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Exact general relativistic rotating thick disks
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Two families of exact general relativistic rotating thick disks based on the Kerr metric are obtained by
applying two kinds of transformation on the Kerr solution. The first is the one proposed by Miyamoto and
Nagai in the context of Newtonian galactic models, and the second one is based on the ‘‘displace, cut, fill
and reflect’’ method. Both kinds of disks have well-behaved energy-density distributions. A stability
analysis of circular orbits on the z � 0 plane shows that for large values of the Kerr parameter some
retrograde orbits tend to be unstable.
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I. INTRODUCTION

Exact solutions of Einstein’s field equations with axial
symmetry play an important role in the astrophysical ap-
plications of general relativity, since the natural shape of an
isolated self-gravitating fluid is axially symmetric. In par-
ticular, disklike configurations of matter are of great inter-
est, since they can be used as models of galaxies and
accretion disks. In past decades, several disklike solutions
were found. Solutions for static thin disks without radial
pressure were first studied by Bonnor and Sackfield [1],
and Morgan and Morgan [2]. Disks with radial pressure
were considered by Morgan and Morgan [3], and González
and Letelier [4]. Several other classes of exact solutions of
the Einstein field equations corresponding to static thin
disks with or without radial pressure have been obtained
by different authors [5–14]. Thin rotating disks that can be
considered as a source of the Kerr metric were presented in
[15], while rotating disks with heat flow were studied in
[16]. Also thin disks with magnetic fields [17] and mag-
netic and electric fields [18] were considered. The non-
linear superposition of a disk and a black hole was first
obtained by Lemos and Letelier [8]. Perfect fluid disks
with halos [19] and charged perfect fluid disks [20] were
also studied. For a survey on self-gravitating relativistic
thin disks, see for instance [21].

In the works cited above, an inverse style method was
used to solve the Einstein equations, i.e., the energy-
momentum tensor is computed from the metric represent-
ing the disk. Another approach to generate disks is by
solving the Einstein equations given a source (energy-
momentum tensor). This has been used by different authors
to generate several exact solutions of thin disks [22–29].

Even though in a first approximation thin disks can be
used as useful models of galaxies, in a more realistic model
the thickness of the disk should be considered. The addi-
tion of a new dimension may change the dynamical prop-
erties of the disk source, e.g., its stability. Thick static
relativistic disks in various coordinate systems were pre-

sented in [30,31]. Also a relativistic generalization of the
Miyamoto-Nagai potential-density pairs [32,33] was
studied in [34].

An important question concerning disk models is its
stability. In general relativistic disks there are usually
two approaches to address this question. One is to study
the stability of test particles along geodesics by using a
generalization of the Rayleigh criteria of stability [35] of a
fluid at rest in a gravitational field, as was done, for
example, by Letelier [36]. The other way to study stability
of disks is by analyzing the conservation equations ob-
tained from perturbations of the components of the disk’s
energy-momentum tensor. This kind of study was made by
Ujevic and Letelier [37] on thin disks and also on a model
of a thick disk in isotropic coordinates [38].

In this work we add a new degree of reality to the simple
models of galaxies and consider relativistic rotating thick
disks. In particular, the Kerr metric is used to construct two
families of disks. One is obtained by applying a trans-
formation proposed by Miyamoto and Nagai [32,33]. The
other is based on the ‘‘displace, cut, fill and reflect’’
method that was used in [30,31] to generate static thick
disks. The work is divided as follows. In Sec. II we present
the main physical quantities associated to the disk. In
Sec. III the properties of the disks obtained from the
above-mentioned transformations are discussed. The rota-
tion curves and stability of test particles along circular
geodesics on the galactic plane are also discussed.
Finally, in Sec. IV we summarize the main results and
make some comments.

II. ROTATING RELATIVISTIC THICK DISKS

In this section we present a summary of the main quan-
tities associated to the disk; we follow closely Ref. [16].
When matter is absent, the metric for a stationary axially
symmetric spacetime can be cast as
 

ds2 � �e2��dt�Ad’�2

� e�2��r2d’2 � e2��dr2 � dz2��; (1)

where �, �, and A are functions of r and z only. The
*dvogt@ime.unicamp.br
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Einstein vacuum equations for this metric yield

 �;rr �
�;r

r
��;zz �

e4�

2r2 �A
2
;r �A2

;z� � 0; (2)

 A ;rr �
A;r

r
�A;zz � 4��;rA;r ��;zA;z�; (3)

 �;r � r��2
;r ��2

;z� �
e4�

4r
�A2

;r �A2
;z�; (4)

 �;z � 2r�;r�;z �
e4�

2r
A;rA;z: (5)

From a solution of Eqs. (2)–(5), we can construct a thick
stationary disk using the transformation z! h�z� � a,
where a is a constant and h�z� an even function of z.
Two particular functional forms for h�z� will be discussed
later. The resulting energy-momentum tensor of the disk
can be computed using the Einstein equations,

 Tab � Rab �
1
2Rgab; (6)

where we use units such that c � 8�G � 1. By using the
vacuum equations (2)–(5), the nonzero components of Tab
are
 

Ttt �
e6��2�

r2

�
�
A

2
A;hh00 � �1� h02�

�

�
A

2
A;hh � 2AA;h�;h �

3

4
A2

;h

��

� e2��2��h00��;h � 2�;h�

� �1� h02���;hh � 2�;hh ��2
;h��; (7)

 

Tt’ �
e6��2�A

2r2 ��AA;hh00 � �1� h02�

� �2A2
;h �AA;hh � 4AA;h�;h��

�
e2��2�

2
��h00�A;h � 4A�;h�

� �1� h02��A;hh � 4A�;hh � 4A;h�;h��; (8)

 T’t �
e6��2�

2r2 �A;hh
00 � �1� h02��A;hh � 4A;h�;h��;

(9)

 

T’’ �
e6��2�

2r2

�
AA;hh

00 � �1� h02�

�

�
AA;h � 4AA;h�;h �

A2
;h

2

��

� e2��2���;hh
00 � �1� h02���;hh ��2

;h��; (10)

 Trr � �Tzz � �1� h02�
�
e6��2�

4r2 A2
;h � e

2��2��2
;h

�
;

(11)

where primes indicate differentiation with respect to z. The
physical quantities associated to the matter distribution are
obtained by solving the eigenvalue problem for the energy-
momentum tensor Tab�

b � ��a:

 �	 �
1
2�T 	

����
D
p
�; (12)

 T � Ttt � T
’
’; D � �T’’ � Ttt�2 � 4Tt’T

’
t ; (13)

 �r � Trr ; �z � Tzz : (14)

The canonical form of the energy-momentum tensor is

 Tab � �VaVb � P’WaWb � ��VaWb �WaVb�

� PrXaXb � PzYaYb; (15)

with an orthonormal basis fVa;Wa; Xa; Yag, where Va �
N0�1;�; 0; 0�, Wa � N1��; 1; 0; 0�, Ya � e����0; 0; 1; 0�,
and Za � e����0; 0; 0; 1�. Here N0 and N1 are normaliza-
tion factors, and

 � �
�
��� � T

t
t�=T

t
’; D 
 0;

�T’’�=�2Tt’�; D < 0;
(16)

 � �
�
��� � T

’
’�=T

’
t ; D 
 0;

0; D < 0:
(17)

The energy density, the azimuthal stress, the heat flow
function, and the vertical and radial stresses are, respec-
tively,

 � �
�
���; D 
 0;
�T=2; D < 0;

(18)

 P’ �
�
��; D 
 0;
T=2; D < 0;

(19)

 � �
�

0; D 
 0;
�

����
D
p

=2; D < 0;
(20)

 Pz � Tzz ; Pr � Trr � �Pz: (21)

When there is no heat flow, the ‘‘effective Newtonian’’
density is given by � � �� P’ � Pr � Pz �

����
D
p

. To sat-
isfy the strong energy condition we must have � 
 0, the
weak energy condition requires � 
 0, and the dominant
energy condition requires jP’=�j � 1, jPr=�j � 1, and
jPz=�j � 1 [39].

A rotation profile (tangential velocity) of test particles
can be calculated by assuming circular motion along geo-
desics on the galactic plane (located on z � 0). This as-
sumption is valid for the case of a particle moving in a very
diluted gas like the gas made of stars that models a galactic
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disk. Let ua � u0�1; !; 0; 0� be the velocity vector of a test
particle. The expression for the angular velocity ! follows
from the geodesic equation for the r coordinate,

 g’’;r!2 � 2gt’;r!� gtt;r � 0; (22)

whose solutions are

 !	 �
�gt’;r 	

����������������������������������
g2
t’;r � gtt;rg’’;r

q
g’’;r

: (23)

Therefore, in general, the prograde and retrograde angular
velocities are different. The tangential velocity can be
calculated by projecting the velocity vector ua onto the
tetrad ebâ � fV

b;Wb; Xb; Ybg:

 uâ � eâbu
b � �â ĉeĉbub: (24)

Thus

 U	 �
u’̂

ut̂
� �

Wt �W’!	
Vt � V’!	

; (25)

where all functions are evaluated on z � 0.
The specific angular momentum per unit mass of a test

particle is given by h � g’au
a. The angular momentum

can be used to determine the stability of circular orbits on
the galactic plane by using an extension of the Rayleigh

criteria of stability [35] of a fluid at rest in a gravitational
field,

 

dh2

dr

��������z�0
>0: (26)

III. THICK KERR DISKS

In this section we study two families of thick rotating
disks constructed from the Kerr solution, which can be
written as

 � �
1

2
ln
�
�R1 � R2�

2 � 4m2 � �2�R1 � R2�
2=	2

�R1 � R2 � 2m�2 � �2�R1 � R2�
2=	2

�
;

(27)

 � �
1

2
ln
�
�R1 � R2�

2 � 4m2 � �2�R1 � R2�
2=	2

4R1R2

�
;

(28)

 A �
�m

	2

�R1 � R2 � 2m��4	2 � �R1 � R2�
2�

�R1 � R2�
2 � 4m2 � �2�R1 � R2�

2=	2 ;

(29)

where m and � are the mass and Kerr parameter, respec-
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FIG. 1. For the Miyamoto-Nagai–like Kerr disk, we show level curves of the energy density ~� as functions of ~r and ~z with
parameters ~a � 1, ~b � 1, ~� � 0:1 in (a) and ~� � 0:9 in (b). The effective Newtonian density ~� with the same parameters is shown in
(c) and (d).
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tively, R1 �
�����������������������������
r2 � �z� 	�2

p
, R2 �

�����������������������������
r2 � �z� 	�2

p
, and

	 �
������������������
m2 � �2
p

.

A. A Miyamoto-Nagai–like Kerr disk

We use a transformation first proposed by Miyamoto and
Nagai [32,33] to generate potential-density pairs useful for
modeling both the central bulge and the disk part of

galaxies. It consists in replacing z by a�
����������������
z2 � b2

p
, where

a and b are non-negative parameters. When this trans-
formation is applied on the solution (27)–(29), Eqs. (7)–
(21) generate exact but huge expressions that will not be
presented. The analysis is better done graphically.
Figures 1(a) and 1(b) show some level curves of the energy
density ~� � m2� with parameters ~a � a=m � 1, ~b �
b=m � 1, ~� � �=m � 0:1 (slow rotation) in (a) and ~� �
0:9 (high rotation) in (b). In Figs. 1(c) and 1(d), we display
level curves of the effective Newtonian density ~� � m2�
with the same parameters. The discriminant D is every-
where non-negative, thus there is no heat flow. We also
found D 
 0 for several other values of the parameters.
The density distributions are non-negative, free from sin-
gularities, and decay along the radial direction as well as
the vertical direction. As the Kerr parameter increases, the
density distributions become slightly flattened and the
maximum values at the origin decrease. The level curves

for azimuthal stress and vertical stress are displayed in
Figs. 2(a)–2(d), respectively, with the same parameters
as in Fig. 1. Near the disk’s center we have azimuthal
tension and for larger values of r and z azimuthal pressure.
Thus there is a solid core surrounded by a fluid. The
maximum of pressure is shifted to the right as the Kerr
parameter is increased. From Figs. 2(c) and 2(d) we have
vertical pressure which has the same modulus as radial
tension. Therefore, the disk is composed of an anisotropic
fluid with regions of shear tensions. For ~� � 0:1 we
have j ~P’=~�j< 0:4, j ~Pz=~�j< 0:1; for ~� � 0:9 we have
j ~P’=~�j< 0:3 and j ~Pz=~�j< 0:06; thus the dominant energy
condition is also satisfied.

In Fig. 3(a) we depict some curves of the prograde
tangential velocity U� and retrograde tangential velocity
U� for the Miyamoto-Nagai–like Kerr disk with ~a � 1,
~b � 1, ~� � 0:1 (solid lines), ~� � 0:5 (dashed lines), and
~� � 0:9 (dotted lines). Figure 3(b) shows the curves of the
square of angular momenta h2

� (upper curves) and h2
�

(lower curves) with the same parameters. The same quan-
tities are repeated in Figs. 3(c) and 3(d) but now with
parameter ~b � 0:5. By high rotation the prograde and
retrograde velocity curves become more asymmetric.
From the Rayleigh criteria of stability, we note that the
circular orbits are almost stable for the parameters shown.
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FIG. 2. For the Miyamoto-Nagai–like Kerr disk, we show level curves of the azimuthal stress ~P’ as functions of ~r and ~z with
parameters ~a � 1, ~b � 1, ~� � 0:1 in (a) and ~� � 0:9 in (b). The vertical pressure ~Pz with the same parameters is shown in (c) and (d).
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However, in Fig. 3(d) a small region of instability appears
for retrogade motion near ~r � 5.

B. A second family of thick Kerr disks

Another family of rotating thick disks can be con-
structed with the ‘‘displace, cut, fill and reflect’’ method
used in [30,31] to generate static thick disks. This can be
divided in the following steps: (i) cut the spacetime above
its singularities, then disregard the part of the spacetime
containing the singularities; (ii) put a thick shell below the
surface; and (iii) use the bottom surface of the shell to
make an inversion. The mathematical equivalent is a trans-
formation z! h�z� � a, where we use an even polynomial
class of functions given by

 h�z� �

8><
>:
�z� C; z � �b;
Az2 � Bz2n�2; �b � z � b;
z� C; z 
 b;

(30)

with

 A �
2n� 1� bc

4nb
; B �

bc� 1

4n�n� 1�b2n�1 ;

C � �
b�2n� 1� bc�

4�n� 1�
:

Here n � 1; 2; . . . ; b is the disk half-thickness and c is the
jump of the second derivative on z � 	b. The specific
form of this class of functions will generate thick disks
with well-defined properties; see [31] for a detailed dis-
cussion. Also, we should have

 a 

2nb

2n� 1� bc
; and 0 � bc < 2n� 1: (31)

Note that, unlike the transformation presented in Sec. III A,
the functions defined by Eq. (30) will generate disks with
finite thickness located between �b � z � b.

As an example we show in Figs. 4(a)–4(d) level curves
of the energy density �� and the effective Newtonian density
��with parameters n � 1, �a � 2, �c � 0, �m � 1, �� � 0:1 in
Fig. 4(a) and 4(c) and �� � 0:9 in Fig. 4(b) and 4(d) where
now all quantities are rescaled in terms of b. Again there is
no heat flow, and the density distributions are everywhere
non-negative and free from singularities. Figures 5(a)–5(d)
display some level curves of the azimuthal stress and
vertical pressure, respectively, with the same parameters.
The qualitative features of the azimuthal stress and the
influence of the Kerr parameter on the disk’s properties
are very similar to the rotating disk presented in Sec. III A.
The dominant energy condition is also satisfied: for ~� �
0:1 we have j ~P’=~�j< 0:4, j ~Pz=~�j< 0:1; for ~� � 0:9 we
have j ~P’=~�j< 0:3 and j ~Pz=~�j< 0:06. Some curves of
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FIG. 3. For the Miyamoto-Nagai–like Kerr disk, we show curves of the prograde U� and retrograde U� tangential velocities and the
square of angular momenta h2
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�. Parameters: ~a � 1, ~� � 0:1 (solid lines), ~� � 0:5 (dashed lines), ~� � 0:9 (dotted lines), ~b � 1
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prograde and retrograde tangential velocities are shown in
Fig. 6(a) and of the square of angular momenta in Fig. 6(b)
with parameters n � 1, �c � 0, �a � 2, �m � 1, �� � 0:1
(solid lines), �� � 0:5 (dashed lines), and �� � 0:9 (dotted
lines); and in Figs. 6(c) and 6(d) �a � 1:5. In 6(d) we note
again a small instability region for the retrogade orbit with
�� � 0:9.

IV. DISCUSSION

We presented two families of exact general relativistic
rotating thick disks which were obtained by applying
different transformations on the Kerr metric. The first
was a Miyamoto-Nagai–like one, and the second was
based on the ‘‘displace, cut, fill and reflect’’ method.
Both transformations generate disks with similar proper-
ties. The energy density and ‘‘effective’’ Newtonian den-
sity are free from singularities and also are non-negative
for several values of the parameters tested, thus satisfying
the strong as well as the weak energy conditions. They
present azimuthal tensions near the center and pressures
for larger values of the radial and vertical coordinates, and

the vertical pressures have the same modulus as the radial
tensions. For the examples studied, the dominant energy
condition was also satisfied. In general, the effect of rota-
tion is to decrease the maximum values of the density
distributions near the origin and make them slightly flat-
tened. Rotation also reinforces the asymmetry of the pro-
grade and retrogade rotation curves on the z � 0 plane, and
large values of the Kerr parameter destabilize high relativ-
istic orbits (mostly retrogade).

Although our examples of rotating disks based on the
Kerr metric do not have heat flow, an analytical proof that
the discriminant equation (13) is never negative is not
trivial. A more complete study of stability of these disk
models by using conservation equations from perturbations
of the energy-momentum tensor would also be a challeng-
ing task.
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