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We give a precise and modern mathematical characterization o f  the Newtonian 
spacetOne structure (N  ). Our formulation clarifies the concepts o f  absohtte space, 
Newton's relative spaces, and absolute tone. The concept o f  reference frames 
(which are "timelike" vector fieMs on N)  plays a fundamental role in our 
approach, and the classification of  all possible reference frames on ~ is 
O,vestigated in detail. We succeed #i identifying a Lorentzian structure on ~1 and 
we study the classical electrodynamics of  Maxwell and Lorentz relative to this 
structure, obtahffng the #nportant result that there exists only one #1trinsic 
generalization of  the Lorentz force law which is compatible with Maxwell equa- 
tions. This is at variance with other proposed #1trinsic generalizations of  the 
Loreutz force law appearing #z the literature. We present also a formulation of  
Newtonian gravitational theoo, as a curve spacetime theory and discuss its 
meaning. 
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1. INTRODUCTION 

In the Principia Mathematica, I~ Newton introduces the concepts of 
absolute space and absolute time as follows: 

Absolute space, in its own nature, without relation to anything external, remahls 
always similar and immovable. 
Absolute, true, and mathematical time, of itself and from its own nature, flows 
equally without relation to alo,thing external. 

In what follows we give a precise and modern mathematical charac- 
terization of these concepts, i.e., we are going to present the Newtonian 
spacetime and Newtonian kinematics and dynamics as a spacetime theory 
in the sense of Ref. 2. The study of the Newtonian theory as a spacetime 
theory has been done with varying degrees of mathematical rigor by several 
authors, as, e.g., in Refs. 3-7. In Ref. 7 we can find citations of the original 
works on the subject by, e.g., E. Cartan and K. Friedrichs. 

In Sec. 2 we discuss the geometrical structure of Newtonian spacetime 
giving the main definitions and introducing the subsidiary elements of the 
structure. 

Section 2.2 is dedicated to the formulation of the Newtonian dynamics. 
After the presentation of the concepts of Newtonian particles, momentum 
and co-momentum of a particle, kinetic energy, and force fields, we present 
the Newton's laws of motion. 

In Sec. 3 we give an original discussion of the concept of reference 
frames and moving frames as well as the coordinate chart naturally 
adapted to a given reference frame. 

Reference frames are classified according to various criteria, and the 
notion of a inertial reference frame appears with full rigor, in constrast to 
the usual elementary presentations. This is possible once we recognize that 
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one of the important mathematical objects of the geometrical structure of 
Newtonian spacetime is a flat connection D (Sec. 3.2.1). A discussion gives 
a clear physical meaning of the components of D in a given reference frame. 
Also in Sec. 3.3 we give a rigorous description of the concept of relative rest 
spaces introduced by Newton in the "Principia." 

We also discuss in Sec. 3.4 the meaning of Galileo's Principle of 
Relativity. The fundamental meaning of this (and other relativity principles) 
has been fully discussed in Ref. 2. 

in Sec. 4 we identify a natural Lorentzian structure in Newtonian 
spacetime ~ by introducing a Lorentzian metric for N. The identification 
of a Lorentzian metric in N has already been done, e.g., in Ref. 5, but there 
we do more. Indeed, we show that D, the connection of Newtonian 
spacetime, is the Levi-Civita connection of this Lorentzian metric. The 
classification of vectors, curves, and the concepts of Lorentzian reference 
frames in ~ is presented according to the Lorentzian structure of I~, and 
a Lorentzian dynamics on Newtonian spacetime (LDN) is formulated. We 
comment on the similarities and differences between LDN and the Einstein 
dynamics of special relativity after examining in Sec. 5 the classical electro- 
dynamics of Maxwell and Lorentz in our formalism. 

We succeed in proving that there is a unique coupling between the 
electromagnetic field with the current of a charged particle which is 
different from the postulate classical Lorentz force law when the latter is 
written in intrinsic form and which is a function of the four-velocity of the 
particle. This result is at variance with the one obtained, e.g., in Ref. 5 
where the author identifies the intrinsic generalization of the Lorenz force 
law with Eq. (141) instead of Eq. (143), which is the correct one. 

In Sec. 6 we present Newton's gravitational theory as a curved 
spacetime theory and we emphasize that this exercise suggests by itself to 
interpret Einstein's gravitational theory as a field theory in Minkowski 
spacetime. Such a theory formulated with the Clifford bundle formalism 
has been developed by two of us in Ref. 8. 

Finally in Sec. 7 we present our conclusions. We observe that this 
paper is one of a series we are proposing about the mathematical structure 
of spacetime theories. 

2. THE NEWTONIAN SPACETIME 

2.1. Geometrical Structure 

2.1.1. Definitions. The structure ~ describing the Newtonian space- 
time is introduced through 

825 25 6-7 
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Axiom 2.1. The Newton&n spacetime is characterized geometrically 
by a pentuple ~ = ( N ,  D, t2, V,/~), where 

1. N is a paracompact ,  connected, oriented and noncompact  four- 
dimensional  smooth manifold. 

2. D is a linear connection on N such that its tensors of torsion and 
curvature satisfy 

T [ D ]  = 0  and R I D ]  = 0  ( I )  

3. /2 �9 s e c ( T ' N ) , / 2  V= 0, is a differentiable 1-form field on N such that  

D r 2 = 0  (2) 

4. Ve  sec(TN) is a differentiable vector field on N such that 

o ( r )  = 1 (3) 

5. [1 �9 T o N  is a two-covariant ,  symmetric,  and differentiable tensor 
field on N such that for every p �9 N 

(a) ]lp(Up, Up) = 0 VUp �9 TpN r Vp = k Vp, k �9 R 

(b) hp(up, Up) > 0 Vup �9 TpN 

(c) Df~lp = 0 

Each point  of  the manifold N is called an event of the Newtonian 
spacetime. The structure of the theory permits one to "stratify" the 
manifold N into a cont inuous succession of three-dimensional spaces, so 
that  each event is characterized by the instant and the place of its 
occurrence. This stratification is employed as follows. 

Definition 2.2. Any function t: N ~ R for which t2p = adtp =~ 0 for all 
p �9 N, a �9 R, a > 0, is called an (admissible) time fimction for ~.  If a = 1, the 
function t is also said to be normalized. For  each admissible time function 
t: N ~ R, the number  t ( p ) � 9  R is called time (relative to t) of the event p �9 N 
and given two events p, q � 9  N, the number  I t ( q ) - t ( p ) l  is called temporal 
interval (relative to t) between p and q. 

Two events p, q � 9  are said to be simultaneous if and only if 
t(p) = t(q). For  each p �9 N, the set 

Sp = {q e N, t(q) = t(p)} (4) 

of all events simultaneous with the event p is called absolute simultaneity 
space at p. (Obviously,  Sq = Sp if t(p) = t(q).) 
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Observation 2.3. The question relative to the existence of physical 
devices that can realize the Newtonian time will be discussed in another 
publication. 

Proposition 2.4. For each p e N the set Sp is a fiat three-dimensional 
submanifold of  N. 

Proof This follows at once from the assumptions that O :~ 0, DO = 0, 
and R[ D ] =0. [] 

In this way, the spacetime manifold N is split into a continuous suc- 
cession of flat three-dimensional spaces, which serve as models for the 
"instantaneous" Newtonian space. 

The stratification of the manifold N produced in this way depends 
uniquely on the field O and not on the admissible time function used. To 
see this, it is enough to observe that any admissible time functions t, 
t': N--* • are related by 

t '=at  + b (5) 

with a, b~ R, a > 0 .  Then, if p, q ~ N  are such that t(q)= t(p), we have 
t ' ( q ) - t ' ( q ) = a( t ( q ) - t ( p ) )=O,  that is, events which are simultaneous 
relatively to t are also simultaneous relatively to any other admissible time 
function. 

Definition 2.5. Simultaneity of  events is an equivalence relation. 
Each absolute simultaneity space Sp, p ~ N, is an equivalence class of this 
equivalence relation. The collection of all these equivalence classes, denoted 
by 

N 
T =  - -  (6) 

O 

will be called Newtonian absolute time manifold. 

Definition 2.6. 
only if 

A vector up e TpN, p e N ,  is called spacelike if and 

Op(up)=0 (7) 

Otherwise, if Op(llp) ~ O, lip is called timelike. 
A timelike vector up ~ TpN, p e N ,  is called future-pointing if and only 

if Op(up)> 0 and it is called past-pointing if and only if Op(up)< O. 
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Observation 2.7. For each p ~ N, the set 

~p= {Up ~ TpN, ~~p(Up)=O} (8) 

of all spacelike vectors at p coincides with the set TpSp of all tangent 
vectors to the submanifold Sp. 

Definition 2.6 above is naturally extended to vector fields and curves 
on N. Namely, a vector field ue  Tql, q l ~ N ,  is called spacelike [timelike] 
if and only if u(p) is spacelike [timelike] for every p ~ U. A curve ~o: J ~  N, 
J ~  R, is called spacelike [timelike] if and only if, for each seJ ,  the vector 
~o.(s), tangent to r at ~p(s), is spacelike [timelike]. The definitions of 
future- and past-pointing timelike vectors and curves are obtained 
analogously. 

Definition 2.8. The vector field V in ~1 = < N, D, g2, V,/~) is called 
absolute reference frame of [~. We say that two events p, q ~ N occur at the 
same place in the space if and only if they belong to the same integral line 
of V. 

The property of two events occuring at the same place in the space 
is an equivalence relation. The quotient space of N by this equivalence 
relation will be called Newtonian absolute space and denoted by 

N 
S = --  (9) 

V 

Proposition 2.9. The absolute reference flame V satisfies 

DV=O (10) 

Proof Taking the covariant derivative of Eq. (3) in the direction of 
an arbitrary vector field v ~ sec(TN), we get (Dr, f2)(V) + s'-2(D,, V) = 0 or, 
taking into account Eq. (2) 

E2(D,, V) = 0 (11) 

On the other hand, we know that /7(u, V)=  0 for all u ~ see(TN), so that 
DL,(f~(u , V))=/~(u, DL, V ) = 0 ,  or 

D v V = k V  (12) 

for some function k: N ~  ~. But in view of Eq. (11), we have f2(DvV)= 
1 2 ( k V ) = k = 0  for all v~sec(TN), that is, DV=O. [] 
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Definition 2.10. The tensor f ie ld/~esec(ToN ) in N = (N,  D, 12, V,/~) 
is called metric tensor of the Newtonian spacetime. 

For each vector Up e TpN the scalar Ilu r II e R, Ilup II >10, given by 

II Up II 2 = fie( Up, Up) ( 13 ) 

is called norm of Up. Any vector Up e TpN such that Ilup II : 0 is called null 
vector. For each p e N, the set 

C,= {u.e TpN, Ilu,, II =0}  (14) 

of all null vectors at p e N is a 1-dimensional subspace of TpN. The vectors 
in Fp have the form k Vp, k e R. 

Observation 2.11. The field /~ is singular in the direction of V, so it 
does not represent a "genuine" four-dimensional metric on N. However, for 
every p e N, the restriction /~p [zp of/~p to the set of all spacelike vectors at 
p is a two-covariant, symmetric, nondegenerate, and positive-definite 
bilinear form, that is, it is an Euclidean metric. 

2.1.2. Subsidiary Elements. In order to continue our study of the 
Newtonian spacetime structure and to formulate the concept of reference 
frame field, we need some subsidiary elements which will be introduced 
below. 

Definition 2.12. We shall denote by lCI:p~--*l~Ip, fie: T_N--, T'N, 
p e N ,  the map that to each u p e T p N  associates a 1-form t f p u p e T * N ,  
defined in such a way that 

( B ; l ~ ) ( v . )  = 1;,(~ 9 ,  v~) (15) 

for every vp e TpN. 

Observation 2.13. /~ is a differentiable mapping. For  each p e N, ~rp 
is linear, but it is neither injective (ker/~p = Fp) nor surjective (there does 
not exist, e.g., any vector Xp e TpN for which f lpXp = ~p). Note also that 

D,( t2Iv) = I~-I( D,v)  (16) 

for every u, v e sec(TN). 
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Definit ion 2.14. We shall denote by hesec (T~  the two-contra- 
variant, symmetric, and differentiable tensor field on N such that, for every 
peN, 

1. "f~p( lelpup, ltlpvp) = hp(up, Vp), Vup, vp ~ TpN, 
2. hp(o~p, flp)=O, Vo~pe T~ N <:~ flp=k~p, keg'S. 

Observation 2.15. It can be proved that there exists a unique tensor 
field in the conditions of Definition 2.14 such that 

D h = 0  (17) 

Definition 2.16. We shall denote by fl:p~-~flp, flip: 7*N-~ TeN, 
peN, the mapping that to each 1-form ape T*N associates a vector 
flip % ~ Tp N defined in such a way that 

(18) 

for all tip e T* N. 

Observation 2.17. The mapping f l  is differentiable and (like 9 )  for 
each p e N the linear mapping flp is neither injective (ker flp = {% e T* N, 
%=kg2p, k e R}) nor surjective (there does not exist, e.g., any 1-form 
% e T* N for which f lp% = Vp). Furthermore, we have 

D,,(flct ) =fl(D,cQ (19) 

for all ~ e sec(T 'N) ,  u e sec(TN). 
Moreover, note that if we take flp~g2p in Definition 2.16, then we get 

~p(flp%) = hp(%, ~ p ) =  0. Therefore, Hp% is always a spacelike vector. 

Definition 2.18. We shall denote by H*:  T * N ~ T * N  and by 
Hp.: TpN-~ TpN, peN, the mappings defined respectively by 

* - ~ r r o H  e (20) H p l  

and 

H. .  = flp O~p (21) 

Observation 2.19. The mappings H*:p~-~H* and H.:p~--~Hp., 
p E N, are differentiable. For each p e N, H*  and Hr.  are linear and satisfy: 

1. kerH*={%eT*N,%=kOp,  keR},  
ker Yp.= {upe TrN, up=kVp, keR},  
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2. D,,(H*OOlp= H*(D.cclp), 
D,,( H .  V)[p = He.( D,,vlp), 

3. oc(H,u)=(H*oO(u), 
4. H * o H * = H * ,  

H ,  o H ,  = H , ,  

5. (H*cc)(v) = 0, 
f2(H,  u) = 0, 

where u, v e sec(TN) and a e sec(T*N) are arbitrary fields. 

2.2. Newtonian Dynamics 

The Newtonian dynamics is primarily concerned with the study of the 
motion of the material particles. (Extended bodies are seen as collections of 
particles and have their motion established once we know the motion of 
their particles.) 

Particles are sources of force fields, influencing and being influenced 
by the motion of other particles: given some distribution of particles in 
motion through the space, the configuration of the system at each instant 
produces a resulting force field which changes the motion of each particle 
and in turn the configuration of the system and the force field it generates. 

In the intermix of this process lies the notion of mass, which, accor- 
dingly, comprises a double meaning: it is a measurement of the intensity of 
the field generated by the particle and of the resistance it opposes to the 
changes of its state of motion. 

2.2.1. Newtonian Particles 

Definition 2.20. We call Newtonian particle (or simply particle) a pair 
(m,  cp), where m e  g~+ is a real and positive constant, called its (inertial) 
mass and where ~0: J ~  N, J ~  R, is a future-pointing timelike curve on N 
such that 

•p((tO:Cp) = 1 (22) 

for every p e q~(J), where ~o,p e TpN, p e ~o(J) denotes the tangent vector of 
~o at p. The curve cp is called trajectory of (m,  cp). 

Observation 2.21. Recall that cp,p e TpN, p = cp(s), s e J, is given by 

ce,~ = ~-~ (s) 
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and then we have 

dt 
g2p(qg,p) = 1 ~ = ~  (q~(s))= 1 

that is, 

t(qo(s))= s + b 

where b e I~ is a constant. This means that the trajectory of every Newtonian 
particle is parameterized in such a way that is inclusion parameter measures 
the absolute time. 

Definition 2.22. The vector ~p,pE TpN, p ~ q~(J), is called absolutely 
velocity of the particle (m,  ~p) at p and the vector 

A~,(P) = D,p, ~o , Iv 

is called absohlte acceleration of (m,  q~) at p. 

Observation 2.23. Since s 1 for all p e cp(J) and Dr2 = 0, we 
have that I2p(A~,p) = s ~p, Ip) = D,p,(12(cP,))lp = 0 for all p ~ cp(J) 
and therefore the absolute acceleration of a particle is always a spacelike 
vector. 

We also define the absohae co-velocity and the absohlte co-acceleration 
of (m,  rp) by the 1-form given, respectively, by 

and 

rp* = --1-2 +/~p ~0,p (23) 

A*(p)= D~, ~P*lp (24) 

for each p e q~(R). 

Definition 2.24. We call momentum of a particle (m, ~o) the vector 
P,pp~ TpN, p ~  q~(~), given by 

P~,p = m~p,p (25) 

Observation 2.25. In addition, the co-momentum of (m,  r is defined 
by the 1-form P*pe T ' N ,  p ~ o ( R ) ,  given by 

Pvp - m~o r (26) 
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Definition 2.26. The kinetic energy of a particle (m, cp) is the scalar 
function T,pp: q~(J) ~ ~ given, at each p �9 ~p(J), by 

1 2 (27) T~op = 5_m~o , p  

where r =/lp(~p,p, 9,p).  

Observation 2.27. It is easily seen that 

T•p = 2n----~71 l~p(P.p, P.p)= l___~p(p.p,z,n P-p) 

for each p �9 ~o(J). 
Obviously, the momentum and the kinetic energy of a free particle are 

constant along its trajectory, i.e., 

D r .  p ,  = 0, D,e. T,, = 0 

2.2.2. Force Fields 

Definition 2.28. 
q / _  N, such that 

We call force field on M an 1-form field F* �9 T*~/, 

Hp F p  --  F p  (28) 

for every p e ~//. 

Observation 2.29. The condition above will be satisfied if and only if 
F* is purely spatial, that is, it does not have component in the direction 
ofs'2. This, of course, does not mean that the field F* is time-independent. 
Indeed we have 

Definition 2.30. A force field F* �9 sec(T*~/) is called time-independent 
(or stationary) if and only 

DvF* = 0  (29) 

at every point of 4/. 
For  the rest of this section, let F* �9 T 'q / ,  ql ~_ N, be a force field on 

I~/, not necessarily time-independent. 

Definition 2.31. The force field F* is said to be 

1. locally holonomic iff F* ^ dF*= O, 
2. locally conservative iff dF* = O, 
3. holonomic iff F* = -~d~b, ~, q~: ~ ~ 1~, 

4. conservative iff F* = -d~b, ~b: q/--* R. 
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Observation 2.32. We have introduced the concept of holonomic 
force field in analogy with the holonomic constraint forces of the analytical 
mechanics, which are essentially those force fields which satisfy Frobenius' 
integrability condition. Since we are not requiring F* to be stationary, 
these definitions of holonomic and conservative force fields appear 
naturally in their most general form. 

Definition 2.33. If the force field F* is holonomic or conservative, 
any function ~: ql ~ R as in Definition 2.31 is called a potential function 
for F. 

Definition 2.34. The work of the force field F over a particle 
(m,~o)(q~(J)c~qlvL~) between the points pl=q~(a)  and p2=~o(b) 
(a, b e R ,  a<b, ~o(s)e~, s e [a ,b ] )  is defined by 

W= f] F*,.,.)(~o,(s)) ds 

Observation 2.35. In particular, if F is conservative, F =  -&b, we 
have 

and we get 

(30) 

:,g F~I,~(~P,(s)) = -&b(~P,)l,pco 

ar 
- ds (cp(s)) 

~ d ~  
(~o(s)) ds = - r ~ = r - ~(p , )  Z~ (31) 

2.2.3. Newton's Laws of Motion. The Newtonian dynamics is a theory 
of the motion of material systems. Its basic laws are introduced through 

Axiom 2.36. 

1. Any material particle (re, y)  subject to the action of a force 
f e sec(TN) has its motion described by the equation 

mDr, 7, = f l  ~.- (32) 

2. The mutual forces between two particles ( too,) 'a)  and (rob,) 'b) 
satisfy 

f~b(t) = - f , , ( t )  (33) 

where fab is the force that (rn~, y~) exercises over (mh, 7h)- 
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Observation 2.37. When D~., y ,  = 0, i.e., f l~. = 0, the particle (m,  y)  
is said to be free and its motion is geodetic. The property of a curve y to 
be a geodetic is an intrinsic property of the curve and does not depend, of 
course, on the reference frame and the coordinates relative to which the 
curve is referred. 

The usual presentation of Newton's  laws includes still, as is well 
known, the so-called first law of motion. This law is a statement concerning 
the existence of inertial frames. Since in our presentation the existence of 
inertial frames is already guaranteed, the first law of motion is unnecessary. 

Since f e sec(TN), fl~. must be a linear combination of the vectors at 
our disposal (in Newtonian theory) with coefficients that are scalar func- 
tions. For  a given particle (m ,  y) ,  the vectors at our disposal are y ,  and V. 
The most general expression for f ly  such that/2(fl~,)  = 0 is 

f [  ~.= ~(y,  - VI ~.) + div q~ly (34) 

where cc (y , ,  y , )  ~ -*f [h(y , ,  ~ , ) ] ,  f :  h(r  y , )  --+ • and ~7, = y ,  - / 2 ( y , )  V 
and ~b: N--+ R is the potential function. 

Let ( x  ~ ) be the coordinate functions associated to (ag, ~p), q / c  N. The 
most general force acting on the particle (mo,  y , )  due to the particle 
(rob, Yb) which does not depend on y. . ,  Y/,., and V is 

00 
f~b = -ha(:~,)  ~ (lab) (35) 

where lab: (X i, _ i  i _ j  _ i  " "~Jb " ~b)~-+hqx~b, ~ o = x ' o y ,  and =xJoyb. 

3. REFERENCE AND MOVING FRAMES 

In what follows we present the general theory of reference frames on 
the Newtonian spacetime. This study can be extended, with few modifica- 
tions, to the reference frames of relativistic spacetimes. The original 
reference for the relativistic case is Ref. 10 (see also Ref. 11). Indeed, the 
unique relevant difference beetween the reference frames of these theories 
is that while in the Newtonian theory the fields /2 and /~ are absolutes 
(independent of the reference frame), in the special relativity they depend 
on the choice of a reference frame for the spacetime. This will be discussed 
in detail in another publication. 

Reference frames are important  in the mathematical  formulation of the 
spacetime theories because they are the objects which model the idea of an 
observer and that ultimately permit us to associated numerical quantities 
to the elements of the theory. 
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In essence, an observer (in the spacetime theories in general) is some 
apparatus which enables one to perform measurements of physical quan- 
tities. (Recall that in the purely mechanical systems all physical magnitudes 
are expressed in terms of measurements of length, time, and mass, so that 
observers should be equipped to perform [at  least] measurements of these 
quantities. ) 

Observers are concerned with local measurements (i.e., those taking 
place in the immediate vicinity of their instantaneous position) as well as 
with nonlocal measurements (related to regions of the spacetime far away 
from them). The need to perform nonlocal measurements is what motivates 
the introduction of  the notion of a reference frame: an infinite collection of 
observers sparsed by the whole of [a  region of] the spacetime. 

Observers are modeled as particles, that is, by unit "norm" timelike 
curves. Along their trajectories there are defined the fields ~2, V, and /~ 
which models their measurement instruments together with the notion of 
derivation introduced by the connection D. 

3.1. Reference Frames 

3.1.1. Acceleration, Rotation, Shear, and Expansion 

Definition 3.1. A reference frame on t~ is characterized by a future- 
pointing timelike vector field E ~ sec(7~'), ~ / ~  N, such that 

S'2p(Ep) = 1 (36) 

for all p ~ qb. Each integral line of the field E E sec(T~) is called an observer 
of E. For each p~4l ,  the vector Ep is called absolute velocity of E atp.  

Observation 3.2. The absolute reference frame V of N is a reference 
frame in the sense of definition 3.1. We call V the absohtte rest fi'ame of N, 
and each observer associated with V is called an observer in absohtte rest. 

For the rest of this section, let E~ scc(Tql), ql E 17, be a reference 
frame on t~. We can characterize E through the behavior of its absolute 
derivative DE. This is made as follows. 

Definition 3.3. We say that E is #,ertial if and only if 

DE=O (37) 

at all points of q/. 
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Observation 3.4. The existence of such a kind of vector fields is 
guaranteed by the assumption that the spacetime manifold is flat. In par- 
ticular, the absolute rest frame V is an inertial reference frame on the whole 
of the spacetime manifold N. 

Definition 3.5. We call abso&te acceleration of E at p e O?I the vector 
AE(P) e Tpql given, at each point of q/, by the vector field 

Ae=DeE (38) 

The reference frame E is said to be geodetic if and only if 

Ae=DEE=O (39) 

on all points of O?I. The observers associated with a geodetic reference frame 
are called free-falling observers. 

Observation 3.6. Since s for all peo?! and since Df2 lp=0 
for all peN,  we have s163 for all 
p e O?l. Therefore, the absolute acceleration of a reference frame is always a 
spacelike vector. 

In order to continue the characterization of the reference frame E, we 
shall need the following object: 

Definition 3.7. We denote by/~ee  sec(To20?/) the two-covariant tensor 
field on N defined in such a way that, for every p e O?/, 

/~E(u, v)=/~(PE(u), Pe(v)) (40) 

for every u, v e sec(T~ where 

Pe(u)  = u - t2(u)E (41) 

Observation 3.8. It is easily seen that we can write 

~ =  ][EII2 f2 |174174 + h (42) 

In particular, / lv=/ l  and /IE(u, v)=/~(u, v) for all spacelike vector fields 
u, v e sec(TO?l). 

We can still prove the following properties of the field l~E: 

Proposition 3.9. The tensor field/~E satisfy, for each p ~ O?l, 

1. hEp(Up, Vp)=hEr(vp, Up), Vup, Vpe Tpo?I, 
2. t~E,(Up, Vp)=O, VupeTpo?l iff vp=kEp, keR ,  

^ 

3. hE.(Up, Vp)~O, \/upeTpo?[. 
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Proof Properties (i) and (iii) are proved trivially. We shall prove 
property (ii). 

We have that /~e,(Up, r e ) = 0  for all upS Tp~ iff f~p(Up-g2(Up) Ep, 
PEv[p)=O for all upeTpeg, which will be verified iff Pevlp=kVp, k~R.  
However, since^Op(Pev[ e) = 0, we must necessarily set k = 0 ,  and then we 
conclude that hE,(Up, Vp)=0 for all Upe Tpql iff PEVlp=Vl,--g-2(vp)Ep=0, 
which will occur iff Vp = kEp, k ~ R. [] 

The tensor field /~e can be used to characterize the inertiality and 
geodeticity of the reference frame E. In fact, 

Proposition 3.10. The reference frame E is inertial if and only if 

D/~e= 0 

and it is geodetic if and only if 

(43) 

DEh e = 0 (44) 

Proof The absolute derivative of/~E in the direction of an arbitrary 
vector field u e sec(T~/) is written 

D,,hE=D.([~(E, E))D|174 ( D ~ E )  | f2 

= 2t~(D,E, E) t-2| (~D, ,E)  | I2 

Then DuI~E=O iff D , E = 0 .  Hence D/zE=0 iff DE=O and De/~E=0 iff 
DEE=O. 

We can now continue te characterization of the reference frame E. 

Definition 3.11. We call velocity gradient of E the tensor field 
V E t  see(ToY/) defined by 

VE(u, v) = [~e(D~E, v) (45) 

for every u, vesec(T~ The vector field V.Essec(T~I), uesec(T~/) ,  
defined by 

(V,,E)(v) = VE(u, v) (46) 

for every v ~ Tall, is called velocity gradient of E in the direction of the 
vector field u. 

The velocity gradient VE gives an alternative way to characterize the 
inertiality and geodeticity of E, namely, 
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Proposi t ion 3.12. The reference frame E is inertial if and only if 

and it is geodetic if and only if 

887 

VE = 0 (47) 

VeE=O (48) 

Proof For  future reference, we shall prove this proposition expressing 
the velocity gradient of E in the direction of an arbitrary vector field 
u ~ sec(Tq/) in terms of the absolute derivative of/~E in the direction of u. 
We have 

D,h~=2h(D,,E,E)E2|174174 (49) 

and we note now that 

(12ID .E)( v ) = [~( D ,,E, v) 

= [~( D,,E, P ev + f2( v) E) 

=h(D,,E, Per) + s"2(v) [7(D.E, E) 

= I~e(O,,E, v) + [~(D.E, E) I2(v) 

that is, 

and therefore, 

I::ID,,E= V.E + h(D,,E, E)I2 

D,,[ze= - f 2 |  V, ,E- V .E |  (50) 

Then it is easy to conclude that D,,/~E=0 if and only if V,,E=0. Conse- 
quently, recalling Proposition 3.10, the reference frame E will be inertial if 
and only if VE= 0 and it will be geodetic if and only if V~E= O. [] 

Definition 3.13. We call rotation tensor of E the tensor field 
r sec(Toq/) defined by 

ogE(u, v) = l(VE(Pe(u), PE(v)) - VE(PE(v), Pe(u))) (51) 

for every u, vssec(Ta?l), where Pe(u) is given by Eq. (41). 
We call deformation tensor of E the tensor field a e e  sec(Toql) defined 

by 

ae(u, v) = �89 Pe(v)) + VE(Pe(v), PE(u))) (52) 

for every u, v ~ sec(Tq/). 
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Definition 3.14. The reference E will be said to be irrotational if and 
only if 

w E = 0  (53) 

and it will be said to be Euclidean-rigid if and only if 

a e = 0  (54) 

Proposition 3.15. The velocity gradient of E can be written 

V E = f 2 |  V~E + we +aE (55) 

Proof. Since any vector field u~sec(T~/)  can be written as 
u = Pe(u)+f2(u)E,  we have that 

VE(u, v) = VE(Pe(u) + O(u)E, v) 

= f2(u) VE(E, v) + VE(Pe(u), v) 

However, VE(PE(u), v ) =  VE(Pe(u), Pc(v)) for all v~sec(Tql) and there- 
fore 

VE(u, v) = s VeE(v) + VE(Pe(u), Pe(v)) 

Thus, from VE(Pe(u), Pe(v ) )=we(u ,  v ) +  aE(u, v), we conclude that 

rE(u ,  v) = f2(u) VeE(v) + coe(u, v), aE(u, v) 

for all u, v esec(T~/).  [] 

Corollary 3.16. The reference frame E is inertial if and only if it is 
geodetic, irrotational, and Euclidean-rigid. 

Proof. E is inertial if and only if VE = 0, which will be verified if and 
only if VEE=0,  t o E = 0  and ae=O, i.e., if and only if E is (respectively) 
geodetic, irrotational, and Euclidean-rigid. [] 

Proposition 3.17. The deformation tensor of E satisfies 

a s  = �89 L'aE/~e (56) 

where 2'e denotes the Lie derivative in the direction of the vector field E. 
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Proof Since the connection D is torsion-free, T[D] =0 ,  we have 
D , , v -  D, ,u=[u,  v] = ~,,v, for all u, v~sec(TN).  Then, 

(s v)= s v))-/~e(Y'Eu, v ) -  fie(u, LeEr) 

= DE(I~e(U , v)) -- [1E(Deu, V) -- hE(u, DEV) 

+ I~E(D,,E, v) + he(u, D,,E) 

= (OefiE)(u , v)+ f~E(D,,E, v)+ f~e(D~E, u) 

for every u, v ~ sec(Tq/). On the other hand, 

a E(u, v) = I ([zE(D,,E- f2(u) DeE, v) + hE(D~,E- g2(v) DEE, u) 

= �89 v) + fie(D,.E, u)) -- �89 VeE(v) + g2(v) VEE(u)) 

= �89 [ (DEI'~E)(U, V) + hE(D,,E, v) + fiE(D,,E, u)] 

for every u, v~sec(Tql), where we have used Eq. (50). [] 

Definition 3.18. We call (four-dimensional) divergence of a vector 
field X e  sec(TJ//) the scalar field Div X: ql --* R defined by 

where Tr(DX) is the trace 
DX e sec( T ITS/). 

Div X =  Tr(DX) (57) 

function of the absolute derivative 

Definition 3.19. We call expansion tensor of the reference frame E the 
tensor field 0e~sec(T2oq/) defined by 

0 e =  ~(Div E) l~e (58) 
/,, 

and we call shear tensor of E the tensor field aE~  see(To~ defined by 

A 

a e = a e -  0E (59) 

Definition 3.20. The reference frame E will be said to be nonexpanding 
(or expansion-free) if and only if 

0e = 0 (60) 

and it will be said to be shear-free if and only if 

A 
crE=O (61) 

825/25/6-8 
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Observation 3.21. Of  course, E is Euclidean-rigid if and only if it is 
expansion- and shear-free. Moreover, the velocity gradient of E can be 
written 

A 

V E = f 2 |  VeE + toE+ a e + Oe (62) 

so that E is inertial if and only if it is geodetic, irrotational, nonexpanding, 
and shear-free. 

3.2. Moving Frames 

Definition 3.22. A (proper) moving frame on ~,  defined in q / c N ,  is 
a quadruple (et , )  = (eo,  el, e2, e3), e/, ~ sec(Tq/), p = 0, 1, 2, 3, of linearly 
independent differentiable vector fields on ql c N such that, at each p e q/, 

1. ~'2p(eop)---- 1, 

2. .Qp(ekp) = 0, k = 1, 2, 3. 

Observation 3.23. The restriction that a moving frame should be 
constituted by one timelike and three spacelike vector fields is purely con- 
ventional. The Newtonian theory does not impose, by itself, any restriction 
on the kind of vectors one uses to construct a basis of the tangent space 
of the manifold at each point, except that such a basis should contain at 
least one timelike vector. 

Definition 3.24. A moving frame (e~,) on q / c  N will be called 
h'orthonormal if and only if, at each p e q/, 

]lp(ekp, etp) = ~kl (63) 

with k, l =  l, 2, 3. 

Definition 3.25. A moving frame (ej ,)  on qg c N will be called coor- 
dinate if and only if, at each p e q/, 

Z-nee v ]p = 0 

Observation 3.26. The condition Saee~ = 0 in an open set q / c  N is 
necessary and sufficient for the existence of coordinate functions x~': q/--, R 
for which 

e~ = axe, (64) 

at every point ofq/. 
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Definition 3.27. We say that a set of coordinate functions under the 
conditions of  Observation 3.26 (if it exists) forms a chart naturally adapted 
to the moving frame (et ,) .  

Definition 3.28. We call dual moving f r a m e  of a moving frame ( e u )  
on q / ~ N  the quadruple (0P)  = ( 0  ~ 0 ~, 02, 03), 0P~sec(T*q/),  of dif- 
ferentiable fields of 1-forms on q/ such that, for all p ~ q/, 

O~(e,,p) = 6~ (65) 

Observation 3.29. If (e~,) is an orthonormal moving frame, then its 
dual moving frame ( 0  p) satisfies 

hp(O~, O ~ ) = a  p~ (66) 

for every p~q / .  In addition, if (e~,) is coordinate and if ( x  ~') is a chart 
naturally adapted to it, then we have that 

0 p = d x  p (67) 

at every point of q/. 

Definition 3.30. Let T ~ s e c ( T : ' / r )  be an arbitrary field on "//'~_N. 
We call components of T with respect to a moving frame ( e j , )  on q~' c N, 
q/c~ ~ r ~Z~, the functions T p~ "P'"  o?! r~ ~//- ~ • (Pi,/zi = 0, 1, 2, 3, i = 1 ..... s, 

~ I " " " l  l r  ' 

j = 1 ..... r) given at each p ~ q / n  ~ by 

T pl " P ' ( B ]  = T(e t ....... et, , e~,,, 0 p' ..... 0P')lp 
t t  I . . . I t r ~  K r �9 

(68) 

Notation 3.31. The components with respect to a moving frame 
(e~,) on q / c  N of the objects which define the geometrical structure of the 
Newtonian spacetime will be denoted as follows: 

1. F~v=OP(De,  e,,), 

2. 12 u = et,(s 

3. V p=0p(IF), 

4. h,,v =/~(el,, ev), h p~ = h(O p, 0~), h~, = OP(H. e~,) = (H*OP)(el,), where 
F~P,v, 12,, V p, h~,v, h p~ and h~ are functions from q / in to  R. 



892 Rodrigues, de Souza, and Bozhkov 

Observation 3.32. For  any proper moving frame (e~,) on I~1 we have 

1. t2o(p) = 1 and 12k(p) = 0 implies Op = 0 ~ Vp e ~/, 

2. l, Vp oil, 

3. hoo=hkiVkV I, hko=hok=--hk iV  I, h~176176176 h~176  
- w 

In particular, if ( e , )  is orthonormal,  then we have also that hk~ = Jkt, 
i i h~ hq=J  ~, and h k = J  k. 

Proposition 3.33. A moving frame (e~,) on ~/, defined in oil c N, is 
coordinate if and only if 

P - -  P F j,~- F~, (69) 

at every point ofoi/. 

Proof. Since the torsion tensor T[D] = 0, we have 

C lPt V - -  P _ _  P - F ~  F~, 

at every point of q/. Then, (e~,) will be coordinate iff c~, v = 0 in oil, that is, 
iff 

P - -  P F ~,,. - F ~, 

at every point of q/. [] 

Definition 3.34. Let E e sec(T~_/), oil ~_ N, be a reference frame field. 
A moving frame (ej , )  on N, defined in ~' c OIZ, will be said to be naturally 
adapted to E in oil if and only if 

eop = Ep 

for all p ~ ~ 

Observation 3.35. It is always possible, at least locally, to find a 
moving frame naturally adapted to a given reference frame. Moreover, such 
a moving frame can always be chosen to be coordinate. Any chart naturally 
adapted to a coordinate moving frame which is naturally adapted to a 
reference frame E is called naturally adapted co-ordinate system to E 
( (nacs  I E) ) .  
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Proposition 3.36. A moving frame ( e , )  naturally adapted to an iner- 
tial reference frame I e  sec(TY/), o?l _~ N, q / =  ql is coordinate if and only if 

p _ _  Ft ,~ -  0 (70) 

p _ OP(D~e,,). in all points of q/, where F u , -  

Proof If P -  1~,~-0  in q/, then obviously (et , )  is coordinate, since in 
P - " - P = 0 i n ~ .  this case c . , , - F . ~  F~, 

P - F  p in ~ and there- Conversely, if (e~,) is coordinate, we have F~,~- ~, 
fore, taking into account that eo = I ~ D ~ e o  = Dr 0 in ~ ,  we have 

p B F , o  - F~, = 0 

in '~'. This concludes our proof, since the components F ~  F~t will be 
always null in ~/, the first because 12(et)=0 and the other because the 
spacelike submanifolds of N are fiat. 

3.2.1. The Physical Meaning of the Components of D in a Reference 
Frame. Throughout  this section, let E be a reference frame on ~,  defined 
in ~ / ~ N  

Proposition 3.37. The components of the acceleration, rotation, and 
deformation of  E with respect to a moving frame (e~)  on ~//c ~ such that 
g2(e0) = 1 and I2(ek) = 0 at each point of ~//, are given respectively, by 

1. A k = E p D p E  k, 
I r r~ ~ t n  m 2. cok/= ~(n, , /~k~ -h , , , kDtE ), 

3. akl = ~_(h,,,iDkE +h, , ,kDtE') ,  

where A k =  ok(Ae), COkl= coe(ek, et), akl=ae(ek ,  el) and 

DpE ~ = ep(E a) + F p~E;" (71) 

P r o o f  

(i) The covariant derivative of E with respect to itself is given, in the 
moving frame ( e . ) ,  by 

DEE = EPDep(E'~ e,~) 

= EP( (DeE  ") e~ + E'~Deeo) 

= EP(ep(E o) + o FpaE ) eo 
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Hence, taking into account that 12(E)= E ~  1, we have 

A k = E P ( e p ( E k ) +  F p.~Ek ~) 

(ii) The components of the rotation and deformation tensors are 
obtained in an analogous way. We shall derive the components of the 
rotation tensor. We have 

oge(u, v ) =  �89 v ) - I~ (D, ,E ,  u)) 

for every spacelike vector field u, v ~ sec(Tq/). Hence, 

~kZ = a~e(ek, e t )=  �89 e l ) -  I~(De, E, ek)) 

= �89  e,,,, el) - h ( ( D i E " )  e,,,, ek)) 

that is, 1 . . . . . .  O)kl= ~_(h,,,tDkE - h . , k D t E  ). [] 

Observation 3.38. It follows from the expressions for the components 
of the acceleration, rotation, and deformation derived above that 

A I = h,aA"'  = hktDo Ek + coktE k + aklE k (72) 

Corollary 3.39. The components of the acceleration, rotation, and 
deformation of E with respect to a moving frame (e~r) naturally adapted 
to E itself are given by 

1. A ~ = F ~  
I t / ,  _ N'~I_ m 2. co~f= 2~",~/--ko--h,,l~F~) 

3. _ 1 th th a ~f-- ~( h,,dF ~6 + h,r,~F ~) 

Corollary 3.40. Let ( x  t' ') be a (nacs [ I ) ,  where I is some inertial 
reference frame on 41. Suppose that F~: . . . .  0 in (x~"). The components of 
the acceleration, rotation, and deformation of E with respect to ( x  t'') are 

1. A k '= (OEk'/Ox ~ + Ef(OEk' /Ox ; )  

2. ~Ok, r = �89 k') -- h,,,,k,(OE'"'/Oxr)) 

3. ak, r = �89 k') + h,,,,k,(OE""/Oxr)) 

Proposition 3.41. Let E~ sec(Tq/) be an irrotational and Euclidean- 
rigid reference frame on 1~, and let (eu)  be a moving frame naturally 
adapted to an arbitrary reference frame E ' ~  sec(T~). Then we have 

A l = h , , t A , , = h , a E , ( E , , ) +  A~ +co,klEk +a,k~Ek t,,,,,acko,. ,;.k (73) 

t r r t l  r t where At = h,,aA , Wkl= coe'(ek, et), akl and c" koe,, = [ek, e0]. 
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P r o o f  Since by hypothesis E is irrotational and Euclidean-rigid, the 
components  of the absolute acceleration of E in the moving frame < e~, > are 

A m = E ' ( E " )  + Fo,~ ,l 

and therefore 

_ m _ _  ! m rn  i r ' ~ m  ~ k  A t -  h,,uA - h , , iE  (E  ) + h,,tFoo + n , , t iokz~ 

n l  111 _ _  ( j ~ l  l Now, from corollary 3.40 we get Foo = A ' '  and also h , , i F k O -  kl'~-ffkl. 
Then recalling that F o ~ = F " / o - c " / o ,  we conclude that A t = h i n g E ' ( E ' ) +  

, , k - -  , ,'~k ~ ,, E k At  + (oktE [] " t -  ~ k l J ~  - -  r l m l C  k O  , 

Observation 3.42. Proposition 3.41 is generalized trivially to the case 
in which the reference frame E is also arbitrary. For  this, we must only take 
into account Eq. (72) and write 

A t = h , , , t E ' ( E " ) + O g k t E k + ~ r k t E k + A ~ + w ' ~ t E k + c r  ' E k h .... ~ k  (74) 
k l  - -  m l L ' k O  1"~ 

The term h . a E ' ( E " )  in Eq. (74) can also be written as 

hk tE ' (E  k) = E ' (h k tE  k) - EkE'(hkt)  

= E ' (Et )  -- EkE' (hkl )  

and we have 

E'(hkt  ) = D~o(h(ek, et) ) 

= h(D~oek, et) + h(ek,  Deoet) 

= h . , f ~ ' k  + h, , ,kFgt 

= h,,uF~' o . . . . . . . . .  + h,,,k Fol -- h,,,icko -- h,,,k Cto 
I t~t t t l  

= 2 C r k t  - -  h , , , t c k o  - -  h , , , k  C t o  

So, we can write also 

A t = E , ( E t ) + W k l E k + a k t E k + A ~ + w , k . z E  k ~, E k •  m - J,t 7 -  c t o E , , ,  (75) 

where Et = h,,tE"'  and the other terms are as before. 

3.2.2. The Jacobian from (e~> to <e,,> 

Definition 3.43. Let (eu> and <e~,) be two arbitrary moving frames 
on I~, defined respectively in 6/l c N and * l ' c  N,  with ~ c~ q / ' #  ~ .  For  
each p ~ q/c~ #/', the matrix a~/,,(p) such that 

e,u, p = a~/,,(p) e,,p (76) 

is called Jacobian of the transformation from < e~, > to < e~,, >. 
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Observation 3.44. In order for <e~,> and <e , , )  to effectively repre- 
sent moving frames on N, it is required that d e t ( # / , , ( p ) ) ~ 0  for all p~a/l ,  
e.g., at every p e a/l, the matrix (a~/,,(p)) must be invertible. 

Since e~, and ej,, are all differentiable fields, the matrix (a~/,,(p)) (and 
consequently det(a~/,,(p)) must also be a differentiable function ofp. Then, 
since det(a~/,,(p))#O for all p E ~ l ,  we conclude that this function never 
changes its sign (e.g., either det(a~/,,(p))> 0 for all p ~ q! or det(a~/,,(p))< 0 
for all p E ~/). 

If  <0 ~) and <0 ~') are the dual moving frames of <e~,) and <e~,,), 
respectively, then we have that 

0~'= a~'(p) 07, (77) 

it where a~'(p) denotes the inverse of the Jacobian a~,,(p), e.g., 

a~o'(p) = (a-1)~, ' (p). 

Definition 3.45. Let T~,~ ...... a//c~ ~'" --* R be the components  of an 
� 9  i t s  �9 

arbitrary tensor field T~ sec( T~ ~,~), ~//'___ N, with respect to (e~,). The com- 
ponents of T with respect to <e , , )  will be given (in ~ n a/[' c~ ~ )  by 

, ~ ;  o', = a"i .. .  a '7 ;n  l'~ a m T ~ '"~, 
T ~ ,  i . . .~, ;  o-~ o , - m  ' " '  l,.,' ~,, . . . l , . ,  (78) 

Proposition 3.46. Let < e~,) and < et,,) be moving frames naturally 
adapted to two reference frames E and E, respectively. Then the Jacobian 
of the transformation from <e~,) and < ej,,) satisfies 

ao~ 1 

a ~  

4 ,  = ~.k 

det(a~_,) = 1 

where s = 0k(E'). 

Proo f  This follows from the fact that e o = E ,  eo ,=E ,  g2(E)= 
g2(E') = 1, s 0, and s = 0. 

Observation 3.47. In particular, if E =/~, i.e., if < e~,) and < ej,. > are 
both naturally adapted to the same reference frame, then the above condi- 
tions remain valid, but with a t, - - E ' k =  0. 
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3.3. Newtonian Space and Newtonian Time. Relative Rest Spaces 

Throughout  this section, let E E sec(TN) be a reference frame defined 
globally on N which in addition will be supposed to be the generator of a 
one-parameter group of diffeomorphisms of I~l, which will be denoted by 
G e =  {r 0rE ~}. 

Our aim here is to recover the Newtonian theory as a theory of space 
and time, starting from the Newtonian theory of spacetime. As will be seen, 
the theory of the reference frames plays a central role in this subject. The 
motivation of the objects we have introduced axiomatically in the previous 
section will be clarified, in particular, in order to characterize a given 
reference frame. Our starting point is the following: 

Definition 3.48. We say that two events p, q e N are co-local in E if 
and only if they belong to the same integral line of E. 

Observation 3.49. Co-locality of  events (with respect to a global 
reference frame on ~)  is an equivalence relation. The quotient space of 
by this equivalence relation will be denoted 

N 
S E = - ~  (79) 

and called relative rest space of the reference frame E. In particular, the 
relative rest space of the absolute rest frame V is just the Newtonian 
absolute space we have introduced in observation 2.1.11. 

Proposition 3.50. The relative rest space Se of the reference frame E 
is an affine three-dimensional space. 

Proof Since E is a global vector field and s'2r(E p) = 1 for all p ~ N, 
any integral line of E intersects each absolute simultaneity space in one and 
only one point. Therefore, each absolute simultaneity space is a repre- 
sentative of  the quotient space SE. Then, since each absolute simultaneity 
space is a fiat three-dimensional space, it follows that SE is also a flat three- 
dimensional space. [] 

Observation 3.51. The statement of the proposition above is very 
strong, since we are not introducing any restriction on E other than that 
it be global and that it is the generator of  a one-parameter group of diffeo- 
morphisms of N. 
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A remarkable consequence of the proof given above is that 

Corollary 3.52. The relative rest spaces SE and SE, of any two global 
reference frames E and E' are isomorphic. 

Proof This follows from fact that any absolute simultaneity space is, 
at the same time, a representative for the quotient sets SE and S~,. [] 

Observation 3.53. More strictly, Corollary 3.52 states that the spaces 
SE and SE, are affinely isomorphic, i.e., they are isomorphic from the point 
of view of their affine structures. Any other geometric structures eventually 
existing on those spaces are not necessarily preserved by such isomorphism. 

Definition 3.54. We shall denote by ee: N--* SE the canonical map 
from N into the quotient space SE=N/E and by eel: S v ~  SE, p � 9  the 
restriction of Ce to the absolute simultaneity space through p �9 N, i.e., 

r = r (80) 

Observat ion  3.55. Any map Cp: SE~  SE, such that 

(81) 

is an affine isomorphism between SE and SE,. 
For every tr~�9 (ct�9 R) we have 

eE..,., = eE. ~ a_~ (82) 

Definition 3.56. We shall denote by he(r) �9 sec(T2oN), z = t(p), p �9 N, 
the tensor field on SE defined by 

he(r) - i  , = ( r  ) fie[~ (83) 
^ 

where /~Elsp denotes the restriction of he�9 to the absolute 
simultaneity space Sp and (r denotes the pull-back of the map 
r SEnSe. 

Observation 3.57. If p, p ' � 9  are two simultaneous events, then 
eer=r and ~ls=/;els,., which implies that (r /~elSp= 
( r  helse.. For this, the number r = t(p) is sufficient to label the various 
lifts of hE to Se. 

Note also that the field hz(r  ) depends differentiably on the 
parameter r. 
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Proposition 3.58. For each r e  R the tensor field h e ( r ) e  sec(T~N) is 
an Euclidean metric on Se. 

Proof We have to prove that, for every x e Se, 
r _ r 1. h~lx(ux, v.,.)-hel.,.(vx, u,.), Vu,., vxeT ,  Se, 

2. h~rl.Ju,-,vx)=0, VuxeT,~Seiffv,.=O, 
3. h ~r I .,-( u.,., ux) = 0, Vu x e T x Se and h ~r (u.,-, ux) = 0 iff ux = 0, 

where we have written h i =  he(z). 
Let p e N  be the (unique) point of N such that r  and 

t(p) = r. Then, 

h ~. I.,.(/~.,., v,_)= [ ( r  V,.) 
^ --1 - - I  = 1%(r Ce~.v.,) 

for every /x~, v_~eT,.Se, where r denotes the derivative map of 
Cg'.: s~ ~ G '  

From the above expression the validity of the statement (i) and of the 
first part of statement (iii) is obvious. Taking into account that r is an 
isomorphism between T,.Se and TeS p, it is easily seen that the statement 
(ii) and the second part of statement (iii) are also valid. [] 

Observation 3.59. Then, at each instant of time (i.e., instantaneously) 
the relative rest space of a global reference frame on t~ is an Euclidean 
space. But since the metric tensor may be time-dependent, we cannot say, 
in the more general case, that space constitute a "genuine" Euclidean space. 
There is however, a particular case in which the relative rest space of a 
global reference frame is genuinely Euclidean. In fact, 

Proposition 3.60. The relative rest space Se of a global Euclidean- 
rigid reference frame E is an (affine three-dimensional) Euclidean space. 

Proof We have only to prove that he(r)  on Se for a global 
Euclidean-rigid reference frame E is independent of r, that is, h e ( r ) =  
h~(r ')  for all r, r ' e  R 

Recall that E will be globally Euclidean-rigid if and only if 

~'e/~ e = 0 (84) 

on N, a condition which will be verified if and only if 

for all 0r e R, where a~ e aE. 
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Then, writing r = t(p), r' = t(a~(p)) with p ~ N and a s  R arbitraries, 
we conclude that, in a globally Euclidean-rigid frame E, 

h e ( r ' )  = (~ ~o'o,, )*/~e I s~ 

- '  )* a *  ~/;el = (ok eo~,, _ s, 

=(o ~,,~o' )* ~els, 
( - , ) ,  -- ~e ,  a e l s , - - h E ( r )  

for all r, r '  e N (since p s N  and 0re ~ were arbitraries). So, if E is a global 
Euclidean-rigid reference frame, the label z in he(z) is immaterial and can 
be omitted, e.g., we write he(r)=he.  [] 

Proposotion 3.61. The relative rest spaces Se and Se, of any two 
global reference frames E and E '  on N are isometric at each instant of time. 

Proof Consider the map ~b~ = SE--+ SE,, r e JR, given by 

o - -1  

where p e N is any point such that t(p) = r. As we have already mentioned, 
this map is an affine isomorphism between Se and SE,. We shall prove 
that, in addition, it pulls back he ( r )  onto he(r)  for each r E N. In fact, 

~b*hE,(r ) = (~be; o ~b~; t )* he,(r ) 

--1 * = ( ~ e , )  ~ * ; h e , ( r )  
, 1 , --(~be, l) * (~eb(4~e;) (he, Is,) 

= ( ~ e ,  ) he, Is, 

Moreover, since/~e.(u., v.)=/~(u., v.)= he,(u., v r) for every spacelike vec- 
. . . . . .  ' - ( - 1 ) ,  tor u:,  vl, e TrN and for every p e N ,  we have that (q~{')* he, I s =  qbe. 

he Is, and therefore 

q~* he , ( r )  - 1 ,  h e ( r )  = (4)~.) hels, = 

for each r E R. [] 

3.4. Galileo's Principle of Relativity 

Galileo's principle of relativity is the statement that the laws governing 
the evolution of the mechanical systems do not permit us to distinguish, by 
means of mechanical experiments, between one or another of  two inertial 
reference frames. 



Mathematical Structure of Newtonian Spacetime 901 

The validity of this statement follows as a consequence of the structure 
of  the Newtonian theory if we make the additional hypothesis that there 
are no (mechanical) velocity-dependent forces. In Ref. 1 (Corollary V, 
"Axioms or Laws of Motion"), Newton gives a proof of Galileo's principle. 
However, the proof is true only if there are no velocity-dependent forces in 
Nature, as is clear from the discussion of Sec. 5 [see Eq. (141)]. 

Let us suppose for a moment that this is really the case. Then it is 
clear that the absolute reference frame V becomes immaterial in the theory, 
since there is no means to identify it. So, by a question of coherence, we 
should drop out any reference to V from the theory. This can be done 
introducing a new model for the Newtonian spacetime, which we call 
Galileo's spacetime. 

Definition 3.62. We call Galileo spacetime the quadruple c5= 
(N ,  D, s h) ,  where 

R[D] = 0  

T[D] = 0  

D~2 = 0 

D h = 0  

fi(~, .)=0 

and the symbols have the same meaning as in Sec. 2. 
Observe that the elimination of the field V from the structure of the 

Newtonian spacetime requires the field ]~ to be eliminated too, because its 
definition depends on the field V. 

In order to maintain the metric notions of the theory, we are thus led 
to formulate their axioms in terms of the "dual" metric h, which is a 
(degenerate) metric over the cotangent bundle. In consequence, there does 
not exist anymore an absolute notion of "length" (norm) of vectors. The 
norm of a vector will now depend explicitly on the choice of a reference 
frame in the spacetime, according to the result of the following proposition. 

Propos i t ion  3.63. For each reference frame E over N, there exists a 
unique tensor field /~E~ see(ToN) such that: 

1. I~e(fla, flfl)=h(~,fl), 
2. 17~(Up, Vp) = 0  for all vt,~ TpN iff up=kEl,, k~ •. 

If E is an inertial reference frame, then the field /~E satisfies 

D/~E = 0 (85) 
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and if E is a geodetic reference frame, then 

De/]E = 0 (86) 

By the way, it is important to observe that the absence of an absolute 
covariant metric tensor is not incoherent with the ideas of the Newtonian 
theory, because the norm of spacelike vectors is always the same for each 
one of the infinitely many tensor fields introduced by the proposition 
above. In fact, given u, vs  TpN, there exists cx, f ie  T * N  such that u = ~ e  
and v = Hfl. Then, for any reference frames E and E on N, we get from (i) 
that/~e(u, v) =/~e(u, v) = h(0~,/8). 

4. L O R E N T Z I A N  S T R U C T U R E  IN T HE  N E W T O N I A N  S P A C E T I M E  

4.1. Lorentzian Geometry in the Newtonian Spacetime 

4.1.1. Lorentzian Metric 

Definition 4.1. We call Lorentzian metric on Newtonian spacetime 
the tensor field ~ ToN given by (5) 

r  (87) 

Observation 4.2. ~ is a symmetric and nondegenerate two-covariant 
tensor field of signature - 2 ,  that is, it is in fact a Lorentzian metric in the 
original sense of this conceptJ 9) It is also easy to see that D~ = 0 and since 
T [ D ]  = 0, we conclude that D actually is the Levi-Civita connection ofo~. 

The fact that we have identified a Lorentzian metric in ~ is not sur- 
prising. Indeed the condition for a manifold N with properties given by 
Axiom 1, Sec. 1 to admit a Lorentz metric is the existence of a field of 
directions, which in N is V. 

Definition 4.3. We denote by ~: p ~-~ ~ p, ~ p " TpN-~ T ' N ,  p ~ N, the 
mapping that to each up~ TpN associates an 1-form Gpup~ T ~ N  defined 
by 

(~pllp)(Up) = gp(llp, Dp) 

for every Vp ~ TpN. 

Observation 4.4. The mapping 0 is differentiable and for each p ~ N 
the linear mapping ~p: T p N ~  T * N  is an isomorphism. We denote by 
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G::T*N--* T:N, p ~ N, the inverse isomorphism of 0p, that is, (~p = (~-1, 
and in addition we denote by G: p ~ (~p the differentiable mapping that to 
each p e N associates the isomorphism Gp. 

Definition 4.5. We denote by ~ e  T~  the reciprocal of the tensor 
field g, that is, 

~,,(%,, p,,) = ~:(~,:p, O,,p,,) (88) 
for every %, tip e T~ N and for every p e N. 

Observation 4.6. It is easily seen that we have 

g =  V |  V - h  (89) 

and consequently the tensor field g e T ~  is a symmetric and non- 
degenerate two-contravariant tensor field of signature - 2  and satisfies 

D g = 0  (90) 

Observation 4.7. From the expressions for ~ and ~, we see that 

~pup = g2:(up) g'2p - fi:Up (91) 

and 

(~p~p = %,(V:) V: - / ~ p %  (92) 

for every upeTrN, %,eT*N,  and p e N .  In addition, since DR=0  and 
D~ = 0, we get 

D.J Gu)[? = ~:( D yu]:) (93) 

and 

D,.(~cOl/, = 0p(D:.cq?) 

for every u, v e sec(TN), o~ e sec(T'N), and p e N. 

4.1.2. Classification of Vectors and Curves according to 

Definition 4.8. A vector tlp e T~,N, p e N, will be called 

1. ~,-spacelike iff ~p(Up, tip) ~0  and ~,p(up, up) = 0  iff Up =0,  

2. ~,-lightlike iff ~p(Up, Up)=O and upv~ O, 
3. ~,-tirnelike iff ~p(ttp, ttp)> O. 

(94) 
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Observation 4.9. As usual, this definition can be extended to vector 
fields and curves on N. 

If upeTpN is a spacelike vector, that is, if g2p(Up)=0, then it is 
r since in this c a s e  gp(llp, lip) = --hp(Ul, , Up) <~ 0 and flp(llp, lip) = 0 
iff up = 0. 

If l l p E T p N  is a null vector, that is, up=bVp, bER, b ~ - 0 ,  then 
gp(llp, ~lp) = (~p ( /Ap) )  2 = b 2 > 0 and therefore Up is ~-timelike. 

Finally, if upETpN is a timelike vector, that is, ff2p(Up)=a, aE~,  
a r  then gp(Up, llp)=a2--hp(llp, llp) and Up will be ~-spacelike iff 
hp(llp, lip) > Ct 2, r i f f  hp(~lp, lip) = a 2, and r i f f  ]~p(llp, p) < (-I 2. 

In view of this last observation we see that there are three kinds of 
reference frames on the Newtonian spacetime, namely 

Definit ion 4.10. A reference frame E s sec(T~ ~! ~_ N, will be called 

1. bradyonic iff ET~ = hp(Ep, Ep) < 1, Vp ~ O?,/, 

2. luxonic i f fE~=/~p(E r, E p ) =  1, Vp~O?I, 
3. tachyonic iff  E~ =hp(Ep, Ep) > I, VpEO?I. 

This definition is naturally extended to observers and particles on the 
Newtonian spacetime. 

4.2. Lorentzian Reference Frames  

From now on, we shall refer to the D-normalized reference frames 
(e.g., the vector fields E 6  sec(TN) for which 12(E)= 1 as Galilean reference 
fi'ames and we shall now introduce another kind of reference frames, the 
~-normalized ones, as follows. 

Definit ion 4.11. We call Lorentzian reference frame a future-pointing 
vector field L e sec(TO?I), '~?/c N, such that 

~p(Lp, Lp)=  1 (95) 

for every p ~ a2/. 

Observation 4.12. Like for Galilean frames, for each p e Y/the vector 
Lp is called absolute velocity of L at P and each integral line of the field L 
is called observer of the Lorentzian reference frame L. 

Observation 4.13. Note that the absolute rest frame V is at the same 
time a Galilean and a Lorentzian reference frame. Moreover, it is the unique 
reference frame in these conditions. 
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Observation 4.14. Given Gali lean reference frame Er  
_~ N, we have 

r E ) =  1 - E ' -  (96) 

with E 2 =/~(E, E). When ~(E, E) > 0, that is, E is bradyonic,  we can define 
a vector field L ( E ) ~  sec(T~ by 

E 
L(E) = (97) 

x/1 - E 2 

which is, obviously, a Lorentzian reference frame on q/, which will be 
called Lorentzian frame associated to the Gali lean frame E. 

Conversely, given a Lorentzian reference frame L~sec(Tq/ ) ,  qg ~_N, 
we have 

g2(L) = ~ / 1  + L  2 (98) 

L 2 =/~(L, L), and we can define a vector field E ( L ) ~  sec(Tq/) by 

L 
E(L) (99) 

~/1 + L 2 

which is, evidently, a bradyonic  Gali lean frame on ~ ,  called Galilean frame 
associated to the Lorentzian frame L. 

Note, moreover,  that it is impossible to associate a Lorentzian frame 
to a luxonic or a tachyonic Gali lean frame and reciprocally, the Gali lean 
frame associated to a Lorentzian one is always bradyonic.  

Fo r  the rest of this section, let L ~sec(Tq/),  q/_~ N, be a Lorentzian 
reference frame on ~.  

We denote by I2LEsec(sec T*qg) the 1-form field on Definition 4.15. 
o//defined by 

s'2Lp(u,) = ~p(L, ,  Up) (100) 

for every u~, ~ TpN and for every p E N. 

Observation 4.16. It is easy to see that g2 L can be written 

f2 L = ~/1 + L 2 12 - - / ~ L  (101) 

and therefore if, in particular,  L = V, then we shall have 

g2 L = g2 (102) 

825/2'; 6-9 
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Note also that if E is the Galilean frame associated to L, then we can 
write 12t. as 

1 
a .  - ~ ( o  - B E )  ( 103 ) 

Definition 4.17. The Lorentzian reference frame L will be called 

1. locally synchronizable iff s ^ dg2t- = 0, 

2. locally proper time synchronizable iff dot .  = 0, 

3. synchronizable iff l2 L = f dx~ f,  x~ q / ~  ~ , f > 0 ,  

4. proper time synehronizable iff t'2L = dx ~ x~ ql ~ R. 

Observation 4.18. If is clear that (iii) ~ (i), (iv) ~ (ii) and the 
reciprocals are valid only locally. 

Definition 4.19. If L is a [proper  time] synchronizable Lorentzian 
frame, any function x ~ as in Definition 4.17 is called a [proper] time 
function for L. 

Observation 4.20. 
defined by 

We denote by/~t- ~ s e c ( T ~ )  the tensor field on q/ 

/~t, = - t2 t -  | g2t. + ~ (104) 

Recalling the expressions of l2t- and ~, we easily Observation 4.21. 
conclude that/~t, can be written 

/~L= -L292 | + x/1 +L2(g2|174174  (105) 

Moreover, if in particular L = V, then it follows that 

/~t- =/~ (106) 

Observation 4.22. The tensor field/~t, plays an analogous role to that 
of the tensor field/~E introduced in Definition 2.2.9 for a Galilean reference 
frame E. With the introduction of this tensor field we can prove the 
following 

Proposition 4.23. The absolute derivative DOt. of the 1-form fields 
g2t. can be uniquely written as 

Df2L = f2t_ | A t- + col. + at. + 0t. (107) 
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where 

A L = D L O L  

ogL(u, v )= �89 V L ) -  VL(vL, UL)) 

aL(u, v )= �89 vL) + VL(vL, UL))--OL(u, V) (108) 

OL = �89 L)/IL 

VL(u, v) = hL(DxL, v) 

with u, v ~ sec(T~ UL = U -  OL(u)L, VL = V -  I2L(V)L, and Div L = Tr(DL). 

Observation 4.24. Of course, the objects introduced through 
Proposition 4.23 have similar meaning and properties to those introduced 
in Sec. 3 for a Galilean frame. We call Az~sec(T*q/ )  the acceleration 
1-form of L; AL = D z L  is its absolute acceleration; co L ~sec(To2q/) is the 
rotation tensor of L; aLe  sec(T~,) is the shear tensor of L; 0L e sec(T02q/) is 
the expansion tensor of L, and a L = aL + OL is the deformation tensor of L. 
In addition, we define: 

Definition 4.25. The Lorentzian reference frame L will be said to be 

1. inertial iff DL = O, 

2. geodetic iff DLL=O,  

3. h'rotational iff OgL = 0, 

4. shear-fi'ee iff aL = 0, 

5. expansion-fi'ee iff 0 L = O, 

6. rigid iff aL = 0 and O L = O. 

Observation 4.26. All results we have stated in Sec. 2.2 relating the 
concepts of inertiality, geodeticity, rotationality, etc., remain valid for a 
Lorentzian frame and we shall not  reformulate them here. We shall only 
state some new results that are specific for the Lorentzian frames. 

Proposition 4.27. A Lorentzian reference frame L is inertial if and 
only if 

DOL = 0 (109) 

and it is geodetic if and only if 

DL~2L = 0 (1 10) 
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Observation 4.28. The Lorentzian frame L is locally synchronizable 
iff it is irrotational, and it is locally proper time synchronizable iff it is 
geodetic and irrotational. 

Proo f  To prove this we calculate the differential of the 1-form field I2 L. 
We have 

2df2 r(U, V) = u(OL(v ) )  - v ( ~ L ( u ) )  - O ~ ( [ u ,  v]  ) 

Dx(g(L ,  v ) ) - - D e ( ~ ( L ,  v)) 

-- ~(L,  D.,~v - Dyu)  

= ~,(DxL, v) + g(L,  Dxv)  -- ~,(D;,L, u) 

-- ~(L, Dyu)  - ~(, D,~v - D.~,u) 

= ~(D,.L, v) - -  ~ ( D y L ,  U) 

= hL(DxL,  v) + f~L(DyL, u) 

= - h L ( D x L L ,  v) --I2L(U) 17L(DLL, v) 

+ ftL(D,,,L, u) + I'2L(V ) f~L(DL(DLL, u) 

= VL(u  L, v L) - -  V L ( v  L,  UL) q- g'2L(U) AL(V) 

--t2L(V) AL(U) 

= 2COL(U, V) + g-2L(U ) AL(V ) -- f2LAL(u ) 

for every u, v~sec(Tq/),  that is, 

dg-2 L = CO L "+ ff2 L A A L (111) 

with f2 L A A L = I ( c 2 L | 1 7 4  From this expression it follows 
that 

dt2L A s =COL A I2L (112) 

Therefore, dI2 L = 0 iff col + s A AL = 0, which is impossible unless COL = 0 
and g2L A A L = 0 .  But QL A A L = O  iff A L = O ,  and we conclude that 
dg'2L=0 (L is locally proper time synchronizable) iff ~OL=0 (L is irrota- 
tional) and AL = 0 (L is geodetic). 

Moreover, dg2L A I 2 L = 0  iff COL A I2L=0 ,  iff COL=0, that is, L is 
locally synchronizable iff it is irrotational. [] 



Mathematical Structure of Newtonian Spacetime 909 

4.3. Lorentzian Dynamics  on Newtonian Spaeetime 

4.3.1. Lorentzian Particles. From now on we shall refer to the 
s176 curves on N as Galilean curves. Now we define 

Definition 4.29. 
~p: R --, N satisfying 

for every p ~ ~p(R). 

A Lorentzian curve on N is a future-pointing curve 

Cp(cp,p, ~p,p)= 1 (113) 

Observation 4.30. The observers in a Lorentzian reference frame are 
Lorentzian curves. 

Given a future-pointing bradyonic and Galilean curve on N, we can 
reparametrize it to get a Lorentzian curve. We proceed as follows. 

Definition 4.31. Let c~: R ---, N, u ~ c~(u), be a future-pointing 
bradyonic and Galilean curve on N. We call propel" time length of c~ 
between the points p~ = ~ ( a )  and p2 = ~(b), a, be  R, a<b,  to the number 

b 
~'-~-;i [--g~o')((ff*(~/)' (ff*(ll))]l/2dll (114) 

Observation 4.32. We can now introduce the function s: [a, b] 
[0, r ]  by 

k 
s(k) = fS I- - o~,,,>(cP,(u), c~,(u))] 1/2 du (115) 

which gives us the proper time length of (olta, b~ between the points ~(a) 
and ~(k), k < b. The mapping s is smooth and surjective. If it has a smooth 
inverse s -1 (which always holds when cp,(u)~-0 for all u e  [a, b]),  then 
~lto.~--@lta.b~ ~ 1-0, r] ~ N  is a smooth reparametrization of ~lt~.hl 
with 

(proper time length of cp between cp(0) and cp(k)) = k 

and we say that the curve ~0 is parameterized by the proper time. 
The relation between the tangent vectors cp,(u) and ~,(s(u)),  u ~ [a, b], 

is easily obtained. Indeed we have 

- ds 
~ , (u )  = ~ ( u ) =  ~ (s(u))~u ( u ) =  ~uu (u )~ , ( s (u ) )  
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and 

ds (u) = [ - ~ ( . ) ( ~ . ( u ) ,  ~ . ( u ) ) ]  ,/2 

and therefore 

go,(S(ll)) = [ - -  geMuj(q~(l/), (fi(/-I), ( f i , ( l / ) ) ]  --1/2 (p , (U)  

that is, 

go,(s(u)) = ~/1T*(u) ~_  qS~(u) (116) 

for a~u<~b, where ~2(u)=/~q~(.)(~,(u), ~ , (u ) )  and we have taken into 
account that ~ is Galilean. 

Definition 4.33. We call Lorentzian particle a pair (m,  go), where 
m 6 R § is a real and positive constant, called rest mass of the particle, and 
go: R ~ N is a Lorentzian curve on N, called trajectory of the particle. 

Definition 4.34. The v e c t o r  go,p~ZpN, p~go(~),  tangent to the 
trajectory go of a Lorentzian particle (m,  (0) at the point p is called 
(Lorentzian) absolute velocity of (m,  go) at p, and the vector 

A~ (p)=D~, go. lp (117) 

p ~ go(~), is called (Lorentzian) absolute acceleration of ( m, go) at p. 

Observation 4.35. We also define the (Lorentzian absolute) co- 
velocity of (m,  go) and the (Lorentzian absohae) co-acceleration of (m,  go) 
as the 1-form given, respectively, by 

gop* = ~pgo., (118) 

and 

A*(p )=  D ~,.pgo*ip (119) 

for each p ~ go(R). 

Definition 4.36. We call (Lorentzian) momentum of a Lorentzian 
particle (m,  go) at p 6 go(R) the vector 

/'/r = mgo,p (120) 
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and we call (Lorentzian) co-momentum (or the momentum I-form) of 
( m ,  q~) at p~o(g~)  the 1-form 

/-/~.p - mop* ( 121 ) 

Definition 4.37. Note that the momentum and the co-momentum of 
(m ,  cp) satisfy, for each p ~cp(R), 

g(H~p, (122) H~p(H,pp) = ~p(H~p, H~p)= - * H~p)* --m 2 

4.3.2. Lorentz's Laws of Motion. The simplest invariant generaliza- 
tion of Newton's  second law of motion is 

D~,(/-/~) = k  (123) 

where k is a four-force. Since D~,(H~)= mD~,(cp.) is a Lorentzian spacelike 
vector and since ~(D~ocp,, cp . )=0 ,  it follows that o~(k, c p . ) = 0  and there- 
fore k~  - ~', k~ and k .  f f=h(k,  v). This in turn implies that some 
or all components  of k are velocity dependent. For  example, a constant 
Newtonian force ff corresponds to a "Minkowski" force /['(v)= 
f f / (1-v2)  1/2, which is increasing with velocity with k ~  ~ ' / (1-v2)  1/2. 
Even, if /~ were made constant, k ~ would be velocity dependent and 
vice-versa. 

Equation (123) will be shown to describe the true physical facts in the 
case of Maxwell-Lorentz  electrodynamics (Sec. 5). 

5. CLASSICAL E L E C T R O D Y N A M I C S  O F  M A X W E L L  A N D  
L O R E N T Z  

5.1. Introduction 

We present now a formulation of the classical electrodynamics of  
Maxwell and Lorentz as a spacetime theory, i.e., we are going to present 
Maxwell equations and the Lorentz force law as intrinsic equations for 
geometrical objects on N. Our  intrinsic formulation is based on the identi- 
fication of the Lorentzian structure in N discussed in Sec. 4. It shows 

(i) that there is a unique coupling between the electromagnetic field 
with the current, which is different from the postulate of the classical 
Lorentz force law when the latter is written in intrinsic form, and which is 
a function of the velocity v; 
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(ii) there is a particularity inherent in the mode of propagation of 
electromagnetic signals that permits, in principle, the detection of V for 
experiments done inside an inertial frame f if we insist that (x~') ,  the 
Galilean inertial coordinates associated to /, is such that x ~  t, e.g., the 
time registered by a set of clocks at rest in ,r and synchronized by an 
internal synchronization procedure (ISP) is the absolute time (an ISP is 
a synchronization procedure done inside I, without looking for the 
"exterior"--this concept will be made more precise below). 

5.2. Maxwell-Lorentz Equations 

The Maxwell-Lorentz equations are usually presented by 

_lag_- z 
c at 

c a t  

(124) 

where E is the electric field vector,/~ is the magnetic (induction) vector, J 
is the current density, E, B, J: ~3• ~_~ R3 p: Rax R-~ R is the charge 
density, V = (8x, 8y, 8=), and c is a constant with dimension of velocity, 
called electromagnetic velocity of light (we are going to use units such that 
the numerical value of c is one, i.e., c = 1). 

The fields E and /~ act on charged particles [which besides their 
masses and their trajectories are also characterized by their charges, a 
parameter q ~ ( - ~ ,  oo)]. The resulting force is known as the Lorentz force 
law and is given by 

F =  q (E+  ~'x B) (125) 

where b" is the 3-velocity of the particle, 17= v t ' a / O x  ~' ( x  I = x ,  x 2 = y ,  x 3 = z ) .  

We shall show that this coupling of the electric and magnetic fields to 
the charge and current of a particle, which is usually introduced as a 
postulate, is n o t  compatible with the structure of Maxwell equations. This 
fact in turn implies that we cannot assume the validity of Newton's law of 
motion for a charged particle, i.e., 

d 
( m ~ )  = q ( E  + fix/~) (126) 
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Before we prove the above claims, let us recall that Maxwell-Lorentz 
equations have explicit solutions when p, J =  0. In this case, any one of the 
Cartesian components  o f /~  and B satisfies the wave equation 

V2~b 1 02~ ^ 
-c--5_ -~-s = 0  (127) 

where V 2 denotes the Laplacian in R 3. Such an equation has a solution of 
the form 

~b = ~bo exp[ i(/~. 7 -  cot) ] (128) 

where cok = c, k = [/~[. This solution (the real part,  of course) represents an 
electromagnetic wave propagating with velocity c. The following question 
cannot be avoided: 

With relation to which reference frame does an electromagnetic wave (light, for 
short) propagate with velocity c? 

For  Maxwell and his contemporaries the answer was obvious: Light 
propagates with velocity c with respect to its carrier, the ether. From the 
point of view of Lorentz and Poincard, the ether would be the physical sub- 
stance which would give material support  to V. We should then understand 
the coordinate functions ( x  ~') used to write down the Maxwell-Lorentz 
equations as constituting a (nacs l  V). 

It is quite obvious that if ( x  ' j ' )  is a ( n a c s [ / ) ,  where [ is a Galilean 
inertial frame moving with 3-velocity v(O/Ox 1) relative to V, i.e., 

0 O 
I = -~ + V c3 ~ (129) 

then 
x '1 = x  I - vt 

X 12 ~ X 2 

x ' 3 = x  3 (130) 

t ' = t  

and the velocity of the light in [, in the coordinates of ( x  '" ) ,  would depend 
on V. 

Then it would appear that the measurement of the light velocity in two 
different directions inside iwould enable one to determine the components 
of V in the (x '~) coordinates. We would, obviously, get 

V = ~ - V ~ x , l  (131) 
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As proved in Refs. 2, 12, an internal synchronization procedure (ISP) in I '  
which gives x ' ~  t is possible only if there exists in Nature a physical 
system which does not have its Lorentz deformed version (LDV). The 
concept of LDV of a physical system together with an example showing 
explicitly how this permits one to obtain an ISP in ] giving x ' ~  is 
discussed in Ref. 12. We do not have space to present this issue here. 

Now, in order to present Maxwell-Lorentz electrodynamics in intrinsic 
form over Newtonian structure N, we need 

Definition 5.1. Let ( x " ) ,  x ~  x l = x ,  x 2 = y ,  x 3 = z  be a 
(nacsl V). The current 1-form field JE  sec A ( T ' N )  is 

J =  p dx~ - j_,. dx ' - . ~ ,  dxZ - j~ dx3 = j/, dx u (132) 

with 

Jo=P,  J1 = - J x ,  J2 = - ~ , ,  J3 = - J ,  (133) 

Definition 5.2. The electromagnetic 2-form field F~ sec A2(T*N) is 

F =  �89 dx" dx .... (134) 

with 

F.~= Ex 0 - B ~  B~ 
B.. o (135) 

- -B . , ,  - -  B , .  

With the above definitions, the Maxwell equations read 

d F = O  

aF  = - J  
(136) 

where d is the exterior differentiation and 6 is the Hodge co-derivative 
operator 

6cop = ( - 1 )P * -1 d * COp (137) 

where COp E S e c A P ( T  *) and �9 is the Hodge-star operator, defined 
through r 
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Let us suppose that a charged particle is modeled by 

Definition 5.3. A charged Newtonian particle is a triple (O'N, m,  q), 
where aN: I - -*N,  I c  R, t - -*au( t )  (t being the absolute time function) 
is a timelike curve, m ~ (0, ~ )  is the mass, and q ~ R is the charge of the 
particle. 

In this case aN. is the Newtonian four-velocity of the particle and we 
have 

~ = a N .  - I 2 ( a u . )  V (138) 

Thus, for a point charge modeled according to Definition 5.3, the current 
density J = Ju dxu is such that 

for 

Y = g(d , .  ) = J , ' ( x ) O / O x ;  

f. 

Jl '(x) = q J dt Yea(ate(t)) 3 (x  -- x~'(aN(t) )) ( 139) 

Then, the Newtonian four-force ~N corresponding to P [ see Eq. (125)] can 
be written intrinsically by 

~N = q[ g(JA F, . ) - f2(g(YA F, . ) V] (140) 

Newton's law of motion for a charged particle [-Eq. (126)] can then be 
written in intrinsic form as 

mD,u .  a lV = ~(Y_J V, . ) - I2( ~o(Y_J F, . )) V (141) 

This equation suggests that the "effect" of V on an appropriate experiment 
on charged particles, done inside an inertial frame, might be experimentally 
detected, and this has indeed been what Trouton and Noble 1~3) tried in 
their experiment, which, as is well known, could not detect V, showing that 
something is wrong with the postulates of the classical Maxwell-Lorentz 
theory. Thanks to Einstein we know now the true law of motion for 
charged particles. Indeed, if ere: s--* N is a Lorentzian timelike curve, 
R(aE,  a E ) =  1, and taking into account that we can write Eq. (139) as 

dx ~, 
JI ' (x)  = q [ ds ---~-s (ae(s ) )  6 (x  - x / ' (ae(s ) ) )  (142) 

d 

the true law of motion is 

m D ~ . a e .  = g ( fA  F, .  ) (143) 
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Equation (143) written in the coodinates (x~)  naturally adapted to V 
reads 

d rob" 
lv/~_v 2 = q(E + 6x/~) (144) dt 

Equation (144) has only the first member different from the classical law of 
motion given by Eq. (141), when expressed in (nacs [ V) [Eq. (126)]. 

Since the true law of motion for charged particles is Eq. (143), the true 
coupling of the electromagnetic field F to the current must be 

~(Jd F, .) (145) 

Also the true momentum of the particle must be [Eq. (144)] 

l-I~,~ = mac.  (146) 

Equation (146) can be called an equation empirically discovered, whose 
justification is the Kaufmann ~4) experiment. We now prove that the right 
coupling of F and J is indeed to one given by Eq. (145). 

In order to do that, we take advantage of the fact that the existence 
of ~ and ~ permits us to give the cotangent bundle of N the structure of a 
local Clifford algebra, thereby permitting us to introduce the Clifford 
bundle of differential forms CI(N,g). Then, using the Clifford bundle 
formalism, (s) one can show that the Dirac operator O=y/'De. (where 
7 " ~ s e c A  I ( T * N )  c C I ( N , g )  is the dual frame of e . ~ s e c T N ,  
~(e., ev) = q/,~, r/p~ = diag(1, - 1, - 1, - 1), and 7"7 ~ + y"7/' = 2r/p") can be 
written 

O = d - 3  (147) 

Then, since we can suppose that J ~ s e c / k l ( T * N )  cCl (N ,~ , ) ,  F e  
sec/k 2 ( T ' N )  c CI(N, ~), we can write the Maxwell equations [Eq. (136)] 
as a single equation, namely, 

O F = J  (148) 

Applying to Eq. (148) the anti-automorphism called reversion, indicated by 
~, w e  get t15'16) 

F0  = J (149) 

with 

F0  = -8,(F,,v) yuy~,~ (150) 
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Multiplying Eq. (148) by P on the left and Eq. (149) by F on the right and 
summing the resulting equations we get 

�89 O F - -  .~OF)  = �89 J F - -  F J )  ( 151 ) 

Define 

S ~ =  - �89 F?t'F (152) 

Then Eq. (15 I) can be written 

Ot, S~' = F .  J (153)  

where "-" is the interior product in the Clifford algebra. (3) 
We can verify (~s'~6) from Eq.(152) that the S t* are l-form fields, 

i.e., St*esecA ) ( T * N ) c C I ( N , ~ , )  and will be called energy-momentum 
I-forms. The reason for this is that E t*~ = S t ' .  y" are the components of the 
symmetric energy-momentum of the electromagnetic field. Indeed, if ( ) is 
the 0-form part of the Clifford product, we have 

E t'" = S t' , ? ~ = - - (  �89 ~) = Ft '~  + �88 154) 

We note that due to the symmetry E t ' " = E  "t' we can write 

OuE t'~ = Ot, S ~ �9 7 I" = O. S ~ 

0 being the Dirac operator. Then Eq. (153) can be written 

O . S ~ = ( F . J ) . 7  ~ 155) 

or 

O F#~--FnJ ~ 
v-- ----v-- 

156) 

Equation (156) expresses very clearly the fact that the energy-momentum 
of the field is not conserved, Ot, E ~ ' v # O ,  when matter, described by J is 
present. But, on the other hand, it implies that the right coupling between 
J and F is - F .  J =  J .  F =  J_J F. Actually, one expects that only the total 
energy-momentum of fields and currents are conserved. If we write the 
second member of Eq. (156) as - O v M  ~'', then 

Ov(E uv + M "v) = 0 (157) 

where M uv plays the role of the symmetric energy-momentum tensor of 
matter. 
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Now, suppose that a real charged particle must be described by 

Definition 5.4. A real charged particle is a triple (ae,  m, q), where 
aE: s --, N is a Lorentzian timelike curve, i.e., ~(ae, ,  ae . )  = 1, m ~ ~+ is the 
mass, and q e R is the charge of the particle. 

Then, 3=J' (x)O/adx j' with J~'(x) given by Eq. (142), and the most 
general symmetric tensor that we can write, representing matter, and which 
does not depend on q, is 

with 

0 0 
M =  M"~ ~x~ | 

~ S  ~ dxl' M"V(x)=m f ds6(x--ae(s)) (aE(s))~-s (ae(s)) 

158) 

159) 

Using the fact that, by definition, OvM~'~= - P ' v J  ~, we get 

D,~e.(H,,~) = ~(JJ F, . ) 160) 

In conclusion, the Maxwell equations imply that the right coupling of J 
with F is given by Eq. (145). This result, coupled with the most general 
definition of M [Eq. (158)], leads to the relativistic Lorentz-force equation 
of motion. This is a nontrivial result never derived within the realm of the 
Newtonian theory. 

The electromagnetic experiments done by man are, in the first 
approximation, done in an inertial frame I moving with respect to V and 
for charged particles with small velocity relative to L This means that for 
the coordinates ( 2  ~') naturally adapted to I an equation like Eq. (124), 
that is, the Maxwell equations, and an equation like Eq. (144) hold true. 
This necessarily implies, as is well known, that the (x~'),  the (nacs I V),  
and ( 2  j ' ) ,  the (nacs [ I ) ,  are related by a Poincar6 transformation, which 
is the isometry group of ~. This observation does not imply that we cannot 
use the Galilean coordinates ( x  ~'') given by Eq. (130). ( x  ~'') cannot be 
used as a (nacs [ I ) .  Obviously the time t' = t will not be the time as given 
by clocks synchronized a la Einstein in I and x;' will not have the meaning 
of physical distances measured along the corresponding axis. Even, more, 
if these coordinates are used in /, the form of the Maxwell equations will 
not be the one given by Eq. (124), as can be easily verified. 
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6. N E W T O N ' S  THEORY OF  UNIVERSAL GRAVITATION AND 
T H E  EXISTENCE OF  INERTIAL R E F E R E N C E  FRAMES 

6.1. Gravitational Theory on Galilean Spacetime ~3'4'6'7) 

We saw in Sec. 2.2.3 that the Newtonian laws of motion of a material 
particle (m,  7) postulate that 

ma~, y .  = f]~, ( 16l ) 

We now assume that the spacetime is ff = (N ,  D, I2,/~), the Galileo's 
spacetime. In a coordinate system ( x  ~') naturally adapted to an inertial 
reference frame L i.e., DI=O, Eq. (161) reads 

d 2 
rn ~_ (xio7) =f;[~, = F;  (162) 

In Newton's gravitational theory, 

if=m67 (163) 

where 

67 = - g r a d  ~b (164) 

is the gravitational potential generated by a distribution of mass (excluding 
m) represented by the mass density p. We have 

V2~k = xp (165) 

where x is the universal gravitational constant and V z is the Laplacian. 
To formulate Newton's gravitational theory as a spacetime theory in 

intrinsic form, we observe that once ~ is a function r N ~ R, we can write 
(using the definition of H .  given in Sec. 2.1.2) 

grad ~b = H .  d~b (166) 

V2~b = Div(grad ~b) (167) 

Then, if ~b is the gravitational potential (in N), the gravitational force is 
written 

fl~. = - m  grad r (168) 
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Newton's gravitational theory over Galileo's spacetime has then as 
model the heptuple rNc = (N,  D,/~, r p, {m, 7} ),  where 

R I D ]  = 0  

Dr2 = 0 

h(I2, o9) = O, Vw �9 T * N  

V2r = 0 

mD~.~,, = - m  grad r 

It is quite clear that the invariance group of rN~ is Galileo's group. 

(169) 

(170) 

6.2. The Problem of the Physical Existence of Inertial Reference Frames 

According to the Galilean spacetime structure if, the existence of 
inertial reference frames I � 9  sec(TU), U c N, satisfying D I =  0 is warranted. 
The question is: Can I be materialized by a system of physical particles, 
e.g., a rigid body. To answer this question we recall that since our physical 
universe is filled with matter and since the gravitational potential r satisfies 
Poisson's equation, it follows that all pieces of matter are always in gravita- 
tional interaction. Then the world line of the center of mass of each piece 
of matter is always accelerating according to D [cf. Eq. (161)]. It follows 
that the inertial frames in general cannot be materialized by any piece of 
real matter. This conclusion, although relevant, does not imply that inertial 
frames are not important for Newton's gravitational theory. Indeed, 
according to our view, reference frames are theoretical instruments that do 
not need to be physically materialized. This is, of course, the view of an 
astronomer who applies the Newtonian's gravitational theory. Another 
important point is that using inertial reference frames, an easy formulation 
of the conservation laws follows. 

Suppose now that in U c N ,  e ly=cons tan t  and we have a reference 
frame Z �9 sec(TU), U c N, such that 

D z Z = A  (171) 

where A is a constant vector field on U c N. Suppose that Z is materialized 
by a rigid body which is nonrotating according to D. Let a be an integral 
line of Z, parameterized by t, the absolute time function. Then Eq. (171) 
restricted to a reads 

D ~ a .  =AI~ (172) 
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Suppose that 7 is an integral line of a material reference frame L ~ sec(TU), 
U ~ N ,  such that L l r = 7 ,  and 

m D L L  = - m  grad ~b (173) 

Suppose also that grad ~b is approximately constant on U and that in first 
order we have grad ~b I u = A I  v, where A is given by Eq. (171). Then, how 
can observer in U know that he is sitting on the integral line a being 
accelerated or on the integral line 7 in free fall? Obviously, an answer 
implies second-order effects, which do not exist in Z but exist in L (tidal 
forces). These are the arguments for the so-called equivalence principle 
which we do not discuss here. Instead, we now present a new formulation 
of Newton's gravitational theory supposing that real observers do not take 
care of  separating inertial from gravitational accelerations. 

6.3. Curved Spacetime Formulation of Newton's Gravitational Theory ~ 

Let (x~') ,  x ~  t, be a (nacs  ] L ) ,  where L satisfies Eq. (173). Then in 
the coordinates ( x ' )  Eq.(173) reads, for y an integral curve of L, 
LI~. = y . ,  parameterized by the absolute time t, 

d2 d( x~ ~ 7) d( x~ ~ 7 
dt--5 ( xp~  7) + F~,, d~-~- d - ~  - -  h P V ~ ; v  17 (174) 

If we introduce on N a new connection V such that 

Va/ax,,O/Ox v = (F~,,, + h~4):~ t~, t v)O~ Oxp (175) 

where s t~ dx ~', then Eq. (174) reads 

Vr.7 .  = 0  (176) 

Then the free fall is characterized by a geodetic equation relative to the 
connection V. 

According to this connection we can define a local inertial frame 
E ~ sec TU, U c N,  by 

V E E = 0  (177) 

and such that E is nonrotating relative to V (cf. Sec. 3). 
Obviously V is not a flat connection, i.e., R ( V ) r  Indeed, the 

components of R, the Riemann tensor in ( x~ ' ) ,  the (nacs I L ) ,  are 

_ ~a . (178) Rvp a -  2t,,h qbz~ztat~l 

825/25/6-10 
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where the brackets in Eq. (178) mean antisymmetrization with respct to the 
indices p and a. We can verify that V(Q)= 0, but V(/~):~0. This last result 
is at variance with the one found in Ref. 5, but since we already found 
Do~=0 and T[D]  = 0  if WI = 0, we could have Vow=0 and T[-V] =0,  which 
is obviously impossible. Equation (178) implies that 

l, = 0  and h=PRFjpa=-h Rap,, (179) t[=R~,]p a /~P 

Equations (179) imply the existence of a scalar field ~b: N--, R and a nonflat 
connection V such that its coefficient in the basis O/Ox ~' is given by 
Eq. (175). 

If we suppose then that the true connection in a space generated by a 
gravitational field is V, then Eqs. (179) must be postulated as field equa- 
tions if we want to produce a theory equivalent to the original one 
described in Sec. 6.1. 

Recalling that the components of the Ricci tensor are 

R,v = RPvp = -hPa'~:p;= t,, tv (180) 

a comparison with Poison's equation V-'q~ = kp yields 

R~, v = -kpt l ,  tv ( 181 ) 

We then arrive at a formulation of Newton's gravitational theory where the 
spacetime is curved due to the presence of matter. The equations of this 
theory can be written in intrinsic form as 

(ff~ (~) R)Antis = 0 

H-~R(co, ct, X, Y)=H-~R(~,co,  X, Y),ct, o ~ T * N , X ,  Y E T N  (182) 

V(r2) = 0, V(/~) :~ 0, Ricci = - k d t |  (183) 

In Eq. (182) ( )Antis means antisymmetrization with respect to the first and 
second indices of the tensor r2 | R and 

H~: R(og, ~, X, Y) ~ R(og, H ,  cc, X, Y) 

where H ,  has been defined in Sec. 2.12. 
Finally, the equation of motion of a particle (m, a) subject only to the 

gravitational field is 

V~.a .  = 0  (184) 

To conclude we can ask: What do we learn from the curved spacetime 
formulation of gravitational theory? The answer is that this approach 
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suggests to us to formulate Einstein's gravitational theory as a field theory 
in the sense of  Faraday formulated on a Minkowski spacetime. This has 
been done in Ref. 9 where the motivations for the enterprise are described 
in detail. 

7. C O N C L U S I O N S  

In this paper we presented a rigorous study of the structure of the 
Newtonian spacetime and its classical dynamics and gravitation. Sure, 
there are many studies similar to ours (e.g., Refs. 3-7), but ours is more 
rigorous and fresh in many aspects. In particular, we quote: (i) our study 
of the reference frames in the Newtonian spacetime; (ii) the identification 
of the Lorentzian structure of the Newtonian spacetime; (iii) the deter- 
mination of  the correct coupling of  the electromagnetic field with the 
current of a charged particle compatible with the Maxwell equations (we 
found that the field V, the absolute reference frame of the Newtonian 
spacetime, does not appear in the invariant generalization of the right 
Lorentz force, a result that, as is well known, agrees with experience); 
(iv) we studied also the formulation of Newton's gravitational theory as a 
curved spacetime theory, and our results correct (as discussed in Sec. 6.2 
and 6.3) some misconceptions found in the literature. 

As we have said in the Introduction, this is the first of a series of 
papers we are proposing about the mathematical structure of spacetime 
theories. There remain many important points concerning the relation of 
Newtonian spacetime with other spacetime theories. 
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