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Near-threshold vibrational excitation of H2 by positron impact: A projection-operator approach
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We report vibrational excitation ��i=0→� f =1� and total cross sections for positron scattering by H2. The
Feshbach projection operator formalism was employed to vibrationally resolve the fixed-nuclei phase shifts
obtained with the Schwinger multichannel method. The near-threshold behavior of the vibrational excitation
cross section is in good agreement with available experimental data �Sullivan et al., Phys. Rev. Lett. 86, 1494
�2001��. Though our fixed-nuclei calculations do not indicate the existence of a e+-H2 virtual state, a proper
description of the T matrix threshold behavior is essential �the adiabatic approximation is inadequate�. The
projection operator approach has long been a powerful tool for studies of nuclear dynamics in electron-
molecule collisions, and its application to positron scattering is timely since couplings to nuclear degrees of
freedom are known to be very important at low impact energies.
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I. INTRODUCTION

The recent improvements in positron accumulation and
beam techniques �1–3� allowed for a new generation of scat-
tering �4–9� and annihilation �10–12� experiments that
greatly expanded the understanding of positron-matter inter-
actions in the gas phase. In particular, the evidence of vibra-
tionally enhanced annihilation �10–12� and vibrationally re-
solved cross sections �4,9� have attracted a lot of attention to
the couplings between positron and nuclear degrees of free-
dom. Though considerable insight into the role of vibrations
has been gained from phenomenological �13–15� and ana-
lytically solvable �16� models since a mechanism based on
vibrational resonances �17,18� was proposed to explain the
very large annihilation rates of polyatomics �10–12,18–20�,
ab initio descriptions of realistic systems would also contrib-
ute to build up a sound theoretical understanding.

Though Gianturco and co-workers have been undertaking
an effort in this direction �21–29�, the literature on vibra-
tional excitation of molecules by positron impact is sketchy.
Our group has investigated the dependence of the
e+-acetylene compound energy on C-C stretch �30� and car-
ried out a comparative study of �adiabatic� vibrational exci-
tation of hydrogen by electron and positron impact �31,32�,
but so far our studies have essentially focused on fixed-
nuclei elastic collisions �30,33–39� and electronic excitation
�40,41�. In this work, we present a formulation based on the
Feshbach projection-operator formalism �42� that may allow
for systematic studies of vibration dynamics in positron scat-
tering.

The projection-operator formalism has long been known a
powerful technique for studies of nuclear dynamics in elec-
tron scattering, and a review of the vast literature on appli-
cations to electron-molecule resonances, virtual, and bound
states is out of the scope of this work. We only mention a
review article �43� and a few recent applications �44,45� �the
reader is referred to other papers in Sec. II�. This essentially
exact formalism decomposes the scattering wave function in
two components, namely the discrete state and the back-
ground continuum, where the former is embedded and
coupled to the latter. The collision is described as the forma-

tion of a transient projectile-target state that launches the
nuclei onto a complex and energy-dependent potential sur-
face arising from the discrete-continuum coupling, and long-
lived transients significantly release energy into the nuclear
degrees of freedom. The formalism provides a suitable strat-
egy for vibrational resolution of fixed-nuclei cross sections,
and its application to positron collisions is timely in view of
the recent interest on vibrational couplings.

The outline of this paper is as follows. In Sec. II we
briefly present our approach to fixed-nuclei scattering
�Schwinger Multichannel method�, discuss the main features
of the vibrational excitation formulation and a computational
implementation that allows for a proper description of the s
wave dependence on the positron energy and nuclear coordi-
nates. The s wave is dominant at low energies and is ex-
pected to account for the relevant dynamics of near-threshold
collisions. We present vibrationally resolved cross sections
for hydrogen in Sec. IV and our conclusions are presented in
Sec. V.

II. THEORY

The Hamiltonian for positron-molecule collisions is given
by

H = K + Hele = K + H0 + V , �1�

where K is the nuclear kinetic energy operator, V is the
positron-molecule scattering potential, and H0 is the elec-
tronic interaction-free Hamiltonian, i.e., the sum of the pos-
itron kinetic energy and the N-electron target Hamiltonian,

H0 = −
1

2
�p

2 + HN, �2�

with the nuclear repulsion included in the latter. For simplic-
ity, we restrict the formulation to a single vibrational mode
and a single energy-allowed electronic channel �the target
ground state�. The T matrix element for the �i→� f vibra-
tional excitation is given by
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T�f,�i
�k f,ki� = ��kf�f

�V��ki�i

�+� � = ��kf�f
�T��ki�i

� , �3�

where ki and k f are the incoming and outgoing positron
wave vectors, respectively, ��k�� is an asymptotic
�interaction-free� state and ��ki�i

�+� � is the scattering wave
function �an eigenstate of H�.

Assuming the validity of the Born-Oppenheimer �BO� ap-
proximation �46� for the target, the free states may be written
as

�k��R,rp,�� = N�k�exp�ik · rp��0�R;������� , �4�

where N�k� is a normalization factor, � is the vibrational
coordinate, rp are the positron coordinates, R= �r1 , . . . ,rN	
stands for the coordinates of N target electrons, �0 and �� are
electronic and vibrational target eigenstates, respectively, and
the semicolon �;�� denotes parametric dependence on �. The
vibrational Hamiltonian of the target is given by

H̃N = K + ��0�HN��0� 
 K + V0��� , �5�

with

H̃N���� = ������ . �6�

Equation �4� is computationally convenient since BO
ground states are routinely calculated with standard quantum
chemical techniques, and this simple form can be extended
to the scattering state through the adiabatic nuclei vibration
�ANV� approximation �47�. The collision is assumed very
fast in the time scale of nuclear motion, and vibration exci-
tation thus takes place in the �N-electron� potential energy
surface of the target, i.e.,

�ki�i

�+� �R,rp,�� = 	ki

�+��R,rp;����i
��� , �7�

and

T�f,�i
�k f,ki� = ���f

�t�k f,ki;�����i
� , �8�

with

t�k f,ki;�� = �Skf
�V�	ki

�+�� . �9�

Skf
is an electronic free state �the product of a plane wave

and the target electronic state�, 	ki

�+� is the fixed-nuclei scat-
tering wave function, and integration over nuclear and elec-
tron �positron� coordinates is implied in Eqs. �8� and �9�,
respectively. In practice, Eq. �8� can be integrated on a
quadrature by solving the fixed-nuclei scattering problem for
the set of quadrature points.

Though the simplicity of the ANV framework is appeal-
ing, the underlying approximation breaks down when �i� the
collision is long-lived �in case resonances, bound or virtual
states are found�, since appreciable nuclear motion takes
place in the �N+1�-particle potential surface of the positron-
target compound; and �ii� threshold effects are important,
since Eq. �8� violates Wigner threshold law �48� �ki=kf in the
fixed-nuclei transition matrix element�. In the following sec-
tions, we outline our approach to the fixed-nuclei scattering
problem and how it can be combined with the projection
operator formalism to overcome the limitations of the ANV
approximation.

A. Fixed-nuclei scattering

We employ the Schwinger multichannel method �SMC� to
solve the fixed-nuclei collision problem. The method is de-
scribed in detail elsewhere �49� and here we only give the
working expression for the transition matrix,

t�k f,ki� = �
m,n

�Skf
�V�
m��d−1�mn�
n�V�Ski

� , �10�

where

dmn = �
m��PVP + QĤeleQ − VGP
�+�V��
n� . �11�

The �N+1�-particle configuration state functions 
m �prod-
ucts of target electronic states and positron scattering orbit-
als� provide a basis for expansion of the trial scattering wave
function; P and Q= �1− P� are projection operators onto open
and closed target electronic channels, respectively; GP

�+� is the
free-particle Green’s function projected onto P space; and

Ĥele= �E−Hele�, where E is the incident positron energy.

B. Projection-operator formalism

The Feshbach projection operator formalism �42� decom-
poses the scattering wave function into discrete �“resonant”�
and background components. Generalizations of the formal-
ism to incorporate nuclear motion have long been proposed
�50–55� and rely on a BO electronic discrete state �56�—in
the present context, an �N+1�-particle state including the
positron, �d�R ,rp ;��—that uniquely defines the projectors
Q= ��d���d� and P= �1−Q�. Consequently,

QP = PQ = �K,Q� = �K,P� = 0, �12�

so the coupling between the discrete component �Q space�
and the background continuum �P space� arises from the
electronic Hamiltonian, QHP=QHeleP. The formalism has
been discussed by several authors �see, for instance, Refs.
�51,55,57��, and only a few key aspects will be outlined here.
The decomposition of the scattering wave function, �P
+Q� ��ki�i

�+� �= ��ki�i

P �+ ��ki�i

Q �, leads to a two-potential prob-
lem �58� and ultimately splits up the T matrix �42,51,57�
according to

T�f,�i
�k f,ki� = ���f

�tbg�k f,ki;�����i
�

+���f
Ukf

* 1

E − K − Vopt�E − H̃N�
Uki
��i� .

�13�

The first term on the right-hand side �rhs� of Eq. �13� ac-
counts for P-space �background� scattering, and its calcula-
tion is straightforward �59�. In the second term on the rhs,

Uk��� = ��d�Hele��k
P� �14�

accounts for the electronic discrete-continuum �Q-P� cou-
pling, where Uki

and Ukf
are usually called entry and exit

amplitudes �55�, respectively. The optical potential is given
by �57�

MÁRCIO T. DO N. VARELLA AND MARCO A. P. LIMA PHYSICAL REVIEW A 76, 052701 �2007�

052701-2



Vopt�E − H̃N� = V0��� + �d��� + ��E − H̃N� −
i

2

�E − H̃N� ,

�15�

where

�d��� = ��d�Hele��d� − V0��� �16�

is the relative energy of the discrete state with respect to the
electronic ground state of the target. � and 
 are the real and
imaginary parts, respectively, of a complex, nonlocal, and
energy-dependent potential arising from the coupling of the
discrete state ��d� to the continuum of background scattering
states. The width 
 is related to the discrete-continuum de-
cay probability and the level shift � contributes to the real
part of the optical potential surface �V0+�d+��. Explicitly
�57�,


�E − H̃N� = 2�� kdk� dk̂Uk��E − H̃N −
k2

2
�Uk

* ,

�17�

and

��E − H̃N� =
1

2�
p� dE�


�E� − H̃N�

E − E� − H̃N

, �18�

where the Cauchy principal value is indicated in Eq. �18�.
Though the projection-operator formalism is not restricted

to the description of resonant collisions, the first and second
T matrix terms on the rhs of Eq. �13� are usually called
background and resonant components, respectively, because
many applications to electron-molecule shape resonances
have been carried out. The approach is completely general in
the sense that a decomposition of the wave function can al-
ways be performed, and it is likewise applicable to the de-
scription of bound and virtual states, or even to direct scat-
tering �large Q-P couplings give rise to short-lived
collisions�. Since no shape resonances are found in positron-
molecule scattering, the broadly employed terminology
“resonant component” would be misleading in the present
case, and we employ “discrete component” instead. The un-
derlying dynamical picture in Eq. �13� is the formation of a
discrete state ��d�, embedded and coupled to a background
continuum, that launches a stationary vibrational eigenstate
of the target ���i

� onto the complex and energy dependent
potential surface Vopt. The discrete state eventually decays to
the continuum by positron detachment, leaving the target in
the vibrationally excited state ��f

.
The vibrational excitation integral cross section may be

readily obtained from Eq. �13�,

��i→�f
=

�2��3

E 
���f
UEf

1

E − K − Vopt�E − H̃N�
UE
��i�
2

,

�19�

where

�UE�2 =� dk̂�Uk�2. �20�

In Eq. �19�, we set �i=0 by suitably choosing the zero of the
target potential energy surface and E=Ef +� f is the positron
energy. The free asymptotic states were normalized as N�k�
=�k / �2��3 �61�, and the background contribution was omit-
ted for simplicity �tbg is weakly dependent on the nuclear
coordinate by construction, ���f

� tbg ���i
��0, though it may

contribute to vibrationally elastic scattering�.

1. Fixed-nuclei input

Though the matrix element in Eq. �19� can be numerically
integrated by solving the fixed-nuclei problem on the quadra-
ture points once �d�R ,rp ;�� is known, the discrete state is
still to be determined. Several methods have been proposed
for ab initio estimates of �d, such as Siegert-state �62�, sta-
bilization �63�, Stieltjes-trajectory �64�, complex-absorbing-
potential �65�, and R-matrix �66� techniques, but so far none
has become a widely employed approach. The complex po-
tential parameters are often obtained from standard scattering
methods by fitting a Breit-Wigner profile �58� to cross sec-
tions or eigenphases �45,55,57,67,68�.

It is known from formal scattering theory �69,70� that the
decomposition of the fixed-nuclei T matrix is equivalent to
the decomposition of the fixed-nuclei eigenphase sum,

��E� = �bg�E� + �d�E� , �21�

with

�d�E� = − tan−1� �1/2�
�E�
E − �d − ��E�� . �22�

An insightful way of obtaining the fixed-nuclei complex po-
tential ��d ,
 ,�� from ab initio eigenphases, proposed by
Domcke and co-workers �57,67�, assumes a model form for
the energy dependence of the width. Though the formulation
can be extended to higher angular momenta �57�, we restrict
ourselves to the s wave �l=0� and employ the simple param-
etrization


�E� = AE1/2 exp�− bE� �23�

that incorporates the Wigner threshold law �48�. This model
was originally applied to the e−-CO2 virtual state �67�, and
considerably simplifies the projection-operator framework
because the energy dependence of the complex potential is
obtained in closed form. The level shift is obtained as �57�

��E� =
A

2� − 1
��b

+ E1/2e−bE�erf�i�bE��� , �24�

where erf is the error function �71�. The background eigen-
phase is given by the leading term of the threshold expan-
sion,

�bg�E� = aE1/2, �25�

and the discrete state energy �d is viewed as a model param-
eter, so the fixed-nuclei T matrix can be expressed in terms
of a �background component�, A, b, and �d �complex poten-
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tial�. These model parameters may be readily obtained, for
any given value of the vibrational coordinate, from a least-
squares fit of Eq. �21� to SMC phase shifts, since ��E� may
be expressed in terms of �a ,A ,b ,�d	 upon substitution of
Eqs. �22�–�25�.

2. Implementation

The vibrational eigenstates of the target provide a conve-
nient basis for representation of the complex and nonlocal
operator in Eqs. �13� and �19�,

X

�
�������� = 1, �26�

where the contribution from continuum states should be neg-
ligible, since we are interested in near-threshold excitation to
low-lying vibrational levels, and dissociative positron attach-
ment would not be expected. From Eqs. �17� and �20�, we
have

��i�
�E − H̃N��� j� = 2��
�

��i�UE−��
��������UE−��

* �� j� ,

�27�

and the neglect of an unimportant phase factor �72� leads to


ij�E� = �
�

��i�
1/2�E − �����������
1/2�E − ����� j� ,

�28�

where 
ij�E� is the matrix element of 
�E− H̃N� and 
�E�,
given by Eq. �23�, is now a parametric function of the vibra-
tional coordinate: by performing least-squares fits of Eq. �21�
to fixed-nuclei SMC phase shifts, as described above, the
model parameters �a ,A ,b ,�d	 can be obtained on a set of
quadrature points, and thus be viewed as functions of the
vibrational coordinate. The width 
�E� is also a function of
�, according to Eq. �23�, and the matrix elements in Eq. �28�
may be readily integrated.

Evaluation of the real level shift is more complicated
since

�ij�E� = �
�

1

2�
p� dE�

�
��i�
1/2�E� − �����������
1/2�E� − ����� j�

E − E�
,

�29�

and we do not know the energy integral in closed form. The
simplest way to integrate Eq. �29� is neglecting the depen-
dence of 
�E−��� on the vibrational quantum number and
applying the closure relation of the vibrational eigenstates,
since the integral of 
�E� / �E−E�� is given by Eq. �24�.
Though this local approximation would in principle be inad-
equate for near threshold collisions �E����, it could be le-
gitimate if the width was weakly dependent on the vibra-
tional coordinate,


ij�E� � 
�E,0��ij ⇒ �ij�E� = ��E,0��ij , �30�

where �=0 is the equilibrium geometry and �ij is the Kro-
necker delta, or, alternatively,


ij�E� � ��i�
�E − �̄��� j� ⇒ �ij�E� = ��i���E − �̄��� j� ,

�31�

with some suitable choice of �̄. We will refer to Eqs. �30� and
�31� as Condon and local approximations for the level shift,
respectively �though, strictly, both are local approximations�.
The width matrix elements are always calculated as in Eq.
�28�, thus keeping the nonlocal and energy-dependent char-
acter, and the present local approximation for the level shift
should not be confused with the local approximation �“boo-
merang model”� defined elsewhere �53,55�; our definition is
similar to the semilocal approximation of Cederbaum and
Domcke �73�, and to the approach of Hazi et al. �74�. It
would be instructive to compare these simpler approxima-
tions for � with the fully nonlocal approach since the former
might be of help in applications to larger molecules.

Though we cannot take an advantage from Eq. �24� with-
out a local assumption, we know the integrand of Eq. �29� in
closed form and the numerical evaluation of �ij�E� on an
energy quadrature would not be difficult. The matrix ele-
ments in Eq. �29� could be performed as previously de-
scribed for the widths: once the model parameters are ob-
tained from least-squares fits to SMC eigenphases on
quadrature points, integration over � may be readily carried
out with the help of Eq. �23�. An analytical expression for the
nonlocal level shift has been obtained �57� by describing the
target potential surface with a Morse oscillator and assuming
a separable form for the width, 
�E ;��=g�E�h���, with dif-
ferent sets of model parameters for the functions g and h.
Though this procedure would simplify the calculation, we
prefer the �nonlocal� evaluation of �ij on an energy quadra-
ture since the underlying numerical effort for one dimen-
sional systems �those with a single vibrational mode� does
not challenge the current computational capabilities, and the
extension to multidimensional systems would be straightfor-
ward. For completeness, we explicitly write the working ex-
pression for the vibrational excitation cross section �omitting
the background term�,

��i→�f
=

2�

E 
�
��


 f�
1/2�Ef��D−1���
�i

1/2�E�
2
, �32�

where

D�� = �����E − K − Vopt�E − H̃N������ . �33�

III. COMPUTATIONAL PROCEDURES

A. Fixed-nuclei calculations

The Cartesian Gaussian basis set used in fixed-nuclei cal-
culations is given elsewhere �34�. The target electronic
ground state was described at the restricted Hartree-Fock
�HF� level with a 7s4p basis set augmented with a p-type
function at the center of mass, and the scattering basis set
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was further augmented with p-type functions on dummy cen-
ters located at the corners of a cube. The equilibrium inter-
atomic distance deq=1.387a0 was obtained from geometry
optimization with the HF potential �75�, and the correspond-
ing harmonic frequency was ��=0.569 eV �the respective
experimental values are 1.401a0 �76� and 0.545 eV �77��.
Scattering calculations were performed for d=0.658a0,
0.869a0, 1.051a0, 1.221a0, 1.387a0, 1.552a0, 1.722a0,
1.904a0, and 2.115a0, where �= �d−deq�, and polarization ef-
fects �target distortion due to the interaction with the posi-
tron� were accounted for by including all singly excited tar-
get states in the closed-channel �Q� space. A Koopman’s
theorem estimate of the ionization potential yields the posi-
tronium formation threshold EPs=9.38 eV in our model, ly-
ing 0.8 eV above the experimental value, EPs=8.6 eV. Since
we focus on low energy collisions �E�3 eV�, the positro-
nium formation channel could be safely neglected.

B. Vibrational excitation calculations

The operators and wave functions were represented on an
evenly spaced 128-point grid ranging from 0.5a0 to 4.5a0.
The set of model parameters �a ,A ,b ,�d	 was interpolated for
0.658a0�d�2.115a0 and linearly extrapolated to the lower
and upper ends of the numerical grid. These regions not
covered by scattering calculations were only necessary to
represent highly excited vibrational eigenstates and the
0→0,1 ,2 excitation cross sections were insensitive to the
extrapolation scheme.

The target vibrational eigenstates were obtained from the
benchmark potential energy surface of Kolos and
Wolniewicz �78� employing the energy screening technique
�79�, and the 0→0,1 ,2 cross sections were well converged
with the representation of the nonlocal operator truncated at
�=8. The energy integration in Eq. �29� was performed with
�2N�-point Gauss-Legendre quadratures, where N points
were employed for each of the �0�E��E� and �E�E�
� � � intervals, and numerical convergence was obtained
with N=22.

IV. RESULTS AND DISCUSSION

A. Fixed-nuclei calculations

The eigenphase sum in Eq. �21� can be approximated by a
single partial wave in case the latter dominates the cross
section in the energy range of interest �typically, in the vi-
cinity of a resonance�. In the present case, we are interested
in the low energy limit �E→0� of fixed-nuclei eigenphase
sums, as they ultimately determine the behavior of the
widths 
�Ef� and cross sections in near threshold �Ef �0�
vibrationally inelastic collisions. It is thus legitimate to ap-
proximate the eigenphase sum by the s wave phase shift at
low energies, as it accounts for over 95% of the fixed-nuclei
cross sections at 0.5 eV and for about 80% at 1 eV �as
shown below, the relevant threshold effects are seen around
0�Ef �0.5 eV�.

The s wave phase shifts obtained from fixed-nuclei SMC
calculations and the corresponding least-squares fits are
shown in Fig. 1 for the interatomic distances given in Sec.

III A. It is easy to keep track of the parametric dependence
on � since the peak heights around 0.50 eV increase mono-
tonically with the interatomic distance. Despite the simplic-
ity of Eqs. �23� and �25�, the model provides a good descrip-
tion of the eigenphase over the fairly broad energy range
0�E�4 eV, though a better agreement with SMC data is
seen for E�3 eV. Below 3 eV, the average deviation of the
least-squares fit from calculated SMC points �all energies
and interatomic distances� was 2%, and the maximum devia-
tion did not exceed 6%. Since the model faithfully describes
the s wave phase shifts beyond 1 eV, it can be combined
with l�1 partial waves obtained with the ANV approxima-
tion to vibrationally resolve the collisions at higher energies.
�Alternatively, one could augment the model with higher or-
der E�l+1�/2 terms and perform least-squares fits to the SMC
eigenphase sum.� The corresponding level shifts ��� and
widths �
� are shown in Fig. 2, where the dependence on �
may be easily followed: the width peak heights ��0.70 eV�

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

δ 0
(r

ad
ia

ns
)

Incident energy (eV)

FIG. 1. Fixed-nuclei s wave scattering phase shifts ��0� for the
interatomic distances given in Sec. III A �peak heights around
0.50 eV monotonically increase with the interatomic distance�. The
lines are least-squares fits to the SMC calculations �squares�.

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3

Γ,
∆

(e
V

)

Incident energy (eV)

Γ

∆

FIG. 2. Fixed-nuclei level shifts ��� and widths �
� for the
interatomic distances given in Sec. III A. The peak heights of 

around 0.70 eV monotonically increase with the interatomic dis-
tance, while the level shift values at zero energy are monotonically
decreasing �the latter trend is inverted at higher energies due to the
crossings around 1.2 eV�.
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increase monotonically with the interatomic distance, while
the level shift values at zero energy are monotonically de-
creasing �the latter trend is inverted at higher energies due to
the crossings around 1.2 eV�.

The Q-P decomposition of the scattering wave function
gives rise to the decomposition of the eigenphase into back-
ground and singular �Breit-Wigner� terms, according to Eqs.
�21� and �22�. The position of the singularities in the com-
plex momentum plane is given by the corresponding fixed-
nuclei complex potentials ��d ,� ,
�, so the essential informa-
tion obtained from the fits of the model to SMC eigenphases
is where to locate the singularities in the complex k plane.
Though positrons are known to form virtual and weakly
bound states with molecules, our model does not describe
such low lying singularities �80�; the scattering lengths,
�=−limk→0�0�k� /k, ranged from −3.578a0 to −0.444a0,
monotonically increasing in magnitude with �, where
�eq=−1.291a0. For the interatomic distances of interest, the
fits over 0�E�4 eV gave rise to high lying ��8.5 eV� nar-
row resonances not overlapping the threshold, so the low
energy behavior of the eigenphase could be viewed as the
“nonsingular” limit of the model �as opposed to the “singu-
lar” limit that would arise from sharp low lying singulari-
ties�. It can be inferred from Fig. 2 that the widths are small
beyond 8 eV �actual values do not exceed 0.1 eV�, and by
noting that �E−�d−��E����d for E���E���d, we obtain
�d�E��−tan�
�E� /2�d� from Eq. �22�. This smooth discrete
component eigenphase was still dominant at low energies
��0��d�, since the peak shaped eigenphases in Fig. 1 could
not be described with the simple threshold expansion as-
sumed for the background, Eq. �25�. Though the energy de-
pendence of the eigenphase �Fig. 1� and complex potential
�Fig. 2� does not arise from low lying virtual or bound states,
it is not trivial in the sense that the vibrational excitation
cannot be properly described with the ANV approximation
�see below�, suitable for low energy e−-H2 scattering �31,32�.

B. Vibrational excitation cross sections

The s wave dominates the near-threshold scattering, and
its contribution to the 0→1 excitation cross section, obtained
with different approximations for the level shift, is shown in
Fig. 3. The s wave background was calculated with the ANV
approximation, and its contribution to vibrationally inelastic
scattering was modest, as expected �about 10% of the
0→1 cross section�. Though discrepancies around 25% are
seen at the peaks, there is good agreement among Condon
�thin dashed line�, local �thick dashed line�, and nonlocal
�solid line� calculations, where �̄= ��i+� j� /2 was employed
in the local approximation �see Eq. �31��. The ANV result of
Refs. �31,32� is rather poor below 1.5 eV, as expected, since
the adiabatic T matrix does not have the correct energy de-
pendence at threshold. Though a proper description of the
dependence on the vibrational coordinate should be impor-
tant in case virtual or bound states are found, Fig. 3 suggests
that meaningful results may be obtained with computation-
ally inexpensive approximations for the level shift, and these
might be helpful to describe more challenging systems hav-
ing more than a single vibrational mode.

The 0→1 integral cross section is shown in Fig. 4 �thick
solid line�, where the s and higher partial waves �l=1,2�
were obtained with the nonlocal and ANV �31,32� schemes,
respectively �the s wave background was also accounted for
with the ANV approximation�. Our results compare favor-
ably with the experimental data of Sullivan et al. �4�, espe-
cially at lower energies, and once more indicate that properly
describing the threshold energy dependence is essential. In
general, there is also agreement with the theory of Sur and
Ghosh �81� and with the corrected result �24� of Gianturco
and Mukherjee �23�. The local description of the level shift
�thick dashed line in Fig. 3� provides an even better agree-
ment with experimental data, but this is of course fortuitous
�compensation among errors�. The discrepancy between
ANV and nonlocal calculations �Fig. 3� is not trivial in the
sense that the adiabatic 0→1 excitation cross section by
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FIG. 3. S wave partial cross section for the 0→1 vibrational
excitation of H2 by positron impact. Dotted line: ANV result of
Refs. �31,32�; thin dashed line: Condon approximation for the level
shift; thick dashed line: local approximation for the level shift; solid
line: full nonlocal calculation.
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FIG. 4. Integral cross section for the 0→1 vibrational excitation
of H2 by positron impact. Thick solid line: present result; thin solid
line: theory of Sur and Ghosh �81�; dashed line: theory of Gianturco
and Mukherjee �24� �corrected results of Ref. �23��; circles: experi-
mental data of Sullivan et al. �4�.
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electron impact is quite reasonable at low energies �31,32�.
Though virtual states were not found �see Sec. IV A�, the
�fixed-nuclei� elastic positron scattering cross section has a
sharp slope at low energies not seen in the electron case
�31,32,34�, and the resulting energy dependence of the vibra-
tional excitation cross section cannot be accounted for in the
ANV picture. In this sense, the e+-H2 system could be
viewed as on the way of forming a virtual state.

For completeness, the total cross section �TCS� is shown
in Fig. 5 as the sum of the 0→0,1 cross sections ��0→2

�10−3a0
2�, where the s wave background and the l=1,2 par-

tial waves were described with the ANV approximation. De-
spite the good agreement between theory and experiment for
the 0→1 excitation cross section �Fig. 4�, a puzzling dis-
agreement is seen in the TCS. It would be difficult to point
out the best experimental data, and the need of further TCS
measurements for e+-H2 collisions was recently stressed by
Karwasz and co-workers �82�. At low energies, their results
are above the experimental data of other groups also for ar-
gon and nitrogen, though in good agreement with the calcu-
lations of Gianturco and Mukherjee for hydrogen �corrected

results of Ref. �24��. The theory of Sur and Ghosh �81�
agrees very well with the measurements of Charlton et al.
�83� above 2 eV, and the present results compare favorably
with the experimental data of Hoffman et al. �84� �the TCS
of Zhou et al. �85� at 1.5 eV lies below the result of Ref.
�84��. We believe the discrepancies among the theories could
arise from the low energy behavior of the vibrationally elas-
tic cross sections. In this case, the disagreement would be
more closely related to the description of the �fixed-nuclei�
scattering polarization potentials than to the vibrational reso-
lution schemes.

V. CONCLUSIONS

We have reported vibrational excitation cross sections for
positron scattering by H2 obtained with the Feshbach
projection-operator formalism and SMC fixed-nuclei calcu-
lations. The projection-operator approach has long been a
powerful tool for studies of nuclear dynamics in electron-
molecule collisions, and its application to positron scattering
is timely since couplings to nuclear degrees of freedom are
known to be important at low impact energies. Though our
fixed-nuclei calculations do not support the existence of a
e+-H2 virtual state, the good agreement between the calcu-
lated 0→1 excitation cross section with experimental data
near the threshold, where adiabatic excitation results are
poor, arises from a proper description of the T matrix energy
dependence.

We believe the combination of ab initio fixed-nuclei cal-
culations with the projection operator formalism is a prom-
ising framework for studies of vibrationally resolved posi-
tron scattering at low energies. Exploratory calculations for
acetylene �to be published� show a rich dynamics with dra-
matic threshold effects in the excitation of symmetry-
preserving �infrared inactive� vibrational modes, similar to
those recently reported by Franz and Gianturco �29�.
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