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1. Introduction

The celebrated Pokhozhaev’s identity [14],[15] is an important tool in the theory of
differential equations. Among a variety of its applications, it is particularly useful
in establishing nonexistence results. Commonly its specific form for each concrete
problem is obtained by using ad hoc procedures, e.g. multiplying the considered
equations by some appropriate functions, integrating by parts and then summing
up the results.

In this paper we look at the Pokhozhaev’s identity from a more general point
of view. Our main purpose is to propose a unified method to generate identities
of this type. The suggested algorithm consists of three steps. The first step is
to obtain an identity for arbitrary sufficiently smooth functions, without using
the fact that some of them satisfy the given differential equations or systems.
The second step is to integrate the identity in question taking into account the
corresponding equations and boundary conditions. The third step is to apply the
divergence theorem.

Obviously the essential point is how to obtain a ‘generic’ starting identity to
be used in the first step. This can be done in the following way.

To begin with, let uα(x), α = 1, 2, . . . ,m, be a set of Ck(Ω) functions, where
k ≥ 1 and x ∈ Ω ⊆ R

n, n ≥ 1. We denote by Ak the space of all locally analytic

This work was completed with the support of FAPESP and CNPq, Brasil (Y.B.) and INTAS-05-
100000B-792 (E.M.).
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functions of x, uα and the partial derivatives of uα up to order k. The elements
f(x, uα, uα

(1), . . . , u
α
(k)) of Ak are called differential functions [1],[13].

Given n differential functions ξi ∈ Ak and m differential functions ηα ∈ Ak,
we associate to them a partial differential operator X in the following way:

X = ξi ∂

∂xi
+ ηα ∂

∂uα
.

Above and throughout this paper we use the Einstein summation convention, that
is, we assume summation from 1 to n over a repeated Latin index and summation
from 1 to m over repeated Greek indices.

The cornerstone of the proposed approach to Pokhozhaev identity is the
following

Theorem 1.1. Let k ≥ 1, uα(x) ∈ Ck(Ω) and ξi, ηα ∈ Ak. Let

L = L(x, uα, uα
(1), . . . , u

α
(k)) ∈ Ak

be an arbitrary differential function. Then the following identity holds

X(k)L+ LDiξ
i = Eα(L)(ηα − uα

j ξ
j) +Di[Lξi +Wi[u, η − ujξ

j ]], (1.1)

where u = (u1, . . . , um), η = (η1, . . . , ηm), ui = (∂u1

∂xi
, . . . , ∂um

∂xi
) and the k-th order

extension X(k) of X, the Euler operator Eα and the operator Wi are defined in
Section 2.

This identity is called the Noether identity. We emphasize that the identity
(1.1) is obtained here without any use of variational structure.

It is now clear from (1.1) why the usual ‘ad hoc’ procedure for obtaining
Pokhozhaev identities, described briefly in the beginning, works - simply for each
specific problem one reproves, in practice, the Noether identity, which is valid in a
general context. In particular, the ‘appropriate’ multipliers of the Euler-Lagrange
equations Eα(L) = 0 are nothing but the Lie characteristic functions vα = ηα −
uα

j ξ
j [1],[13] of the conservation laws obtained via the Noether’s theorem [12],

whose conclusion, in fact, follows easily from (1.1).
Our further comments on the fundamental identity (1.1) will be facilitated if

we denote
A = X(k)L+ LDiξ

i, E = Eα(L)(ηα − uα
j ξ

j),

Ni = Lξi +Wi[u, η − ujξ
j ], N = (N1, . . . , Nn),

C = Eα(L)(ηα − uα
j ξ

j) +Di[Lξi +Wi[u, η − ujξ
j ]].

Obviously in this notation (1.1) reads:

A = C = E + Div(N). (1.2)

Now we make the following observations:
(i) If ξi, ηα were the components of a variational generalized (Lie-Bäcklund)

symmetry [1],[13] of the Euler-Lagrange equation E = 0, then A = 0 and hence
Div(N) = 0 which is the conclusion of the Noether’s theorem [12].
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(ii) If X were a divergence generalized (Lie-Bäcklund) symmetry [1],[13] of
E = 0, there exists B such that Div(B) = A. Then by (1.2)

Div(B) = E + Div(N) = Div(N)

which implies Div[N − B] = 0. Again we obtain the conservation law guaranteed
by the Noether’s theorem [12].

(iii) Usually one first gets A = 0 as a necessary condition for the ‘absolute
invariance’ of the Euler functional [10]. Then 0 = E + Div(N) is a consequence of
the absolute invariance, which, together with E = 0, imply Div(N) = 0. That is,
A = 0 and C = 0 are commonly obtained by some variational arguments, while the
equality A = C holds always for solutions of E = 0 and thus A = 0 immediately
implies C = 0.

(iv) In fact, one writes the invariance condition for the Euler functional and
obtains a relation between the expressions for the Lagrange Function in two coor-
dinate systems. This relation is given in the terms of the corresponding Jacobian.
Then expanding the relation in question in ε (the group parameter) and taking
only the O(ε) terms one gets A = 0. See, for instance, [1, pages 274-275], or [13,
page 278].

(v) The identity (1.1) is obtained without any reference and use of invari-
ance, symmetries, etc. It holds for any u, ξi(x, u, ui, . . . ), η(x, u, ui, . . . ) and L(x, u,
ui, . . . ) - sufficiently smooth functions of their arguments.

(vi) Substituting ξi = hi(x) and ηα = −a(x)uα into (1.1) one obtains the
identity which leads, by integration, to the variant of the Pokhozhaev’s identity
discussed in [16]. See page 683 of [16] for a comment on Noether approach to
variational identities.

So far, the first step in obtaining a Pokhozhaev type identity for a given
problem is reduced to choosing the operator X which appears in the Noether
identity. Different choices ofX will lead to different Pokhozhaev identities. A choice
closest to the original Pokhozhaev’s idea is suggested by the following observation
of Schoen and Yau: ‘One can use conformal vector fields to derive certain identities
for some special differential equations. Such a fact was first discovered by S. I.
Pokhozhaev [14], who made use of X = r ∂

∂r on Rn.’([20, page 196],). This X
is the infinitesimal generator of a dilation of the independent variable x, namely
x∗j = λxj , where λ is a parameter. In this way, for each problem we shall commonly
use a dilation X , extended to the dependent variable(s). The parameters of such
scaling transformations will be chosen to assume critical values. The latter term
is related to the notion of critical exponents which are found as critical values for
embedding theorems. The critical exponents can be also viewed as numbers which
divide the existence and nonexistence cases for various differential equations and
systems. The notion of criticality of differential equations, its relations to scaling
transformations and to the present approach is discussed in another work [2].

The practical aspects of the proposed method to generate Pokhozhaev Iden-
tities can be summarized as follows:

1. Take as X a dilation (in x and u) whose coefficients assume critical values.
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2. Calculate the k-th order extension X(k) of X using the formulae in Section
2. (2k is the order of the considered variational problem.)

3. Find the corresponding Function of Lagrange L ∈ Ak.
4. Calculate and simplify the expression A = X(k)L+ LDiξ

i.
5. Integrate A = Div(N). (See (1.2) and recall that the Euler-Lagrange equation

reads E = 0.)
6. Apply the divergence theorem.

We point out that the approach permits to use other conformal vector fields X
(e.g. inversions) and general ξi and ηα which may depend on the derivatives of uα.
Such applications will be treated elsewhere.

In this paper we apply the devised method to a number of nonlinear differen-
tial equations and systems. In order to convince the reader that it works properly,
we first obtain some well-known Pokhozhaev identities established by Pokhozhaev
[14] for the Poisson equation, by Pucci and Serrin [16] for potential systems, by
Mitidieri [11] for elliptic Hamiltonian systems, by Giga and Kohn [8] for a semi-
linear equation with power nonlinearity and by Clément and van der Vorst [5]
for unbounded Hamiltonian systems. Then we establish new Pokhozhaev iden-
tities corresponding to: potential systems, mixed Hamiltonian-potential systems,
unbounded Hamiltonian systems and hyperbolic Hamiltonian systems both involv-
ing polyharmonic operators. The obtained Pokhozhaev identities are the starting
point of the next step in this research, namely the corresponding nonexistence re-
sults, which will also be treated elsewhere. For other aspects and applications of the
Pokhozhaev’s identity the interested reader is directed to [6],[7],[17],[18],[19],[22],
[23].

This paper is organized as follows. In Section 2 we introduce notation and
define the basic notions and operators. In Section 3 we prove the fundamental
identity (1.1). In Section 4 we present the applications described above.

2. Preliminaries

In this section we introduce notations and present some formulae which we shall
use in the next sections.

We shall suppose that all considered functions, vector fields, tensors, func-
tionals, etc. are sufficiently smooth in order that the derivatives we write to exist.
When we say that a function is an arbitrary function we mean any sufficiently
smooth function of its arguments.

The independent variable x ∈ Ω ⊆ R
n – a bounded or unbounded domain.

The partial derivatives of a smooth function v = v(x) are denoted by subscripts:

vi :=
∂v

∂xi
vij :=

∂2v

∂xi∂xj
,
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etc. We shall also assume summation over a repeated index. The Latin indices vary
from 1 to n, while the Greek ones – from 1 to m. The latter will denote collections
of functions, e.g. vα(x).

We introduce the total derivative operator

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · + uα
ii1i2...il

∂

∂uα
i1i2...il

+ . . .

where uα(x) are given functions. (See [1],[13].) If v ∈ Al, where the space Al was
defined in the introduction, then

Div =
∂v

∂xi
+ uα

i

∂v

∂uα
+ uα

ij

∂v

∂uα
j

+ · · · + uα
ii1i2...il

∂v

∂uα
i1i2...il

.

The Euler-Lagrange equations, corresponding to a functional

J [u] =
∫

Ω

L(x, uα, uα
(k))dx,

where L = L(x, uα, uα
(k)) ∈ Ak, are given by

Eα(L) =
∂L

∂uα
−Di

∂L

∂uα
i

+DiDj
∂L

∂uα
ij

+ · · · + (−1)kDi1Di2 . . . Dik

∂L

∂uα
i1i2...ik

= 0,

where the operator

Eα =
∂

∂uα
−Di

∂

∂uα
i

+DiDj
∂

∂uα
ij

+ · · ·+(−1)kDi1Di2 . . . Dik

∂

∂uα
i1i2...ik

+ . . . (2.1)

is the Euler operator. See [1],[13].
Further, let ξi, ηα ∈ Ak and consider the differential operator

X = ξi ∂

∂xi
+ ηα ∂

∂uα
.

The functions ξi and ηα are called infinitesimals of the Lie point transformation
gene-rated by X , that is the transformation

x∗j = x∗j (x, u, ε), u∗α = u∗α(x, u, ε),

where ε is a parameter and

ξi =
∂x∗i
∂ε

∣∣∣∣
ε=0

, ηα =
∂η∗α

∂ε

∣∣∣∣
ε=0

.

We associate to X its k-th order extension X(k) given by

X(k) = ξi ∂

∂xi
+ ηα ∂

∂uα
+ η

(1)α
i

∂

∂uα
i

+ · · · + η
(k)α
i1i2...ik

∂

∂uα
i1i2...ik

, (2.2)

where
η
(1)α
i = Diη

α − (Diξ
j)uα

j , i = 1, 2, . . . , n;

η
(l)α
i1i2...il

= Dil
η
(l−1)α
i1i2...il−1

− (Dil
ξj)uα

i1i2...il−1j ,
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with il = 1, 2, . . . , n for l = 2, 3, . . . , k, k = 2, 3, . . . . See [1],[13] for further de-
tails. The functions η(l)α

i1i2...il
are called extended infinitesimals. They can also be

determined by the general prolongation formula

η
(l)α
i1i2...il

= Di1Di2 . . . Dil
(ηα − ξiuα

i ) + ξiuα
i1i2...iki. (2.3)

([13, page 113].)
For any smooth uα, vα and L = L(x, uα, uα

(k)) ∈ Ak we define:

Wj [u, v] = vα

[
∂L

∂uα
j

+ . . . (−1)k−1Di1Di2 . . . Dik−1

∂L

∂uα
ji1i2...ik−1

]

+ (Di1v
α)

[
∂L

∂uα
i1j

+ · · · + (−1)k−2Di2Di3 . . . Dik−1

∂L

∂uα
i1ji2...ik−1

]

+ · · · + (Di1Di2 . . .Dik−1v
α)

∂L

∂uα
i1i2...ik−1j

, (2.4)

(see [1, pages 254–255]). In particular, ifm = k = 1, then, by (2.4),Wi[u, v] = v ∂L
∂ui

.
The introduced notions play an important role in the calculus of variations,

in particular in the Noether’s theorem [12] on conservation laws. We point out,
however, that these objects are defined for arbitrary smooth functions ξi, ηα and
L which, in general, need not be concerned with any variational setting. This fact
is manifested by the Noether identity which makes the proof of Noether’s theorem
‘purely algebraic’.

3. The Noether Identity

In this section we prove the Noether identity (1.1). We shall use induction on k –
the number of the derivatives of uα which appear in the function L ∈ Ak.

(i) Let k = 1, m = 1, u1 = u and L = L(x, u,∇u) - arbitrary function of x, u
and the first derivatives of u.

Consider the differential operator

X = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
,

where ξi and η are arbitrary functions of x and u. The first order extension of X
is given by

X(1) = ξi ∂

∂xi
+ η

∂

∂u
+ (Diη − ujDiξ

j)
∂

∂ui
.

See Section 2. Then

X(1)L+ LDiξ
i = ξi ∂L

∂xi
+ η

∂L

∂u
+Diη

∂L

∂ui
− ujDiξ

j ∂L

∂ui
+ LDiξ

i. (3.1)

On the other hand, let

E(L) =
∂L

∂u
−Dl

∂L

∂ul
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be the Euler operator. We calculate

E(L)(η − ujξ
j) +Di[Lξi +

∂L

∂ui
(η − ujξ

j)]

= η
∂L

∂u
− ηDl

∂L

∂ul
− ujξj

∂L

∂u
+ ujξ

jDl
∂L

∂ul

+LDiξ
i + ξiDiL+ (Di

∂L

∂ui
)(η − ujξ

j) +
∂L

∂ui
Diη − ∂L

∂ui
Di(ujξ

j)

= η
∂L

∂u
− ηDl

∂L

∂ul
− ujξj

∂L

∂u
+ ujξ

jDl
∂L

∂ul
+ LDiξ

i

+ξi ∂L

∂xi
+ ξiui

∂L

∂u
+ ξiuil

∂L

∂ul
+ ηDi

∂L

∂ui

−ujξ
jDi

∂L

∂ui
+
∂L

∂ui
Diη − ∂L

∂ui
ξjuij − ∂L

∂ui
ujDiξ

j ,

that is,

E(L)(η − ujξ
j) +Di[Lξi +

∂L

∂ui
(η − ujξj)] = η

∂L

∂u
+ LDiξ

i

+ξi ∂L

∂xi
+
∂L

∂ui
Diη − ∂L

∂ui
ujDiξ

j .

(3.2)

Then, (3.1) and (3.2) imply:

X(1)L+ LDiξ
i = E(L)(η − ujξ

j) +Di[Lξi +
∂L

∂ui
(η − ujξj)]. (3.3)

The identity (3.3) can be easily generalized for an arbitrary number m of
functions uα, α = 1, 2, . . . ,m, and arbitrary ξi(x, uα), i = 1, 2, . . . , n, ηα(x, uα) and
L depending on x, uα and the first derivatives of uα - just repeat the preceding
calculation with uα in the place of u. In this way the identity (3.3) assumes the
form:

X(1)L+ LDiξ
i = Eα(L)(ηα − uα

j ξ
j) +Di[Lξi +

∂L

∂uα
i

(ηα − uα
j ξ

j)] (3.4)

which is (1.1) for k = 1.

(ii) Now we suppose that (1.1) holds for any L = L(k) ∈ Ak:

X(k)L(k)+L(k)Diξ
i = E(k)

α (L(k))(ηα−uα
j ξ

j)+Di[L(k)ξi+W (k)
i [u, η−ujξ

j ]]. (3.5)

We have to prove that (1.1) holds for L = L(k+1) ∈ Ak+1.
By Definitions (2.1), (2.2) and (2.4) one can obtain the following recurent

relations:

X(k+1) = X(k) + η
(k+1)α
i1i2...ik+1

∂

∂uα
i1i2...ik+1

, (3.6)
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W
(k+1)
i [u, v] = W

(k)
i [u, v] + (−1)kvαDi1 . . . Dik

∂L(k+1)

∂uα
ii1...ik

+(−1)(k−1)(Di1v
α)Di2 . . . Dik

∂L(k+1)

∂uα
i1ii2...ik

+ . . .

−(Di1 . . . Dik−1v
α)Dik

∂L(k+1)

∂uα
i1...ik−1iik

+(Di1 . . . Dik
vα)

∂L(k+1)

∂uα
i1...iki

(3.7)

and

E(k+1)
α (L(k+1)) = E(k)

α (L(k)) + (−1)k+1Di1 . . . Dik
Dik+1

∂L(k+1)

∂uα
i1...ikik+1

. (3.8)

In (3.5) and (3.7) the notation W (l) means that in the formula (2.4) for Wl the
function L = L(l) ∈ Al. Similarly, in the left-hand side of (3.8) the Euler operator
is applied to L = L(k+1) ∈ Ak+1, while in the right-hand side of (3.8) the Euler
operator is applied to the same L ∈ Ak+1 but viewed as a function L(k) ∈ Ak, the
(k + 1)-th derivatives of uα being considered parameters.

Then by (2.3), (3.5) and (3.6) we have

X(k+1)L(k+1) + L(k+1)Diξ
i = X(k)L(k) + L(k)Diξ

i + η
(k+1)α
i1i2...ik+1

∂L(k+1)

∂uα
i1i2...ik+1

= E
(k)
α (L(k))vα +Di[L(k)ξi +W

(k)
i [u, v]]

+(Di1 . . .Dik
Dik+1v

α) ∂L(k+1)

∂uα
i1...ikik+1

+ ξiuα
ii1...ikik+1

∂L(k+1)

∂uα
i1...ikik+1

(3.9)
where vα = ηα − uα

j ξ
j .

On the other hand

E(k+1)
α (L(k+1))vα +Di[L(k+1)ξi +W

(k+1)
i [u, v]] = E(k)

α (L(k))vα

+(−1)k+1vαDi1 . . .Dik
Dik+1

∂L(k+1)

∂uα
i1...ikik+1

+Di[L(k+1)ξi]

+DiW
(k)
i [u, v] +Di

{
(−1)kvαDi1 . . . Dik

∂L(k+1)

∂uα
ii1...ik

(3.10)

+ (−1)(k−1)(Di1v
α)Di2 . . . Dik

∂L(k+1)

∂uα
i1ii2...ik

+ . . .

− (Di1 . . . Dik−1v
α)Dik

∂L(k+1)

∂uα
i1...ik−1iik

+ (Di1 . . . Dik
vα)

∂L(k+1)

∂uα
i1...iki

}
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by (3.7) and (3.8). Performing the differentiation of the expression in braces in
(3.10), most of the resulting terms cancel. Then from (3.10) and using

Di[L(k+1)ξi] = Di[L(k)ξi] + ξiuα
ii1...ikik+1

∂L(k+1)

∂uα
i1...ikik+1

we obtain

E
(k+1)
α (L(k+1))vα +Di[L(k+1)ξi +W

(k+1)
i [u, v]] = E

(k)
α (L(k))vα +Di[L(k)ξi

+W (k)
i [u, v]] +Di1 . . .Dik

Dik+1
∂L(k+1)

∂uα
i1...ikik+1

+ ξiuα
ii1...ikik+1

∂L(k+1)

∂uα
i1...ikik+1

.

(3.11)
From (3.9) and (3.11) it follows that

X(k+1)L(k+1) + L(k+1)Diξ
i = E(k+1)

α (L(k+1))vα +Di[L(k+1)ξi +W
(k+1)
i [u, v]],

which completes the proof.

4. Applications

In this section we present several examples of nonlinear differential equations and
systems for which we establish the corresponding Pokhozhaev identity. The cal-
culations of the extended infinitesimals determining the prolongations of the con-
sidered operators X are omitted since this is a straightforward substitution of the
coefficients of X into the formulae stated in Section 2. Furthermore, for the same
reason, only the final simplified form of X(k)L+LDiξ

i is presented. We note that
the group parameter λ which we shall use in this section and the parameter ε in
Section 2 are related by λ = exp[ε]. Hence ε = 0 corresponds to λ = 1.

4.1. Poisson equations

For the sake of completeness we shall obtain here the 1965 Pokhozhaev’s identity
[14] for the equation

∆u+ f(u) = 0 (4.1)
in a bounded domain Ω ⊂ Rn, n ≥ 3, with homogeneous Dirichlet condition

u = 0 (4.2)

on ∂Ω. The corresponding Function of Lagrange is

L =
1
2
u2

j − F (u), F (u) =
∫ u

0

f(z)dz.

We consider the dilation

X = xi
∂

∂xi
+

2 − n

2
u
∂

∂u
.

Then
ξi = xi, η =

2 − n

2
u.
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The first order extension of X is given by

X(1) = xi
∂

∂xi
+

2 − n

2
u
∂

∂u
− n

2
ui

∂

∂ui
.

By a straightforward calculation

X(1)L+ LDiξ
i =

n− 2
2

uf(u) − nF (u). (4.3)

Then by (3.3), (4.2), (4.3) and the divergence theorem, we obtain easily∫
Ω

[
n− 2

2
uf(u)− nF (u)]dx = −1

2

∫
∂Ω

|∇u|2(x, ν)ds,

where ν is the outward unit normal to ∂Ω.
Before concluding this subsection we would like to comment on the choice of

the operator X .
We note that the one parameter Lie group of point transformations generated

by

Y = xi
∂

∂xi
+

2
1 − p

u
∂

∂u

is a symmetry of the equation

∆u+ up = 0,

as it can be easily verified. Moreover, by a direct calculation one can show that it
is a variational symmetry of this equation, that is

Y (1)L+ LDiξi = 0,

if and only if

p =
n+ 2
n− 2

,

the critical Sobolev exponent. With this choice of p, the operator Y is exactly
the conformal vector field X used above to obtain the 1965 Pokhozhaev’s identity.
In the next subsections we shall choose critical values of the coefficients of the
operator X using similar heuristic arguments.

4.2. Elliptic potential systems

The next example is the following potential system of m equations


−∆u1 = c1Fu1(u1, u2, . . . , um),
−∆u2 = c2Fu2(u1, u2, . . . , um),

...
...

−∆um = cmFum(u1, u2, . . . , um),

(4.4)

in a bounded domain Ω ⊂ R
n, n ≥ 3, with the Dirichlet boundary condition

u1 = u2 = · · · = um = 0 (4.5)
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on ∂Ω. We shall suppose that the real constants cα �= 0 for all α = 1, . . . ,m and
that F (0, . . . , 0) = 0. The case c1 = · · · = cm = 1 has been treated in [16] by Pucci
and Serrin.

This system has a variational structure and its Function of Lagrange is given
by

L =
1

2cα
(uα

j )2 − F (u1, u2, . . . , um).

The dilation {
x∗j = λxj ,

u∗α = λ(2−n)/2uα,

has infinitesimals {
ξj = xj ,

ηα = (2−n)
2 uα,

and its first order generator is given by

X(1) = xi
∂

∂xi
+

2 − n

2
uα ∂

∂uα
− n

2
uα

i

∂

∂uα
i

.

Then

X(1)L+ LDiξ
i =

n− 2
2

uαFuα − nF (u1, u2, . . . , um). (4.6)

Finally, by (3.4), (4.5), (4.6) and the divergence theorem, we obtain the following
identity:

∫
Ω

[
n− 2

2
uαFuα − nF (u1, . . . , um)]dx = − 1

2cα

∫
∂Ω

|∇uα|2(x, ν)ds.

If c1 = · · · = cm = 1 the above identity is well known.
We emphasize that some of the constants cα might be negative. E.g in the

special case m = 2, u1 = u, u2 = v for the system
{ −∆u = Fu(u, v),

∆v = Fv(u, v),

whose Lagrangian is given by

L =
1
2
|∇u|2 − 1

2
|∇v|2 − F,

the variational identity reads
∫

Ω

[
n− 2

2
(uFu + vFv) − nF (u, v)]dx =

1
2

∫
∂Ω

(|∇v|2 − |∇u|2)(x, ν)ds.
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4.3. Elliptic Hamiltonian systems

Our third example is the semilinear Hamiltonian system of 2m equations


−∆u1 = Hv1(u1, . . . , um, v1, . . . , vm),
−∆v1 = Hu1(u1, . . . , um, v1, . . . , vm),

...
...

−∆um = Hvm(u1, . . . , um, v1, . . . , vm),
−∆vm = Hum(u1, . . . , um, v1, . . . , vm),

(4.7)

in Ω with the homogeneous Dirichlet boundary conditions on ∂Ω. Clearly, its
variational structure is determined by the following Function of Lagrange:

L = uα
j v

α
j −H(u1, . . . , um, v1, . . . , vm).

Further, the dilation 


x∗j = λxj ,

u∗α = λaα(2−n)/2uα,

v∗α = λbα(2−n)/2vα,

where aα and bα are real numbers such that

aα + bα = 2,

has infinitesimals 


ξj = xj ,

ηα = aα(2−n)
2 uα,

φα = bα(2−n)
2 vα.

(Note that in the expressions aαuα and bαvα above there is no summation!)
Its first order generator is:

X(1) = xi
∂

∂xi
+
aα(2 − n)

2
uα ∂

∂uα
+
bα(2 − n)

2
vα ∂

∂vα
−Aαn

2
uα

i

∂

∂uα
i

− Bαn

2
vα

i

∂

∂vα
i

,

where Aα = (2 − n)aα − 2, Bα = (2 − n)bα − 2 and the summation over α is
assumed again. We have

X(1)L+ LDiξ
i =

n− 2
2

(aαuαHuα + bαvαHvα) − nH. (4.8)

Then by (3.4), (4.8), the boundary conditions and the divergence theorem, we
obtain∫

Ω

[
n− 2

2
(aαuαHuα + bαuαHvα) − nH ]dx = −

∫
∂Ω

∂uα

∂ν

∂vα

∂ν
(x, ν)ds,

where aα + bα = 2, α = 1, . . . ,m.
In particular if m = 1, u1 = u and v1 = v, the resulting identity for the

system { −∆u = Hv(u, v),
−∆v = Hu(u, v),
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in Ω with the homogeneous Dirichlet boundary conditions on ∂Ω is as follows:∫
Ω

[
n− 2

2
(auHu + bvHv) − nH(u, v)]dx = −

∫
∂Ω

∂u

∂ν

∂v

∂ν
(x, ν)ds.

Up to notation, the latter identity is exactly the formula (3.5) on [11, page 137].
Thus we can recover immediately the corresponding nonexistence result of Miti-
dieri [11, page 136].

We observe that the approach applies to more general Hamiltonian systems
of type: {

Lu = Hv(u, v),
L∗v = Hu(u, v),

where L is a linear higher order elliptic operator in divergence form and L∗ is its
formally adjoint operator.

4.4. Mixed elliptic systems

In this subsection we shall obtain the Pokhozhaev’s identity for the following mixed
Hamiltonian-potential system consisting of 2m+ r equations



−∆u1 = Hv1 ,
−∆v1 = Hu1

...
...

−∆um = Hvm ,
−∆vm = Hum ,
−∆w1 = c1Hw1 ,

...
...

−∆wr = crHwr ,

(4.9)

in Ω with homogeneous Dirichlet boundary conditions:

uα = vα = wβ = 0 (4.10)

on ∂Ω. Here H = H(u1, . . . , um, v1, . . . , vm, w1, . . . , wr), H(0, . . . , 0) = 0 and the
constants cβ �= 0 for all β = 1, . . . , r.

The Function of Lagrange of (4.9) is given by

L = uα
j v

α
j +

1
2cβ

(wβ
j )2 −H(u1, . . . , um, v1, . . . , vm, w1, . . . , wr).

The dilation 


x∗j = λxj ,

u∗α = λaα(2−n)/2uα,

v∗α = λbα(2−n)/2vα,

w∗β = λ(2−n)/2wβ ,

where the real numbers a and b satisfy

aα + bα = 2,
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has infinitesimals 


ξj = xj ,

ηα = aα(2−n)
2 uα,

φα = bα(2−n)
2 vα,

ψβ = 2−n
2 wβ .

(Note that in the expressions aαuα and bαvα above there is no summation!)
Its first order generator is

X(1) = xi
∂

∂xi
+
aα(2 − n)

2
uα ∂

∂uα
+
bα(2 − n)

2
vα ∂

∂vα
+

2 − n

2
wβ ∂

∂wβ

−A
αn

2
uα

i

∂

∂uα
i

− Bαn

2
vα

i

∂

∂vα
i

− n

2
wβ

i

∂

∂wβ
i

,
(4.11)

where Aα = (2 − n)aα − 2, Bα = (2 − n)bα − 2 and the summation over α is
assumed again. We have

X(1)L+ LDiξ
i =

n− 2
2

(aαuαHuα + bαvαHvα + wβHwβ ) − nH. (4.12)

Then by (3.4), (4.10), (4.12) and the divergence theorem, we obtain
∫

Ω

[
n− 2

2
(aαuαHuα + bαvαHvα + wβHwβ ) − nH ]dx

= −
∫

∂Ω

[
∂uα

∂ν

∂vα

∂ν
+

1
2cβ

|∇wβ |2](x, ν)ds,

where aα + bα = 2, α = 1, . . . ,m, β = 1, . . . r, H = H(u1, . . . , um, v1, . . . , vm,
w1, . . . , wr).

In particular if m = 1, r = 1, u1 = u, v1 = v and w1 = w, the resulting
identity for the system




−∆u = Hv(u, v, w),
−∆v = Hu(u, v, w),
−∆w = cHw(u, v, w),

in Ω with the homogeneous Dirichlet boundary conditions reads:
∫

Ω

[
n− 2

2
(auHu + bvHv + wHw) − nH(u, v, w)]dx

= −
∫

∂Ω

[
∂u

∂ν

∂v

∂ν
+

1
2c

|∇w|2](x, ν)ds,

where a+ b = 2 and the constant c �= 0.
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4.5. Unbounded Hamiltonian systems

In [4] Clément, Felmer and Mitidieri obtained some results concerning the existence
of positive periodic and of homoclinic solutions to Hamiltonian systems of the type{

ut − ∆u = Hv(u, v),
−vt − ∆v = Hu(u, v), (4.13)

in Ω × R and u = v = 0 on ∂Ω × R. (Here Ω is a bounded domain in R
n, n ≥ 1

and H(0, 0) = Hu(0, 0) = Hv(0, 0) = 0.) Further a Pokhozhaev type identity was
established in [5].

Our purpose is to obtain the corresponding Pokhozhaev’s identity using the
Noether approach.

To begin with, we observe that (4.13) has a variational structure determined
by the following Function of Lagrange:

L =
1
2
vut − 1

2
uvt + ujvj −H(u, v).

Indeed, the Euler operator

E1 =
∂

∂u
−Dt

∂

∂ut
−Di

∂

∂ui

applied to L gives

E1(L) = −1
2
vt −Hu −Dt(

1
2
v) −Divi = −vt − ∆v −Hu = 0,

which is the second equation of (4.13). Similarly

E2(L) =
(
∂

∂v
−Dt

∂

∂vt
−Di

∂

∂vi

)
L

=
1
2
ut −Hv −Dt(−1

2
u) −Diui = ut − ∆u−Hv = 0,

which is the first equation of (4.13). We note that the total derivative operators
in this case read

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utt

∂

∂ut
+ utj

∂

∂uj
+ vtt

∂

∂vt
+ vtj

∂

∂vj
. . .

and

Di =
∂

∂xi
+ ui

∂

∂u
+ vi

∂

∂v
+ uit

∂

∂ut
+ uij

∂

∂uj
+ vit

∂

∂vt
+ vij

∂

∂vj
. . . .

We now consider a dilation


x∗j = λxj ,
t∗ = λ2t,
u∗ = λAu,
v∗ = λBv,
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where the constants A and B will be specified later. Clearly its generator X has
infinitesimals 



ξj = xj ,
φ = 2t,
η1 = Au,
η2 = Bv.

By (2.2) the first order extension of X is given by

X(1) = xi
∂

∂xi
+ 2t

∂

∂t
+Au

∂

∂u
+Bv

∂

∂v

+(A− 2)ut
∂

∂ut
+ (A− 1)ui

∂

∂ui
+ (B − 2)vt

∂

∂vt
+ (B − 1)vi

∂

∂vi
.

(4.14)
Then, after some work, we calculate

X(1)L+ L(Dtφ+Diξ
i) =

1
2
(A+B + n)[vut − uvt + uivi]

−AuHu −BvHv − (n+ 2)H(u, v).
(4.15)

Choosing A = −an, B = −bn, where a+ b = 1, in the above equality, we obtain

X(1)L+ L(Dtφ+Diξ
i) = n(auHu + bvHv) − (n+ 2)H(u, v).

Hence, from the boundary conditions and the divergence theorem, we finally obtain

n

∫
Ω

(auHu + bvHv)dx− (n+ 2)
∫

Ω

H(u, v)dx

=
d

dt

∫
Ω

[2t(uivi −H(u, v)) +
n

2
(b− a)uv +

1
2
uvixi − 1

2
vuixi]dx

−
∫

∂Ω

[
∂u

∂ν

∂v

∂ν
(x, ν) + 2tut

∂v

∂ν
+ 2tvt

∂u

∂ν
]ds,

(4.16)

where a+ b = 1 and we have taken into account the vanishing of u and v on ∂Ω.

4.6. Unbounded Hamiltonian systems involving polyharmonic operators

In this subsection we state the Pokhozhaev identity for the more general problem
of higher order: {

ut + (−1)k∆ku = Hv(u, v),
−vt + (−1)k∆kv = Hu(u, v),

with Navier boundary conditions

u = ∆u = · · · = ∆k−1u = v = ∆v = · · · = ∆k−1v = 0

on ∂Ω.
In order not to increase the volume of this paper we shall not present the

corresponding details merely pointing out the following main points:
– we suppose that k ≥ 2 is an even number (the case k odd can be treated in

a similar way);
– we follow the approach in [3] and use similar formulae to those obtained there;
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– the Function of Lagrange for the considered problem is given by

L =
1
2
vut − 1

2
uvt + (∆k/2u)(∆k/2v) −H(u, v);

– the used dilation has infinitesimals


ξj = xj ,
φ = 2k t,
η1 = −an u,
η2 = −bn v,

where the constants a and b are such that a+ b = 1. The corresponding k-th
order extension is given by

X(k) = xi
∂

∂xi
+ 2kt

∂

∂t
− an u

∂

∂u
− bn v

∂

∂v

−(an+ 2k)ut
∂

∂ut
− (an+ 1)ui

∂

∂ui
− (bn+ 2k)vt

∂

∂vt
− (bn+ 1)vi

∂

∂vi

−(an+ 2)uij
∂

∂uij
− (bn+ 2)vij

∂

∂vij
− . . .

−(an+ k)ui1...ik

∂

∂ui1...ik

− (bn+ k)vi1...ik

∂

∂vi1...ik

− . . .

(4.17)

Then after some tedious work we obtain the following Pokhozhaev identity:∫
Ω

(auHu + bvHv)dx − (n+ 2k)
∫

Ω

H(u, v)dx

=
d

dt

∫
Ω

[2kt ((∆k/2u)(∆k/2v) −H(u, v)) +
n

2
(b− a)uv +

1
2
uvixi − 1

2
vuixi]dx

+
∫

∂Ω

[(x, ν)
k−1∑
l=0

∂

∂ν
(∆lu).

∂

∂ν
(∆k−1−lv)

+ 2kt
k/2−1∑

l=0

(∆lut).
∂

∂ν
(∆k−1−lv) + 2kt

k/2−1∑
l=0

(∆lvt).
∂

∂ν
(∆k−1−lu)]ds

with a + b = 1 and Navier boundary conditions. In the case k = 2 this identity
reads

n

∫
Ω

(auHu + bvHv)dx− (n+ 4)
∫

Ω

H(u, v)dx

=
d

dt

∫
Ω

[4t(∆u∆v −H(u, v)) +
n

2
(b− a)uv +

1
2
uvixi − 1

2
vuixi]dx

+
∫

∂Ω

[
∂u

∂ν

∂

∂ν
(∆v) +

∂v

∂ν

∂

∂ν
(∆u) + 4tut

∂

∂ν
(∆v) + 4tvt

∂

∂ν
(∆u)](x, ν)ds,

where a+ b = 1 and u = v = ∆u = ∆v = 0 on ∂Ω.
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4.7. Hyperbolic Hamiltonian systems

In this subsection we consider the nonlinear hyperbolic system of Hamiltonian
type {

utt − ∆u+Hv(u, v) = 0,
vtt − ∆v +Hu(u, v) = 0 (4.18)

in Ω × R with the homogeneous Dirichlet boundary conditions on ∂Ω × R. Its
Function of Lagrange is defined as follows:

L = utvt − ujvj −H(u, v).

In order to obtain the Pokhozhaev’s identity for (4.18) we introduce the
operator X , which is the infinitesimal generator of the dilation



x∗j = λxj ,
t∗ = λt,

u∗ = λa(1−n)/2u,
v∗ = λb(1−n)/2v,

where the real numbers a and b are such that

a+ b = 2.

Clearly X has infinitesimals 


ξj = xj ,
φ = t,

η1 = a(1−n)
2 u,

η2 = b(1−n)
2 v.

The first order extension of X is given by

X(1) = xi
∂

∂xi
+ t

∂

∂t
+
a(1 − n)

2
u
∂

∂u
+
b(1 − n)

2
v
∂

∂v

+
A

2
ut

∂

∂ut
+
A

2
ui

∂

∂ui
+
B

2
vt

∂

∂vt
+
B

2
vi

∂

∂vi
,

where A = (1 − n)a− 2 and B = (1 − n)b − 2. Then

X(1)L+ L(Dtφ+Diξ
i) =

n− 1
2

(auHu + bvHv) − (n+ 1)H(u, v). (4.19)

Then by (3.4), (4.19), the boundary conditions and the divergence theorem, we
obtain

d

dt

∫
Ω

[te(u, v) + (xjujvt + xjvjut) +
n− 1

2
(auvt + bvut)]dx

=
∫

Ω

[(n+ 1)H(u, v) − n− 1
2

(auHu + bvHv)]dx

+
∫

∂Ω

[(utvt +
∂u

∂ν

∂v

∂ν
)(x, ν) + tut

∂v

∂ν
+ tvt

∂u

∂ν
]ds,

where e(u, v) is the energy (density)

e(u, v) = utvt + uivi +H(u, v).
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Let Ω be a ball of radius R and centre at the origin of R
n. If we assume for

(u, v) appropriate vanishing conditions as R → ∞ then we obtain the following
conformal identity for the nonlinear hyperbolic system (4.18):

d
dt

∫
[te(u, v) + (xjujvt + xjvjut) +

n− 1
2

(auvt + bvut)]dx

=
∫

[(n+ 1)H(u, v) − n− 1
2

(auHu + bvHv)]dx,

where a+ b = 2 and the integration is performed over the whole R
n.

The established identities generalize to systems the Morawetz’s dilational
identity for nonlinear wave equations presented and discussed by Strauss in [21].

4.8. Hyperbolic Hamiltonian Euler-Bernoulli systems involving polyharmonic
operators

In this subsection we apply the Noether approach to the following problem{
utt + (−1)k∆ku+Hv(u, v) = 0,
vtt + (−1)k∆kv +Hv(u, v) = 0

with Navier boundary conditions on ∂Ω:

u = ∆u = · · · = ∆k−1u = v = ∆v = · · · = ∆k−1v = 0.

The latter problem is related to that in the preceding section. If k = 2 then
this is a generalization to Hamiltonian systems of the Euler-Bernoulli equation

utt + ∆2u = 0

describing the transverse oscillations of plates. This equation has been extensively
studied, among others, by Lasiecka and Triggiani (see [9] and the refernces therein).

Using the Function of Lagrange (for k even)

utvt − (∆k/2u)(∆k/2v) −H(u, v),

the dilation 


x∗j = λxj ,
t∗ = λkt,

u∗ = λa(k−n)u,

v∗ = λb(k−n)v,

where the real numbers a and b are such that a+ b = 1 and

X(k) = xi
∂

∂xi
+ kt

∂

∂t
+ a(k − n)u

∂

∂u
+ b(k − n)v

∂

∂v

+ (a(k − n) − k)ut
∂

∂ut
+ (a(k − n) − 1)ui

∂

∂ui

+ (b(k − n) − k)vt
∂

∂vt
+ (b(k − n) − 1)vi

∂

∂vi

+ · · · + (a(k − n) − k)ui1...ik

∂

∂ui1...ik

+ (b(k − n) − k)vi1...ik

∂

∂vi1...ik

− . . . ,
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and the same assumptions and the approach as in Subsection 4.6, we obtain the
following Pokhozhaev identity:

(n− k)
∫

Ω

(auHu + bvHv)dx − (n+ k)
∫

Ω

H(u, v)dx

= − d
dt

∫
Ω

[kt e(u, v) + (n− k)(auvt + bvut) + utvixi + vtuixi]dx

+
∫

∂Ω

[(utvt −
k−1∑
l=0

∂

∂ν
(∆lu).

∂

∂ν
(∆k−1−lv))(x, ν)

− kt

k/2−1∑
l=0

(∆lut).
∂

∂ν
(∆k−1−lv) − kt

k/2−1∑
l=0

(∆lvt).
∂

∂ν
(∆k−1−lu)]ds

with Navier boundary conditions, a+ b = 1 and

e(u, v) = utvt + (∆k/2u)(∆k/2v) +H(u, v)

is the higher order energy density.
If Ω is a ball of radius R and centre at the origin of R

n as in the preceding
section we obtain the following conformal identity for the considered nonlinear
hyperbolic system involving the polyharmonic operator:

d

dt

∫
[kt e(u, v) + (n− k)(auvt + bvut) + utvixi + vtuixi]dx

=
∫

[(n+ k)H(u, v) + (k − n)(auHu + bvHv)]dx,

where a+ b = 1 and the integration is performed over the whole R
n.

4.9. Giga-Kohn equations

The semilinear partial differential equation

−∆w +
1
2
yiwi + βw = wp (4.20)

was studied by Giga and Kohn in [8]. Here w = w(y) is a positive function of
y ∈ R

n, p > 1 is a real number and β = 1/(p− 1). This equation can be written
in a divergence form as follows:

−Div(ρ∇w) + βρw = ρwp,

where ρ = exp(−|y|2/4), |y|2 = y2
i = Σn

i=1y
2
i . Hence the corresponding Function

of Lagrange is given by

L =
1
2
ρw2

j +
β

2
ρw2 − 1

p+ 1
ρwp+1.

Indeed, by (2.1) the Euler-Lagrange equation for L is

E(L) =
∂L

∂w
−Di

∂L

∂wi
= βρw − ρwp −Di(e−|y|2/4wi) = 0

which is (4.20) multiplied by ρ > 0.
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Now we consider the operator

X = ξi ∂

∂xi
+ η

∂

∂w

with infinitesimals

ξi = −yi, η =
(

n

p+ 1
− 1

2(p+ 1)
|y|2

)
w.

The first order extension X(1) of X is given by

X(1) = −yi
∂

∂xi
+

(
n

p+ 1
− 1

2(p+ 1)
|y|2

)
w
∂

∂w

+
[(

n

p+ 1
+ 1 − 1

2(p+ 1)
|y|2

)
wi − 1

p+ 1
yiw

]
∂

∂wi
.

Then, after a not very tedious calculation, we obtain
∫

[X(1)L+ LDiξ
i]dy =

(
n

p+ 1
+

2 − n

2

) ∫
ρ|∇w|2dy

+
1
2

(
1
2
− 1
p+ 1

) ∫
ρ|y|2|∇w|2dy,

(4.21)

where the integration on R
n is justified as in [8] due to the presence of the factor

ρ.
The identity (4.21) is exactly the identity established by Giga and Kohn

in [8]. In fact, the exact form of the corresponding Pokhozhaev identity is that
obtained by choosing ξi = −yi and η = (n/(p + 1))w, which is an identity also
obtained and used in [8] to get (4.21).
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