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Abstract In this paper is introduced a new numerical formulation for solving degenerate
nonlinear coupled convection dominated parabolic systems in problems of flow and trans-
port in porous media by means of a mixed finite element and an operator splitting tech-
nique, which, in turn, is capable of simulating the flow of a distinct number of fluid phases
in different porous media regions. This situation naturally occurs in practical applications,
such as those in petroleum reservoir engineering and groundwater transport. To illustrate
the modelling problem at hand, we consider a nonlinear three-phase porous media flow
model in one- and two-space dimensions, which may lead to the existence of a simultaneous
one-, two- and three-phase flow regions and therefore to a degenerate convection dominated
parabolic system. Our numerical formulation can also be extended for the case of three
space dimensions. As a consequence of the standard mixed finite element approach for this
flow problem the resulting linear algebraic system is singular. By using an operator split-
ting combined with mixed finite element, and a decomposition of the domain into different
flow regions, compatibility conditions are obtained to bypass the degeneracy in order to the
degenerate convection dominated parabolic system of equations be numerically tractable
without any mathematical trick to remove the singularity, i.e., no use of a parabolic regu-
larization. Thus, by using this procedure, we were able to write the full nonlinear system in
an appropriate way in order to obtain a nonsingular system for its numerical solution. The
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robustness of the proposed method is verified through a large set of high-resolution numeri-
cal experiments of nonlinear transport flow problems with degenerating diffusion conditions
and by means of a numerical convergence study.

Keywords Degenerate convection-diffusion · Operator splitting · Mixed finite elements ·
Finite volume central scheme · Porous media · Three-phase flow

1 Introduction

In this paper an operator splitting approach combined with mixed finite element methods
are used to model and simulate numerically the flow of three immiscible and incompressible
phases in porous media.

The nonlinear three-phase system is expressed in terms of a volumetric formulation
for water, gas and oil saturations and fluid pressures for the immiscible phases. The pres-
sure equation is a standard elliptic problem. The component mass balance equations are
convection-dominated in the presence of capillary pressure diffusive effects in reservoir
transport problems; they are purely hyperbolic in the absence of such diffusion. Instead
of solving the governing system of differential equations in the form which results directly
from the basic conservation laws (supplemented by constitutive relations), the three-phase
system of equations is rewritten in such a way as to exhibit clearly its mathematical nature
[14, 15, 21]. Thus, the governing set of partial differential equations are written as a non-
degenerate pressure equation for Darcy’s law that is strongly coupled with two saturation
equations describing the mass conservation of fluid phases water, oil and gas [14, 15, 21].
Notice that our choice is due to the generality of the so-called phase formulation [15], in
which we do not care about the form of the relative permeabilities [18, 26, 48, 54] and so
it also allows the use of general capillary pressure models employed on practical applica-
tions [11, 46, 47]. The correct modelling of capillarity effects plays an important role in
three-phase models [7, 41, 48]. Indeed, such phase-formulation is suitable for application of
an operator splitting technique for the three-phase flow problem at hand [4–6]. This means
that one can use appropriate numerical methods for distinct differential equations resulting
from the procedure that leads to a subsystem of hyperbolic conservation laws, a subsystem
of parabolic type, and an elliptic subsystem associated with the pressure-velocity problem.
Moreover, this formulation might translate into a drastically reduced computational effort
to produce numerical results within a given accuracy requirement [5, 6]. See also [42] and
[16, 33, 43, 45] for recent developments in the analysis of time-splitting errors for one-
dimensional nonlinear convection-diffusion problems.

Distinct operator splitting techniques for transport problems in multiscale heterogeneous
porous media flow are established upon an operator splitting formulation, where convective-
diffusive forces and pressure velocity mechanisms are accounted for in separate substeps.
Among Eulerian-Lagrangian procedures, we mention the MMOC [24], the MMOCAA [23],
the LCELM [25] and the ELLAM [20]; see also [9, 17, 51]. For these methods, it is assumed
a reasonable fluid injection rate and a capillary dissipation strength. Then, the flow is essen-
tially along the characteristic curves of a modified transport differential operator that take
into account both convective and diffusive mechanisms in the associated characteristic direc-
tion leading to long time steps. Although such methods have long been applied successfully
for several scalar transport equations, the extension for systems is not well understood. More
recently, the authors began to use the central schemes [49] (finite-volume based formulation)
for two-phase and three-phase problems in porous media flows by means of an operator
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splitting formulation (see, e.g., [5, 6]). An important feature of the latter approach compared
to the other methods cited above is the advantage of a simple straightforward generalization
for systems and for multidimensional heterogeneous flow problems [5, 6, 10]. Many others
successfully numerical methods based upon an operator splitting formulation have also been
discussed recently in the literature [16, 42, 43, 45]. In those papers different techniques are
used to handle the nonlinear parabolic equations.

The splitting approach proposed in [16] is based on the solution of a parabolic problem
by means of a discretization of the exact kernel solution of a linear “heat equation”, with
constant coefficients. Here we have a coupled set of strongly nonlinear parabolic system
of equations with a degenerate character and such that the parabolic operator related to the
parabolic Green function (integral kernel of the heat equation) is not well defined as in the
linear case; i.e., instead of having an equation in non-conservative form like ut = Duxx ,
u = u(x, t) with D being a diagonal matrix with constant entries, here we have a coupled
nonlinear parabolic system of conservative form ut = (D(x,u)ux)x , where D(x,u) is a
2 × 2 matrix with explicitly constrained entries upon x and u. It is well established in the
literature that mixed finite elements (MFEM) are appropriate for the numerical approxima-
tion of parabolic and elliptic equations in conservative form (see, e.g., [23, 24, 28, 31]). In
particular, MFEM are appropriate for accurate velocity field computation in the presence of
highly variable rock permeability typical in petroleum geology (see e.g., [5, 6, 23, 24, 28]).
Although MFEM are suitable for problems of this class, its standard variational formula-
tion is not suited to treat parabolic-type degenerate problems. The issue of this fundamental
problem has not been systematically addressed before, although distinct attempts have been
made (see, e.g., [12, 13, 51]). In this work we propose a way to circumvent this difficulty.
By means of an operator splitting and a decomposition of the domain into different flow re-
gions, compatibility conditions were obtained to bypass the degeneracy. Thus, we were able
to write the nonlinear system in an appropriate way in order to obtain a nonsingular system
for its numerical solution. The resulting system is suitable for mixed finite element formu-
lation as well as for multiscale-based finite element methods in complex flow domains, on
non-uniform and unstructured grids [1, 3, 30, 39, 44].

The work in [42, 43] is based in a front tracking method for systems of conservation
laws that relies heavily on a Riemann solver, which, in turn, is not entirely straightforward
for multidimensional problems without exact or approximate Riemann solutions (see, e.g.,
[5, 7, 8, 19, 35, 48]). In [45] the authors showed that a semi-discrete central scheme may
fail to converge to the unique entropy solution of a nonconvex conservation law. Thus, our
hyperbolic solver for a pertinent system of hyperbolic conservation laws modelling the con-
vective transport of the fluid phases is based on the former central scheme [5, 49]. Indeed,
our work is in the same lines of papers [16, 17, 20, 23–25, 42, 51] and [1–3, 37, 38, 44]
that are based on a operator splitting formulation, although with the use of a distinct finite
element formulation approach with the ability of correctly resolving the nonlinear balance
between the convective and diffusive terms, which is quite delicate for the three-phase flow
problem, see, e.g., [5, 7, 8, 48]. We shall treat the case in which {Ωj } is a partition of Ω

(fluid flow domain region under consideration) into individual elements in a Cartesian grid,
though an inspection of the procedure would indicate that larger subdomains are permis-
sible (simplices, rectangles and prisms). We note that following ideas reported in papers
[40, 53, 55], our formulation can be applied not only on structured Cartesian meshes but
also on more quite general unstructured meshes; for more details, see papers [1–3, 37, 38,
44].

It is worth pointing out that for the analysis of the complexities of multiphase flow
displacements and transport processes in heterogeneous porous media (e.g., [5, 6, 29, 30,
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34–36]) it is important to consider the study of three-phase flow generalizing the Buckley–
Leverett’s solution for immiscible two-phase flow [10, 32]. Moreover, three-phase flow mod-
els in porous media are important in a wide number of scientific and technological fields:
water-alternating-gas injection and thermal flow techniques in oil recovery as well as injec-
tion of carbon dioxide directly into underground geological formations (e.g., declining oil
fields, deep saline aquifers, and unminable deep coal seams) as an alternative tool for global
warming contention; see [14, 15, 22, 34, 52]. For the sake of simplicity, in this paper we de-
scribe the fundamental ideas in one-space dimension. Examples are used to demonstrate the
application of the model and sensitivity of the results to fluid properties in potential practical
flow situations. The extension of the method and its application for multidimensional flow
problems is straightforward.

The remaining of the paper is organized as follows. In Sect. 2, we discuss the mathemat-
ical model for the three-phase problem at hand and its computational modelling is discussed
in Sect. 3. We briefly describe the operator splitting procedure in Sect. 4. The numerical
solution of the convective transport system is indicated in Sect. 5. In Sect. 6 we present
in detail our approach for addressing the degenerate diffusion problem. Numerical exam-
ples to demonstrate the potential of the proposed method are given in Sect. 7. Finally, our
concluding remarks are presented in Sect. 8.

2 Governing Differential Equations

We consider the flow of three immiscible, incompressible fluid phases in a porous medium.
Let us call the phases water, gas and oil, and indicate them by the subscripts w, g and o,
respectively. We assume that pressure variations are small so that they do not affect the gas
volume. We assume that there are no internal sources or sinks. We have neglected mass
transfer, thermal and gravitational effects, but we consider capillary pressure (diffusive) ef-
fects. Next, we assume also that the three fluid phases saturate the pores,

Sw + Sg + So = 1. (1)

For brevity we will denote ∂�(·) = ∂(·)/∂�, where � is the variable under consideration,
and “∇·” and “∇” stands for the classical differential operators. The equations expressing
conservation of mass of water, gas and oil are

∂t (φSiρi) + ∇ · (ρivi ) = 0, i = w,g,o, x ∈ Ω, t ≥ 0, (2)

where φ(x) denotes the porosity of the medium. For phase i, Si denotes its saturation, ρi

its density, and vi its volumetric rate of flow, which is given by the multiphase extension of
Darcy’s law [14]:

vi = −K(x)λi∇pi, i = w,g,o, x ∈ Ω, t ≥ 0, (3)

where K(x) denotes the absolute permeability tensor of the porous medium; λi and pi are
the mobility and pressure of phase i, respectively. The mobility of phase i is usually ex-
pressed as λi = ki/μi ≥ 0, which is the ratio between the relative permeability ki and the
viscosity μi of the respective phase. Each relative permeability ki depends on the saturation
vector. Experimentally, ki increases when Si increases, and the relative permeabilities never
vanish simultaneously. Furthermore, ki > 0 for Si > Sir , and ki = 0 for Si ≤ Sir , where Sir
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is the residual saturation of phase i. Since thermal effects and compressibility are neglected,
μi and ρi are constant, and (2) can be rewritten as:

∂t (φSi) + ∇ · vi = 0, i = w,g,o, in Ω, t ≥ 0. (4)

We denote the capillary pressure by pij = pi −pj , i �= j , i, j = w,g,o. An independent pair
of pij must be measured experimentally as functions of saturations. We also assume that pij

and its derivative is bounded, which is a physically reasonable assumption [46]. Of course,
boundary and initial conditions must be specified to complete the mathematical definition
of the three-phase flow system. We will discuss further this issue in Sect. 4.

3 Computational Modeling of the Three-Phase Flow

We choose to describe our model using the phase formulation for three-phase flow, since it is
general with regard to the choices of capillary pressures and relative permeability functions
[14, 15, 21]. For completeness, we review these equations briefly. In the fractional flow for-
mulation the governing system given by basic and constitutive equations (1)–(4) are written
in terms of two saturation equations (expressing conservation of water, gas and oil) [5, 15]:

∂t (φSw) + ∇ · [vfw(Sw,Sg)
] = ∇ · ww, in Ω, t ≥ 0,

∂t (φSg) + ∇ · [vfg(Sw,Sg)
] = ∇ · wg, in Ω, t ≥ 0,

(5)

where [ww,wg]T = K(x)B(Sw,Sg)[∇Sw,∇Sg]T with,

B(Sw,Sg) = εQ(Sw,Sg)P
′(Sw,Sg), (6)

where Q and P ′ are given by,

Q =
[

λw(1 − fw) −λwfg

−λgfw λg(1 − fg)

]

, P ′ =
[

∂Swpwo ∂Sgpwo

∂Swpgo ∂Sgpgo

]

. (7)

The parameter ε is an adimensional parameter that controls the amount of diffusion with
respect to convection present in the problem; ε = 1/Pe, where Pe is the Péclet number. The
nonlinear system (5)–(7) is coupled with,

∇ · v = 0, v = −K(x)λ(Sw,Sg)∇po + vwo + vgo, (8)

the pressure-velocity (elliptic) system, where v = ∑
i vi is the total velocity (expressing the

sum of Darcy’s velocities), and vio = −K(x)λi(Sw,Sg)∇pio, for i = w,g, and λ = ∑
i λi ,

i = w,g,o, is the total mobility and fi = λi/λ are the fractional flow functions. For the
sake of simplicity, and without loss of generality, we develop the basic ideas to bypass the
degeneracy in one space dimension since the decomposition of the flow domain (saturation
space) into different flow regions to derive compatibility conditions in higher dimensions is
quite straightforward. Notice that in one space dimension the pressure equation implies that
total fluid velocity is independent of position, thus we take it to be constant in space and
time. After nondimensionalizing time and space variables, fluid viscosities, and capillary
pressures in a standard way, it reads:

∂tSw + ∂xfw(Sw,Sg) = ∂xww, in Ω, t ≥ 0,

∂tSg + ∂xfg(Sw,Sg) = ∂xwg, in Ω, t ≥ 0,
(9)
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ww = B11∂xSw + B12∂xSg, wg = B21∂xSw + B22∂xSg. (10)

The diffusive term is represented by the right-hand side of the system (9)–(10), and it incor-
porates capillary pressure effects (6)–(7). In the diffusive fluxes ww and wg , the quantities
Bij , i, j = 1,2 are the entries of the matrix B(Sw,Sg) defined in (6). Boundary and initial
conditions for these equations will be introduced in what follows.

4 The Operator Splitting Procedure

In our splitting scheme we take into account convection and diffusion effects separately
and sequentially. Moreover, the operator splitting for the system of equations given by (9)–
(10) allows the use of time steps for the diffusive computation to be longer than the steps
used for the convection part of the saturation calculation; computational efficiency can be
achieved for the three-phase flow system at hand by solving fewer diffusion steps (implicitly)
than convection steps (explicitly), given an accuracy requirement with respect to the width
numerical shock layer O(

√
ε	tc) because of the nonlinear self-sharpening mechanisms of

system (11)–(16), see, e.g., [5, 6, 42, 43].
We introduce two time steps: 	tc for the solution of the convection and 	td for the

diffusion. We take 	td = ic	tc , where ic is a positive integer representing the number of
evolution time steps of the convective problem before computing the diffusive effects. This
means that 	td ≥ 	tc , so that, tn = n	td and tn,k = tn + k	tc , 0 ≤ k < ic , where the con-
vection microsteps are determined dynamically by a necessary Courant–Friedrichs–Levy
condition for stability. To simplify the description of the operator splitting, we assume that
there is a single value for each of the time steps 	td and 	tc . The integer ns defines the total
simulation time T = ns	td . Then, the algorithm is as follows:

Set S0
w and S0

g (initial saturations)
for n=0:(ns − 1)

for k=0:(ic − 1)

A) Solve, in [tn,k, tn,k+1], the convective (hyperbolic)
system:

∂tSw + ∂xfw(Sw,Sg) = 0, in Ω × [tn,k, tn,k+1],
∂tSg + ∂xfg(Sw,Sg) = 0, in Ω × [tn,k, tn,k+1], (11)

subject to initial conditions,

Sw(x, tn,k) = S0
w(x) and Sg(x, tn,k) = S0

g(x), (12)

and to injection boundary conditions,

Sw(0, t) = Sw,in and Sg(0, t) = Sg,in, t > 0. (13)

B) Set S0
w(x) = Sw(x, tn,k+1) and S0

g(x) = Sg(x, tn,k+1).
end
C) Classify the mesh elements taking into account the

saturations S0
w and S0

g from B) by means of the
mobility (20), so that each element of the mesh
belong to one of the regions (21a)-(21f).
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D) Solve, in [tn, tn+1], the diffusive system over the sets
(21a)-(21f):

∂tSw = ∂xww, ww = B11∂xSw + B12∂xSg, in Ω × [tn, tn+1],
∂tSg = ∂xwg, wg = B21∂xSw + B22∂xSg, in Ω × [tn, tn+1], (14)

with boundary conditions,

ww = wg = 0, on ∂Ω, (15)

and initial conditions,

Sw(x, tn) = S0
w(x) and Sg(x, tn) = S0

g(x). (16)

E) Set S0
w(x) = Sw(x, tn+1) and S0

g(x) = Sg(x, tn+1).
end

Concerning step C) of the above algorithm, we point out that S0
w and S0

g are constant in each
element.

We are setting up to calculate the above nonlinear initial boundary value problem (11)–
(16), but more general domains and other boundary conditions (e.g., ww �= 0 and wg �= 0)
can be treated by our techniques. Notice also that the nonlinear coefficients in the parabolic
equations (14) are “frozen” with the latterly solution of the hyperbolic problem (11)–(13).
Indeed, for the numerical solution of nonlinear system (14) we have performed some local
iteration like in a fixed-point iteration (e.g., Piccard iteration) with no qualitative difference
in the results. Remember, here we have a coupled nonlinear parabolic subproblem with
nonconstant coefficients (6)–(7). Now, we proceed by describing the numerical methods
used to solve systems (11)–(13) (convection) and (14)–(16) (diffusion).

5 Numerical Solution of the Convective Problem

The nonlinear convection (11)–(13) is solved using the explicit high-resolution central
scheme developed by Nessyahu and Tadmor (NT) [49], which has been used by the cur-
rent authors for numerical simulation of transport flow problems in porous media [4–6]. The
NT scheme can be viewed as an extension of the Lax–Friedrichs scheme into a second order
one. The main ingredients of the numerical method are: a nonoscillatory piecewise linear
reconstruction of the solution using their averages and a central differencing based on the
staggered evolution of reconstructed averages. The piecewise linear reconstruction reduces
the excessive numerical diffusion of the Lax-Friedrichs scheme and, like upwind schemes,
uses nonlinear limiters to guarantee the overall nonoscillatory nature of the approximate
solution. In this scheme characteristic decompositions are unnecessary and, therefore, Rie-
mann problems are avoided. The work in [42, 43] is based in a front tracking method for
a triangular model for the fractional flow functions for three-phase flow equations, which
in turn relies heavily on a Riemann solver, which in turn is not entirely straightforward for
multidimensional problems [5, 7, 8, 19, 35, 48]. In [16, 45] the authors have been shown that
the use of semidiscrete schemes may fail to converge to the unique entropy solution of non-
convex conservation laws. We note that following ideas reported in papers [40, 53, 55], our
formulation can be applied not only on structured Cartesian meshes but also on more quite
general unstructured meshes. Thus, our hyperbolic solver for solving the convection sys-
tem is based on the former central scheme [5, 49] rather than a semidiscrete central scheme
method [16, 45] nor based in a front tracking approach [42, 43].
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Fig. 1 Flow regions in the state
space with residual saturations:
mobile oil (resp. water & gas)
phase region Ωo (resp. Ωw &
Ωg ) with residual or immobile
gas & water (resp. gas & oil and
water & oil) phases. Mobile gas
& water region (resp. gas & oil
and water & oil) is denoted
by Ωwg (resp. Ωgo and Ωwo).
Mobile three-phase flow region is
denoted by Ω̃

The NT scheme is locally conservative and it takes into account naturally the local bal-
ance of water, gas, and oil phases for simultaneous and distinct one-phase regions, two-
phase regions, and three-phase regions. This property is quite important since the hyperbolic
differential equation is used to track the degenerate flow regions with respect to the parabolic
problem. These flow regions are, respectively, represented by Ωi , i = w,o,g, Ωij , i �= j ,
i, j = w,o,g, and Ω̃ . We illustrate in Fig. 1 the mapping of “physical” flow regions in the
state space (saturation triangle).

Since our main concern is the numerical solution of the degenerate diffusive-parabolic
system (14), we will not present details on the NT central scheme [49]; its formulation for
the three-phase system can be found in [4–6].

6 Numerical Solution of the Degenerate Diffusive Problem

Now we wish to highlight the main ideas involved in solving the degenerate parabolic system
(14)–(16) that arises in the mixed finite element formulation, after the application of the
operator splitting approach for (9)–(10). In order to complete the time evolution for each
time interval tn < t ≤ tn+1 for the full coupled convection-diffusion problem, we should
incorporate the diffusive effects (9)–(10) subjected to the solution of the convective problem
(11)–(13). Thus we need to solve the parabolic system (14) subject to the boundary condition
(15) and to the initial conditions (16). The splitting procedure allows the use of the following
approximation for (6)–(7), [5, 6],

B(Sw,Sg) ≡ B
(
S0

w(x), S0
g(x)

)
. (17)

We are solving the differential equations (6)–(7) by splitting diffusive and convective effects.
As pointed out, the hyperbolic problem is first solved and then next we solve the parabolic
system (14)–(16) in [tn, tn+1]; the nonlinear matrix B makes use of solution for convection
equation (11) at tn+1. The error in this approximation is expected to be smaller than the error
of a zero order linearization at tn (i.e., one Piccard iteration). Moreover, the introduction
of this approximation makes the diffusive system “locally” linear for each time step 	td ,
but yet coupled and with the degenerate nature, such that coefficient matrix B becomes a
function of space variable x:

B = B
(
S0

w(x), S0
g(x)

) =
[

B11(x) B12(x)

B21(x) B22(x)

]
. (18)
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We reiterate that the mixed finite element method has been shown to be very appropriate
for solving elliptic and parabolic problems in conservative form (14)–(16), in particular in
the presence of highly heterogeneous porous medium [5, 6, 27]. However, in order to use
the finite element method to solve parabolic equation (14) it is essential that the coefficient
matrix B be invertible. As we will see next, B is singular in regions where the mobility of a
phase is zero (i.e., in the residual saturation regions). As a consequence, we need to provide
compatibility conditions to solve the parabolic system by means of mixed finite elements.
The matrix B is invertible in regions where detQ �= 0 and detP ′ �= 0, i.e.:

detQ = λwλgλo

λ
�= 0, (19a)

∂Swpwo∂Sgpgo − ∂Sgpwo∂Swpgo �= 0. (19b)

As is usual in the modelling of the capillary pressures functions [46], we assume pwo =
pwo(Sw) and pgo = pgo(Sg). Therefore the former condition (19b) in the capillary pressure
becomes ∂Swpwo∂Sgpgo �= 0. Furthermore, the matrix P ′ becomes a diagonal one. Notice
that the determinant of Q is nonvanishing only in regions of Ω where the mobility of all
three phases are strictly positive. Thus, to solve the degenerate problem we decompose the
domain Ω based on the mobility of the phases at time tn from (11)–(13), as the initial
condition for the parabolic problem (14)–(16). Thus, we denote:

λ0
j (x) = λj

(
S0

w(x), S0
g(x)

)
, j = w,g,o, (20)

and define the following non-overlapping decomposition of Ω :

Ω = Ω̃ ∪ Ωgo ∪ Ωwo ∪ Ωwg ∪ Ωw ∪ Ωg ∪ Ωo, where, (21a)

Ω̃ = {
x ∈ Ω;λ0

j (x) > 0, j = w,g,o
}
, (21b)

Ωgo = {
x ∈ Ω;λ0

w(x) = 0, λ0
j (x) > 0, j = g,o

}
, (21c)

Ωwo = {
x ∈ Ω;λ0

g(x) = 0, λ0
j (x) > 0, j = w,o

}
, (21d)

Ωwg = {
x ∈ Ω;λ0

o(x) = 0, λ0
j (x) > 0, j = w,g

}
, and (21e)

Ωj = {
x ∈ Ω;λ0

k(x) = 0, k ∈ {w,g,o}, k �= j
}
, j = w,g,o. (21f)

We assume that each subdomain in the decomposition of Ω is an union of non-degenerate
intervals or is an empty set. In short, as announced in Sect. 5, the key idea is to track the
mobile and immobile saturation flow regions with the splitted-transport convective equation
(11)–(13).

Lemma 1 If x ∈ Ωij and i, j, k ∈ {w,g,o} are distinct indices, then:

Sk(x, t) = Sk(x, tn) = S0
k (x) in Ωij for t ∈ [tn, tn+1]. (22)

Furthermore, if x ∈ Ωj then Sk(x, t) = Sk(x, tn) = S0
k (x) in Ωj for t ∈ [tn, tn+1], for any

k ∈ {w,g,o}.

Proof Let us consider x ∈ Ωgo. In this physical region λw(x, tn) = 0. Hence, from the defi-
nition of ww we obtain that ww(x, t) = 0 in Ωgo × [tn, tn+1]. Consequently, it follows from
(14) that,

∂tSw(x, t) = 0 in Ωgo. (23)
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Therefore Sw(x, t) = Sw(x, tn) = S0
w(x), for any t ∈ [tn, tn+1], in Ωgo. The proof for Ωwg ,

Ωwo, and Ωj (j = w,g,o) is analogous. �

Remark 1 For a given phase k ∈ {w,g,o}, λ0
k = 0 is equivalent to S0

k ≤ Skr , where Skr is
the residual saturation of phase k. Now, since Sk ≥ Skr , then in the region Ωij (for i, j �= k),
Sk = Skr , and therefore ∂xSk = 0.

In the region Ω̃ the matrix B is invertible. So, denoting the entries of matrix B−1 by B−1
ij ,

i, j = 1,2 we can write the system (14) as follows,

B−1
11 ww + B−1

12 wg − ∂xSw = 0, ∂xww − ∂tSw = 0, in Ω̃ × [tn, tn+1],
B−1

21 ww + B−1
22 wg − ∂xSg = 0, ∂xwg − ∂tSg = 0, in Ω̃ × [tn, tn+1],

(24)

The system (24) is suitable for a mixed finite element formulation [5, 6, 23, 24, 28, 31] as
well as for multiscale-based finite element methods [1–3, 30, 37–39, 44]. Since the matrix B

is positive definite in Ω̃ [7], so is matrix B−1. Therefore system (24) has a unique solution
in the region Ω̃ . Now, let us analyze the case when the matrix B−1 is not invertible.

6.1 Regions Ωgo and Ωwo

The mobility of the water phase vanishes in the region Ωgo. Then B11 = B12 = B21 = 0, and
therefore, ww = 0. Thus, the system (14) is simplified to,

∂tSg − ∂xwg = 0, in Ωgo × [tn, tn+1],
wg = B22(x)∂xSg, in Ωgo × [tn, tn+1], (25)

subject to boundary condition wg(x, t) = 0 for all x ∈ ∂Ωgo ∩∂Ω and to the initial condition
Sg(x, tn) = S0

g(x) in Ωgo; remember (15)–(16) as introduced in Sect. 4. In order to obtain
a compatibility condition, it is imposed naturally that the flux wg should be continuous
across the interface ∂Ωgo\∂Ω . Since B22(x) = λgfo∂Sgpgo, if ∂Sgpgo > 0 then B22(x) > 0.
Therefore, equation (25) can be written in a computationally suitable form,

1

B22
wg − ∂xSg = 0, in Ωgo × [tn, tn+1],

∂xwg − ∂tSg = 0, in Ωgo × [tn, tn+1].
(26)

From Lemma 1, the water saturation reads to Sw(x, tn+1) = S0
w(x) in Ωgo. In addition,

as pointed out before, we impose continuity of wg across the boundary ∂Ωgo\∂Ω . Since
ww = 0 in Ωgo and since ww is continuous, then one should also impose ww = 0 on ∂Ωgo

in the neighboring subdomains in order to modify the diffusive system to be well posed in
terms of boundary condition. On the other hand, in the region Ωwo, it hold that ∂tSg = 0 and
wg = 0, and the system (14) reduces to,

1

B11
ww − ∂xSw = 0, in Ωwo × [tn, tn+1],

∂xww − ∂tSw = 0, in Ωwo × [tn, tn+1],
(27)

subject to boundary condition ww = 0 on ∂Ωwo ∩∂Ω . In this region, we need a similar com-
patibility condition for ww by imposing its continuity across boundary ∂Ωwo\∂Ω . Similarly
to the previous case if ∂Swpwo > 0 then B11(x) = λwfo∂Swpwo, is strictly positive in Ωwo.
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6.2 Region Ωwg

In region Ωwg mobility of oil phase vanishes. Thus, from Lemma 1 and Remark 1, ∂tSo = 0
and ∂xS

0
o = 0 in Ωwg × [tn, tn+1]. Therefore, So(x, t) = S0

o (x) in Ωwg × [tn, tn+1]. Since
So + Sw + Sg = 1,

∂xSg = −∂xSw, in Ωwg × [tn, tn+1], and (28)

∂tSg = −∂tSw, in Ωwg × [tn, tn+1]. (29)

On the other hand, since fo = 0 in this region, we have that B11 = −B21 and B12 = −B22.
Therefore, it follows from (10) that,

ww = −wg. (30)

The relations (28)–(30) also imply that the differential equations (14) for conservation of
water and gas are equivalent. Indeed, we should choose one of the saturation equations in
order to obtain a nonsingular system. Therefore, without loss of generality, we choose to use
the water saturation, and the system in Ωwg now reads,

ww − B11∂xSw − B12∂xSg = 0, in Ωwg × [tn, tn+1],
∂xww − ∂tSw = 0, in Ωwg × [tn, tn+1]. (31)

By using relation (28), equation (31) is equivalent to,

ww − [B11 − B12]∂xSw = 0, in Ωwg × [tn, tn+1],
∂xww − ∂tSw = 0, in Ωwg × [tn, tn+1]. (32)

Now, since B12 = −B22 we get B11 − B12 = tr(B). Thus, if tr(B) is nonvanishing in Ωwg

then we can write the system (32) in the following way:

1

tr(B)
ww − ∂xSw = 0, in Ωwg × [tn, tn+1],

∂xww − ∂tSw = 0, in Ωwg × [tn, tn+1].
(33)

Since fo = 0 and 1 − fw = fg , then:

tr(B) = λwfg[∂Swpwo + ∂Sgpgo]. (34)

This lead us to another condition in the capillary pressure functions,

∂Swpwo + ∂Sgpgo �= 0 in Ωwg. (35)

After solving (33), the gas saturation can be recovered from Sw + Sg = 1 − S0
o . Notice that

capillary pressure and relative permeability are important parameters in reservoir engineer-
ing [15, 21, 34]. Indeed, one can see that the Brooks–Corey capillary pressure model has
a solid theoretical basis [11, 46]. Recently [47], a more general capillary pressure model
was derived theoretically from fractal modelling of a porous medium and it was found that
this model could be reduced to the frequently-used Brooks–Corey capillary pressure model
in some applications. Thus, condition (35) is not so restrictive since it is quite general for
porous media transport problems.
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6.3 Regions Ωj , j = w,g,o

Let us fix j ∈ {w,g,o}. Remember that in region Ωj only one phase has positive mobility.
Thus, it follows from Lemma 1 and from the saturation constraint (1) that:

∂tSw = ∂tSg = ∂tSo = 0, in Ωj × [tn, tn+1]. (36)

So, in Ωj the saturations are given by,

Si(x, tn+1) = Si(x, tn) = S0
i (x), i = w,g,o. (37)

Now, since the mobility of two phases vanishes, we obtain ww = wg = 0 in Ωj × [tn, tn+1].
This implies a compatibility condition for fluxes ww and wg on the boundary interface with
neighboring subdomains and now reads:

ww = wg = 0, on ∂Ωj . (38)

This completes the derivation of the compatibility conditions to bypass the degeneracy
associated to the diffusion problem on the two-phase and three-phase flow regions.

6.4 Mixed Finite Element Formulation

As mentioned above, we discuss the key ideas in one-space dimension. Thus for the nume-
rical approximation of the parabolic system (14)–(16), let Th be a uniform partition of do-
main [a, b] ⊂ R with characteristic size h (but non-uniform size is allowed). For this parti-
tion, we can define the ordered set of nodes and the set of elements, respectively:

Nh = {a = x1 < x2 < · · · < xN+1 = b}, (39a)

Eh = {
Ti = [xi, xi+1], i = 1, . . . ,N

}
, (39b)

where the boundary of element Ti are nodes xi and xi+1. After the decomposition of the
domain and desingularization of local diffusive equations, we are led to the system of dif-
ferential equations (24), (26), (27), (33), which are subjected to compatibility conditions,

ww = 0, on ∂Ωgo ∪ ∂Ωk, (k = w,g,o), (40a)

wg = 0, on ∂Ωwo ∪ ∂Ωk, (k = w,g,o), (40b)

ww = −wg, on ∂Ωwg\∂Ω, (40c)

and boundary and initial conditions, respectively:

ww = wg = 0, on ∂Ω, (41a)

Sw(x, tn) = S0
w(x) and Sg(x, tn) = S0

g(x). (41b)

We stress that one does not need to compute solutions of the associated diffusion subproblem
in different subdomains in some specific order due to the third condition (40c). To this end,
a Lagrange multiplier is introduced to impose the condition ww = −wg . In each region a
distinct variational formulation is first implemented (see (26), (27), (33)) and then a fully
assembled matrix is performed for its numerical solution.
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In the regions Ωj , j = w,g,o as discussed in Sect. 6.3, we have

Sw(x, tn+1) = S0
w(x) and Sg(x, tn+1) = S0

g(x). (42)

In each subdomain of the decomposition (21a), except in the regions Ωj , we employ the
zero order Raviart–Thomas finite element space to discretize (24), (26), (27), (33). Thus, we
approximate the pair (Si,wi) ∈ Mh × Xh, i = w,g, given by

Mh = {
s̄ ∈ L2(Ω); s̄ is constant in each element Ti ∈ Th

}
, (43a)

Xh = {
w̄ ∈ L2(Ω); w̄|Ti

is linear, i = 1, . . . ,N, and Ti ∈ Th

}
. (43b)

The initial saturation functions S0
w and S0

g are also in the space Mh, which implies that the
mobility functions λ0

w , λ0
g and λ0

o, defined in (20) are also in Mh. Therefore, each one of the
subdomain that define the decomposition of the domain Ω is an union of elements in Th or
is the empty set. Now, note that the functions in Xh can be discontinuous, which implies that
this space does not satisfy the compatibility condition Xh ⊂ H(div,Ω). Then, we introduce
a Lagrange multiplier in the discrete variational formulation which imposes the continuity
of the flux functions in Xh. Those Lagrange multipliers will also impose a regularity in the
discrete system, since it would be indefinite [31]. The Lagrange multiplier space is the set
of functions,

Λh = {l̄ : Nh → R}, (44)

which associates a real value to each node of the mesh [31]. The discrete variational for-
mulation of the system (24) in region Ω̃ is the following: Find (ww,wg,Sw,Sg, lw, lg) ∈
Xh × Xh × Mh × Mh × Λh × Λh such that,

(
B−1

11 ww, w̄w

) + (
B−1

12 wg, w̄w

) + (Sw, ∂xw̄w) − L(lw, w̄w) = 0,
(
B−1

21 ww, w̄g

) + (
B−1

22 wg, w̄g

) + (Sg, ∂xw̄g) − L(lg, w̄g) = 0,

(∂xww, s̄w) − 1

	td
(Sw, s̄w) = 1

	td

(
S0

w, s̄w

)
Ω̃

,

(∂xwg, s̄g) − 1

	td
(Sg, s̄g) = 1

	td

(
S0

g, s̄g

)
Ω̃

,

L(l̄w,ww) = 0,

L(l̄g,wg) = 0,

(45)

for any w̄w, w̄g ∈ Xh, s̄w, s̄g ∈ Mh and l̄w, l̄g ∈ Λh, where for (l̄, v) ∈ Λh × Xh,

L(l̄, v) =
∑

Ti∈Eh

{
l̄(xi+1)v|Ti

(xi+1) − l̄(xi)v|Ti
(xi)

}
, (46)

and (·, ·) stands for integration over Ω̃ . In order to impose transmission conditions in the
coupling of the boundaries between a given pair of distinct porous media flow regions (21b)–
(21f) we perform a computational classification of the elements in Th based on phase mobil-
ities (20). Thus, in each element one can use a different formulation and impose the appro-
priate compatibility condition on the interface between elements. The discrete variational
formulation for the equations (26), (27), (33) is analogous to the one presented above.
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7 Numerical Experiments

In the first set of experiments, we consider a problem whose capillary pressure model is
largely used on practical applications and is based on the features of the Brooks-Corey
model [11] and on the J-function model [46],

pwo(Sw) = −ε
(
S∗

w

)−1/η
and pgo(Sg) = ε

(
S#

g

)−1/η
, (47)

where

S∗
w = Sw − Swr

1 − Swr − Sor

and S#
g = 1 − Sg − Swr − Sor

1 − Swr − Sor

, (48)

are normalized saturations and the coefficient ε measures the relative importance of diffusive
and convective mechanisms. This capillary pressure model allow us to show the robustness
of the proposed method. It follows from (47) that capillary pressure terms in the matrix P ′
are given by:

∂Swpwo = ε

η

(S∗
w)−1/η−1

(1 − Swr − Sor)
and ∂Sgpgo = ε

η

(S#
g)

−1/η−1

(1 − Swr − Sor)
, (49)

where ∂Swpwo and ∂Sgpgo are strictly positive functions, and therefore, condition (35) holds
in Ωwg . The similar conditions (24), (26), (27), (37) and (38) obtained for regions Ωgo, Ωwo

and Ωj , j = w,g,o also hold by Lemma 1; see Sects. 6.1, 6.2 and 6.3. Note that ∂Sgpwo = 0
and ∂Swpgo = 0. In fact, the capillary pressure model implies that the determinant detP ′

is strictly positive in the interior of the saturation triangle (region Ω̃). For all numerical
experiments we consider η = 2 and ε = 1.0 × 10−1 unless explicitly specified otherwise.
We take fluid viscosities to be μg = 0.3, μw = 1.0 and μo = 2.0. Relative permeabilities
are described by the Corey-Pope model [18, 26], in which each relative permeability is a
function of its own phase saturation:

kw = (
S∗

w

)2
, ko = (

S∗
o

)2
and kg = (

S∗
g

)2
, (50)

where the normalized saturations S∗
o and S∗

g are given by,

S∗
o = So − Sor

1 − Swr − Sor

and S∗
g = Sg

1 − Swr − Sor

. (51)

Furthermore, the residual saturations in the numerical simulations are Swr = 0.2 and
Sor = 0.3. We consider the domain Ω = [0,4] and the results are taken at the computational
dimensionless time t = 0.9. Indeed, it is a common practice circumvent the singularity in
matrix B = QP ′ by introducing a regularity parameter ξ times the identity matrix, thus
replacing the diffusion matrix B by a modified one:

B = ε
(
QP ′ + ξI2

)
, (52)

where I2 is the identity matrix. It is important to note that such mathematical trick adds
“extra” diffusion dictated by ξ . For comparisons purpose, we have considered in some nu-
merical experiments the “numerical diffusion” value dictated by ξ . It is worth mentioning
that our method does not require any kind of mathematical and numerical regularization. In
the computations we consider ξ = 1.0 × 10−2, unless stated otherwise.
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Table 1 Comparison of successive refined solutions of the New FEM using L1-norm

(1/h)fine × (1/h)coarse Sw (.) Sg (.) So (.)

60 × 30 7.22e-3 (–) 6.90e-3 (–) 1.22e-2 (–)

125 × 60 3.40e-3 (2.1) 3.49e-3 (2.0) 5.94e-3 (2.0)

250 × 125 1.08e-3 (3.1) 1.24e-3 (2.9) 2.03e-3 (2.9)

500 × 250 3.68e-4 (3.0) 4.49e-4 (2.7) 7.51e-4 (2.7)

1000 × 500 1.72e-4 (2.2) 1.92e-4 (2.4) 3.43e-4 (2.2)

2000 × 1000 8.40e-5 (2.0) 8.43e-5 (2.3) 1.58e-4 (2.1)

Table 2 Comparison of refined solutions of the New FEM using L∞-norm

(1/h)fine × (1/h)coarse Sw (.) Sg (.) So (.)

60 × 30 5.25e-2 (–) 5.50e-2 (–) 5.50e-2 (–)

125 × 60 3.81e-2 (1.4) 6.49e-2 (0.8) 6.49e-2 (0.8)

250 × 125 1.89e-2 (2.0) 5.47e-2 (1.2) 5.47e-2 (1.2)

500 × 250 6.46e-3 (2.9) 4.38e-2 (1.2) 4.38e-2 (1.2)

1000 × 500 2.73e-3 (2.4) 2.92e-2 (1.5) 2.92e-2 (1.5)

2000 × 1000 1.22e-3 (2.3) 2.66e-2 (1.1) 2.66e-2 (1.1)

The finite element discretization considered in both methods for numerical solution of
the nonlinear parabolic system, associated for the full problem (11)–(16), is the Raviart–
Thomas space of order 1. The resulting linear problem is performed numerically by means
of a LU factorization. The robustness of the proposed method is obtained through a large set
of high-resolution numerical simulations of transport flow problems in regions with degene-
rated diffusion matrix occurring in the physical domain and by means of a numerical conver-
gence study. Furthermore, numerical experiments are subsequently conducted to illustrate
the applicability of the methodology and to carry out a sensitivity study regarding practical
flow situations.

7.1 An Numerical Investigation of Convergence Rates

In this experiment we compare the converge rates of the New FEM (NFEM) method and
the regularized FEM, with a regularization parameter ξ = 1.0 × 10−2. More specifically,
we compare approximate solutions ‖Sfine − Scoarse‖ for norms L1 and L∞; Sfine stands for
the solution on a fine mesh grid and Scoarse stands for the solution on a coarse mesh grid. In
Tables 1 and 2 are shown the L1 and L∞ errors, respectively, in a numerical refinement study.
In parentheses presented in Tables 1 and 2 are shown the calculated numerical convergence
rates showing some evidence of consistency of our approximate solutions.

In Tables 3 and 4 are shown the L1 and L∞ errors (respectively) of a numerical mesh
refinement study of the regularized FEM method. As it would be expected, since the finite
element discretization are the same, the numerical convergence rates for both methods using
NFEM and Regularized FEM are closely related. Of course, our NFEM methodology does
not make use of any artificial numerical regularization.
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Table 3 Comparison of solutions of the regularized FEM using L1-norm

(1/h)fine × (1/h)coarse Sw (.) Sg (.) So (.)

60 × 30 7.12e-3 (–) 6.83e-3 (–) 1.21e-2 (–)

125 × 60 3.30e-3 (2.1) 3.37e-3 (2.0) 5.74e-3 (2.1)

250 × 125 9.82e-4 (3.4) 1.14e-3 (3.1) 1.86e-3 (3.0)

500 × 250 3.27e-4 (2.9) 4.14e-4 (2.7) 6.81e-4 (2.8)

1000 × 500 1.49e-4 (2.2) 1.65e-4 (2.4) 2.92e-4 (2.3)

Table 4 Comparison of solutions of the regularized FEM using L∞-norm

(1/h)fine × (1/h)coarse Sw (.) Sg (.) So (.)

60 × 30 5.04e-2 (–) 5.55e-2 (–) 5.55e-2 (–)

125 × 60 3.97e-2 (1.2) 6.55e-2 (0.9) 6.55e-2 (0.9)

250 × 125 1.67e-2 (2.4) 4.56e-2 (1.4) 4.56e-2 (1.4)

500 × 250 5.80e-3 (2.9) 3.27e-2 (1.4) 3.27e-2 (1.4)

1000 × 500 2.44e-3 (2.4) 2.42e-2 (1.4) 2.42e-2 (1.4)

Table 5 Comparison of the solution with New FEM and the reference solution (h = 1/2000) in the L1 and
L∞ norms for each individual phase. In the L∞ error, the result of oil saturation is qualitatively the same of
gas saturation

1/h L1 L∞
Sw (.) Sg (.) So (.) Sw (.) Sg (.)

30 1.17e-2 (–) 1.20e-2 (–) 2.06e-2 (–) 9.50e-2 (–) 1.14e-1 (–)

60 4.70e-3 (2.6) 5.25e-3 (2.3) 8.60e-3 (2.4) 7.10e-2 (1.3) 1.18e-1 (0.9)

125 1.38e-3 (3.6) 1.79e-3 (2.9) 2.79e-3 (3.1) 2.78e-2 (2.5) 7.72e-2 (1.5)

250 4.51e-4 (3.1) 6.38e-4 (2.9) 1.01e-3 (2.8) 1.03e-2 (2.8) 6.73e-2 (1.2)

500 1.89e-4 (2.4) 2.43e-4 (2.6) 4.09e-4 (2.4) 3.95e-3 (2.5) 5.58e-2 (1.2)

1000 8.40e-5 (2.3) 8.43e-5 (2.9) 1.58e-4 (2.6) 1.22e-3 (3.3) 2.66e-2 (2.1)

7.2 Convergence to a Reference Solution

Let us now consider a reference solution computed with the NFEM in a mesh h = 1/2000.
Since the regularized FEM introduces numerical diffusion to the problem for removing the
singularity of the parabolic operator, the solution of the NFEM is expected to exhibit better
results.

In Table 5 we present the error in the L1 and L∞ norms, respectively, of the solutions
computed with the NFEM method with respect to the reference solution. The numerical
results obtained computed by NFEM, without any artificial regularization, seems to be lit-
tle better with respect to those obtained with the regularized FEM. In parenthesis we also
present a convergence rate estimative. In Table 6 we present the error in the L1 and L∞

norms, respectively, of the solutions computed with the regularized FEM method with re-
spect to the reference solution. In parenthesis we also present a convergence rate estimative.
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Table 6 Comparison of the solution with Regularized FEM and the reference solution (h = 1/2000) in the
L1 and L∞ norms for each individual phase. In the L∞ error, the result of oil saturation is the same of gas
saturation

1/h L1 L∞
Sw (.) Sg (.) So (.) Sw (.) Sg (.)

30 1.21e-2 (–) 1.23e-2 (–) 2.11e-2 (–) 9.63e-2 (–) 1.14e-1 (–)

60 5.14e-3 (2.4) 5.62e-3 (2.1) 9.31e-3 (2.3) 7.45e-2 (1.3) 1.20e-1 (0.9)

125 1.92e-3 (2.7) 2.25e-3 (2.5) 3.65e-3 (2.6) 3.49e-2 (2.1) 8.42e-2 (1.4)

250 1.04e-3 (1.9) 1.16e-3 (1.8) 1.95e-3 (1.8) 1.94e-2 (1.7) 8.35e-2 (1.0)

500 8.41e-4 (1.2) 8.21e-4 (1.5) 1.47e-3 (1.3) 1.37e-2 (1.4) 8.11e-2 (1.0)

1000 7.94e-4 (1.1) 7.36e-4 (1.1) 1.35e-3 (1.2) 1.13e-2 (1.3) 7.46e-2 (1.1)

In Fig. 2 we present a comparison of the computed solution with the regularized FEM
in mesh h = 1/30 × h = 1/60, h = 1/60 × h = 1/125 and h = 1/125 × 1/250. This is a
grid refinement study for the numerical solution of the fully coupled convection-diffusion
degenerate system (11)–(16) for Riemann data with initial discontinuity at x = 0, separating
left (injection) (SL

w,SL
g ) = (0.67,0.33) and right degenerate state (SR

w,SR
g ) = (Swr ,0), that

is, a reservoir saturated with pure oil. The numerical simulation is performed in a one-
dimensional discretized region by an uniform grid. Figure 2 show a study of numerical
convergence under grid refinement, where we compare the solutions computed with a mesh
size h = 1/30×h = 1/60 (top), h = 1/60×h = 1/125 (middle) and h = 1/125×h = 1/250
(bottom). The transport flow experiment described in Fig. 2 leads to a zero (degenerate)
capillary pressure region, from interior of the triangle saturation Ω to the oil vertex Ωo.
Figure 2 (left column) display results for water and gas (1 − Sg) saturation profiles as a
function of distance at the dimensionless time t = 0.9. At this time the solution has stabilized
to a scale-invariant form [8]. The solutions shown in Fig. 2 comprise (from right to left) a
“shock” and a composite “shock”-rarefaction wave. For complementeness, see Fig. 3 for
the numerical solution of the pure hyperbolic case. We also show in Fig. 2 (right column)
a mesh refinement comparison of the solutions obtained with the regularized method with
h = 1/30 ×h = 1/60, h = 1/60 ×h = 1/125, and h = 1/125 ×h = 1/250, in which in turn
exhibits the same solution structure. Moreover, it is clear from Fig. 2 (right) that as the grid is
refined the layer region in the solutions becomes sharper and thus provides some evidence of
numerical convergence of the procedure. In addition, we note that the comparison between
numerical solutions in fine and coarse mesh studies shown in Table 6 corroborate our results.

The NFEM methodology resolves the traveling wave profile of the fast “shock” wave
followed by a “shock”-rarefaction wave, as it is expected from the analysis of this model
[8], yielding a validation of our computations. Furthermore, the solutions computed on a
grid with h = 1/250 virtually coincide with the ones obtained on finer grid. Of course, this
is not a prove of convergence, but rather a evidence of good consistency of our methodology.
We also compare the solutions of both methods in each given mesh. In Table 7 it is shown
the L1 and L∞ norms of the error ‖u1 − u2‖, where u1 is the solution with the new FEM
method and u2 is the solution computed with the regularized FEM.

7.3 Convergence to the Pure Convective Problem

In the next experiment we performed a numerical qualitative analysis of the computed so-
lution with a given diffusion ε for system (11)–(16) with respect to the pure convective
solution as the diffusion parameter ε vanish to “zero”.
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Fig. 2 Numerical mesh refinement study considering two successive mesh grids with h = 1/30 × h = 1/60
(top), h = 1/60 × h = 1/125 (middle), and h = 1/125 × h = 1/250 (bottom): New FEM (left) and Regular-
ized FEM (right). Although the above results are qualitatively similar, we point out to the reader the results
reported in Fig. 4, in which the regularized FEM clearly fails to converge to the correct solution
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Fig. 3 Structure of the solution for the pure hyperbolic system in absence of diffusion: at this time the
solution has stabilized to a scale-invariant form, and the solutions comprise (from right to left) a shock and a
composite shock-rarefaction wave. See also the solutions in the saturation triangle (bottom-left picture) and
in the reduced triangle of vertices O∗, G∗, W∗ (bottom-right picture)

Table 7 Difference in L1 norm (and L∞ in parenthesis) between the solutions of Regularized FEM and
New FEM in a given mesh

1/h Sw Sg So

30 3.68e-4 (1.59e-3) 2.96e-4 (1.09e-3) 5.95e-4 (1.25e-3)

60 4.84e-4 (3.56e-3) 4.02e-4 (2.78e-3) 7.86e-4 (2.89e-3)

125 6.09e-4 (7.13e-3) 5.25e-4 (7.06e-3) 9.97e-4 (7.06e-3)

250 6.95e-4 (9.49e-3) 6.17e-4 (1.61e-2) 1.15e-3 (1.61e-2)

500 7.41e-4 (1.00e-2) 6.69e-4 (3.51e-2) 1.24e-3 (3.51e-2)

1000 7.69e-4 (1.02e-2) 6.99e-4 (5.39e-2) 1.29e-3 (5.39e-2)
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Table 8 Numerical converge study of the approximate solution for system (11)–(16) given by for New FEM
with respect to the pure convection solution in the L1-norm (and L∞-norm in parenthesis) as the diffusion
parameter ε tends to zero

ε Sw(.) Sg (.) So (.)

0.8 3.98e-2 (1.34e-1) 1.46e-2 (1.22e-1) 5.08e-2 (1.22e-1)

0.4 2.28e-2 (1.38e-1) 9.76e-3 (1.26e-1) 3.01e-2 (1.26e-1)

0.2 1.28e-2 (1.42e-1) 6.05e-3 (1.28e-1) 1.73e-2 (1.28e-1)

0.1 7.12e-3 (1.45e-1) 3.74e-3 (1.26e-1) 9.95e-3 (1.27e-1)

0.01 2.38e-3 (1.42e-1) 1.92e-3 (1.19e-1) 3.76e-3 (1.19e-1)

0.001 2.05e-3 (1.38e-1) 1.82e-3 (1.19e-1) 3.34e-3 (1.19e-1)

0.0001 2.01e-3 (1.38e-1) 1.81e-3 (1.19e-1) 3.30e-3 (1.19e-1)

0.00001 2.01e-3 (1.38e-1) 1.81e-3 (1.19e-1) 3.30e-3 (1.19e-1)

Again, for complementeness, see Fig. 3 for the numerical approximate of the structure
of solution for the pure hyperbolic case. A detailed description of the solution can be found
in the Sect. 7.2. For all these experiments we have considered a mesh of h = 1/250. In
Table 8 are shown the L1 and L∞ errors, respectively, for the above mentioned study of the
computed solution uε with the given ε parameter to the pure convection solution.

7.4 A Numerical Sensitivity Study on the Variability of Parameter ε

In Fig. 4 is shown a numerical sensitivity study of the NFEM and regularized FEM methods
under the variability of parameter ε, as ε tends to zero. In Fig. 5 we show the results in
the saturation triangle. A detailed description of the solution can be found in the Sect. 7.2.
The solution for the pure hyperbolic system in absence of diffusion has stabilized to a scale-
invariant form, and the solutions comprise (from right to left) a shock and a composite
shock-rarefaction wave. Here, our issue is to show the qualitative agreement among the ref-
erence solution in Fig. 3, and those obtained with NFEM (Fig. 4 top) and with the regularized
FEM method (Fig. 4 bottom) under the variability of parameter ε. See the solutions in the
saturation triangle (Fig. 5) for both NFEM and regularized FEM in the saturation triangle.

7.5 An Numerical Investigation of Time Splitting Errors

Here we want to assess that our operator splitting algorithm, indeed, exhibit the nice prop-
erty of resolving with accuracy internal layers in the three-phase solutions with steep gradi-
ents, by exploiting the use of large time splitting relations, and at the same time, capturing
the nonlinear balance between the convective and diffusive mechanisms. Using a fractional
time step 	tc the width of the numerical shock layer will be O(

√
ε	tc), because the non-

linear self-sharpening mechanisms of the fractional flow functions “fi(Sw,Sg)”, i = w,g,
in system (11)–(16), are thrown away by the unphysical entropy loss due to Oleinik’s con-
vexification [50] introduced in the convective step by the hyperbolic solver; see [5, 6, 42,
43]. This important error mechanism was introduced and carefully discussed in details in
[42, 43]. Therefore, to not overestimate the shock layer the splitting time step should not be
larger than ε. In this experiment we simulate and compare the qualitative behavior of the
approximate solutions as the splitting time steps increases, with mesh h = 1/250 for both
methods: the New FEM and the regularized FEM. In Table 9 is shown the numerical results
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Fig. 4 A numerical sensitivity study is performed by varying decreasing values of parameter ε, with respect
to the methods “NFEM” (top) and “regularized FEM” (bottom). All numerical experiments are performed in
a fixed mesh grid with h = 1/250. Notice the black dashed circles surrounding the inflow boundary condition
and the wave fronts in the numerical solutions, which exhibit different shapes depending on the size of the
parameter ε. As it would be expected, the mathematical trick adds an “extra” artificial diffusion dictated by
ξ = 0.01 (bottom frame). It is possible observe a deterioration of solution quality obtained by the “regularized
FEM” method under decreasing values of parameter ε. These results clearly show that the “regularized FEM”
method might fail to converge to the correct solution

of the regularized FEM method. In Table 10 is shown numerical results of the New FEM
method.

In Table 9 is shown the discrepancy in L1-norm (left) L∞-norm (right) of approximate
solutions with the regularized FEM with h = 1/250 for several Time Splitting (TS) steps
with respect to a reference solution with a single time splitting step 	tc such that O(

√
ε	tc),

as discussed above, and a mesh grid of width h = 1/2000. In Table 10 is shown numerical re-
sults in the same setting as described previously, for approximate solutions using our NFEM
methodology with h = 1/250 and for several Time Splitting (TS) with respect to a reference
solution with a single time splitting step and h = 1/2000. Here we also have discrepancy in
L1-norm (left) L∞-norm (right); see Table 9 and Table 10.
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Fig. 5 Sensitive study of decreasing values of parameter ε for the New FEM method (left frame) and the
Regularized FEM method (right frame). A mesh grid with h = 1/250 is fixed in all numerical experiments.
The solutions for water, gas, and oil saturations are displayed in the saturation triangle (state space)

Table 9 Discrepancy in L1-norm (left) L∞-norm (right) of approximate solutions with the regularized FEM
with h = 1/250 for several Time Splitting (TS) steps with respect to a reference solution with a single time
splitting step and h = 1/2000

TS Sw (.) Sg (.) So (.)

2 1.04e-3 1.16e-3 1.96e-3

4 1.06e-3 1.18e-3 1.99e-3

8 1.07e-3 1.18e-3 2.00e-3

16 1.08e-3 1.20e-3 2.03e-3

32 1.16e-3 1.29e-3 2.18e-3

64 1.19e-3 1.41e-3 2.22e-3

128 1.37e-3 1.54e-3 2.56e-3

256 1.78e-3 2.09e-3 3.00e-3

TS Sw (.) Sg (.) So (.)

2 1.92e-2 8.34e-2 8.34e-2

4 1.95e-2 8.44e-2 8.44e-2

8 1.91e-2 8.47e-2 8.47e-2

16 1.90e-2 8.49e-2 8.49e-2

32 2.05e-2 8.86e-2 8.86e-2

64 2.56e-2 8.63e-2 8.63e-2

128 2.83e-2 9.48e-2 9.48e-2

256 4.10e-2 8.00e-2 8.00e-2

Table 10 Error of the solution of the New FEM as we increase the split step. Comparison in the L1-norm
(left) in the L∞-norm (right) of the New FEM to the reference solution with h = 1/2000 and split step
equal 1

TS Sw Sg So

2 4.49e-4 6.30e-4 1.00e-3

4 4.59e-4 6.47e-4 1.02e-3

8 4.64e-4 6.50e-4 1.03e-3

16 4.99e-4 6.95e-4 1.06e-3

32 5.42e-4 7.39e-4 1.18e-3

64 8.11e-4 9.03e-4 1.30e-3

128 8.72e-4 9.68e-4 1.58e-3

256 1.56e-3 1.59e-3 2.28e-3

TS Sw (.) Sg (.) So (.)

2 1.01e-2 6.63e-2 6.63e-2

4 1.04e-2 6.77e-2 6.77e-2

8 1.05e-2 6.72e-2 6.72e-2

16 1.19e-2 6.63e-2 6.63e-2

32 1.33e-2 7.05e-2 7.05e-2

64 1.99e-2 6.49e-2 6.49e-2

128 2.25e-2 7.23e-2 7.23e-2

256 3.98e-2 5.23e-2 5.23e-2



710 J Sci Comput (2013) 55:688–717

7.6 A Triangular Model for Three-phase Flow

In what follows we consider a triangular model for the fractional flow functions associated
to the system of three-phase flow equations (5)–(8), as is discussed in [43]. The numerical
methodology described in [43] (see also [42]) relies heavily upon the method of Dafermos by
means of polygonal approximations in which is based on solving local Riemann problems,
see [19] for details. It is well known that such approach requires a priori construction of cer-
tain residual flux functions [42, 43]. Moreover, it is worth mentioning that such construction
is not general for systems of conservation laws as is the “non-triangular” three-phase flow
model with umbilic point we consider in this manuscript (see, e.g., [5, 6, 41, 48]). Indeed,
even in the scalar case such residual flux function must be carefully constructed in order to
ensure convergence to entropy solutions [42, 43]. Instead, we used the central differencing
scheme [49] as a building block (see, e.g., [5, 6]) to bypass the need of Riemann solvers
and/or approximate Riemann solvers as well as the use of a dimensional splitting approach.
In addition, we mention that in [45] is shown that semidiscrete central-upwind schemes for
convection-dominated flow regime may fail to converge to the unique entropy solution or
the convergence may be so slow that achieving a proper resolution would require the use of
impractically fine meshes. It has been shown in [5, 6] that the central differencing approach
[49] can correctly capture the nonclassical solution in one spatial dimension as well as in
multidimensional heterogeneous three-phase flows [5, 6]. We observe that in the triangular
model discussed here (see also [43]) there is no residual saturations and the flux functions
are given by,

fw(Sw,Sg) = (1 − Sg)
2 + S2

g/10

10S2
g + (1 − Sg)2

· S2
w

S2
w + (1 − S2

w)2/10
, (53)

and

fg(Sw,Sg) = S2
g

S2
g + (1 − Sg)2/10

. (54)

The regularized diffusive matrix is given by,

B = ε

[
4Sw(Sw − 1) + ξ 0

0 4Sg(Sg − 1) + ξ

]
, (55)

where the term ξ controls the amount of regularization introduced. For comparison purposes
for our NFEM method we set ξ = 0 to get the correct “degenerate” diffusive matrix associ-
ated to the parabolic system (14)–(16). In the numerical experiments reported in this section
the physical diffusion parameter ε is set to be 0.1. The initial condition of the problem at
hand is,

(Sw,Sg)(x) =
{

(0.6,0.4) x ≤ 1.0,

(0.0,0.0) x > 1.0.
(56)

We consider the solution at time t = 1.0 for the results reported in the Table 11, whereby
we computed the discrepancies L1-norm and L∞-norm for the New FEM methodology. We
use a CFL condition given by 	t < 18.8 (	x).

7.7 Modeling of Capillary Pressure Effects

When water and gas are injected alternately (WAG), the “hydrodynamic” flow sweep within
the porous medium behaves as if an effective mixture had been injected [8, 52], then WAG
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Fig. 6 Water and gas saturation profiles are shown as a function of distance at times 0.5 and 1.0 computed
in a mesh with 1024 elements. The numerical solutions presented here are in very good agreement with the
semi-analytic results reported in [43], yielding a validation of our computations

Table 11 Discrepancies in L1-norm (left) and in L∞-norm (right) for the same fine (hf ) and coarse (hc)
mesh grids in the analysis of approximate solutions for the triangular model using the NFEM methodology

hf × hc Sw (.) Sg (.) So (.)

64 × 32 5.55e-3 4.05e-3 9.46e-3

128 × 64 2.51e-3 1.74e-3 4.22e-3

256 × 128 1.20e-3 8.37e-4 2.03e-3

512 × 256 5.89e-4 4.02e-4 9.91e-4

1024 × 512 2.92e-4 1.97e-4 4.89e-4

Sw (.) Sg (.) So (.)

2.05e-2 4.31e-2 4.31e-2

9.92e-3 2.62e-2 2.62e-2

4.69e-3 1.51e-2 1.51e-2

2.21e-3 7.24e-3 7.24e-3

1.07e-3 3.22e-3 3.22e-3

solutions tends towards a stabilized scale-invariant continuous injection shape. This long-
time asymptotic behavior is in accordance with theoretical analysis in the literature [48].
For practical applications the transient regime is of importance, in particular when gravity
and/or diffusion dominates the flow processes. Thus, for this early transient time capillary
pressure must be taken into account. For the three-phase model considered throughout this
paper, that generalize Buckley–Leverett’s solution for immiscible two-phase, it has been
shown recently that the injection of a water/gas mixture in the time-average proportions
effectively behaves as the injection of a single phase [8]. Thus, we can regard the flow of
this phase (water/gas mixture) and oil as another two-phase flow, similar to the Buckley–
Leverett solution.

In this solution, a lead shock wave is followed by a continuous centered rarefaction wave,
with the shock speed matching the characteristic speed of the state just behind it. In this
three-phase flow experiment we consider a specific mixture of water and gas injected into a
porous rock initially containing pure oil. Here, we focus on the lead shock wave (solid line
in Fig. 7) that displaces the oil in situ. This numerical experiment is shown in Fig. 7, for
the numerical solution of the degenerate system (11)–(16) with Riemann data (SL

w,SL
g ) =

(0.8154,0.1846) and (SR
w,SR

g ) = (Swr ,0) (with initial discontinuity at x = 0), which leads
to a classical Buckley–Leverett structure solution as described above. Notice that we use the
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Fig. 7 On the top frames are shown water, oil and water saturation profiles as function of distance for a
numerical simulation of the three-phase Buckley–Leverett problem. On the bottom frames are shown the
corresponding numerical solutions in the saturation triangle, i.e., the state space. Notice that the right-bottom
frame is a zoom of the region O∗G∗W∗ inside of the state space of the left-bottom frame. It is shown here
a numerical sensitive study on the effects of parameter ε in the solution of the one-dimensional three-phase
flow model (11)–(16) with the fractional flow functions (57). Our NFEM method was able to capture the
qualitative behavior of solutions when the parameter ε vanishes to zero, with respect to the purely hyperbolic
case [8]

fractional flow functions,

fw(Sw,Sg) =
S∗
w

μw

S∗
g

μg
+ S∗

w

μw
+ S∗

o

μo

and fg(Sw,Sg) =
S∗
g

μg

S∗
g

μg
+ S∗

w

μw
+ S∗

o

μo

, (57)

where S∗
g , S∗

w and S∗
o are defined in (48) and (51) with fluid viscosities μg = 0.3, μw = 1.0

and μo = 2.0. Moreover, given the importance of accurate modelling of diffusive effects
(capillary pressure) in the simulation of three-phase flow problems [8, 48] we have con-
ducted a sensitivity study of solutions with respect to the strength of physical diffusion
by varying parameter ε. The changes in the solutions produced by ε mimic the effects of
physical-diffusion which in turn select distinct solutions. The analysis reported in [8] has
shown that the injection of water/gas mixture in the time-average proportions effectively be-
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haves similar to the classical, two-phase, Buckley–Leverett solution, from the edge G∗W ∗
to O∗ (region saturated with pure oil). The Buckley–Leverett solution (without diffusion) is
shown in Fig. 7. It comprises a composite wave (solid line) from right (SR

w,SR
g ) = (Swr ,0)

to left (SL
w,SL

g ) = (0.67,0.33) states: a shock from (Swr ,0) to (S∗
w,S∗

g ) and a rarefaction
from (S∗

w,S∗
g ) to (0.67,0.33).

The deviations of the solutions through ε values from the oil-water edge to the Buckley–
Leverett O∗B∗ solution show how difficult it is to capture the nonlinear balance between
effects of convection and diffusion. This illustrates the importance of an accurate numerical
modelling of diffusive effects for the computation of physically correct solutions of three-
phase transport flow problems in porous media [7]. We note that this qualitative difference
between numerical solutions with and without capillary pressure effects is better observed
in the saturation triangle (bottom right picture in Fig. 7).

7.8 Two-Dimensional Numerical Experiments

As a model for multiscale rock heterogeneity, we consider scalar, log-normal permeabil-
ity fields K(x), so that logK(x) is Gaussian and its distribution is determined by its mean
and covariance function, We consider a distribution which is stationary, isotropic and fractal
(self-similar); see [5, 6] for more details. The problem is defined on slab geometry reser-
voir with aspect ratio X/Y = 4, the spatial distributions of the permeability and poros-
ity fields are defined on a 512 m × 128 m domain discretized into 1 m × 1 m cells. The
two-dimensional three-phase flow model (5)–(8) are computed employing the same one-
dimensional discretization settings along with the fractional flow functions (57). Here we
present numerical simulations for horizontal slab (gravity is not included).

A mixture (of water and gas) is injected at a uniform and constant rate of 0.2 pore vol-
ume per year along the left boundary (x, y) ∈ {0} × [0, Y ], Y = 128, with production of the
three-phase fluid at the same uniform rate on the right boundary. No flow is allowed across
the boundaries with y = 0 and y = Y . We used the fluid viscosities μw = 1.0, μo = 2.0
and μg = 0.3, and the capillary pressure model (47). The injection saturation states are
Sw = 0.67 and Sg = 0.33. The residual saturations are Swr = 0.2 and Sor = 0.3. The ini-
tial condition for the problem correspond to the initial saturation state of the reservoir is
Sw = 0.2 and Sg = 0.0 which means a reservoir full of oil (virgin reservoir) in which in turn
exhibits degeneracy flow regions along the simulation time. As shown in Fig. 8, our NFEM
method for solving degenerate parabolic systems is also capable of simulating the flow of
a distinct number of fluid phases in distinct porous media regions in two-dimensional het-
erogeneous formations, a situation that naturally occurs in practical applications, such as
petroleum reservoir engineering and groundwater transport. The proposed FEM method is
able to capture the development of viscous fingering induced by the leading moving front
waves associated to the nonlinear degenerate coupled two-dimensional three-phase flow
problem (5)–(8).

8 Concluding Remarks

In this work we have introduced a new method for solving degenerate nonlinear coupled con-
vection dominated parabolic systems in porous media with degenerate diffusion. By means
of operator splitting, modified mixed finite element, and a simple strategy for decomposition
of the domain into regions based on the mobility of phases, compatibility conditions at local
interfaces were obtained in order to remove the singularity and thus allow us to reformulate
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Fig. 8 From top to bottom are shown water, gas and oil saturation after one year of numerical simulation for
a heterogeneous reservoir with variable porosity and permeability fields

the original nonlinear parabolic system in an appropriate form for their solution. Our NFEM
method does not need to employ any artificial mathematical regularization.

A high-resolution numerical convergence study was performed and semi-analytical re-
sults have been computationally reproduced to test the robustness of the proposed method.
The numerical experiments show that the solutions computed on a coarse grid virtually co-
incide with the ones obtained on finer grid, yielding evidence of numerical convergence.
We note that the numerical solutions presented here for the pure hyperbolic case are in
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agreement with semi-analytic results reported in the literature [8], and thus corroborate our
numerical computations. The robustness of the proposed method is obtained through a large
set of numerical simulations of transport flow problems in regions with degenerate diffu-
sion matrix. It is worth to mention that the implementation of the numerical technique in
two-dimensional space (resp. three-dimensional space) does not present major difficulties
because the method is based on the classification of elements and on the imposition of com-
patibility conditions on the edges (resp. on the faces) of the elements.
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