the generators additional to (6).
(i) If f (u) = 0, then

V1 = (xt − x2 y − y3)
∂

∂x
+ (yt + x3

+ xy2)
∂

∂y
+ (t2

− (x2
+ y2)2)

∂

∂t
− tu

∂

∂u
(7)

V2 = (t − 4xy)
∂

∂x
+ (3x2

− y2)
∂

∂y
− (2yt + 2x3

+ 2xy2)
∂

∂t
+ 2yu

∂

∂u
(8)

V3 = (x2
− 3y2)

∂

∂x
+ (t + 4xy)

∂

∂y
+ (2xt − 2x2 y − 2y3)

∂

∂t
− 2xu

∂

∂u
(9)

Z1 = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
, Z2 = u

∂

∂u
, W = β(x, y, t)

∂

∂u
, (10)

where 1H1β = 0.
(ii) If f (u) = c = const, then this case is reduced to (i) by the change u = v − cx2/2.
(iii) If f (u) = k · u, k a constant, then

Z2 = u
∂

∂u
, W = β(x, y, t)

∂

∂u
, (11)

where 1H1β + kβ = 0.
(iv) If f (u) = k · u p, p 6= 0, p 6= 1, we have the generator of dilations

Z = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
+

2
1 − p

u
∂

∂u
. (12)

In the critical case f (u) = k · u3, there are three additional generators, namely V1, V2, V3 given in (7), (8), (9)
respectively.
(v) If f (u) = k · eu then the operator

Z3 = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
− 2

∂

∂u
(13)

generates a subgroup of the Lie point symmetry group of (1).

This classification is similar to that for semilinear equations in Rn involving Laplace or polyharmonic
operators [30]. We also observe that for power nonlinearity f (u) = ku p exactly in the critical case p = 3 =
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(Q + 2)/(Q − 2), Q = 2 · 1 + 2 = 4 being the homogeneous dimension of H1, the symmetry group is expanded
by three additional generators (see (iv) of the main theorem). This fact suggests that in the critical case maybe there
are further properties as pointed out in [9,10] regarding other differential equations. This is our motivation to use
the above group classification in three subsequent papers [11,13,12]. In [11] we study the variational properties of
Kohn–Laplace equations and we find out which of the already found Lie point symmetries are variational/divergence
symmetries. Further in [12] we establish the corresponding conservation laws via the Noether Theorem. In [13] we
discuss the invariant solutions of various Kohn–Laplace equations on the Heisenberg group.

The group classification of Kohn–Laplace equations on the Heisenberg group Hn , n > 1, will be treated elsewhere.
This paper is organized as follows. In the next section we obtain the determining equations for the Lie point

symmetries of Eq. (1). This process is essentially simplified by the use of two theorems of Bluman [7,8]. Then in
Section 3 we obtain some formulae which are consequences of the determining equations. They are used in the proof
of the main theorem, given in Sections 4–9.

2. The determining equations

In this section we obtain the determining equations for a Lie point symmetry of the Kohn–Laplace equation (1)
with infinitesimal generator

S = ξ
∂

∂x
+ φ

∂

∂y
+ τ

∂

∂t
+ η

∂

∂u
. (14)

To begin with, we observe that the symmetry calculation is drastically simplified if we apply two theorems
of Bluman [7,8]. Indeed, Theorem 4.2.3-1, [8], p. 174, implies that ξ, φ and τ do not depend on u. Then by
Theorem 4.2.3-6, [8], p. 175, we conclude that η is a linear function of u. Therefore the infinitesimals are of the
following form:

ξ = ξ(x, y, t),
φ = φ(x, y, t),
τ = τ(x, y, t),
η = α(x, y, t)u + β(x, y, t),

(15)

where α = α(x, y, t) and β = β(x, y, t) are functions to be determined.
We define

H := 1H1 u + f (u).

Eq. (1) admits the symmetry (14) if and only if

ŜH = 0

when H = 0 [8,27], where

Ŝ = ξ
∂

∂x
+ φ

∂

∂y
+ τ

∂

∂t
+ η

∂

∂u
+ η(1)x

∂

∂ux
+ η(1)y

∂

∂u y
+ η

(1)
t

∂

∂ut
+ η(2)xx

∂

∂uxx
+ η(2)yy

∂

∂u yy

+ η
(2)
xt

∂

∂uxt
+ η

(2)
yt

∂

∂u yt
+ η

(2)
t t

∂

∂ut t
+ η(2)xy

∂

∂uxy
(16)

is the second-order extension of S [8,27]. Then the symmetry condition can be written as

(8xξ + 8yφ)ut t + 4φuxt − 4ξu yt + η f ′(u)+ η(2)xx + η(2)yy + 4(x2
+ y2)η

(2)
t t + 4yη(2)xt − 4xη(2)yt = 0, (17)

when H = 0. (The subscripts denote partial derivatives, e.g. ux =
∂u
∂x . Only in the extension coefficients like η( j)

xt are
the subscripts indices. We also suppose that the functions considered are sufficiently smooth for the derivatives we
write to exist.) Further, using the corresponding formulae for the extended infinitesimals [8,27] we calculate

η(1)x = βx + αx u + (α − ξx )ux − φx u y − τx ut , (18)
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η(1)y = βy + αyu − ξyux + (α − φy)u y − τyut , (19)

η
(1)
t = βt + αt u − ξt ux − φt u y + (α − τt )ut , (20)

η(2)xx = βxx + αxx u + (2αx − ξxx )ux − φxx u y − τxx ut + (α − 2ξx )uxx − 2φx uxy − 2τx uxt , (21)

η(2)yy = βyy + αyyu − ξyyux + (2αy − φyy)u y − τyyut − 2ξyuxy + (α − 2φy)u yy − 2τyu yt , (22)

η
(2)
t t = βt t + αt t u − ξt t ux − φt t u y + (2αt − τt t )ut − 2ξt uxt − 2φt u yt + (α − 2τt )ut t , (23)

η
(2)
xt = βxt + αxt u + (αt − ξxt )ux − φxt u y + (αx − τxt )ut

− ξt uxx − φt uxy − φx u yt + (α − ξx − τt )uxt − τx ut t , (24)

η
(2)
yt = βyt + αyt u − ξyt ux + (αt − φyt )u y + (αy − τyt )ut

− ξyuxt − ξt uxy − φt u yy + (α − φy − τt )u yt − τyut t . (25)

Now substituting (18)–(25) into the symmetry condition (17), after some tedious work, we obtain

(αu + β) f ′(u)+1H1β + (1H1α)u + [2αx + 4yαt −1H1ξ ]ux

+ [2αy − 4xαt −1H1φ]u y + [8(x2
+ y2)αt + 4yαx − 4xαy −1H1τ ]ut

+ [−2φx − 2ξy − 4yφt + 4xξt ]uxy + [α − 2ξx − 4yξt ]uxx + [α − 2φy + 4xφt ]u yy

+ [8xξ + 8yφ + 4(x2
+ y2)(α − 2τt )− 4yτx + 4xτy]ut t

+ [4φ − 2τx − 8(x2
+ y2)ξt + 4y(α − ξx − τt )+ 4xξy]uxt

+ [−4ξ − 2τy − 8(x2
+ y2)φt − 4yφx − 4x(α − φy − τt )]u yt = 0, (26)

when H = 0. Then, expressing uxx using (5) and substituting in (26), we obtain an identity for all values of
(x, y, t, u, ux , u y, ut , uxy, uxt , u yy, u yt , ut t ). Equating to zero the coefficients of the derivatives of u and the free
term, we obtain the following nine determining equations:

ξx + 2yξt − φy + 2xφt = 0, (27)

ξy − 2xξt + φx + 2yφt = 0, (28)

1H1ξ = 2Xα, (29)

1H1φ = 2Yα, (30)

1H1τ = 4y Xα − 4xYα, (31)

αu f ′(u)+ β f ′(u)+ (1H1α)u +1H1β + [4yξt + 2ξx − α] f (u) = 0, (32)

2yξx + 2xξy + 4(y2
− x2)ξt + 2φ − τx − 2yτt = 0, (33)

4xξx + 8xyξt + 2ξ + 2yφx − 2xφy + 4(x2
+ y2)φt + τy − 2xτt = 0, (34)

2(x2
+ y2)ξx + 4y(x2

+ y2)ξt + 2xξ + 2yφ − yτx + xτy − 2(x2
+ y2)τt = 0, (35)

where the operators X and Y are defined by (3) and (4). Multiplying correspondingly Eqs. (27), (28), (33) and (34)
we obtain a relation which can be written symbolically as “(35) = y ·(33)+x ·(34)−x ·(27)−y ·(28)”. Hence, Eq. (35)
is a consequence of (27), (28), (33) and (34). Another straightforward calculation shows that (31) also follows from
these equations. Therefore there are seven independent determining equations which in terms of the operators X and
Y can be written in the following simplified form:

Xξ − Yφ = 0, (36)

Y ξ + Xφ = 0, (37)

1H1ξ = 2Xα, (38)

1H1φ = 2Yα, (39)

αu f ′(u)+ β f ′(u)+ (1H1α)u +1H1β + (2Xξ − α) f (u) = 0, (40)
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Xτ = 2y Xξ + 2xY ξ + 2φ, (41)

Y τ = −2x Xξ + 2yY ξ − 2ξ. (42)

We conclude this section by noting that the system of two equations (36) and (37) may be considered as a
Heisenberg group generalization of the Cauchy–Riemann equations.

3. Some consequences of the determining equations

Proposition 1. If the infinitesimals ξ and φ satisfy (36) and (37) then

1H1φ = 4ξt (43)

and

1H1ξ = −4φt . (44)

Proof. We apply X to Eq. (37), Y to Eq. (36) and subtract the resulting equations. In this way we obtain

(XY − Y X)ξ + (X2
+ Y 2)φ = 0,

which implies (43) since the commutator

[X, Y ] = −4∂t (45)

and 1H1 = X2
+ Y 2. Eq. (44) can be derived in an analogous way. �

Corollary. If α, ξ, φ satisfy (36)–(39), then

Xα = −2φt , (46)

Yα = 2ξt . (47)

Proposition 2. If ξ, φ and τ satisfy (36), (37), (41) and (42), then

τt = 2yξt − 2xφt + 2Xξ. (48)

Proof. We just sketch the proof. We apply the operator X to Eq. (42), the operator Y to Eq. (41) and subtract. The
resulting equation, with the use of the commutator (45) and (36), (37), leads to (48). �

Proposition 3.

αt = −(Xξ)t . (49)

Proof. We apply the operator X to (47), the operator Y to (46) and subtract. Then by

[X, ∂t ] = [Y, ∂t ] = 0, (50)

(2) and (37) we obtain (49). �

4. The Lie point symmetries for arbitrary f (u)

In this section we prove the main theorem for general right-hand side of the Kohn–Laplace equation (1).
Since f (u) is an arbitrary function, then α = β = 0 by (40). Thus Eqs. (38) and (39) imply that

1H1ξ = 1H1φ = 0. (51)

Then by (51), (43) and (44) it follows that

ξt = φt = 0
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and therefore ξ and φ are functions of x and y only. On the other hand, from Eq. (40),

2Xξ − α = 0,

which implies that ξ depends only on y since α = 0 and ξ does not depend on t . From Eq. (36) for ξ(y) and φ(x, y)
it follows that φ depends only on x . Further, from (51), we obtain that

ξ = a1 y + a2,

φ = Ax + a3,

where A, a1, a2, a3 are arbitrary constants. Now from (37) we get that A = −a1, that is

φ = −a1x + a3.

Substituting ξ and φ into (41) and (42) gives

Xτ − 2a3 = 0,

Y τ + 2a2 = 0.

Applying Y and X to the latter two equations, subtracting and using the commutator [X, Y ] = −4∂t we obtain that τ
does not depend on t . Therefore

τx − 2a3 = 0,

τy + 2a2 = 0,

from which we conclude easily that τ = 2a3x − 2a2 y + a4 where a4 is another arbitrary constant. In this way
ξ = a1 y + a2,

φ = −a1x + a3,

τ = 2a3x − 2a2 y + a4,

η = 0,

(52)

which proves the first statement of the main theorem.

5. The Lie point symmetries for f (u) = keu

In this section we prove item (v) of the main theorem.
We substitute f (u) = keu into (40):

αkueu
+ βkeu

+ (1H1α)u + (1H1β)+ [2Xξ − α]keu
= 0.

Hence

α = 0 (53)

and

β + 2Xξ − α = 0. (54)

From (53) and (46), (47) it follows that ξ = ξ(x, y) and φ = φ(x, y). From (54),

β + 2ξx = 0 (55)

and hence β = β(x, y).
Further, the relation (48) implies that

τt = 2ξx

since ξ and φ do not depend on t . Therefore there exists a function h(x, y) such that

τ = 2tξx + h(x, y). (56)
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We observe that the right-hand side of Eq. (41) does not depend on t , while the left-hand side is

2t ξxx + hx + 4yξx .

Thus

ξxx = 0. (57)

Analogously, from (42), we obtain that

ξxy = 0. (58)

On the other hand 1H1ξ = 0 by (38) since α = 0 (see (53)). But ξ = ξ(x, y) and therefore ξ is harmonic:

ξxx + ξyy = 0. (59)

Eqs. (57)–(59) imply that

ξ = a5x + a1 y + a2,

where a1, a2, a5 are arbitrary constants. Then the Cauchy–Riemann equations (36) and (37) imply that

φ = −a1x + a5 y + a3,

where a3 is a constant. Now we substitute ξ , φ and τ into (41) and (42). The resulting equations, by a simple argument,
imply

τ = 2a3x − 2a2 y + a4 + 2a5t.

Finally, β = −2a5 from (55). Summarizing, the infinitesimals are given by
ξ = a1 y + a2 + a5x,
φ = −a1x + a3 + a5 y,
τ = 2a3x − 2a2 y + a4 + 2a5t,
η = −2a5,

(60)

which concludes the proof of the main theorem in the case of exponential nonlinearity.

6. The Lie point symmetries for f (u) = ku p

In this section we prove the main theorem in the case of nonlinearity of power type f (u) = ku p. We suppose that
p 6= 0, p 6= 1, p 6= 2, p 6= 3. We do not consider p = 2 since in this case, by a nonexistence result of Pohozaev
and Veron [29], there is no solution of the corresponding Kohn–Laplace equation even in a very weak sense. The case
p = 3 will be treated in the next section. The case p = 1 will be studied in Section 9. Finally, if p = 0 this is the item
(ii), which is reduced to (i) as stated in the theorem.

By (40) we have

k(αp + [2Xξ − α])u p
+ kpβu p−1

+ (1H1α)u + (1H1β) = 0.

Hence β = 0, 1H1α = 0 and

α =
2

1 − p
Xξ. (61)

By (49) and (61) it follows that

(p − 3)αt = 0.

Thus αt = 0 since p 6= 3. Therefore α depends only on x and y, and Eqs. (46) and (47) read

αx = −2φt ,

αy = 2ξt .
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Hence there exist functions B1(x, y) and B2(x, y) such that

ξ =
1
2
αy(x, y)t + B1(x, y),

φ = −
1
2
αx (x, y)t + B2(x, y).

Substituting ξ and φ into (36) and (37), we obtain

αxy = 0 (62)

and

αxx − αyy = 0. (63)

Since 1H1α = 0 and α = α(x, y), it follows that α is harmonic:

αxx + αyy = 0. (64)

From (62)–(64) we conclude that

α = Ax + By + C,

where A, B,C are constants. Thus

ξ =
B

2
t + B1(x, y), (65)

φ = −
A

2
t + B2(x, y), (66)

α = Ax + By + C. (67)

Further, we substitute ξ and φ into (48). In this way we see that τt is a function of x and y only. Hence, there are
functions M(x, y) and N (x, y) such that

τ = M(x, y)t + N (x, y). (68)

We put (65), (66) and (68) into (41). We get that

Mx t + Nx + 2yM = g1(x, y)− At,

where g1 is a function of x and y only. Thus Mx = −A. Hence

M = −Ax + m(y)

for some function m = m(y). Now we substitute (65) and (68) into (42). We have

My t + Ny − 2x M = g2(x, y)− Bt,

where g2 is a function of x and y only. Thus My = −B. Hence m′(y) = −B and m(y) = −By + D, D = constant.
Therefore

τ = (−Ax − By + D)t + N (x, y). (69)

By (61) and (67) we obtain

B1,x = c1x + c2 y + c3 (70)

where c1 = (1 − p)A/2, c2 = −(p + 1)B/2, c3 = (1 − p)/2. By integration

B1 =
c1

2
x2

+ c2xy + c3x + ϕ(y) (71)

for some function ϕ of y only. From (38), (65), (67) and (71) we obtain

ϕ′′(y) = (3 + p)A/2 =: c4.
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Hence

ϕ(y) = c4 y2
+ c5 y + c6,

where c5, c6 are constants. Then

B1 =
c1

2
x2

+ c2xy + c3x + c4 y2
+ c5 y + c6. (72)

By (36), (65), (66) and (72):

B2,y = d1x + d2 y + c3,

where d1 = −(p + 1)A/2, d2 = (1 − p)B/2. Thus

B2 = d1xy +
d2

2
y2

+ c3 y + ψ(x) (73)

for some function ψ(x). From (39), (66) and (73),

ψ ′′(x) = (3 + p)B/2 =: c7

and therefore

ψ(x) =
c7

2
x2

+ c8x + c9,

where c8, c9 are constants. Hence

B2 = d1xy +
d2

2
y2

+ c3 y +
c7

2
x2

+ c8x + c9. (74)

Substituting (65) with B1 given in (72) and (66) with B2 given in (74) into (37) we get that c8 = −c5.
It remains to determine the function N (x, y) in (69). For this purpose we substitute τ from (69) into (41) and (42),

taking into account the already found expressions for ξ, φ, α, B1 and B2. In this way we obtain

Nx = (2c2 + 2c7 − 2B)x2
+ (2c2 + d2 + 4B)y2

+ (2c1 + 2d1 + 2A + 4c4)xy + (4c3 − 2D)y + 2c9,

Ny = (−5c1 + 2d1)x
2
+ (2A − 2c4 − 2d1)y

2
+ (2d2 − 6c2 − 6B − 4c7)xy + (2D − 4c3)x − 2c6.

This system can be solved if and only if

D = 2c3

and A = B = 0. Hence

c1 = c2 = c4 = c7 = d1 = d2 = 0

and the system is reduced to

Nx = 2c9,

Ny = −2c6,

whose solution is N = 2c9x − 2c6 y + c10. After renaming the constants we obtain
ξ = a1 y + a2 + a5x,
φ = −a1x + a3 + a5 y,
τ = 2a3x − 2a2 y + a4 + 2a5t,

η =
2

1 − p
a5u.

(75)

Observe that the dilation Z comes from the constant a5, while the rest corresponds to the generators in (6).
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7. The Lie point symmetries for f (u) = ku3

In this section we prove the second part of item (iv) of the main theorem.
Let f (u) = ku3. Then β = 0,

α = −Xξ, (76)

and

1H1α = 0 (77)

from (40). Applying X to (46), Y to (47) and adding, we obtain

1H1α + 2Xφt − 2Y ξt = 0.

(Above, we used (2) and (50).) By (77)

Xφt − Y ξt = 0

which together with (37), differentiated with respect to t , implies

Y ξt = 0 (78)

and

Xφt = 0. (79)

Hence there exists a function ϕ = ϕ(x, y) such that

Y ξ = ϕ (80)

and, necessarily,

Xφ = −ϕ. (81)

We also have, by (76),

Xξ = −α, (82)

Yφ = −α. (83)

Then by (38), (82) and (83):

2Xα = 1H1ξ = X2ξ + Y 2ξ = X (−α)+ Yϕ = −Xα + ϕy,

that is

3Xα = ϕy .

Hence, and from (46), we obtain that there is a function B2(x, y) such that

φ = −
1
6
ϕy t + B2(x, y). (84)

Analogously

ξ = −
1
6
ϕx t + B1(x, y). (85)

From (85) and (78) it follows that

ϕxy = 0. (86)

From (36), (85) and (84) we have that

ϕxx − ϕyy = 0. (87)
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Clearly, from (86) and (87), the function ϕ is of the following form:

ϕ =
k1

2
x2

+
k1

2
y2

+ k2x + k3 y + k4, (88)

where k1, k2, k3, k4 are arbitrary constants. In this way

ξ = −
1
6
(k1x + k2) t + B1(x, y), (89)

φ = −
1
6
(k1 y + k3) t + B2(x, y). (90)

Substituting ξ from (89) and ϕ from (88) into (80), and integrating with respect to y, we obtain

B1 =
1
6

k1x2 y +
1
6

k1 y3
+

2
3

k2xy +
k3

2
y2

+ k4 y + h1(x), (91)

where h1 is a function of x only. Analogously, from (81) we find

B2 = −
1
6

k1x3
−

1
6

k1xy2
−

k2

2
x2

−
2
3

k3xy − k4x + h2(y), (92)

where h2 is a function of y only. After substitution of ξ and φ from (89) and (90) with B1 and B2 given by (91) and
(92), into (36), we obtain

h1
′(x)+

1
3

k3x = h2
′(y)−

1
3

k3 y.

Obviously, the last two equations can be easily integrated. In this way we find the functions h1, h2, and hence the
functions B1 and B2. Summarizing, we have found

ξ = −
1
6
(k1x + k2) t +

1
6

k1x2 y +
1
6

k1 y3
+

2
3

k2xy −
1
6

k3x2
+

k2

2
y2

+ k4 y + k5x + k6,

φ = −
1
6
(k1 y + k3) t −

1
6

k1x3
−

1
6

k1xy2
−

k2

2
x2

−
2
3

k3xy +
1
6

k3 y2
− k4x + k5 y + k7,

α =
1
6

k1t −
1
3

k2 y +
1
3

k3x − k5.

(93)

It remains to find τ . In order to do this, we substitute (93) into (48) and obtain

τt = −
1
3

k1t +
1
3

k2 y −
1
3

k3x + 2k5.

Hence

τ = −
1
6

k1t2
+

(
1
3

k2 y −
1
3

k3x + 2k5

)
t + N (x, y) (94)

and the problem is reduced to the problem of finding the function N in (94). Substituting (93) and (94) into Eqs. (41)
and (42), after some work, we finally obtain

Nx =
2
3

k1x3
+

2
3

k1xy2
+ k2x2

+
2
3

k3xy +
1
3

k2 y2
+ 2k7,

Ny =
2
3

k1 y3
+

2
3

k1x2 y + k3 y2
+

2
3

k2xy +
1
3

k3x2
− 2k6.
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The latter system can be easily solved. After renaming the constants, we have
ξ = a1(xt − x2 y − y3)+ a2(t − 4xy)+ a3(x

2
− 3y2)+ a4x + a5 y + a6,

φ = a1(yt + x3
+ xy2)+ a2(3x2

− y2)+ a3(t + 4xy)+ a4 y − a5x + a7,

τ = a1[t
2
− (x2

+ y2)2] + a2(−2yt − 2x3
− 2xy2)+ a3(2xt − 2x2 y − 2y3)

+ 2a4t + 2a7x − 2a6 y + a8,

η = −a1tu + 2a2 yu − 2a3xu − a4u.

(95)

This completes the proof of item (iv) of the main theorem.
We observe that the dilation Z is included in (95). Indeed, it corresponds to the constant a4.

8. The Lie point symmetries for f (u) = 0

The proof of item (i) of the main theorem is presented in this section. In order not to increase the volume of this
paper, some of the calculations will be sketched, leaving the details to the interested reader.

From (40) with f (u) = 0 we obtain

1H1β = 0

and

1H1α = 0.

From the latter equation we conclude, as in the beginning of Section 7, that there exists a function ϕ = ϕ(x, y) such
that

Y ξ = ϕ, (96)

and thus

Xφ = −ϕ (97)

by (37). On the other hand, from (49) it follows that there is a function ψ = ψ(x, y) such that

α = −Xξ + ψ, (98)

Xξ = −α + ψ. (99)

Following the arguments in obtaining (84) and (85) in the preceding section, we conclude that there exist functions
A = A(x, y) and B = B(x, y) such that

ξ = (−ϕx + ψy)t/6 + A(x, y), (100)

φ = −(ϕy + ψx )t/6 + B(x, y). (101)

Substituting ξ and φ from (100) and (101) into (96), (97) and (36), we obtain, respectively, that

ψyy = ϕxy, (102)

ψxx = −ϕxy, (103)

ϕyy − ϕxx + 2ψxy = 0. (104)

Integrating (102) and (103) we have

ψy = ϕx + h1(x), (105)

ψx = −ϕy + h2(y) (106)

for some functions h1 = h1(x) and h2 = h2(y). Then, differentiating (105) with respect to x and (106) with respect
to y, adding and using (104), we get

h′

1(x)+ h′

2(y) = 0.



Y. Bozhkov, I.L. Freire / Nonlinear Analysis 68 (2008) 2552–2568 2565

Hence h1(x) = k1x + k2 and h2(y) = −k1 y + k3 for some constants k1, k2, k3. After renaming the constants and
using (105) and (106), we obtain

ξ = (a1x + a2)t + A(x, y), (107)

φ = (a1x + a3)t + B(x, y). (108)

Further, from (49),

αt = −a1.

Hence

α = −a1t + g(x, y), (109)

where the function g = g(x, y) does not depend on t . Substituting (107)–(109) into (46) and (47) we find

α = −a1t − 2a3x + 2a2 y + a9, (110)

where a9 is an arbitrary constant and a1, a2, a3 are the same as those appearing in (107) and (108). Now, from (48),
(107) and (108), we deduce, after integration with respect to t , that there is a function N = N (x, y) such that

τ = a1t2
+ (2Ax + 4a1xy + 6a2 y − 2a3x)t + N (x, y). (111)

We substitute ξ from (107), φ from (108) into the determining equation (41). In this way we obtain an identity which
is linear in t . Equating to zero the corresponding coefficient of t , we obtain

Axx = −2a1 y + 2a3. (112)

In an analogous way, using (42),

Axy = −2a1x − 4a2. (113)

We also have that (from Eqs. (38), (107) and (108))

Axx + Ayy = −4a3 − 8a1 y. (114)

Then from (112)–(114) we find

A = −a1 y3
− a1x2 y + a3x2

− 3a3 y2
− 4a2xy + a4x + a5 y + a6, (115)

where a5, a6 are constants.
By substituting ξ from (107) with A given in (115), and φ from (108) into Eqs. (36) and (37), and, then, integrating

the resulting system for B, we find

B = a1xy2
+ a1x3

+ 4a1xy + 3a2x2
− a5x − a2 y2

+ a4 y + a7, (116)

where a7 is a constant.
We have found ξ, φ and η. To find τ , it remains to determine the function N (x, y) in (111). From (41), (42), (107),

(108), (115) and (116), we obtain the system

Nx = −4a1x3
− 4a1xy2

− 6a2x2
− 4a3xy − 2a2 y2

+ 2a7,

Ny = −4a1x2 y − 4a1 y3
− 2a3x2

− 4a2xy − 6a3 y2
− 2a6,

which can be easily solved. Our calculations can be summarized as
ξ = a1(xt − x2 y − y3)+ a2(t − 4xy)+ a3(x

2
− 3y2)+ a4x + a5 y + a6,

φ = a1(yt + x3
+ xy2)+ a2(3x2

− y2)+ a3(t + 4xy)+ a4 y − a5x + a7,

τ = a1[t
2
− (x2

+ y2)2] + a2(−2yt − 2x3
− 2xy2)+ a3(2xt − 2x2 y − 2y3)

+ 2a4t + 2a7x − 2a6 y + a8,

η = −a1tu + 2a2 yu − 2a3xu + a9u + β(x, y, t)

(117)
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where

1H1β = 0, (118)

a1, . . . , a9 are arbitrary constants.

9. The Lie point symmetries for f (u) = ku

In this section we complete the proof of the main theorem.
Let f (u) = ku, k 6= 0. Then by (40)

1H1β + kβ = 0

and

1H1α = −2k Xξ. (119)

Applying X to (46) and Y to (47), and adding, we obtain

1H1α = 2Y ξt − 2Xφt = 4Y ξt , (120)

where we used (37) and (50). Then from (119) and (120),

Y ξt = −k Xξ/2. (121)

Hence and from (37),

Xφt = k Xξ/2. (122)

Differentiating (38) we have

2Xαt = 1H1ξt = X (Xξt )+ Y (Y ξt ) = X (−αt )− kY (Xξt )/2 (123)

by (49) and (121). On the other hand, by (99)

Xξ = −α + ψ, (124)

where ψ = ψ(x, y). From (123) and (124) we have

2Xαt = −Xαt + kYα/2 − kψy/2

and hence

3Xαt = −kψy/2 + kYα/2. (125)

Similarly

3Yαt = kψx/2 − k Xα/2. (126)

We apply X to (125), Y to (126), and add:

3(X2
+ Y 2)αt = k(XY − Y X)α/2 = k[X, Y ]α/2 = −2kαt ,

that is,

31H1αt = −2kαt . (127)

Further, we differentiate (119) with respect to t and use (49) to obtain

1H1αt = 2kαt . (128)

Since k 6= 0, from (127) and (128) it follows that αt = 0 and hence α = α(x, y). Thus, from (46) and (47), there
exist functions A = A(x, y) and B = B(x, y) such that

ξ = αy t/2 + A(x, y), (129)

φ = −αx t/2 + B(x, y). (130)
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Since α does not depend on t , by (129) and (49) we have

αxy = 0. (131)

From (37), (129) and (130)

αyy − αxx = 0. (132)

Eqs. (131) and (132) can be easily solved. The solution is

α = k1x2
+ k1 y2

+ 2k3x + 2k2 y + k4, (133)

where k1, k2, k3, k4 are arbitrary constants. Hence

ξ = (k1 y + k2)t + A(x, y), (134)

φ = −(k1x + k3)t + B(x, y). (135)

On the other hand, from (48), in which (134) and (135) are substituted, after an integration with respect to t , we obtain

τ = [2y(k1 y + k2)+ 2x(k1x + k3)+ 2(Ax + 2k1 y2
+ k2 y)]t + N (x, y), (136)

where the function N = N (x, y) is to be determined. Further we substitute (134)–(136) in (41) and (42). In this way
we obtain two identities, linear in t . Equating the corresponding coefficients of t implies

Axx = −2k1x − 2k3, (137)

Axy = −3k2. (138)

We observe now that Eq. (119) reads

4k1 = −2k Ax − 4k(k1 y2
+ k2 y). (139)

Differentiating (139) with respect to x we obtain 0 = −2k Axx and hence

Axx = 0 (140)

since k 6= 0. From (137) and (140) it follows that k1 = k3 = 0. Then from (139), since k 6= 0, we have Ax = −2k2 y
which, together with (138), implies that k2 = 0 and hence Ax = 0. That is, A = A(y). Summarizing, we have
obtained that

ξ = A(y), φ = B(x, y), τ = N (x, y), α = k4.

Now the arguments in Section 4 imply that the infinitesimals are given by
ξ = a1 y + a2,

φ = −a1x + a3,

τ = 2a3x − 2a2 y + a4,

η = a5u + β(x, y, t),

(141)

with

1H1β + kβ = 0. (142)

This completes the proof of the theorem.
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