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Abstract

An almost model-independent parametrization for the ratio of the total cross section to the elastic slope,
as function of the center of mass energy, is introduced. The analytical result is based on the approximate
relation of this quantity with the ratio R of the elastic to total cross section and empirical fits to the R data
from proton–proton scattering above 10 GeV, under the conditions of asymptotic unitarity and the black-
disk limit. This parametrization may be useful in studies of extensive air showers and the determination of
the proton–proton total cross section from proton–air production cross section in cosmic-ray experiments.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In addition to their intrinsic astrophysical importance, cosmic-ray experiments constitute a
valuable tool for the investigation of particle and nuclear physics at energies far beyond those
obtained in accelerator machines. However, at the highest energies a direct approach to particles
properties and their interactions is difficult due to the decreasing flux with the increase of the
energy. Presently, an indirect method, based on extensive air shower (EAS) studies, is the usual
way to treat the subject [1]. In these events, the distribution of the first interaction point allows, in
principle, the determination of the proton–air production cross section [2] and in a second step,
the estimation of the most fundamental quantity in hadronic interactions: the proton–proton total
cross section [3,4].

* Corresponding author.
E-mail addresses: fagundes@ifi.unicamp.br (D.A. Fagundes), menon@ifi.unicamp.br (M.J. Menon).
0375-9474/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysa.2012.01.017



2 D.A. Fagundes, M.J. Menon / Nuclear Physics A 880 (2012) 1–11
However, in practice, the interpretation of the EAS development depends on extrapolations
from phenomenological models that have been tested only in the accelerator energy region, re-
sulting therefore in systematic theoretical uncertainties. That represents a crucial point because
different models with distinct physical pictures and at the same time consistent with the exper-
imental data up to c.m. energies ∼ 2 TeV, present, in general, contrasting extrapolations at the
cosmic-ray region (above ∼ 50 TeV). Therefore the theoretical uncertainties (bands) involved are
relatively large and very difficult to be estimated. As a particular consequence, the estimations
of the proton–proton total cross section from different cosmic-ray experiments and analyses are
characterized by large error bars and even discrepant results, as discussed in [5] and references
therein.

EAS studies are essentially based on Glauber’s multiple diffraction theory [6,7] and its ex-
tensions and/or corrections, including Gribov–Regge screening effects and other ingredients. In
this context the evaluation of the hadron–nucleus elastic and quasi-elastic cross sections, which
contribute to the nucleon–air production cross section, depends on the ratio of two physical quan-
tities, the total cross section σtot and the elastic slope B . That ratio just represents one of the main
sources of uncertainties in model extrapolations.

In this work an almost model-independent parametrization for the ratio σtot/B is proposed,
which may avoid uncertainties from models tested only at lower energies. The parametrization is
based on the approximate, but experimentally justified, connection of σtot/B with the ratio R of
elastic to total cross section. By means of unitarity arguments and empirical fits to R data from
pp scattering above 10 GeV and up to 7 TeV, an analytical parametrization for R(s) is introduced
and then extended to the ratio σtot/B .

The manuscript is organized as follows. In Section 2 we introduce the physical quantities
of interest with explicit reference to the importance of the ratio σtot/B in cosmic-ray studies.
In Section 3 we recall some formal (rigorous) results from axiomatic QFT and how some in-
equalities can be connected with experimental results. In Section 4 we introduce the analytical
parametrization and present the fit results. The conclusions and some final remarks are the con-
tents of Section 5.

2. Physical quantities and the Glauber formalism

Let us first recall the main physical quantities related to high-energy elastic hadron scattering,
defining the notation and normalizations [8]. Neglecting spin effects and denoting F(s, t) the
invariant elastic amplitude in terms of the Mandelstam variables, s and t , the differential and
total cross sections at high energies (s � 1 GeV2) are expressed, respectively, by

dσ

dt
(s, t) = 16π

s2

∣∣F(s, t)
∣∣2

, (1)

and

σtot(s) = 16π

s
ImF(s, t = 0) (Optical Theorem). (2)

The parameter ρ, the ratio between the real and imaginary parts of the forward amplitude, is
given by

ρ(s) = ReF(s, t = 0)

ImF(s, t = 0)
, (3)

and the slope of the elastic differential cross section in the forward direction is defined as
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B(s, t = 0) =
[

d

dt

(
ln

dσ

dt

)]
t=0

. (4)

From (1) to (3), the optical point is expressed by

dσ

dt

∣∣∣∣
t=0

= σ 2
tot(1 + ρ2)

16π
. (5)

The integrated elastic cross section reads

σel(s) =
0∫

t0

dσ

dt
(s, t) dt, (6)

where t0 defines the physical (kinematic) region and, from unitarity, the inelastic cross section is
obtained:

σin(s) = σtot(s) − σel(s). (7)

For our purposes let us recall two formulas in the Glauber formalism that play a central role in
EAS studies [1]. The first one is the expression for the sum of the elastic and quasi-elastic cross
section for hadron–nucleus (hA) scattering,

σhA
el (s) + σhA

qel (s) =
∫

d2b

∣∣∣∣∣1 −
A∏

j=1

[
1 − aj (s, �b − �bj )

]∣∣∣∣∣
2[ A∏

j=1

τ(�rj ) d3rj

]
, (8)

where �rj and �bj are the coordinate and impact parameter of the individual nucleons, τ(�rj ) the
single nucleon density, �b the impact parameter of the cosmic-ray hadron and aj (s, �b − �bj ) the
nucleon–nucleon impact parameter amplitude (profile function). In addition to possible config-
urations for the nucleus, the profile function constitutes the main ingredient for the connection
between hadron–hadron and hadron–nucleus scattering. Typically this profile is parametrized
by [1]

aj (s, �bj ) = [1 + ρ(s)]
4π

σtot(s)

B(s)
e
−�b2

j /[2B(s)]
, (9)

where ρ, σtot and B are the quantities defined above, demanding inputs from models to com-
plete the connection. As clearly illustrated by Ulrich et al. [1], the uncertainty bands for these
three quantities resulting from high-energy extrapolations based on representative phenomeno-
logical models, are larger than the range covered by all available MC interaction model results,
as QGSJET01c, EPOS1.61, SIBYLL2.1 and QGSJETII.3, leading the authors to the conclusion
that presently, “the extrapolation of hadronic cross sections to cosmic-ray energies might be un-
derestimated” [1].

In what concerns the above three fundamental quantities, we recall that forward ampli-
tude analyses connect σtot(s) and ρ(s) through dispersion relations. Detailed tests on different
parametrizations have been developed by the COMPETE Collaboration, with the selection of the
highest rank result [9,10], which also appears in the Review of Particle Physics by the Particle
Data Group [11]. Recent results by the TOTEM Collaboration on σtot at 7 TeV [12] and the
expected estimation of ρ at this energy, will certainly shed light on novel analytical parametriza-
tions and therefore more reliable extrapolations with less model dependency.

However, that is not the case for the elastic slope B(s) since the available data from pp and
p̄p elastic scattering can be extrapolated in a very large band of possibilities and moreover, any
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result is strongly model dependent. As a consequence, from Eq. (9), despite the uncertainty in
the effective radius of the nucleon–nucleon amplitude, any extrapolation is strongly dependent
on the ratio

σtot

B
(s), (10)

namely the unknown correlation between σtot and B in terms of energy. Although some analytical
connections have already been investigated from fits to the experimental data [13], the statistical
and systematic errors in both quantities and the model dependencies involved put limits on these
results.

Based on the above comments, we understand that even under some reasonable approximate
conditions, an almost model-independent parametrization for the above ratio may reduce the
uncertainty band in the extrapolations from accelerator to cosmic-ray-energy regions. That is the
point we are interested in here.

3. Formal and experimental results

In this section we first recall some rigorous (formal) results related to σtot(s) and B(s) and
their connections with the experimental data presently available. Based on these considerations
in the next section we introduce our proposed parametrization and present the results.

3.1. Rigorous results

General principles and high-energy theorems have always been a fruitful source of model-
independent results for physical quantities in the asymptotic regime [14]. In this context, two
well-know inequalities have been derived for the total cross section and the elastic slope. The
first one is the Froissart–Lukaszuk–Martin upper bound, stating that asymptotically (s → ∞)

σtot(s) �
π

m2
π

ln2 s

s0
, (11)

for some s0 [15–17]. The second one, playing here an important role, is the lower bound of
MacDowell and Martin, obtained from unitarity together with properties of the Legendre poly-
nomials and involving forward quantities [18],

2

[
d

dt
ln ImF(s, t)

]
t=0

� 1

18π

σ 2
tot(s)

σel(s)
. (12)

From the definition of the forward slope, Eq. (4), together with Eq. (1) and under the assumption

ReF(s, t = 0) � ImF(s, t = 0),

it follows that
d

dt
ln ImF(s, t)

∣∣∣∣
t=0

≈ 1

2
B

and from (12) an upper bound is obtained for our ratio of interest,

σtot(s)

B(s)
� 18π

σel(s)

σtot(s)
. (13)

Although rigorous, relations involving inequalities have a limited practical applicability, ex-
cept for bounds imposed on the construction of phenomenological models. To go further in the
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search for almost empirical or model-independent results, experimental data and formal inequal-
ities must be checked, as follows.

3.2. Experimental results

The highest energies reached in accelerator machines for particle and antiparticles reactions
concern pp and p̄p scattering, covering the region up to ∼ 2 TeV (p̄p) and, presently, up to
7 TeV (pp). These data indicate that at the highest energies

ρ(s) � 0.14,

which means that the above assumption, ρ � 1, constitutes a considerable approximation. On
the other hand, at the optical point, Eq. (5), an assumption like

1 + ρ2 ≈ 1 (14)

certainly represents a reasonable approximation. We shall return to this point in what follows. It
may be interesting to note that these information allow us to derive bound (13) from (12) under
different assumptions, as shown in Appendix A.

Concerning the differential cross section, experimental data indicate a sharp forward peak,
followed by a dip-bump or dip-shoulder structure above ∼ 0.5 GeV2 (Tevatron, LHC). Typi-
cally, these structures are located more than 5 decades below the optical point, Eq. (5). These
experimental facts are important in the determination of the integrated elastic cross section, since
in this case the differential cross section can effectively be represented by an exponential fall off,
simulated by a model-independent parametrization [12],

dσ

dt
= dσ

dq2

∣∣∣∣
q2=0

eBt , (15)

with B the (constant) forward slope. In that case, with the reasonable approximation (14) at the
optical point (5) and assuming t0 → −∞ in Eq. (6), the integrated elastic cross section reads

σel(s) = 1

B(s)

σ 2
tot(s)

16π

and therefore,

σtot(s)

B(s)
= 16π

σel(s)

σtot(s)
, (16)

which is very close to the approximate bound (13). However, the main ingredient in this re-
sult is the possibility to investigate the behavior of σtot(s)/B(s) from formal and experimental
information on the ratio σel(s)/σtot(s), as discussed in what follows.

4. Analytical parametrization and fit results

In Fig. 1 we display the experimental information presently available on the ratio σel/σtot from
pp scattering above 10 GeV [11], including the recent TOTEM result at 7 TeV [12] (highest
energy reached in accelerators). From a strictly empirical point of view, the data in the linear-log
scale may suggest a parabolic parametrization in terms of ln s, with positive curvature. However,
unitarity demands an obvious bound,
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Fig. 1. Experimental data on the ratio between the elastic and total cross sections from pp scattering above 10 GeV
[11,12].

σel

σtot
� 1.

In addition, naive models, as for a Gaussian profile or the gray-disk, predict [19] σel/σtot = C/2,
where C is a constant (absorption coefficient) and in the black-disk limit C = 1. These results
indicate a constant asymptotic limit for the ratio

lim
s→∞

σel

σtot
= A (constant)

and therefore a change of sign in the curvature, at some finite value of the energy, is expected.
Moreover, since from Fig. 1 the data at low energies indicate σel/σtot ∼ constant ≈ 0.18, a gen-
eral behavior related to a logistic or sigmoid function can be conjectured, at least above 10 GeV
(the high-energy region). Several functions with this property can be considered. However, for
tests on goodness of fit some quantitative information on the value of the asymptotic limit A is
necessary.

Looking for a wide range of possibilities in the phenomenological context, we shall consider
two contrasting pictures that have been discussed in the literature. On the one hand, the amplitude
analysis by Block and Halzen favour the asymptotic black-disk [20], which is also predicted, for
example, in the models by Chou and Yang [21] and by Bourrely, Soffer and Wu [22]. On the other
hand, the U-matrix unitarization scheme by Troshin and Tyurin predicts σtot(s) ∼ σel(s) ∼ ln2 s

and σinel(s) ∼ ln s [23], which is beyond the black-disk limit and in agreement with the above
obvious unitarity bound. Therefore these two contrasting pictures suggest

A = 1

2
(black-disk limit) and

1

2
< A � 1 (beyond the black-disk limit).

Although, in principle, it might be possible to explore all the real interval for A beyond the black-
disk, we consider here only its maximum value. As we shall show, that is adequate and sufficient
for our purpose to infer wider uncertainty bands from the above mentioned phenomenological
context.
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Fig. 2. Ratio between the elastic and total cross section and fit results through parametrization (17), including uncertainty
from error propagation, for A = 1 (upper curve) and A = 1/2 (lower curve).

Table 1
Fit results with parametrization (17) for the ratio σel/σtot from pp scattering above 10 GeV. In
both cases the degrees of freedom (DOF) are 87.

A = 1/2 A = 1

γ1(×10−1) 4.66 ± 0.18 2.204 ± 0.078

γ2(×10−2) −2.59 ± 0.49 −1.11 ± 0.20

γ3(×10−3) 1.77 ± 0.33 0.76 ± 0.13

χ2/DOF 1.167 1.168

Based on these considerations and inspired in different physical phenomena, we have tested
several functional forms to fit the σel/σtot data. The best statistical result has been obtained with
the following novel model-independent parametrization:

σel

σtot
(s) = A tanh

(
γ1 + γ2 ln s + γ3 ln2 s

)
, (17)

where γi , i = 1,2,3, are free fit parameters and A represents the asymptotic limit, for which we
consider only the two extreme cases A = 1/2 and A = 1.

The data reductions have been performed with the objects of the class TMinuit of ROOT
Framework [24]. We have adopted a Confidence Level of ≈ 68% (one standard deviation),
which means that the projection of the χ2 distribution in (N + 1)-dimensional space (N =
number of free fit parameters) contains 68% of probability [25]. The fit results for A = 1/2 and
A = 1 are displayed in Fig. 2 and Table 1 together with the statistical information. In both cases,
the error propagation from the fit parameters has been evaluated and are also displayed in the
figure; the bands however are indistinguishable.

From the approximate result (16), the ratio σtot/B can be predicted as function of the en-
ergy and in an almost model-independent way. The results together with the experimental data
[11,12,26] are displayed in Fig. 3 and show that, in fact, Eq. (16) is very close to the approxi-
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Fig. 3. Experimental data on the ratio between the total cross section and the elastic slope [11,12,26] and predictions
from Eqs. (16)–(17), including uncertainty from error propagation, for A = 1 (upper curve) and A = 1/2 (lower curve).

Table 2
Predictions from Eqs. (16)–(17) for the ratio σtot/B at the LHC energy region and the TOTEM result at 7 TeV [12].
√

s A = 1/2 A = 1 TOTEM

7.0 TeV 12.827 ± 0.047 12.821 ± 0.024 12.56 ± 0.59
14 TeV 13.811 ± 0.068 13.903 ± 0.033 –

mate bound (13). Up to our knowledge, the only rigorous result indicating a constant asymptotic
value for this ratio appears in the recent formal analysis by Azimov, on boundary values for the
physical cross section and slope [27]. The numerical predictions with uncertainties for the ratio
σtot/B at the LHC energy region are displayed in Table 2, together with the experimental value
at 7 TeV.

5. Conclusions and final remarks

Based on unitarity arguments and fits to the experimental data on the ratio R = σel/σtot from
pp scattering above 10 GeV, a novel empirical parametrization for R(s) has been introduced,
Eq. (17). The approximate connection between this quantity and the ratio σtot/B , Eq. (16), allows
us to infer the corresponding energy dependence for this ratio in an almost model-independent
way. All the results are in agreement with rigorous inequalities derived from the axiomatic for-
mulation.

Although depending on the unknown asymptotic limit represented by the constant A, the
results here presented lead to, at least, four main conclusions:

1. If the black-disk represents a reliable physical limit [20], its saturation is very far from
presently available energies:

√
s � 109 GeV, from Fig. 2;

2. If the Froissart–Lukaszuk–Martin bound is saturated then in this region B(s) ∼ ln2 s;
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Fig. 4. Detail of Fig. 3 up to the Auger energy region.

3. Either for A = 1/2 or A = 1, the uncertainty bands evaluated by error propagation from the
fit parameters in Eq. (17) are negligible: upper, central and lower curves in Figs. 2, 3 and 4
overlap;

4. Even with A = 1/2 and A = 1 as lower and upper bounds, extrapolation of the ratio σtot/B

to the Auger energy region,
√

s ∼ 50–60 TeV, indicates a reasonably small error band, over-
estimated from Fig. 4 to be in the interval 15.5–16.3.

At last, we understand that the applicability of our results in the context of the Glauber for-
malism can be further developed and improved along the following lines:

• The recent TOTEM result for σel at 7 TeV has been obtained through the steps outlined
in Section 3.2 [12] and therefore has been evaluated from the results for σtot and B . The
forthcoming measurement of σtot, by means of a luminosity-independent method, and the
corresponding σel determination may improve our fit result, since this region is just asso-
ciated with the change of curvature in parametrization (17), as shown in Fig. 2. Moreover,
further results at 14 TeV will certainly contribute with additional improvements in the fit
results.

• Here we have limited the discussion to the extreme values indicated from unitarity and the
black-disk limit, together with the almost model-independent result for the ratio σtot/B .
However, as commented in Section 3, analytical parametrizations for the total cross section
and the ρ parameter, as those obtained by the COMPETE Collaboration (or possible devi-
ation from this result, if confirmed by the experimental data [28]), may be combined with
our results in the Glauber connection, Eqs. (8)–(9), reducing the uncertainties bands in the
extrapolations to cosmic-ray energies.

Note added

After this paper was submitted for publication, we have noticed the results from a gray-disk-model
analysis, in which a different transition on σel/σtot(s), from low to high energies, is proposed [29] (see also
references therein).
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Appendix A

Beyond the forward direction we can define

B(s, t) = d

dt

[
ln

dσ

dt
(s, t)

]
(A.1)

and

ρ(s, t) = ReF(s, t)

ImF(s, t)
,

so that from Eq. (1),

B(s, t) = 2
d

dt
ln ImF(s, t) + d

dt
ln

[
1 + ρ2(s, t)

]
. (A.2)

Under the reasonable assumption that at least in the neighborhood of t = 0

ImF(s, t) � ReF(s, t)

and by expanding the second term in the r.h.s of (A.2) we obtain at t = 0

d

dt
ln

[
1 + ρ2(s, t)

]∣∣∣∣
t=0

= 2ρ(s)
d

dt
ρ(s, t)

∣∣∣∣
t=0

+O
(
ρ3(s)

)
.

Since from the experimental data ρ(s) � 0.14 and under the assumption

lim
t→0

d

dt
ρ(s, t) = 0,

Eq. (A.1) at t = 0 reads

B(s) ≈ 2
d

dt
ln ImF(s, t)

∣∣∣∣
t=0

,

leading through Eq. (12) to the upper bound (13).

References

[1] R. Ulrich, R. Engel, S. Müller, F. Schüssler, M. Unger, Nucl. Phys. B (Proc. Suppl.) 196 (2009) 335.
[2] P. Sokolsky, Introduction to Ultrahigh Energy Cosmic Ray Physics, Frontiers in Physics, vol. 76, Addison–Wesley,

New York, 1989.
[3] R. Engel, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 58 (1998) 014019.
[4] R. Engel, Nucl. Phys. B (Proc. Suppl.) 82 (2000) 221.
[5] R.F. Ávila, E.G.S. Luna, M.J. Menon, Phys. Rev. D 67 (2003) 054020.
[6] R. Glauber, Phys. Rev. 100 (1955) 629.
[7] R. Glauber, G. Matthiae, Nucl. Phys. B 21 (1970) 135.
[8] G. Matthiae, Rep. Prog. Phys. 57 (1994) 743.
[9] J.R. Cudell, et al., COMPETE Collaboration, Phys. Rev. Lett. 89 (20) (2002) 201801.

[10] J.R. Cudell, et al., COMPETE Collaboration, Phys. Rev. D 65 (2002) 074024.



D.A. Fagundes, M.J. Menon / Nuclear Physics A 880 (2012) 1–11 11
[11] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
[12] G. Antchev, et al., TOTEM Collaboration, Europhys. Lett. 96 (2011) 21002.
[13] A.F. Martini, M.J. Menon, J. Montanha, Braz. J. Phys. 34 (2004) 263.
[14] R.J. Eden, Rev. Mod. Phys. 43 (1971) 15.
[15] M. Froissart, Phys. Rev. 123 (1961) 1053.
[16] A. Martin, Nuovo Cimento A 42 (1966) 930.
[17] L. Lukaszuk, A. Martin, Nuovo Cimento A 52 (1967) 122.
[18] S.W. MacDowell, A. Martin, Phys. Rev. B 135 (1964) 960.
[19] M.M. Block, Phys. Rep. 436 (2006) 71.
[20] M.M. Block, F. Halzen, Phys. Rev. Lett. 107 (2011) 212002.
[21] T.T. Chou, C.N. Yang, Phys. Rev. D 170 (1968) 1591.
[22] C. Bourrely, J. Soffer, T.T. Wu, Nucl. Phys. B 247 (1984) 15;

C. Bourrely, J. Soffer, T.T. Wu, Z. Phys. C 37 (1987) 369.
[23] S.M. Troshin, N.E. Tyurin, Int. J. Mod. Phys. A 22 (2007) 4437;

S.M. Troshin, N.E. Tyurin, Phys. Lett. B 316 (1993) 175.
[24] URL: http://root.cern.ch/drupal/;

http://root.cern.ch/root/html/TMinuit.html.
[25] P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw–Hill,

Boston, Massachusetts, 1992.
[26] Durham Reaction Database, http://durpdg.dur.ac.uk/HEPDATA/REAC.
[27] Y.I. Azimov, Phys. Rev. D 84 (2011) 056012.
[28] D.A. Fagundes, M.J. Menon, P.V.R.G. Silva, Total hadronic cross section data and the Froissart–Martin bound,

arXiv:1112.4704 [hep-ph].
[29] R. Conceição, J. Dias de Deus, M. Pimenta, Proton–proton cross-sections: The interplay between density and radius,

arXiv:1107.0912 [hep-ph].


