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We present a pedagogical overview of the nonperturbative mechanism that endows gluons with
a dynamical mass. This analysis is performed based on pure Yang–Mills theories in the Landau
gauge, within the theoretical framework that emerges from the combination of the pinch technique
with the background field method. In particular, we concentrate on the Schwinger–Dyson equation
satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions
within the infrared region. The role of seagull diagrams receives particular attention, as do the
identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity
of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order
to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles
in maintaining the Becchi–Rouet–Stora–Tyutin symmetry at every step of the mass-generating
procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its
solutions are determined numerically following implementation of a set of simplifying assumptions.
The obtained mass function is positive definite, and exhibits a power law running that is consistent
with general arguments based on the operator product expansion in the ultraviolet region. A possible
connection between confinement and the presence of an inflection point in the gluon propagator is
briefly discussed.
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1 Introduction

The assertion that quantum chromodynamic (QCD)
interactions endow the gluon with an effective mass
through a subtle mechanism that respects gauge invari-
ance [1] is conceptually intriguing and has far-reaching
theoretical and phenomenological implications [2–6]. Al-
though the necessity for resolution of the infrared di-
vergences appearing in the theory through production
of such a mass seems more than evident, establishing a
specific, self-consistent realization of this scenario is a
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notoriously complex task [7–11]. In fact, the purely non-
perturbative character of the problem is compounded by
the need to demonstrate, at every step, the compatibility
of any proposed mechanism with the crucial concepts of
gauge invariance and renormalizability.

The notion that gluons acquire a dynamical,
momentum-dependent mass due to their self-interactions
was originally put forth in the early 1980s [1, 12, 13], but
has only gained particular impetus relatively recently;
this is primarily the result of the continuous accumula-
tion of indisputable evidence from large-volume lattice
simulations, both for SU(3) [14–17] and SU(2) [18–21].
As shown in Fig. 1, according to these high-quality sim-
ulations, the Landau gauge gluon propagator saturates
at a nonvanishing value in the deep infrared range, a fea-
ture that corresponds to an unequivocal signal of gluon
mass generation [22] (for related but somewhat different
approaches to this issue, see Refs. [23–41]).

The primary theoretical concept underlying this en-
tire topic is none other than Schwinger’s fundamental
observation [42, 43]. That is, a gauge boson may acquire
mass even if the gauge symmetry forbids a mass term at
the level of the fundamental Lagrangian, provided that
its vacuum polarization function develops a pole at zero
momentum transfer. In this paper, which is based upon
a brief series of lectures [44], we outline the implementa-
tion of this fascinating concept in QCD, using the general
formalism of the Schwinger-Dyson equations (SDEs) [24,
45]. In particular, we focus on a variety of subtle concep-
tual issues, and explain how they can be self-consistently
addressed within a particularly suitable framework that
has been developed in recent years.

The present work is organized as follows. In Section 1,
we present the main characteristics and advantages of the
new SDE framework that emerges from the combination
of the pinch technique (PT) [1, 46–49] with the back-
ground field method (BFM) [50, 51], which is simply re-
ferred to as “PT-BFM” [52–54]. In Section 2, we conduct
a detailed study of the special identity that enforces the

masslessness of the gluon propagator when the Schwinger
mechanism is non-operational, and demonstrate conclu-
sively that the seagull graph is not responsible for the
mass generation, nor does it give rise to quadratic di-
vergences once such a mass has been generated [55]. In
Section 3, we explain how the massless poles required for
the implementation of the Schwinger mechanism enter
the treatment of the gluon SDE, and why their inclu-
sion is crucial for maintaining the Becchi–Rouet–Stora–
Tyutin (BRST) symmetry of the theory in the presence
of a dynamical gluon mass [56]. Then, in Section 4, we
derive the “gluon gap equation” [57], namely, the homo-
geneous integral equation that governs the dependence of
the gluon mass function on the momentum. In Section
5, we proceed to the numerical treatment of this equa-
tion, and discuss its compatibility with some basic field-
theoretic criteria. Finally, we present our conclusions in
Section 6.

2 General considerations

In this section, we present a general overview of the con-
ceptual and technical tools necessary for the analysis that
follows.

2.1 Preliminaries

The Lagrangian density of the SU(N) Yang–Mills theory
can be expressed as the sum of three terms:

L = LYM + LGF + LFPG. (2.1)

The first term represents the gauge covariant action,
which is usually expressed in terms of the field strength
of the gluon field A

LYM = −1
4
F a

μνFμν
a ;

F a
μν = ∂μAa

ν − ∂νAa
μ + gfabcAb

μAc
ν , (2.2)

Fig. 1 The SU(3) (a) and SU(2) (b) gluon propagator Δ measured on the lattice. Lattice data are from Refs. [14, 15]
[SU(3)] and Ref. [21] [SU(2)].
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with g being the strong coupling constant, a =
1, . . . , N2 − 1 the color indexes and fabc the totally an-
tisymmetric SU(N) structure constants.

The last two terms in Eq. (2.1) represent the gauge-
fixing and Faddev-Popov ghost terms, respectively. The
most general means of expressing these terms is by in-
troducing a gauge-fixing function Fa and coupling it to
a set of Lagrange multipliers ba (the so-called Nakanishi-
Lautrup multipliers [58, 59]); one then obtains

LGF + LFPG = s

[
caFa − ξ

2
caba

]
. (2.3)

In the equation above, ca (and, respectively, ca appear-
ing below) are the antighost (ghost) fields, whereas ξ is
a non-negative gauge-fixing parameter. Finally, s is the
BRST operator [60, 61], which acts on the various fields
according to

sAa
μ = Dab

μ cb; sca = −1
2
fabccbcc;

sc̄a = ba; sba = 0, (2.4)

with the adjoint covariant derivative D defined as

Dab
μ = ∂μδab + gfacbAc

μ. (2.5)

Note that the ba fields have no dynamical content and
can be eliminated through their trivial equations of mo-
tion.

There are two gauge classes that have been found to
be particularly relevant for what follows. In the so-called
renormalizable ξ (abbreviated as Rξ) gauges, one chooses
[62]

Fa = ∂μAa
μ. (2.6)

The Landau gauge, which is almost exclusively used in
this analysis, is a particular case of this gauge class and
corresponds to ξ = 0.

BFM Rξ gauges [50, 51] are also central to the method-
ology described here. The conventional means of obtain-
ing these gauges is to split the gauge field into back-
ground (B) and quantum fluctuation (Q) components
according to

Aa
μ = Ba

μ + Qa
μ. (2.7)

Next, one imposes a residual gauge invariance with re-
spect to B on the gauge-fixed Lagrangian; this can be
achieved by choosing a gauge-fixing function transform-
ing in the adjoint representation of SU(N), in particular
through the replacements

∂μδab → D̂ab
μ ≡ ∂μδab + facbB̂c

μ; Aa
μ → Qa

μ, (2.8)

which, once implemented in Eq. (2.6), lead to the BFM

Rξ gauge-fixing function

F̂a = D̂ab
μ Qμ

b . (2.9)

Inserting Eq. (2.9) into Eq. (2.3), one obtains the Feyn-
man rules characteristic of the BFM, namely, a sym-
metric Bcc trilinear vertex and the four-particle vertex
BQcc. Finally, inserting Eq. (2.7) back into the original
invariant Lagrangian, one obtains the conventional Feyn-
man rules, together with those involving B; however, to
lowest order, only vertices containing exactly two Q dif-
fer from the conventional vertices. We encounter one of
these vertices in Section 2, namely, the BQ2 vertex.

As a result of the residual gauge invariance, the
contraction of the Green’s functions with the momen-
tum corresponding to a B gluon leads to Abelian-like
Slavnov–Taylor identities (STIs), that is, linear identi-
ties that preserve their tree-level form to all orders. The
divergence of Q instead yields the non-Abelian STIs, akin
to those of the conventional Rξ gauges.

It has been found that the conventional and BFM
Rξ gauges are related by symmetry transformations. In
fact, as has been shown in Ref. [63], Yang–Mills theo-
ries quantized in the BFM emerge in a natural manner
from Yang–Mills theories quantized in the Rξ gauges, if
one renders the latter also invariant under anti-BRST
symmetry. This is a crucial construction, because it clar-
ifies the origin of a plethora of identities, including the
so-called background-quantum identities (BQIs) [64, 65].
The BQIs relate Green’s functions evaluated in the con-
ventional Rξ gauge to the same functions evaluated in
the BFM Rξ gauge. The simplest of these identities,
i.e., that connecting the corresponding gluon propaga-
tors, has been found to be of paramount importance for
the self-consistency of the proposed formalism.

2.2 Notation and definitions

In the general renormalizable Rξ gauge defined by means
of Eq. (2.6), the gluon propagator is given by (we sup-
press the color factor δab)

Fig. 2 The conventional SDE of the standard gluon propagator
(QQ). Black blobs represent fully dressed one-particle irreducible
vertices, whereas the white ones denote fully dressed propagators.

A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016) 111203-3
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iΔμν(q) = −i
[
Δ(q2)Pμν(q) + ξ

qμqν

q4

]
;

Pμν(q) = gμν − qμqν

q2
, (2.10)

with inverse

−iΔ−1
μν (q) = Δ−1(q2)Pμν(q) + ξ−1qμqν . (2.11)

The function Δ(q2), which at tree-level is simply given by
1/q2, contains all the dynamics of the gluon propagator,
and is related to the corresponding scalar co-factor of the
standard gluon self-energy, Πμν(q) (Fig. 2). Specifically,
as Πμν(q) is both perturbatively and nonperturbatively
transverse as a consequence of the BRST symmetry, one
obtains

qνΠμν(q) = 0; Πμν(q) = Π(q2)Pμν(q), (2.12)

such that

Δ−1(q2) = q2 + iΠ(q2). (2.13)

Furthermore, it is advantageous for the discussion that
follows to define the dimensionless function J(q2) as [66]

Δ−1(q2) = q2J(q2). (2.14)

Evidently, J(q2) corresponds to the inverse of the gluon
dressing function, which is frequently employed in the
literature.

An additional fundamental Green’s function, which is
extremely relevant for our considerations, is the full ghost
propagator denoted by D(q2). This is usually expressed
in terms of the corresponding ghost dressing function
F (q2), according to

D(q2) =
F (q2)

q2
. (2.15)

It is important to emphasize that the large-volume lattice
simulation mentioned earlier has established beyond any

reasonable doubt that, while the ghost remains massless,
F (q2) saturates at a non-vanishing value in the deep in-
frared region (see Fig. 3). This particular feature may be
conclusively explained from the SDE that governs F (q2),
as a direct consequence of the fact that the gluon prop-
agator entering the SDE is effectively massive [22, 30].

The Q3 three-gluon vertex at tree-level is given by the
standard expression

Γ(0)
αμν(q, r, p) = (r−p)αgμν +(p−q)μgνα +(q−r)νgαμ ,

(2.16)

and satisfies the simple identity

qμΓ(0)
μαβ(q, k,−k− q) = (k + q)2Pαβ(k + q)− k2Pαβ(k).

(2.17)

The fully dressed version of this vertex (which is the
subject of a very active investigation, see, e.g., [67–70]),
denoted by Γαμν(q, r, p), satisfies instead a rather com-
plicated STI

qαΓαμν(q, r, p) = F (q)[Δ−1(p2)Pα
ν (p)Hαμ(p, q, r)

−Δ−1(r2)Pα
μ (r)Hαν(r, q, p)], (2.18)

along with cyclic permutations [66]. The function H ap-
pearing in Eq. (2.18) is the gluon-ghost kernel appearing
in the top panel of Fig. 4.

The tree-level value of the Q4 four-gluon vertex is
given by

Γ(0)mnrs
μνρσ = −ig2[fmsxfxrn(gμρgνσ − gμνgρσ)

+fmnxfxsr(gμσgνρ − gμρgνσ)

+fmrxfxsn(gμσgνρ − gμνgρσ)]. (2.19)

and its divergence satisfies the identity

qμΓ(0)mnrs
μνρσ (q, r, p, t) = fmsefernΓ(0)

νρσ(r, p, q + t)

Fig. 3 The SU(3) (a) and SU(2) (b) ghost dressing function F measured on the lattice. As before, lattice data are from
Refs. [14, 15] [SU(3)] and Ref. [21] [SU(2)].

111203-4 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016)
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Fig. 4 The diagrammatic representation of the gluon-ghost func-
tions H (top) and Λ (bottom).

+fmnefesrΓ(0)
ρσν(p, t, q + r)

+fmrefensΓ(0)
σνρ(t, r, q + p). (2.20)

The fully dressed version of this vertex satisfies instead a
very complicated STI, which is of limited usefulness and
will not be discussed here [see, e.g., [54], Eq. (D.18)].

In addition, for reasons that will become apparent
soon, we also consider a special, ghost-related two-point
function (see Fig. 4, bottom panel)

Λμν(q) = −ig2CA

∫
k

Δσ
μ(k)D(q − k)Hνσ(−q, q − k, k)

= gμνG(q2) +
qμqν

q2
L(q2), (2.21)

where CA represents the Casimir eigenvalue of the ad-
joint representation [N for SU(N)], d = 4 − ε is the
space-time dimension, and we have introduced the inte-
gral measure∫

k

≡ με

(2π)d

∫
ddk, (2.22)

with μ being the ’t Hooft mass.
Finally, note that the form factors F (q2), G(q2), and

L(q2) satisfy the exact relation [71–74]

F−1(q2) = 1 + G(q2) + L(q2), (2.23)

in the Landau gauge only. To facilitate the forthcoming
analysis, we will use the approximate relation

1 + G(q2) ≈ F−1(q2), (2.24)

which becomes exact in the deep infrared region [71–74].
We emphasize, however, that L(q2) is sizable at interme-
diate momenta, as shown in Fig. 5. This, in turn, may
induce appreciable contributions when calculating cer-
tain properties of phenomenological interest [4].

2.3 Gluon SDE in the PT-BFM framework

The nonperturbative dynamics of the gluon propagator
are governed by the corresponding SDE. In particular,

Fig. 5 Decomposition of the ghost dressing function F into its
1 + G and L components. The renormalization point is μ = 4.3
GeV; lattice data are from Ref. [14].

within the conventional formulation [24, 45], Πμν(q) is
given by the fully dressed diagrams shown in Fig. 2. This
particular equation is known to be detrimentally affected
by a serious complication, which in the vast majority of
applications is tacitly ignored. Specifically, the SDE in
Fig. 2 cannot be truncated in any obvious way without
compromising the validity of Eq. (2.12). This is because
the fully dressed vertices appearing in the diagrams of
Fig. 2 satisfy the complicated STIs mentioned earlier,
and it is only after the inclusion of all diagrams that
Eq. (2.12) may be enforced. This characteristic property
constitutes a well-known textbook fact, as it has already
manifested at the lowest order in perturbation theory.
The one-loop version of (a1) in Fig. 2 is not trans-
verse in isolation, it is only after the inclusion of the
(a3) ghost diagram that the sum of both diagrams be-
comes transverse. As a result, the BRST symmetry of the
theory (the most immediate consequence of which is Eq.
(2.12)) is bound to be compromised if one understands
the term “truncation” as meaning the simple omission
of diagrams. Instead, the formulation of this SDE in the
context of the PT-BFM scheme furnishes considerable
advantages, because it facilitates a systematic truncation
that respects manifestly, and at every step, the crucial
identity of Eq. (2.12) [53, 54].

To observe this mechanism in some detail, let us em-
ploy the BFM terminology introduced above, and classify
the gluon fields as either B or Q. Then, three types of
gluon propagator may be defined: (i) the conventional
gluon propagator (with one Q gluon entering and one
exiting, Q2), denoted (as above) by Δ(q2); (ii) the back-
ground gluon propagator (with one B gluon entering
and one exiting, B2), denoted by Δ̂(q2); and (iii) the
mixed background-quantum gluon propagator (with the
Q gluon entering and the B gluon exiting, BQ), denoted
by Δ̃(q2).

A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016) 111203-5
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Fig. 6 The SDE obeyed by the BQ gluon propagator. Black (white) blobs represents fully dressed 1-PI vertices (propaga-
tors); the small gray circles appearing on the external legs (entering from the right, only!) are used to indicate background
gluons. The diagrams contained in each box form individually transverse subsets.

We now consider the SDE that controls the self-energy
of the mixed BQ propagator Π̃μν(q), which is shown in
Fig. 6. The fully dressed vertices appearing in the cor-
responding diagrams, namely the BQ2, Bc̄c, and BQ3

vertices, are denoted by Γ̃αμν , Γ̃α, and Γ̃mnrs
μνρσ , respec-

tively. When contracted with the momentum carried by
the B gluon, these vertices are known to satisfy Abelian
STIs, specifically,

qαΓ̃αμν(q, r, p) = iΔ−1
μν (r) − iΔ−1

μν (p), (2.25)

qαΓ̃α(q, r,−p) = D−1(q + r) − D−1(r), (2.26)

and

qμΓ̃mnrs
μνρσ (q, r, p, t) = fmsefernΓνρσ(r, p, q + t)

+fmnefesrΓρσν(p, t, q + r)

+fmrefensΓσνρ(t, r, q + p). (2.27)

In particular, note that Eq. (2.27) is the naive all-order
generalization of Eq. (2.19), as stated, because the ver-
tices appearing on the right-hand side (rhs) are the fully
dressed Q3 vertices.

We remind the reader that the tree-level expression for
Γ̃αμν(q, r, p) depends explicitly on ξ, such that

Γ̃(0)
αμν(q, r, p) = (r − p)αgμν + (p − q + ξ−1r)μgνα

+(q − r − ξ−1p)νgαμ, (2.28)

and satisfies the tree-level version of Eq. (2.25), where

qαΓ̃(0)
αμν(q, r, p) =

{
p2Pμν(p) + ξ−1pμpν

}
−{

r2Pμν(r) + ξ−1rμrν

}
,

= iΔ−1
(0) μν(r) − iΔ−1

(0) μν(p). (2.29)

An in-depth study of this vertex has been conducted in
Ref. [75]. On the other hand, the BQ3 vertex coincides
at tree level with the Q4 conventional vertex, i.e., with
the expression given in Eq. (2.19).

By virtue of the special Abelian STIs of Eqs. (2.25),

(2.26), and (2.20), it is relatively straightforward to prove
the block-wise transversality of Π̃μν(q), where [52]

qν [(a1) + (a2)]μν = 0; qν [(a3) + (a4)]μν = 0;

qν [(a5) + (a6)]μν = 0. (2.30)

This is clearly an important property that has far-
reaching practical implications for the treatment of the
Δ̃(q2) SDE, as it furnishes a systematic, manifestly
gauge-invariant truncation scheme [52–54]. For instance,
one can consider only the one-loop dressed gluon dia-
grams (a1) and (a2) and still find a transverse answer,
despite the omission of the remaining graphs (most no-
tably the ghost loops).

However, although it is evident that the diagrammatic
representation of Π̃μν(q) is considerably better organized
than that of the conventional Πμν(q), it is also clear that
the SDE of Δ̃(q2) contains Δ(q2) within its defining di-
agrams; therefore, in that sense, it cannot be considered
as a bona fide dynamical equation for Δ̃(q2) or Δ(q2).
At this point, a crucial identity (BQI) relating Δ(q2)
and Δ̃(q2) [65, 65] enters the discussion. Specifically, one
has

Δ(q2) = [1 + G(q2)]Δ̃(q2), (2.31)

with G(q2) having been defined in Eq. (2.21).
The novel perspective put forth in Refs. [52–54] is that

one may use the SDE for Δ̃(q2) expressed in terms of
the BFM Feynman rules, take advantage of its improved
truncation properties, and then convert it to an equiv-
alent equation for Δ(q2) (the propagator simulated on
the lattice) by means of Eq. (2.31). Then, the SDE for
the conventional gluon propagator within the PT-BFM
formalism reads

Δ−1(q2)Pμν(q) =
q2Pμν(q) + i

∑6
i=1(ai)μν

1 + G(q2)
. (2.32)

The (ai) diagrams are shown in Fig. 6.

111203-6 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016)
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3 Demystifying the seagull graph

In the context of non-Abelian gauge theories, the seag-
ull graph [(a2) in Figs. 2 and 6] has traditionally been
considered quite controversial. At the perturbative level
and within dimensional regularization, formulas such as∫

k

lnn(k2)
k2

= 0, n = 0, 1, 2, . . . , (3.1)

cause this graph to vanish, a fact which enforces the
masslessness of the gluon to all orders in perturbation
theory.

Further complexity is found in relation to the nonper-
turbative case, because, in general, there is no mathe-
matical justification whatsoever for setting∫

k

Δ(k2) = 0. (3.2)

Given that the seagull has dimensions of mass-squared,
with no momentum for saturation, one might develop
the impression that this graph alone (i.e., without any
concrete dynamical mechanism) might suffice for endow-
ing the gluon with mass. However, it eventually becomes
apparent that there is a fundamental flaw in this conjec-
ture. Indeed, this graph diverges “quadratically” as a Λ2

term in cutoff language or as μ2(1/ε) in dimensional reg-
ularization, if it does not vanish (which it is not required
to do). The disposal of such divergences requires the in-
clusion in the original Lagrangian of a counter-term of
the form μ2A2

μ, which is, however, forbidden by the local
gauge invariance of the theory.

3.1 Scalar QED: Enlightenment from the photon

At this point, the question may be reversed. In a the-
ory such as scalar QED, the seagull graph is generated
by a definitely massive scalar propagator, and the corre-
sponding seagull diagram is certainly non-zero [in fact,
at one-loop level it can be computed exactly, see Eq.
(3.22)]. However, on physical grounds, one cannot argue
that the nonvanishing of the seagull graph would eventu-
ally endow the photon with a mass. Therefore, the pre-
cise mechanism that prevents this from occurring must
be determined.

Fig. 7 The “one-loop dressed” SDE for the photon self-energy.

At the one-loop dressed level, the SDE for the pho-
ton self-energy, Π(1)

μν (q), is given by the sum of the two
diagrams shown in Fig. 7, such that

Π(1)
μν (q) = (d1)μν + (d2)μν , (3.3)

with

(d1)μν = e2

∫
k

(2k+q)μD(k)D(k+q)Γν (−q, k+q,−k),

(3.4)

(d2)μν = −2e2gμν

∫
k

D(k2), (3.5)

where D(p2) is the fully dressed propagator of the scalar
field and Γμ(q, r,−p) the fully dressed photon-scalar ver-
tex. By virtue of the well-known Abelian STI relating
these two quantities

qμΓμ(q, r,−p) = D−1(p2) −D−1(r2), (3.6)

it is elementary to demonstrate the exact transversality
of Π(1)

μν (q), where

qμΠ(1)
μν (q) = 0, (3.7)

such that

Π(1)
μν (q) =

(
gμν − qμqν

q2

)
Π(1)(q2). (3.8)

It is clear that the seagull graph (d2) is independent
of the momentum, and thus, proportional to gμν only.
If we also set q = 0 in (d1), its contribution is also pro-
portional to gμν ; therefore, one immediately concludes
that

Π(1)(0) = 0, (3.9)

because of Eq. (3.8) and the fact that the qμqν/q2 com-
ponent vanishes. Evidently, this is also true for the gμν

component; the only question is how exactly this is en-
forced in the presence of the seagull graph.

Let us denote the corresponding co-factors of gμν as
d1 and d2; then, we obtain

Π(1)(0) = d1 + d2, (3.10)

with

d1 =
2e2

d

∫
k

kμD2(k2)Γμ(0, k,−k), (3.11)

d2 = −2e2

∫
k

D(k2). (3.12)

In order to proceed further, let us study Eq. (3.6) in the
limit q → 0. To that end, we perform a Taylor expansion
of both sides around q = 0 (and p = −r), such that

qμΓμ(q, r,−p) = qμΓμ(0, r,−r) + O(q2)
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= qμ ∂

∂qμ
D−1(q + r)

∣∣∣∣
q=0

+ O(q2). (3.13)

Then, equating the coefficients of the terms that are lin-
ear in qμ, one obtains the relation

Γμ(0, r,−r) =
∂

∂qμ
D−1(q + r)

∣∣∣∣
q=0

=
∂D−1(r2)

∂rμ
,(3.14)

which is the exact analogue of the familiar textbook
Ward identity (WI) of spinor QED. Then,

D2(k2)Γμ(0, k,−k) = −∂D(k2)
∂kμ

, (3.15)

and so

d1 = −4e2

d

∫
k

k2 ∂D(k2)
∂k2

, (3.16)

using

kμ ∂f(k2)
∂kμ

= 2k2 ∂f(k2)
∂k2

. (3.17)

Then, summing d1 and d2, we finally obtain

Π(1)(0) = −4e2

d

[∫
k

k2 ∂D(k2)
∂k2

+
d

2

∫
k

D(k2)
]

. (3.18)

However, we know from Eq. (3.9) that the rhs of Eq.
(3.18) must vanish. Therefore, we must determine the
mathematical mechanism that causes this to occur.

3.2 The seagull identity

Let us consider a function f(k2) that satisfies the condi-
tions originally imposed by Wilson [76], i.e., as k2 → ∞
it vanishes sufficiently rapidly that the integral

∫
k
f(k2)

converges for all positive values of d below a certain value
d∗. Then, the integral is well-defined within the interval
(0, d∗), and may be analytically continued outside this
interval, following the standard rules of dimensional reg-
ularization [77]. Then, one can show that [55]∫

k

k2 ∂f(k2)
∂k2

+
d

2

∫
k

f(k2) = 0. (3.19)

In order to properly interpret Eq. (3.19), note that, if
the function f(k2) were such that the two integrals ap-
pearing in this equation would converge for d = 4, then
its validity could be demonstrated through simple inte-
gration by parts (suppressing the angular contribution),
such that∫ ∞

0

dyy
d
2
∂f(y)

∂y
= y

d
2 f(y)

∣∣∞
0

− d

2

∫ ∞

0

dyy
d
2−1f(y),

(3.20)

and dropping the surface term.

Let us instead consider f(k2) to be a massive tree-level
propagator, i.e.,

f(k2) =
1

k2 − m2
, (3.21)

for which the assumption of individual convergence of
each contribution for d = 4 is invalid; on the other hand,
Wilson’s condition is indeed satisfied with d∗ = 2, such
that both integrals converge in the interval (0, 2). Then,
one may still interpret Eq. (3.19) via an integration by

parts, where the surface term given by y
d
2

y+m2

∣∣∞
0

may be
dropped if d < d∗ = 2.

To confirm that the validity of Eq. (3.19) is completely
natural within the dimensional regularization formalism,
it is simply necessary to compute the left-hand side (lhs)
of Eq. (3.19) explicitly, using textbook integration rules.
One obtains∫

k

k2

(k2 − m2)2
= −i(4π)−

d
2
d

2
Γ

(
1 − d

2

)
(m2)

d
2−1,

∫
k

1
k2 − m2

= −i(4π)−
d
2 Γ

(
1 − d

2

)
(m2)

d
2−1, (3.22)

and substitution into the lhs of Eq. (3.19) gives exactly
zero.

3.3 The seagull cancellation in the PT-BFM framework

Let us now consider the gluon propagator and examine
the diagrams contributing to the first block. We denote
by Π̃(1)

μν (q) the corresponding self-energy. Following ex-
actly the same reasoning as in the scalar QED case, we
have

Π̃(1)(0) = a1 + a2, (3.23)

with

a1 =
g2CA

2d

∫
k

Γ(0)
μαβ(0, k,−k)Δαρ(k)Δβσ(k)

×Γ̃μ
σρ(0, k,−k), (3.24)

a2 = g2CA
d − 1

d

∫
k

Δα
α(k), (3.25)

and

Γ(0)
μαβ(0, k,−k) = 2kμgαβ − kβgαμ − kαgβμ. (3.26)

In order to obtain a1, we may begin from Eq. (2.25)
and follow the steps presented in Eq. (3.13). Then, the
fact that Eq. (2.25) is Abelian-like gives rise to the very
simple result

Γ̃αμν(0, r,−r) = −i
∂Δ−1

μν (r)
∂rα

, (3.27)
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which then furnishes the exact equivalent to Eq. (3.15)

Δαρ(k)Δβσ(k)Γ̃μ
σρ(0, k,−k) =

∂Δαβ(k)
∂kμ

. (3.28)

Thus,

a1 =
g2CA

2d

∫
k

Γ(0)
μαβ(0, k,−k)

∂Δαβ(k)
∂kμ

. (3.29)

The derivative above is evaluated by acting on the ex-
pression for Δαβ(k) given in Eq. (2.10) and, again using
Eq. (3.17), we obtain

a1 =
2(d − 1)

d
g2CA

[∫
k

k2 ∂Δ(k2)
∂k2

+
1
2

∫
k

Δ(k2)
]

.

(3.30)

For the a2 term and using Eq. (2.10), we find

a2 = g2CA
(d − 1)2

d

∫
k

Δ(k2). (3.31)

Note that all terms proportional to ξ, both in a1 and a2,
vanish by virtue of the most elementary version of Eq.
(3.1), i.e., for n = 0.

Then, we obtain

Π̃(0) =
2(d − 1)

d
g2CA

[∫
k

k2 ∂Δ(k2)
∂k2

+
d

2

∫
k

Δ(k2)
]

= 0, (3.32)

using Eq. (3.19) with f(k2) → Δ(k2) in the final step.

4 Dynamical gluon mass with exact BRST
symmetry

In this section, we review the field-theoretic mechanism
that endows the gluon with a dynamical mass, while
maintaining the BRST symmetry of the theory.

4.1 The Schwinger mechanism in Yang–Mills theories

The self-consistent generation of a gluon mass in the con-

text of a Yang–Mills theory proceeds through the im-
plementation of the well-known Schwinger mechanism
[42, 43] at the level of the gluon SDE. The general con-
cept may be encapsulated more directly at the level
of its inverse propagator, Δ−1(q2) = q2[1 + iΠ(q2)],
where Π(q) is the dimensionless vacuum polarization,
i.e., Π(q2) = q2Π(q2). According to Schwinger’s funda-
mental observation, if Π(q2) develops a pole at zero mo-
mentum transfer (q2 = 0), then the vector meson (gluon)
acquires a mass, even if the gauge symmetry forbids a
mass term at the level of the fundamental Lagrangian.
Indeed, if Π(q2) = m2/q2, then (in Euclidean space)
Δ−1(q2) = q2 +m2; therefore, the vector meson becomes
massive, with Δ−1(0) = m2, even though it is massless
in the absence of interactions (g = 0, Π = 0) [7, 8].

The dynamical realization of this concept at the level
of a Yang–Mills theory requires the existence of a spe-
cial type of nonperturbative vertex, which is generically
denoted by V (with appropriate Lorentz and color in-
dexes). When added to the conventional fully dressed
vertices, the V vertices have a triple effect: (i) they evade
the seagull cancellation and cause the SDE of the gluon
propagator to yield Δ−1(0) �= 0; (ii) they guarantee that
the Abelian and non-Abelian STIs of the theory remain
intact, i.e., they maintain exactly the same form before
and after the mass generation; and (iii) they decouple
from on-shell amplitudes. These crucial properties are
possible because these special vertices (a) contain mass-
less poles and (b) are completely longitudinally coupled,
i.e., they satisfy conditions such as

Pα′α(q)Pμ′μ(r)P ν′ν(p)Ṽα′μ′ν′(q, r, p) = 0, (4.1)

(for a three-gluon vertex). The origin of the aforemen-
tioned massless poles is due to purely non-perturbative
dynamics: for sufficiently strong binding, the masses of
certain (colored) bound states may be reduced to zero [7–
11]. The actual dynamical realization of this scenario has
been demonstrated in Ref. [78], where the homogeneous
Bethe-Salpeter equation that controls the actual forma-
tion of these massless bound states was investigated.

Fig. 8 The eΓ′ three-gluon vertex. Thick internal gluon lines indicates massive propagators Δm, as explained in the text.
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From the kinematic perspective, we will describe the
transition from a massless to a massive gluon propagator
by performing the replacement (in Minkowski space)

Δ−1(q2) = q2J(q2) −→ Δ−1
m (q2) = q2Jm(q2)−m2(q2),

(4.2)

where m2(q2) is the (momentum-dependent) dynami-
cally generated mass, and the subscript “m” in Jm in-
dicates that, effectively, there is now a mass within the
corresponding expressions (i.e., in the SDE graphs).

Gauge invariance requires that the replacement de-
scribed schematically in Eq. (4.2) be accompanied by a
simultaneous replacement of all relevant vertices by

Γ̃ −→ Γ̃′ = Γ̃m + Ṽ , (4.3)

where the vertex Γ̃m satisfies the STI originally satisfied
by Γ̃, but now with J(q2) → Jm(q2). Further, Ṽ must
provide the missing components such that the full vertex
Γ̃′ satisfies the same STI as Γ̃. However, the gluon prop-
agators appearing in this expression are now replaced
by massive propagators [i.e., the net effect is to obtain
Δ−1

m (q2) in place of Δ−1(q2)].
To observe this concept explicitly, consider the exam-

ple of Γ̃αμν . For a “deactivated” Schwinger mechanism
and when this vertex is contracted with respect to the
momentum of the B gluon, it satisfies the WI

qαΓ̃αμν(q, r, p) = p2J(p2)Pμν(p)−r2J(r2)Pμν(r) .(4.4)

The general replacement described in Eq. (4.3) amounts
to introducing the vertex

Γ̃′
αμν(q, r, p) =

[
Γ̃m(q, r, p) + Ṽ (q, r, p)

]
αμν

, (4.5)

where

qαΓ̃αμν
m (q, r, p) = p2Jm(p2)Pμν(p) − r2Jm(r2)Pμν(r),

(4.6)

[that is, Eq. (4.4) with J(q2) → Jm(q2)] while

qαṼαμν(q, r, p) = m2(r2)Pμν(r) − m2(p2)Pμν(p). (4.7)

Thus, when the Schwinger mechanism is activated, the
corresponding Abelian STI satisfied by Γ̃′ reads

qαΓ̃′
αμν(q, r, p) = qα

[
Γ̃m(q, r, p) + Ṽ (q, r, p)

]
αμν

= [p2Jm(p2) − m2(p2)]Pμν(p)

−[r2Jm(r2) − m2(r2)]Pμν(r)

= Δ−1
m (p2)Pμν(p) − Δ−1

m (r2)Pμν(r), (4.8)

which is indeed the identity in Eq. (4.4), with the
aforementioned total replacement Δ−1 → Δ−1

m being en-
forced. The remaining STIs, which are triggered when

Γ̃′
αμν(q, r, p) is contracted with respect to the other two

legs, are realized in exactly the same fashion.
A completely analogous procedure can be imple-

mented for the four-gluon vertex Γ̃mnrs
μνρσ (q, r, p, t); the de-

tails may be found in Ref. [57]. Finally, note that “inter-
nal” vertices, i.e., vertices involving only Q gluons, must
also be supplemented by the corresponding V , such that
their STIs remain unchanged in the presence of “mas-
sive” propagators. Clearly, these types of vertices do not
contain 1/q2 poles, but rather poles in the virtual mo-
menta; therefore, they cannot contribute directly to the
mass-generating mechanism. However, these poles must
be included for the gauge invariance to remain intact.

Let us now return to the SDE of the gluon propagator.
By expressing the Δ−1

m (q2) on the lhs of Eq. (2.32) in the
form given in Eq. (4.2), one obtains

[q2Jm(q2) − m2(q2)]Pμν(q)

=
q2Pμν(q) + i

∑6
i=1(a

′
i)μν

1 + G(q2)
, (4.9)

where the “prime” indicates that the various fully
dressed vertices appearing inside the corresponding dia-
grams must be replaced by their primed counterparts, as
dictated by Eq. (4.3). These modifications produce one
of the primary desired effects, that is, that the blockwise
transversality property of Eq. (2.30) also holds for the
“primed” graphs, i.e., when (ai) → (a′

i).
We next discuss the realization of the second desired

effect, which is to evade the seagull cancellation and to
enable the possibility of having Δ−1(0) �= 0.

4.2 Evading the seagull identity

In the case of the BQ2 vertex, the poles are included by
setting

Ṽαμν(q, r, p) = Ũαμν(q, r, p) + R̃αμν(q, r, p), (4.10)

where

Ũαμν(q, r, p) =
qα

q2
C̃μν(q, r, p), (4.11)

contains 1/q2 explicitly. Further, R̃αμν has massless exci-
tations in the other two channels, namely O(r−2) and/or
O(p−2), but not O(q−2). Note also that the explicit forms
of C̃μν and R̃αμν may be determined using the longitudi-
nally coupled condition of Eq. (4.1), as well as the known
Abelian and non Abelian STIs satisfied by this vertex
[79].

We first focus on the vertex Γ̃′
αμν(q, r, p) given by

Γ̃′
αμν(q, r, p) =

[
Γ̃αμν(q, r, p) + R̃αμν(q, r, p)

]
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+
qα

q2
C̃μν(q, r, p), (4.12)

where the two terms in the square brackets are both reg-
ular in q. Their combined contribution

Γ̃R
αμν(q, r, p) := Γ̃αμν(q, r, p) + R̃αμν(q, r, p), (4.13)

is precisely the part of the total vertex Γ̃′ that enters
the calculation of Π̃(0)gμν , and consequently partici-
pates in the seagull cancellation. On the other hand,
the term with the massless pole in q2 contributes to the
Π̃(0)qμqν/q2 term, which is not involved in the seagull
cancellation. Of course, because of the exact transver-
sality of the final answer, the total contribution of the
gμν component (after the seagull cancellation) is ex-
actly equal (and opposite in sign) to that proportional
to qμqν/q2.

The next task is to derive the Abelian STI satisfied by
Γ̃R. To that end, let us contract both sides of Eq. (4.12)
by qα, such that

qαΓ̃′
αμν(q, r, p) = qαΓ̃R

αμν(q, r, p) + C̃μν(q, r, p). (4.14)

Note that the massless pole qα/q2 has been canceled by
the contraction with qα, and all quantities appearing on
both sides of Eq. (4.14) may be directly expanded around
q = 0.

To obtain the lhs of Eq. (4.14) in this limit, consider
the STI of Eq. (4.8) satisfied by Γ′. It is clear that the

Taylor expansion of both sides of that equation (neglect-
ing terms of order O(q2) and higher, as above) yields

Γ̃′
αμν(0, r,−r) = −i

∂Δ−1
m μν(r)
∂rα

, (4.15)

which is simply Eq. (3.27) with Δ(q2) → Δm(q2).
On the other hand, the rhs of Eq. (4.14), expanded in

the same limit, yields

qαΓ̃R
αμν(0, r,−r) + C̃μν(0, r,−r)

+qα ∂

∂qα
C̃μν(q, r, p)

∣∣∣∣
q=0

. (4.16)

Then, after equating the coefficients of the zeroth- and
first-order terms in qα on both sides, one obtains

C̃μν(0, r,−r) = 0, (4.17)

and

Γ̃R
αμν(0, r,−r) = −i

∂

∂rα
Δ−1

m μν(r)

− ∂

∂qα
C̃μν(q, r, p)

∣∣∣∣
q=0

. (4.18)

It is now clear that, if one were to repeat the calcu-
lation of subsection 3C, the seagull identity would again
eliminate all contributions, with the exception of the
term that causes the deviation in the WI of Eq. (4.18).
The remaining term is given by

Π̃(1)(0) =
g2CA

2d
g2CA

∫
k

Γ(0)
μαβΔαρ(k)Δβσ(k)

∂

∂qμ
C̃σρ(−q, k + q,−k)

∣∣∣∣
q=0

. (4.19)

5 The gluon gap equation

The lhs of Eq. (4.9) involves two unknown quantities,
Jm(q2) and m2(q2), which eventually satisfy two sepa-
rate, but coupled, integral equations of the generic type

Jm(q2) = 1 +
∫

k

K1(q2, m2, Δm),

m2(q2) =
∫

k

K2(q2, m2, Δm), (5.1)

where q2K1(q2, m2, Δm) → 0 as q2 → 0. However,
K2(q2, m2, Δm) �= 0 in the same limit, precisely because
it includes the 1/q2 terms contained within the Ṽ terms.

Let us now derive the explicit form of the integral
equation governing m2(q2). We perform this particular
task in the Landau gauge, where the gluon propagator
assumes the fully transverse form

iΔμν(q) = −iΔ(q2)Pμν(q). (5.2)

The primary reasons for this choice are the considerable
simplifications that it introduces at the calculation level,
and the fact that the vast majority of recent large-volume
lattice simulations of Yang-Mills Green’s functions have
been performed in this special gauge.

As a gluon mass cannot be generated in the absence
of Ṽ , it is natural to expect that the rhs of Eq. (5.1) is
generated from the parts of the (a′

i)μν graphs that con-
tain precisely Ṽ , which we denote by (aeV

i )μν . However,
it may be less obvious that the (aeV

i )μν terms possess no
gμν component in the Landau gauge, i.e.,

(aeV
i )μν =

qμqν

q2
a

eV
i (q2), (5.3)

such that

m2(q2) =
i
∑

i a
eV
i (q2)

1 + G(q2)
, (5.4)

where the sum includes only the i = 1, 5, and 6 graphs.
At first, this last statement may appear to contradict
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Fig. 9 The one- and two-loop dressed diagrams contributing to the gluon mass equation. Thick lines represent, as previously
explained, gluon propagators endowed with a momentum-dependent mass. The fully dressed primed vertex, eΓ′, enforces gauge
invariance in the presence of such a mass. The symmetry factors are 1/2 (a1 and a6) and 1/6 (a5). We also show for the
reader’s convenience the color and Lorentz indexes, as well as the momentum routing used in our calculations.

the earlier claim that the contribution from the mass
must be completely transverse, that is, it must possess
a gμν component that is equal in size and opposite in
sign. The solution to this apparent paradox is intimately
connected with the exact realization of the seagull can-
cellation, which operates exclusively in the gμν sector;

for further detail, see the discussion following Eq. (5.21).
In order to observe all these features in some detail,

we consider the contribution that originates from the Ṽ -
part of the (a′

1)μν graph, which we denote by (aeV
1 )μν .

Then (see Fig. 9),

(aeV
1 )μν =

1
2

g2CA

∫
k

Γ(0)
μαβ(q, k,−k − q)Δαρ(k)Δβσ(k + q)Ṽνρσ(q, k,−k − q). (5.5)

As explained in Section 4.1, the condition of gauge
invariance requires that the vertex Ṽνρσ(q, k,−k − q)
satisfies the Abelian STI of Eq. (4.7) with r = k and
p = −(k + q) when contracted by the momentum of the
background leg. Thus,

qν Ṽνρσ(q, k,−k − q) = m2(k)Pρσ(k) − m2(k + q)

×Pρσ(k + q). (5.6)

It is relatively straightforward to determine that
(aeV

i )μν is proportional to qμqν/q2 only. Indeed, the con-
dition of complete longitudinality of Ṽ , given in Eq.
(4.1), becomes

P νν′
(q)Pαρ(k)P βσ(k + q)Ṽν′ρσ(q, k,−k − q) = 0. (5.7)

Hence, it immediately follows that

Pαρ(k)P βσ(k + q)Ṽ ν
ρσ(q, k,−k − q)

=
qν

q2

[
qν′

Ṽν′ρσ(q, k,−k − q)
]
Pαρ(k)P βσ(k + q),

(5.8)

and, thus, (aeV
1 )μν is proportional to qμqν/q2 only, as

stated.
It is interesting that the rhs of Eq. (5.8) is completely

determined from the Abelian STI of Eq. (4.7); specifi-
cally, using Eq. (5.6), we obtain

Pαρ(k)P βσ(k + q)Ṽ ν
ρσ(q, k,−k − q)

=
qν

q2

[
m2(k) − m2(k + q)

]
Pαρ(k)P β

ρ (k + q). (5.9)

Then, using Eq. (2.17) and appropriate shifts of the in-
tegration variable, one can finally show that

a
eV
1 (q2) =

g2CA

q2

∫
k

m2(k2)
[
(k + q)2 − k2

]

×Δαρ(k)Δαρ(k + q). (5.10)

We next turn to the (a6) graph and define the quantity

Y αβ
δ (k) =

∫



Δαρ(�)Δβσ(�+k)Γσρδ(−�−k, �, k), (5.11)

which corresponds to the sub-diagram on the upper left
corner of this graph. Then, (aeV

6 )μν is given by

(aeV
6 )μν =

3
4
ig4C2

A (gμαgβγ − gμβgαγ)
∫

k

Y αβ
δ (k)Δγτ (k + q)Δδλ(k)Ṽντλ(−q, k + q,−k). (5.12)

Using Eqs. (4.7), (5.7), and (5.8), we obtain

(aeV
6 )μν =

3
4
ig4C2

A (gμαgβγ − gμβgαγ)
qν

q2

∫
k

[
m2(k) − m2(k + q)

]
Δδ

λ(k)Δγλ(k + q)Y αβ
δ (k) =

qμqν

q2
a

eV
6 (q2), (5.13)

111203-12 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016)



REVIEW ARTICLE

and, therefore,

a
eV
6 (q2) =

3
4
ig4C2

A (qαgβγ − qβgαγ)
1
q2

∫
k

[
m2(k) − m2(k + q)

]
Δδ

λ(k)Δγλ(k + q)Y αβ
δ (k). (5.14)

At this point, it is easy to show that the integral Y is
antisymmetric under the α ↔ β exchange; thus, given
also the antisymmetry of the a

eV
6 prefactor under the

same exchange, one can state

Y αβ
δ (k) = (kαgβ

δ − kβgα
δ )Y (k2), (5.15)

which gives the final result

a
eV
6 (q2) =

3
4
i
g4C2

A

q2

∫
k

m2(k2)[(k + q)2 − k2][Y (k + q) + Y (k)]Δδ
λ(k)Δλ

δ (k + q)

+
3
4
i
g4C2

A

q2
(q2gδγ − 2qδqγ)

∫
k

m2(k2)[Y (k + q) − Y (k)]Δδ
λ(k)Δγλ(k + q). (5.16)

Finally, a rather straightforward sequence of algebraic
manipulations reveals a striking fact, i.e., that the (a5)
graph does not contribute to the mass equation in the
Landau gauge [57].

At this point, one may substitute the results of Eq.
(5.10) and Eq. (5.16) into Eq. (5.4), in order to obtain
the final form of the gluon gap equation. Passing to Eu-
clidean space by following standard rules, we find

m2(q2) = − g2CA

1 + G(q2)
1
q2

×
∫

k

m2(k2)Δρ
α(k)Δρ

β(k + q)Kαβ(q, k), (5.17)

where the kernel K is given by

Kαβ(q, k,−k − q) = [(k + q)2 − k2]S(q, k)gαβ

+q2A(q, k)gαβ + B(q, k)qαqβ , (5.18)

with

S(q, k) = 1 − 3
4
g2CA[Y (k + q) + Y (k)];

A(q, k) = −1
2
B(q, k) =

3
4
g2CA[Y (k+q)−Y (k)].(5.19)

We next comment on the following additional impor-
tant points:

(i) The equation for Jm(q2) may be obtained from the
qμqν/q2 component of the parts of the graphs that do
not contain Ṽ . These graphs are identical to the origi-
nal set (a1)–(a6), but now Γ̃ −→ Γ̃m, Δ −→ Δm, etc.,
and their contributions may be separated into gμν and
qμqν/q2 components, where

(ai)μν = gμν Ai(q2) +
qμqν

q2
Bi(q2). (5.20)

Note that (a2) and (a4) are proportional to gμν only;
therefore, in the notation introduced above, B2(q2) =
B4(q2) = 0. Then, the corresponding equation for Jm(q2)

reads

−q2Jm(q2) =
−q2 + i

∑
i Bi(q2)

1 + G(q2)
, (5.21)

with i = 1, 3, 5, and 6.
(ii) It is interesting to examine the case where the re-

sults obtained above are reproduced by considering the
parts of Eq. (4.9) that are proportional to gμν . The eas-
iest way to disentangle and identify the contributions to
q2Jm(q2) and m2(q2) is to first provide {−a

eV
i (q2)}gμν

by hand, in order to manifest the transversality of the
mass term, and then compensate by adding a

eV
i (q2)gμν

to the Ai(q2) defined in Eq. (5.20). The sum of the com-
bined contributions, Ai(q2) + a

eV
i (q2), then determines

the q2Jm(q2)gμν term. In fact, in order to demonstrate
that Ai(0) + a

eV
i (0) vanishes (as it should, since it is to

be identified with q2Jm(q2), which vanishes as q2 → 0)
one must judiciously invoke the seagull cancellation of
Eq. (3.19).

(iii) We emphasize once again that the Lagrangian of
the Yang-Mills theory (or that of QCD) was not altered
throughout the entire mass-generating procedure. In ad-
dition, the crucial STIs that encapsulate the underlying
BRST symmetry remained rigorously exact. Moreover,
because of the validity of the seagull identity, along with
the fact that the PT-BFM scheme permits this identity
to manifest unambiguously, all would-be quadratic diver-
gences were completely annihilated. This conclusively ex-
cludes the need for introduction of a symmetry-violating
“bare gluon mass”.

(iv) Although there is no “bare gluon mass” in the
sense explained above, the momentum-dependent m2(q2)
undergoes renormalization. However, this is not associ-
ated with a new renormalization constant, but is rather
implemented by the (already existing) wave-function
renormalization constant of the gluon, namely, ZA.
Specifically, from Eq. (4.2) and given that Δ−1(0) =

A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys. 11(2), 111203 (2016) 111203-13
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m2(0), we find that the gluon masses before and after
renormalization are related by [80]

m2
R(q2) = ZAm2

0(q
2). (5.22)

Evidently, this particular “renormalization” is not asso-
ciated with a counter-term of the type δm2 = m2

R −m2
0,

as is the case for hard boson masses (which is precisely
the essence of point (iii)).

(v) In order to fully determine the nonperturbative
Δ(q2), one should, in principle, solve the coupled system
of Eq. (5.1). However, the derivation of the all-order inte-
gral equation for Jm(q2) is technically far more difficult,
primarily because of the presence of the fully dressed ver-
tex BQ3 [see (a5) in Fig. 6]. The latter is a practically
unexplored quantity with an enormous number of form
factors (for recent works on the subject see Refs. [81,
82]). Instead, we study Eq. (5.17) in isolation, treating
all full propagators appearing in this calculation as ex-
ternal quantities, the forms of which are determined by
resorting to information beyond the SDEs, such as the
large-volume lattice simulations. Therefore, Eq. (5.17) is
effectively converted into a homogeneous linear integral
equation for the unknown m2(q2).

We now turn to the numerical analysis of the gluon gap
equation. After its full renormalization has been care-
fully performed1) , Eq. (2.24) has been utilized, and the
substitution of Δ(k2) and F (q2) into Eq. (5.17) using
the lattice data of Refs. [14, 15] has been implemented,
one obtains positive-definite and monotonically decreas-
ing solutions, as shown in Fig. 10. This numerical solu-
tion can be accurately fit using the simple and physically
motivated function

m2(q2) =
m2

0(q
2)

1 + (q2/M2)1+p
. (5.23)

Specifically, the numerical solution shown in Fig. 10 is
perfectly reproduced when the parameters (M, p) as-
sume the values (436 MeV, 0.15).

In addition, note that one can omit the 1 in the denom-
inator of Eq. (5.23) for asymptotically large momentum
values, yielding “power-law” behavior [83–85], where

m2(q2) ∼
q2�M2

m2
0M2

q2
(q2/M2)−p. (5.24)

This particular behavior reveals that condensates of di-
mension two do not contribute to the operator product
expansion (OPE) of m2(q2), given that their presence
would have induced a logarithmic running of the so-
lutions. Indeed, in the absence of quarks, the lowest-
order condensates appearing in the OPE of the mass

Fig. 10 The numerical solution for m2(q2) (black circles) com-
pared with the corresponding fit Eq. (5.23) (black, continuous).
The (blue) dashed curve represents the asymptotic fit given by Eq.
(5.24).

must be those of dimension four, namely, the (gauge-
invariant) 〈0|:Ga

μνGμν
a :|0〉, and possibly the ghost con-

densate 〈0|:ca � ca:|0〉 [86–88]. As these condensates
must be divided by q2 on dimensional grounds, one ob-
tains (up to logarithms) the observed power-law behav-
ior.

We end this section by commenting that, as has been
argued recently [5], the nontrivial momentum depen-
dence of the gluon mass shown in Fig. 10 may be con-
sidered responsible for the fact that, in contradistinction
to a propagator with a constant mass, the Δ(q2) of Fig.
1 displays an inflection point. The presence of such a
feature, in turn, is a sufficient condition for the spectral
density of Δ(q2), ρ, to be non-positive definite.

Specifically, the Källén–Lehman representation of
Δ(q2) reads

Δ(q2) =
∫ ∞

0

dσ
ρ(σ)

q2 + σ
, (5.25)

and if Δ(q2) has an inflection point at q2
� , then its second

derivative vanishes at that point (see Fig. 11), such that
[89]

Δ′′(q2
�) = 2

∫ ∞

0

dσ
ρ(σ)

(q2
� + σ)3

= 0. (5.26)

Given that q2
� > 0, then the sign of ρ(σ) is forced to re-

verse at least once. This non-positivity of ρ(σ) may be
interpreted as an indication of confinement (see Ref. [5],
and references therein), because the resultant breeching
of the axiom of reflection positivity excludes the gluon
from the Hilbert space of observable states (for related
works, see Refs. [23, 25, 89–93]). As can be seen in Fig.
11, the first derivative of Δ(q2) exhibits a minimum at

1) This rather technical procedure, and the manner in which it affects the form of the renormalized kernel Kαβ , has been presented in
Ref. [80].
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Fig. 11 The first and second derivatives of the gluon propagator.

q2
� = 0.238 GeV2 and, consequently, the second deriva-

tive vanishes at the same point.

6 Conclusions

In this paper, we have considered the manner in which
the dynamical gluon mass is generated in pure Yang–
Mills theories. Lattice simulations reveal that this phe-
nomenon also persists in the presence of light dynam-
ical quarks, not only in “quenched”, but also in “un-
quenched” settings [94]. From the theoretical perspec-
tive, the generalization of the formalism outlined here to
include the effects of a small number of families of light
quarks has been developed in Refs. [95, 96]. In addition,
although we focused on the Landau gauge case through-
out this discussion, recent lattice simulations [97] and a
variety of analytic studies [98–101] have indicated that
gluon propagators continue to saturate in the infrared
region for values of the gauge-fixing parameter that are
at least within the [0, 0.5] interval.

A large number of profound implications are related to
the generation of gluon mass [6], such as the notion of a
maximum gluon wavelength [102], above which an effec-
tive decoupling (screening) of the gluonic modes occurs.
In addition, the crucial role of such a mass in overcom-
ing the Gribov copy problem of Yang–Mills theories has
also been noted. Moreover, the puzzling phenomenon of
the saturation of the gluon parton distribution functions
may also be a consequence of the emergence of such a
mass [6]. We hope to examine some of these issues in
more profound detail in the near future.
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