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ABSTRACT
The study of machine learning (ML) techniques for the autonomous classification of astrophysical sources is of great interest,
and we explore its applications in the context of a multifrequency data-frame. We test the use of supervised ML to classify blazars
according to its synchrotron peak frequency, either lower or higher than 1015 Hz. We select a sample with 4178 blazars labelled
as 1279 high synchrotron peak (HSP: ν-peak > 1015 Hz) and 2899 low synchrotron peak (LSP: ν-peak < 1015 Hz). A set of
multifrequency features were defined to represent each source that includes spectral slopes (αν1,ν2 ) between the radio, infra-red,
optical, and X-ray bands, also considering IR colours. We describe the optimization of five ML classification algorithms that
classify blazars into LSP or HSP: Random forests (RFs), support vector machine (SVM), K-nearest neighbours (KNN), Gaussian
Naive Bayes (GNB), and the Ludwig auto-ML framework. In our particular case, the SVM algorithm had the best performance,
reaching 93 per cent of balanced accuracy. A joint-feature permutation test revealed that the spectral slopes alpha-radio-infrared
(IR) and alpha-radio-optical are the most relevant for the ML modelling, followed by the IR colours. This work shows that ML
algorithms can distinguish multifrequency spectral characteristics and handle the classification of blazars into LSPs and HSPs.
It is a hint for the potential use of ML for the autonomous determination of broadband spectral parameters (as the synchrotron
ν-peak), or even to search for new blazars in all-sky data bases.

Key words: radiation mechanisms: non-thermal – methods: data analysis – methods: statistical – galaxies: active.

1 IN T RO D U C T I O N

The autonomous classification of astrophysical sources is a challenge
faced by modern astronomy, given the growing scale of its data
bases. High sensitivity detectors have opened a window for deep-
sky searches able to reach distant and faint sources that are far too
numerous to handle case-by-case. The study of efficient classification
and selection schemes via algorithmic modelling (Breiman 2001a)
has become vital to explore big data sets and to help deliver refined
scientific products. Consider, for example, the upcoming deep radio
survey– i.e. the Evolutionary Map of the Universe (EMU; Hopkins
et al. 2015) – that is one of the leading science objectives from
the Australian Square Kilometre Array Pathfinder (ASKAP). The
ASKAP-EMU data base will be crucial to search for early active
galactic nuclei (AGNs; Amarantidis et al. 2019) and is expected to
identify nearly 75 million point sources down to 10 μJy, to compare
to ∼2.5 million from NVSS (Condon et al. 1998), our deepest radio
survey up to date. In this context, the classification of astrophysical
objects will widely profit from machine learning (ML) techniques,
which are ready to implement and open to fine-tuning optimization.

We use multifrequency spectral data (from radio up to X-rays)
to train, test, and compare several ML models applied to the
classification of blazars according to the energy associated with its

� E-mail: arsioli@ifi.unicamp.br, bruno.arsioli@gmail.com (BA);
dedin@ifi.unicamp.br (PD)

synchrotron peak. We show that ML codes can classify blazars based
on their multifrequency spectral features, setting the ground for future
works that aim to search for new blazars within multifrequency data
bases.

Blazars are a rare type of AGNs known for its multifrequency
emission over the entire electromagnetic spectrum and characterized
by fast spectral variability. The central engines from AGNs are
powered by matter accretion into supermassive black holes, which
produce jets of relativistic charged particles (Padovani et al. 2017).
When those jets point close to our line of sight, the sources are called
blazars, and the observer perceives a bright object due to relativistic
boosting effects. The propagation of relativistic particles along the
magnetized jets originates a non-thermal component that can cover
many decades in energy, from radio up to TeV gamma-rays.

The presence of two non-thermal humps in the spectral energy
distribution (SED) of blazars (Fig. 1) originates from synchrotron and
inverse Compton (IC) emission processes due to relativistic electrons
moving through the jet’s magnetic field lines (Giommi et al. 2012;
Giommi & Padovani 2015). Moreover, the thermal emission from
the host galaxy and the accretion disc are both crucial elements to
describe the overall spectrum, and a mixture of thermal and non-
thermal components are at play (Urry & Padovani 1995), hindering
autonomous identification and classification efforts.

A variety of selection criteria are proposed in the literature
to search and identify new blazars (D’Abrusco et al. 2012; Di
Mauro et al. 2014; Arsioli et al. 2015; Massaro et al. 2015; Chang
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Figure 1. A qualitative SED showing the blazar types according to an
energy-based classification: low, intermediate, high, and extreme synchrotron
peak [with ν in Hz]: LSP for log(νpeak) < 14 (orange line), ISP for
14 < log(νpeak) < 15 (orange dashed line), HSP for 15 < log(νpeak) < 17
(blue line), and ESP for log(νpeak) > 17 (blue dashed line), highlighting
the synchrotron (Syn) and inverse Compton (IC) humps. Besides, we show
spectral templates that represent the thermal emission from giant elliptical
galaxies (green lines, Mannucci et al. 2001), and the expected Composite
Quasar Spectrum from accretion (also known as ‘blue bump’) with its
associated X-ray emission (red lines, Vanden Berk et al. 2001). The relative
intensity between thermal and non-thermal components vary for each source,
and a mixture is always at play in blazar’s SED.

et al. 2017) and are mostly based on the definition of qualitative
boundaries in colour–colour planes, or by defining selection rules
based on multifrequency spectral slopes. While one tries to simplify
the selection rules and make it more tangible to comprehend,
there is usually a loss of efficiency involved, meaning the final
selection gets compromized with spurious sources and human in-
tervention (as case-by-case evaluation) is necessary to clean the final
sample.

ML algorithms are versatile in dealing with selection and classi-
fication problems in a multiparameter space, where numerous input
features are available (Borne 2009; Ball & Brunner 2010). A good
example of challenging astrophysical label problem is to disentangle
‘stars’ from ‘galaxies’ in optical observations. Common non-ML
strategies used to handle the star–galaxy separation task involve
colour–colour and proper motion selection schemes (Windhorst et al.
2011). Alternatively, Bai et al. (2019) has shown that multifrequency
data from optical and IR, together with ML techniques, can largely
improve the accuracy to label stars, galaxies, and quasars when
compared to single-band classification methods.

In the case of blazars, the classification follows two main roads.
One only based on the characteristics of the optical spectra, and
another based on the energy (frequency) associated with the syn-
chrotron peak component. For the optical classification, blazars can
be divided into BL Lacs (when the optical spectra is dominated by
the jet’s non-thermal component, therefore featureless), Flat Spectra
Radio Quasar (FSRQ, when the optical spectra is dominated by
thermal components from the AGN’s core, showing the blue bump
with strong and broad emission lines), and when the optical features
are not clear (with weak or diluted emission lines within a relatively
strong non-thermal component) the term uncertain/transitional blazar
is used (Massaro et al. 2009, 2015).

For the energy-based classification of blazars, the definition
of families considers the synchrotron peak frequency (Fig. 1).
Accordingly, blazars are called as low, intermediate, high, and
extreme synchrotron peak sources: LSP for ν

syn
peak < 1014 Hz, ISP for

1014 <ν
syn
peak < 1015 Hz, HSP for 1015 <ν

syn
peak < 1017 Hz, and ESP for

ν
syn
peak > 1017 Hz (Padovani & Giommi 1995; Ghisellini 1999; Abdo

et al. 2010).
Both classification schemes demand a substantial human interven-

tion to treat objects case-by-case, either to inspect optical spectral
data to decide in between BL Lacs, FSRQ and Uncertain types, or
to fit the non-thermal component and measure the synchrotron peak
frequency. For the case of optical classification, Kang et al. (2019)
attempt to use ML models to improve the labelling of uncertain
blazars (BZUs) from the 3LAC catalogue (Ackermann et al. 2015).
Their ML modelling predicts an FSRQ:BL Lac fraction of 1:3 for
the 3LAC-BZUs. Other works investigate the same issue using an
ML approach: Kovacevic et al. (2020), Lefaucheur & Pita (2017), Yi
et al. (2017), Chiaro et al. (2016), and Massaro et al. (2016).

Here, we use an ML algorithmic approach to explore aspects
of the energy-based classification of blazars, and train models to
perform the task of labelling HSP and LSP sources (νsyn

peak>1015

and ν
syn
peak<1015 Hz, respectively) only based on multifrequency

information (fluxes and derived spectral slopes). Our long-term goal,
however, is to inspect and identify strategies to search for new blazars
within large-scale astrophysical data bases.

2 M E T H O D O L O G Y

There are currently two main blazar catalogues, namely the 5BZcat
(Massaro et al. 2015) with 3561 objects, and the 3HSP (Chang et al.
2019) with 2013 objects (Note: 657 3HSPs are already listed in
5BZcat). The 5BZcat and 3HSP sum a total of 4915 unique sources
which are either confirmed blazars, or blazar-candidates1 and are
well characterized from radio to the X-ray band. Moreover, a large
fraction has counterparts in the latest γ -ray catalogues, the 4FGL and
2BIGB (Abdollahi et al. 2020; Arsioli, Chang & Musiimenta 2020).
In Section 3, we describe the use of high-accuracy labelled data from
the 5BZcat and 3HSP catalogues to select a robust blazar sample,
as well as the multifrequency cross-matching to build the ML data-
frame. In Section 3.2, we use multifrequency fluxes to define spectral
slopes between channels and apply statistical tests to select features
for training our ML models.

In Section 4, the ML algorithms: RF, SVM, KNN, GNB, and
Ludwig are briefly described, as well as the main evaluation metrics
used in this work, and the re-sampling process used for the model’s
validation process. In Section 5, there is a description of the
optimization for the random forest (RF), support vector machine
(SVM), K-nearest-neighbours (KNN), and Gaussian Naive Bayes
(GNB) algorithms (Cortes & Vapnik 1995; McCallum & Nigam
1998; Breiman 2001b; Goldberger et al. 2004). The optimization
is carried by scanning over the parameter space relevant for each
algorithm using the SciKit learn libraries in PYTHON (Pedregosa
et al. 2011). We also test the performance of Ludwig, a deep-learning
(auto-ML) tool released by the Uber team, but this time letting the
tool auto-adjust its parameters (without user fine-tuning) to compare
to our optimized models.

In Section 5.2, the level of balanced and absolute accuracy,
precision and recall are used to evaluate and compare the performance
of all ML models. We take into account of statistical fluctuations
and report on mean output values as derived from hundreds of

1The term ‘confirmed blazar’ refers to optically identified sources; therefore,
an optical spectrum is available. All 5BZcat sources are confirmed blazars.
The term ‘blazar candidate’ refers to sources that lack optical identification.
The 3HSP catalogue includes confirmed and blazar candidates.
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1752 B. Arsioli and P. Dedin

random re-samples. We track the metrics standard deviation as a
direct way to evaluate the stability and robustness of each algorithm.
In Section 5.3, we evaluate the importance of each input feature for
optimized models, applying the so-called permutation test (a column
associated with a given feature is shuffled, and the impact over the
model accuracy is measured). The correlation between features is
taken into account, and joint-feature permutation tests (shuffle of
multiple features at once) are also described. In Section 5.4, we
evaluate the performance of the optimized algorithms by tracking
the misclassication-rate, which consists in counting the number of
times an object is misclassified (by at least one algorithm) when
considering 1000 re-samples. This way, we can identify and flag the
most ambiguous cases.

3 TH E M L B L A Z A R SA M P L E

The need to combine multifrequency data bases is a known challenge
in astrophysics, and currently, there is no autonomous solution for
such a problem. To fuse data bases is one of the most significant
issues in the fields of ML and artificial intelligence as of today, and
the building of data frames is a fundamental step where substantial
human effort is indeed needed (involving data handling, querying,
cross-match, and fusion). There are ongoing and successful efforts
to solve the data integration problem in astrophysics, and the
Virtual Observatory (VO; Becciani et al. 2010) is a sound example.
Alternatively, there is software in place as TopCat (Taylor 2005) that
can handle big data sets in astrophysics, offering numerous cross-
match and visualization tools.

To build our data frame we add a categorical attribute called
‘blazar-type’ to flag sources either as HSP + ESP (flag 1) or
LSP + ISP (flag 0). The 5BZcat is the largest catalogue of optically
identified (confirmed) blazars but has no synchrotron peak (νsyn

peak)
associated with its sources. The categorical labels available from
5BZcat rely on optical classification: BZB for BL Lacs, BZQ for
FSRQs, and BZU for uncertain/transitional sources. To label 5BZcat
sources as HSP or LSP, we use information from the 3HSP catalogue.
The 3HSP (Chang et al. 2019) is built over the search for HSP
sources taking into account multifrequency selection rules together
with a direct search within the 5BZcat and 3FHL (Ajello et al.
2017) catalogues. Therefore, any object from 5BZcat that has no
counterpart in 3HSP is considered as LSP (flag 0), and we label
all 5BZcat-3HSP as HSP (flag 1). We use TopCat to cross-match
the 5BZcat and 3HSP with 3 arcsec radius (30 arcsec) and get 658
5BZcat sources classified as HSP + ESP (HSP: flag 1) and 2903
classified as LSP-ISP (LSP: flag 0).

At this stage, a blazar sample only based on 5BZcat sources is
relatively unbalanced, because there are approximately 4.41× more
LSPs than HSPs. There are many possible strategies to remedy the
unbalance. During the ML model training, some algorithms allow
to increase the weight associated with the less frequent class (the
HSPs) or even generate new HSPs based on population properties
of the HSP subsample (with the SMOTE2 technique, Chawla et al.
2002). In any case, the best approach to reduce the unbalance is to
add extra real HSP sources to the sample.

2SMOTE: Synthetic Minority Over-sampling Technique, is an algorithm that
identifies the minority class and randomly select members of it, look into the
KNN (n-neighbours = 5) accounting for the available features, and produce
new members of the minority class. The final sample becomes balanced to
all classes.

The 5BZcat lists only 657 of the 2013 3HSP sources. Although the
expected level of contamination for the 1356 3HSP-out-of-5BZcat is
low (Chang et al. 2019), we only select cases that have a confirmed
γ -ray counterpart from the 4FGL (Abdollahi et al. 2020) or the
2BIGB (Arsioli et al. 2020) catalogues. This selection translates into
627 additional HSPs: 482 that have a γ -ray counterpart in 4FGL and
another 145 in 2BIGB. From those, 174 lack optical identification.

We rely on the γ -ray detection as a proxy to assure the blazar
nature of the additional HSPs, keeping a high degree of purity in the
data frame. Finally, we define the ML-Blazar sample as the sum of
the entire 5BZcat (3561 sources) with the γ -ray detected 3HSP-out-
of-5BZcat (627 sources). At this stage, the ML-Blazar sample has a
total of 4188 sources, classified as 1285 HSPs and 2903 LSPs, which
improves the 5BZcat LSP/HSP unbalance from 4.41× to a factor of
2.25×. In the next Section 3.1, there are additional multifrequency
constrains, especially from missing data that force to reduce the
ML-Blazar sample to 4178 sources (1279 HSPs and 2899 LSPs).

3.1 Pre-processing multifrequency data

The SED from 5BZcat and 3HSP blazars are well described along
the radio to the X-ray band; therefore, the observed fluxes can
become input attributes to train ML classification models. To build
our multifrequency data frame, we focus on the radio, IR, optical,
and X-ray fluxes, which have extensive available coverage. To
search for archival spectral data and cross-match between catalogues
we made use of several web portals and tools: Vizier (Ochsenbein,
Bauer & Marcout 2000), Open Universe (Giommi et al. 2018),
the Sky-Explorer Tool from the Space Science Data Centre-Italian
Space Agency (SSDC-ASI), and the TopCat software (Taylor 2005).
In the following paragraphs, we highlight the main procedures to
collect and fuse multifrequency information for each band and feed
our data frame.

3.1.1 Radio

We read the radio fluxes reported in the 5BZcat and 3HSP
catalogues, which comprises measurements from five different
surveys: FIRST (1.4 GHz), NVSS (1.4 GHz), SUMSS (0.843 GHz),
PMN (4.8 GHz), and TAPMN (4.85 GHz) (Wright et al. 1994;
Condon et al. 1998; Manch et al. 2003; McConnell et al. 2012;
Helfand, White & Becker 2015). We keep track of the frequency
νradio (Hz) associated with each measurement and use it for the
calculation of broad-band spectral slopes, following equation (1).
Within the ML-Blazar sample, 29 sources are not detected in any
radio survey. Nevertheless, those sources constitute robust blazars,
well-characterized and detected in IR, optical, UV, X-rays, and most
of them (25) are also detected in γ -rays with Fermi–LAT (4FGL
and 2BIGB). Considering that NVSS and SUMSS have surveyed
the entire radio-sky, we include upper limit (UL) values for the radio
fluxes (2.5 and 4.15 mJy, respectively, considering the NVSS and
SUMSS coverage).3 We add a categorical attribute to our data frame
called ‘radio-flag’: ‘0’ to flag sources already detected in radio, and
‘1’ for the non-detections (with UL values).

3Following Condon et al. (1998), the completeness limit for NVSS is about
2.5 mJy (2.5 × 10−26 erg cm−2 s−1 Hz−1) at 1.4 GHz, and similar for SUMSS
(Manch et al. 2003) which converts to 4.15 mJy at 0.843 GHz.
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Table 1. Spectral information about the cross-match between the ML-Blazar
sources with four optical catalogues (in top-down priority order).

Catalogue Channel name ν × 10−14 (Hz) N matches

GAIA DR2 Grp 3.761 3840
SDSS DR12 r 4.862 2073
PanStars DR1 R 4.823 3523
Usno B.1 R 4.454 3948

3.1.2 IR

For the infrared (IR) band, we rely on data from the Wide-field
Infrared Survey Explorer (WISE) and use the AllWISE survey
catalogue (Cutri et al. 2013). The flux measurements done at the
w1 (8.817E13 Hz), w2 (6.517E13 Hz), and w3 (2.498E13 Hz)
channels are incorporated to the ML data frame. We avoid the w4
(1.363E13 Hz) channel since it has the worst sensitivity. The ML-
Blazar and WISE data bases are cross-matched considering a 20
arcsec radius, and only the best matches are kept. Eight sources
showed no IR counterpart due to the presence of bright stars in their
vicinity that hinders the IR detection. Those were eliminated from
the ML data frame, which now remains with 4180 sources. The WISE
catalogue reports on magnitude values in Vega System unity and we
follow the WISE team instructions4 to convert magnitudes into flux
density values (erg cm−2 s−1), considering the case of an underlying
point sources with power-law spectra.

3.1.3 Optical

For the optical band, the ML-Blazar sample was cross-matched with
four catalogues, including (in priority order): GAIA DR2, SDSS
DR12, PanStars DR1, and Usno B.1 (Monet et al. 2003; Alam et al.
2015; Chambers et al. 2016; Gaia Collaboration 2018), considering
3 arcsec radius. We keep only the best match within each optical data
base (Table 1) and concatenate all matches in a single table; that one
has 13 384 correspondences between the ML-Blazar sample with
the four optical catalogues. All repeated sources were removed by
running an internal cross-match with TopCat, keeping a single optical
match for each ML-Blazar source, and considering the priority order
for the optical catalogues. As a result, 4122 out of 4180 ML-Blazars
(98.6 per cent) have optical information assigned. Given that the
5BZcat also reports the Rmag (4.454 × 1014 Hz) for most sources,
we could remedy 56 out of the 58 cases that were missing optical
data. Finally, we keep 4178 sources in the data frame, all assigned to
an optical counterpart.

3.1.4 X-ray.

To start collecting information for the X-ray band, we read the 1 keV
fluxes (at ν1 keV = 2.42 × 1017 Hz) as reported in the 5BZcat and
3HSP catalogues. The ML-Blazar sample includes 2246 X-ray flux
values taken from 5BZcat and 448 from the 3HSP catalogue. Some
few cases having no X-ray information in 5BZcat now have available
flux reported in 3HSP, e.g. 5BZG J1103+0022, 5BZB J1254+2211,
5BZG J2211−0023, and 5BZG J2248−0036. Considering that there
could be many more sources with currently available X-ray data, we
cross-match the ML-Blazar sample with several X-ray catalogues.

4The WISE IPAC documentation.

Table 2. Cross-match radius for each X-ray catalogue, adapted according
to the position-error perr reported for each source. Columns describe the
catalogue name, the total number (N) of sources in each of them, the position
error range perr (used to group sources before cross-matching with the ML-
Blazar sample), and the fixed radius assumed for the cross-match.

Catalogue N perr Radius

2RXS-RASS 135.118 All-data 40 arcsec
Swift-1SWXRT 84.979 0–5 arcsec 0.1 arcmin

>5 arcsec 0.2 arcmin
Swift-XRTGRB 151.524 All-data 0.2 arcmin
3XMM-DR8(2018) 531.454 0–5 arcsec 0.1 arcmin

>5 arcsec 0.2 arcmin
XMMSL2(2017) 29.393 All-data 10 arcsec
Chandra-V1.1 106.586 All-data 0.1 arcmin

The catalogues considered are (in priority order) 3XMM DR8, Swift-
1SWXRT, Swift-XRTGRB, XMM-SL2, 2RXS-RASS, and Chandra
V1.1. (Saxton et al. 2008; Evans et al. 2010, 2014; Puccetti et al.
2011; Boller et al. 2016; Rosen et al. 2016). The cross-match radius
is defined in Table 2, considering the position-error (perr) associated
with each X-ray source. We group the X-ray sources according to
its error radius in each catalogue and define a fixed radius for the
cross-match between ML-Blazars and X-ray sources.

This follows the same strategy as of the 1&2WHSP and 3HSP
blazar catalogues (Arsioli et al. 2015; Chang et al. 2017, 2019) and
helps to avoid losing relevant X-ray information. A total of 362
sources gained X-ray flux. Still, 1122 sources in the ML-Blazar
sample had no measured X-ray flux (∼25 per cent). Considering that
RASS is the only all-sky survey available, and given that it covers the
majority of the sky out of the galactic plane with flux-limit ranging
from 10 to 1 × 10−13 erg cm−2 s−1 at 1 keV (flux density of ∼4–
0.4 × 10−30 erg cm−2 s−1 Hz−1), we add an X-ray UL of 5.0 × 10−13

erg cm−2 s−1 (∼2.0 × 10−30 erg cm−2 s−1 Hz−1) to all cases with no
X-ray counterpart. To keep easy track of the UL value, we add the
X-rayUL attribute with value 1 for UL, and 0 for measured flux.

3.2 Feature selection and standardization

Following the pre-processing stage, the ML-Blazar data frame has
six flux attributes (Fig. 2; f: radio, IR-w1, IR-w2, IR-w3, optical,
X-ray), and two main categorical flags (source-type and X-rayUL)
associated with each source, summing a total of 8 attributes. To try
and condensate multifrequency information into fewer parameters,
we calculate spectral slopes αν1ν2 between bands according to:

αν1ν2 = − log
(
fν1 /fν2

)

log (ν1/ν2)
. (1)

The spectrum slopes are well representative of the energy distribu-
tion (SED shape) needed for our classification, and carry information
from two bands into a single α parameter. We test the possibility to
reduce the number of attributes necessary to train our ML model, by
working with slopes instead of fluxes. However, at this stage, any
combination of bands (into α) could turn out relevant, so that we
add another 15 attributes to the data frame for evaluation purpose:
αrw1 , αrw2 , αrw3 , αro, αw1w2 , αw1w3 , αw2w3 , αw1o, αw2o, αw3o, αrx, αw1x,
αw2x, αw3x, and αox. By defining slopes between channels, we wish
to retain information within a small number of attributes. We look
forward to reducing the dimension of the problem by keeping only
the ones that are more promising to separate between blazar classes.
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1754 B. Arsioli and P. Dedin

Figure 2. A superposed SED of all sources of the ML-Blazar data-frame.
From left to right, the bands are: Radio (red), IR w1(cyan) w2(magenta)
w3(blue), optical (green), and X-ray (grey). The fluxes corresponding to each
blazar were connected with yellow translucent lines to form a density view
of the parameter space covered by the entire data frame.

We perform the standardization (std) of all features, to represent
them as normal distributions with 0.0 mean value and unitary stan-
dard deviation (σ ). To do that, we take each input value, e.g. αν1 − ν2

, subtract it by the feature-mean 〈αν1−ν2〉, and divide by the feature
standard deviation σαν1−ν2 , equation (2). The mean and σ values are
calculated for the feature distribution considering all sources together
(meaning: there is no need to separate HSP and LSP classes) and are
listed in Table 3. Standardization is important for the optimization
of the ML algorithms because models can misleadingly assign a
large weight (importance) to a given feature, only because of its
dominant absolute value. Therefore, the standardization is commonly
applied to level-out all features, so that all have the same weight when
computing cost functions during the optimization process.5

log (f )std =
log (f ) − 〈log (f )〉

σlog(f )
, αstd=

αν1ν2 − 〈αν1ν2 〉
σαν1ν2

. (2)

A Kolmogorov–Smirnov test (KS, Hodges 1958) is applied to
evaluate if the HSP and LSP samples are drawn from the same
distribution (the null hypothesis H0). The KS test statistic D is
the maximum absolute difference between the two cumulative
distribution functions, and the corresponding two-sided p-value is
the probability that we would see a ≥D value, only by chance, given
that H0 is true. A two-sided p-value < 0.05 is usually interpreted
as a denial of H0, meaning that the LSP and HSP distributions are
not drawn from the same population. Using the scipy.stats.ks-2samp
library (Jones et al. 2001), the p-values obtained for all spectral slopes
(Table 3) reject H0 at <1 per cent level, meaning that the distributions
are not drawn from the same populations. In other words, all features
αν1ν2 hold unique information about the LSP and HSP classes. A
collection of five slopes – αrw1 , αro, αrx, αw2w1 , αw1w3 – enclose
information along the radio to the X-ray band, with the largest KS
D values (all >0.7) and the lowest Pvalues (all ∼0.0). The largest D

5Standardization is especially relevant for algorithms which rely on the
calculation of Euclidean distances between points in multidimensional space
(SVM, K-neighbours), or when gradient descent is used for optimization in
neural networks.

Table 3. List of mean values and standard deviations associated with each
feature, as used for its standardization (equation 2). From the centre to the
right columns, the KS test statistic D, and the t-test statistics, with their
corresponding p-values, to compare the feature’s distributions for HSP and
LSP sources. The best performing features for the classification task are
marked with ∗.

Features Mean σ KS D p-value t-test p-value

Flux density
log(F Radio) − 23.98 0.735 0.66 0.0 56.1 0.0
log(F IR-w1) − 26.15 0.530 0.11 2E−10 4.7 2E−6
log(F IR-w2) − 26.07 0.529 0.13 7E−15 5.9 4E−9
log(F IR-w3) − 25.82 0.530 0.51 2E−205 27.8 4E−152
log(F Opt) − 26.63 0.563 0.17 2E−24 10.9 5E−27
log(F X-ray) − 29.67 0.466 0.46 7E−161 25.0 4E−120

Radio-IR
Alpha-rw1∗ 0.448 0.170 0.71 0.0 62.3 0.0
Alpha-rw2 0.445 0.159 0.66 0.0 54.7 0.0
Alpha-rw3 0.429 0.145 0.51 3E−205 37.7 3E−263

Radio-O&X
Alpha-ro∗ 0.484 0.162 0.71 0.0 64.1 0.0
Alpha-rx∗ 0.686 0.111 0.76 0.0 66.7 0.0

IR-colours
Alpha-w2w1∗ 0.572 1.046 0.72 0.0 53.8 0.0
Alpha-w3w2 0.609 0.621 0.71 0.0 48.6 0.0
Alpha-w1w3∗ 0.600 0.664 0.77 0.0 58.1 0.0

IR-optical
Alpha-w1o 0.751 0.595 0.27 5E−58 9.4 1E−20
Alpha-w2o 0.722 0.527 0.43 4E−147 25.2 1E−129
Alpha-w3o 0.683 0.433 0.66 0.0 48.1 0.0

IR-Xray
Alpha-w1x 0.751 0.595 0.24 2E−44 17.2 1E−62
Alpha-w2x 1.002 0.166 0.37 8E−108 26.4 7E−135
Alpha-w3x 0.961 0.164 0.56 2E−245 44.6 3E−315

Opt-Xray
Alpha-ox 1.076 0.204 0.16 5E−20 11.5 4E−30

values associated with nearly null p-values are a strong indication that
those five slopes are the most relevant parameters to separate/classify
blazars into LSP or HSP type.

We also apply a t-test for independent samples to compare the
mean values of a given feature and for each class. It measures how
separable are the classes according to the means, and the absolute
t-test value can be used to compare the features (given that all are
standardized). According to the t-test, all features are distinct with
respect to the mean, at high confidence level, p-values < 1 per cent;
and the six best performing features (most separable according to
the mean) are: αrx, αro, αrw1 , αw1w3 , αrw2 , and αw2w1 . Those enclose
all the five slopes highlighted by the KS test, therefore pointing to a
similar conclusion.

From now on, we focus on these five spectral slopes (α: rw1, ro, rx,
w2w1, and w3w2) to train and optimize several ML algorithms while
keeping a low number of features. The dimension of the problem
reduces from seven input features (six flux density + one X-ray UL
flag) to only five spectral slopes. Moreover, the statistical tests show
that spectral slopes can separate blazar classes better than the fluxes
alone (as seen by the results in Table 3).

Fig. 3 shows the density distribution of HSPs and LSPs for the
five selected alphas, as a primary assessment of how separable are
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Machine Learning for Blazar Classification 1755

Figure 3. Density plots with the distribution of standardized values per feature, and dividing between HSP (blue) and LSP (orange) sources. The five spectral
slopes selected for the ML training (with the largest KS D, and lower p-values) αrw1 , αro, αrx, αw2w1 , and αw1w3 are marked with blue stars, and another three
examples of features with the lowest KS D values, marked with a red cross.

LSP and HSP sources based on each feature. This rather qualitative
view is complementary to the results reported in Table 3, which lists
the KS test statistics D and the t-test statistics, applied to compared
the LSP and HSP distributions.

4 TH E M AC H I N E L E A R N I N G A L G O R I T H M S
A N D M E T R I C S

Here, we briefly describe the ML algorithms used in this work RF,
SVM, KNN, GNB, and Ludwig) and the configuration parameters
which are available to optimize each of them. Following, we discuss
the metrics used to evaluate the performance of the ML models, and
the re-sampling strategy applied to validate and access the uncertainty
associated with each of them.

4.1 Random forest

The RF6 is an extension of the decision tree method. Decision
trees are supervised ML algorithms used for classification based
on decision rules. These decisions are organized hierarchically in
nodes, where a decision is made based on the feature that best
separates the classes in that node using a given metric (either gini
indices or entropy). The tree starts on the so-called root node,
made by the feature with the best dividing metric for the whole
data, and ends on leaves where there are no better divisions to
be made. To work around the problem of biased Decision Trees,
the RF uses an ensemble of trees, each one built from a random
sample of the training set (bootstrap sample). Also, instead of using
the best split among all the features, the choice is made among a
random subset of features. Therefore, in this kind of algorithm, the
most critical optimization parameters are the number of trees (or
estimators), the size of the features subset and the tree’s maximum
depth. Finally, each tree of the RF counts as a vote for the classi-
fication of each object, and the ensemble of votes defines the final
classification.

6Scikit-learn RF documentation.

4.2 Support vector machine

The SVM classifier7 uses hyperplanes on the features space trying
to best separate the objects among their classes. The algorithm
maximizes the distance between the hyperplane and the objects of
any class, trying to minimize classification errors. One attribute of
this kind of algorithm is the Kernel, that is a transformation from
the features space to another space that better separate the classes.
The most used Kernels are the linear, polynomial (poly), radial basis
function (RBF), and sigmoid. For all the SVM kernels there is a
regularization parameter called C, which is a penalty for the wrong
classification. A high C forces the model into higher precision, but
it could also bias towards overfitting the training data. For the poly,
RBF, and sigmoid, there is the gamma parameter, which is a scale
factor for the computed distances between the hyperplane – in the
feature space – and the objects of a given class. And for the poly ker-
nel, variations of the polynomial degree can be explored to improve
modelling.

4.3 K-nearest neighbours

The KNN algorithm8 implements a voting system where the class
of the nearest neighbours objects define the classification. In the
simplest implementation, the algorithm computes the object class
by the majority of votes where all the KNN have the same weight.
Another approach is to weight the neighbour vote by the inverse of
its distance from the object. In both cases, by distance, we mean
the Euclidean distance, which can be computed in multidimensional
parameter space. Therefore, the main variables to play in this model
are the number of neighbours used in the classification and the weight
for them, uniform or radius dependent.

4.4 Gaussian Naive Bayes

The Naive Bayes9 classifiers use the Bayes Theorem from statistics to
predict the class given the features of an object, making the ‘naive’ as-

7Scikit-learn SVM documentation.
8Scikit-learn KNN documentation.
9Scikit-learn GNB documentation.
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1756 B. Arsioli and P. Dedin

sumption of conditional independence among the features to simplify
the calculations. The result of this assumption is a simple formula:

P (y|x1...xn) ∝ P (y)
n∏

i=1

P (xi |y) , (3)

where y is the class and xi the ith feature of a given object. The
GNB algorithm is the one that assumes P(xi|y) to follow a Gaussian
distribution. Also, P(y), called prior probability, is the probability of
each class in the data set. To predict the class, the GNB algorithm
chose y that maximize the probability that the object belongs to that
class. Although this type of algorithm uses simplified assumptions,
it produces good results in a variety of applications, besides being
one of the lightest algorithms to run.

4.5 Ludwig

Ludwig is an open-access framework of deep learning, able to deal
with classification-problems, and designed to be autonomous in fine-
tuning its internal parameters to accomplish efficient and accurate
classification of objects (Molino, Dudin & Sumanth Miryala 2019).
Ludwig is made available by the Uber team,10 and we use it to
compare its automated modelling with our optimized results. This
way, we access the power of Ludwig for science use cases, noting it
is versatile and relatively easy to implement.

4.1 Statistical analysis and evaluation metrics

One of the most common metrics used to evaluate the model response
is the accuracy (accuracy score, Pedregosa et al. 2011), defined as
the fraction of objects correctly classified by the model (the number
of true positives TP, divided by the total number of objects in the
sample, nsamples) which gives us a performance response independent
of class. To complement the analysis, two other metrics – recall and
precision – are commonly considered for model evaluation; In a
‘per class’ perspective, those represent the completeness of a class
classified by the ML model and the efficiency of the classifier. The
precision is defined as the number of true positives (TP) divided by
the number of elements classified as belonging to the class [(True
Positives + False Positives: TP + FP); the recall is defined as the
TP) divided by the number of elements in the class (True Positives
+ False Negatives: TP + FN) (classification report, Pedregosa et al.
2011)]. The precision tells how clean is the classification for each
given class, and the recall tells the fraction of objects of a class that
were classified correctly.

Another metric commonly used to evaluate the performance of
categorical classifiers is the f1-score, which represents the weighted
average between precision and recall for each class. The use of f1-
score has its limitations since it gives equal weight to precision and
recall, but it can be used to compare models in terms of the optimum
balance between precision and recall.

However, for an imbalanced data set, both the accuracy and
f1-score cannot provide the full picture, because the metric gets
biased towards the dominant class, i.e. the LSPs. To account for
the imbalance we look for the scikit-learn implementation of the
(balanced accuracy score, Brodersen et al. 2010) that correspond to
the average of recall for each class; and the weighted-average f1-
score11 that calculates both the precision and recall metrics for each

10The ludwig:github documentation.
11About the balanced (weighted) f1-score, check the f1 metrics documenta-
tion on scikit-learn.

Figure 4. Top: Balanced-accuracy dependence on the test sample size given
in fractions of the total data set size. Bottom: Balanced-accuracy dependence
with respect to the sample size. This results correspond to the algorithms:
RF, SVM, KNN, and GNB; all trained with the optimal fitting parameters for
each algorithm (as described in Section 5.2).

label, and weight the f1-score based on the number of objects in each
class. All metrics listed were used to evaluate the models regarding
the test samples:

Accuracy = TP + TN

TP + FP + TN + FN
= TPall−classes

nsamples
(4)

Bal − Accuracy = 1

2

(TPclass−A

nclass−A
+ TPclass−B

nclass−B

)
(5)

Precision = TP

TP + FP
; per class (6)

Recall = TP

TP + FN
; per class (7)

f1 score = 2 × Precision × Recall

Precision + Recall
; per class (8)

Weighted f1 = nclass−A × f1class−A + nclass−B × f1class−B

nsamples
. (9)

In the perspective of population studies in astrophysics, precision
and recall translates, respectively, into selection efficiency and
sample completeness. Both completeness and efficiency are highly
valuable for astrophysics, but the trade-off between them may depend
on the application (Ball & Brunner 2010). In case of searching for rare
objects as blazars within large multifrequency data bases, the most
effective strategy would likely be to give priority to completeness
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Figure 5. RF metrics. Top: The balanced accuracy, balanced-f1, and accu-
racy metrics with n-features = 1 and n-estimators = 250, setting the weight
option to balance the training sample. Bottom: The precision and recall of the
HSP and LSP classes. All metrics are shown as a function of the max-depth
parameter that ranges from 1 to 15. The points and uncertainty bands are the
mean and σ for each metric, considering 300 re-samples.

(recall). Allowing lower efficiency – that leads to a certain degree
of contamination – can be remedy latter by additional strategies, as
cleaning the final data base with hand-implemented cuts, or even
by human intervention via case-by-case investigation of border-class
cases.

4.2 Re-sampling and validation

To analyse the results of the classifier, a commonly used tool in ML
is the so-called K-fold cross-validation, where the data set is divided
into K parts, with one of these used as the testing set and the rest used
for training. The process is repeated for each K part of the testing
set to calculate the average over the performances. Our approach
is similar, but instead of pre-dividing the data set, we split it for
training and testing using a pseudo-random algorithm and repeat this
process 300 times, so that each time we have a randomly selected
train and test sets. The final result is a distribution of the performance,
where we can extract the mean and standard deviation (σ ) associated
with any metric. The degree of modelling uncertainty will directly
translate into large/small σ . A relatively small σ signals that the
trained models are stable regarding randomly selected train and test
samples, and up to the classification task for real applications.

Figure 6. SVM metrics. Top: The balanced accuracy for the rbf, linear,
polynomial (poly), and sigmoidal (sig) kernels. Bottom: Compilation of the
SVM metrics considering the rbf kernel, showing precision and recall for the
HSP and LSP classes, together with the balanced-f1 and balanced-accuracy
scores. All metrics are shown as a function of the cost parameter (C), that
ranges from 0.003 to 1000. The points and uncertainty bands are the mean
and σ for each metric, considering 300 re-samples.

5 D I SCUSSI ON AND R ESULTS

Here, we walk through the steps of model optimization for the RF,
SVM, KNN, and GNB algorithms. Each ML algorithm has a different
space of fitting parameters to probe, and we scan over them to select
the best configuration focusing on the balanced-accuracy metric. For
the Ludwig framework, we only feed the data and collect results,
with no optimization other than its auto-ML functionality.

5.1 Optimizing the train and test sample size

Before any attempt to optimize the ML models, we tried to understand
which is the best splitting between train and test samples, and set the
test size to vary between 10 per cent to 90 per cent of the total sample
size. Initially, the ML algorithms run over default configuration
(as specified for each algorithm at sci-kit learn library, Pedregosa
et al. 2011) and using the balanced accuracy as performance criteria.
Later on, after we optimize the ML algorithms, the evaluation was
performed again, and from that follows the results we report here.12

12This results in a recurrence problem, where at each iteration the configu-
ration converges to the best one. However, for this specific test, we obtained
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1758 B. Arsioli and P. Dedin

Figure 7. KNN metrics. Top: The balanced accuracy, balanced-f1, and
accuracy metrics as a function of the number of neighbours; using the distance
weights kernel, and considering the SMOTE algorithm to balance the training
sample. Bottom: The precision and recall of the HSP and LSP classes. The
points and uncertainty bands are the mean and standard deviation for each
metric, considering 300 re-samples.

Fig. 4 (top) shows the mean balanced-accuracy (bal-acc) and its
standard deviation as a function of the test sample size, for the
RF, SVM, KNN, and GNB models. The mean bal-acc and σ are
calculated from 300 re-samples. From there we decide to split the
ML-Blazar sample into 65 per cent for training and 35 per cent for
testing, to keep the test uncertainty at ∼1 per cent level for all models
while keeping the mean balanced accuracy as high as possible, and
depleting the training sample as less as possible.

We also tested if our data frame is large enough concerning
the total number of objects (sample size). Using a random split,
we reduced the data set to smaller samples and trained the ML
algorithms. At first, the algorithms were trained and tested us-
ing the default configuration, and later the results were updated
with the optimized versions (the ones described in Section 5.2).
Fig. 4 shows the bal-acc and σ scanning the data set sizes from
70 to 4000, and considering 300 re-samples for each point. As
seen, the mean bal-acc evolves from 88 to 90 per cent up to
91–93 per cent, and the σ reduces from an ∼15 per cent band
down to ∼1 per cent band. Although the gains in bal-acc seem
relatively small, the σ shrinks drastically as the sample size grows.

just minor corrections in the first iteration, and the selected train:test ratio
remains the same, 0.65:0.35.

Figure 8. GNB metrics. Top: The balanced-accuracy, balanced-f1, and
accuracy metrics as a function of the prior probability (for the LSP class),
and considering the SMOTE algorithm to balance the training sample.
Bottom: The precision and recall of the HSP and LSP classes. The points
and uncertainty bands are the mean and standard deviation for each metric,
considering 300 re-samples.

That means the uncertainty associated with each trained model is
lower, and the the models are increasingly stable, and robust. By
this analysis, we assure that our data frame is large enough to
produce models with small uncertainty and a high level of balanced
accuracy.

5.2 Fine-tuning the ML models

Here, we describe the optimization steps for each ML algorithms,
scanning over the available parameters to fine-tune the models. We
look forward to maximizing the performance of the mean balanced-
accuracy and report on the optimal setup conditions to meet that
goal. We adopt the re-sampling as part of the uncertainty analysis
and model validation (Kelling et al. 2009), which showed to be a
rather compute-intensive task. Our re-sampling analysis consists of
300 full train and test evaluations, running over randomly selected
train and test samples, to access the standard deviation of all target
metric (e.g. the balanced accuracy).

The choice of the best performing model, however, depends on the
starting goals. As an example, to maximize the LSP or HSP recall
(completeness) without caring for the contamination of the sample,
one could use different optimization parameters. To illustrate those
possibilities, in addition to the balanced-accuracy dependence, we
show the precision, recall, and balanced-f1 scores.

MNRAS 498, 1750–1764 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/1750/5893325 by U
niversidade Estadual de C

am
pinas user on 25 February 2021



Machine Learning for Blazar Classification 1759

Table 4. Mean performance metrics for each ML algorithm, for the setup that maximizes the balanced accuracy. The means and σ are calculated based on 300
re-samples. The latest column to the right ‘Opt-Acc’ corresponds to the optimum accuracy that could be reached with other setups.

Classifier Bal-Acc Bal-F1 HSP-Recall HSP-Precision LSP-Recall LSP-Precision Acc Opt-Acc

RF 0.926 ± 0.006 0.915 ± 0.006 0.959 ± 0.008 0.796 ± 0.015 0.892 ± 0.008 0.980 ± 0.007 0.913 ± 0.006 0.919 ± 0.006
SVM 0.929 ± 0.005 0.915 ± 0.006 0.968 ± 0.008 0.795 ± 0.015 0.890 ± 0.009 0.984 ± 0.004 0.914 ± 0.006 0.914 ± 0.006
KNN 0.926 ± 0.006 0.910 ± 0.006 0.973 ± 0.007 0.780 ± 0.015 0.879 ± 0.009 0.986 ± 0.003 0.908 ± 0.006 0.909 ± 0.006
GNB 0.914 ± 0.006 0.903 ± 0.006 0.946 ± 0.010 0.777 ± 0.015 0.880 ± 0.008 0.974 ± 0.005 0.897 ± 0.007 0.907 ± 0.006
Ludwig 0.873 ± 0.015 0.887 ± 0.012 0.837 ± 0.029 0.801 ± 0.024 0.908 ± 0.012 0.926 ± 0.012 0.886 ± 0.011 0.886 ± 0.011

5.2.1 RF

The main parameters we optimize were: the number of features, the
number of trees (or estimators), and the tree’s maximum depth. We
balance the training sample by assigning a larger weight to the less
frequent class (the HSPs); setting the option class weight = ‘bal-
anced’. The number of features was scanned from 1 to 5, showing
better performance at 1; the number of trees was scanned from 10 to
1000, performing best at 250; and the maximum depth was scanned
from 1 to 15, performing best at 5, as shown in Fig. 5. Those results
emerge from an iterative procedure, starting with default values, and
followed by fine-tuning, reaching an optimum balanced-accuracy of
0.926 ± 0.006.

5.2.2 SVM

We scan over the cost (C) value, for the range between 0.003
to 500, and each of the four kernels: rbf, linear, polynomial,
and sigmoidal. We balance the training sample setting the option
class weight = ‘balanced’, which assign a larger weight to the HSPs.
The results are shown in Fig. 6, with the rbf kernel reaching the best
performance and optimum balanced accuracy for C ∼ 8. We also test
how the gamma parameter affects results, but the effect is negligible
in our case; therefore, we set the ‘auto’ option.

5.2.3 K-neighbours

In KNN algorithm, the main optimization parameter is the number of
neighbours, which we scan from 5 to 200, as shown in Fig. 7. We have
tested both kernels available to weight the k neighbours, ‘distance’
and ‘uniform’, which shows slightly better results (0.2 per cent more
accurate, on average) for the ‘distance’ kernel. Given the unbalance
does affect the KNN modelling (as reported in Wang et al. 2012),
we implement a SMOTE strategy to balance the training sample
(within each re-sample loop) delivering an overall improvement of
∼0.5 per cent in balanced accuracy. Here, we report results for the
kernel weight ‘distance’, and for the training sample balanced with
SMOTE. There is an optimum region for n-neighbours ranging from
20 to 30, with the best balanced accuracy of ∼0.926 ± 0.005, for
n-neighbours of 26.

5.2.4 Gaussian Naive Bayes

For the GNB algorithm, we scan over the prior-probability parameter,
which represents the initial model assumption for the LSP fraction in
the ML-Blazar sample. A change in prior-probability affects the
model’s prediction power, as shown in Fig. 8. In this case, the
algorithm forces a more significant weight to a given class when the
assigned prior is larger than the real fraction. The balanced accuracy
is optimal when setting a prior-probability similar to the real fraction

of LSP in the ML sample (of ∼0.70). We test the situation where the
training sample is balanced via SMOTE and see no improvement for
the bal-acc. Therefore, the results for this algorithm goes with no bal-
ancing option and no fine-tuning (with prior-probability set to ‘auto’).

In Table 4, we summarize the metrics at optimal model conditions
that maximise the balanced accuracy. All metric values correspond
to the mean as calculated from 300 re-samples, with its associated
σ . Fig. 9 shows the distribution of balanced accuracy at the optimal
setup. The models are highly effective in performing the classification
task with relatively small σ , which points to the low level of noise
associate both to the input features and the target variables (Caruana
et al. 1999; Murdock & Goel 2001).

5.3 Feature importance

To explore the importance of each single-feature, one can try to
visualize its impact on a given metric (e.g. balanced accuracy)
via a permutation test. However, this approach can only produce
robust results in the case that all features are independent (or weakly
correlated). If the data frame has correlated features, an alternative
is to apply the permutation jointly, to pairs of features, at once. Here,
we test both approaches and try to extract information related to the
interpretation and consistency of our models.

The permutation test consists in splitting the data frame into train
and test, for training an ML model as usual. For the test sample,
however, the elements of each feature are shuffled or permuted.
Consider ‘column i’ to represent a given feature αi; The shuffling
is done separately for each αi, and each time, the ML model
estimates the class of each object in the permuted-test-samplei. The
absolute change in balanced accuracy for each permuted-test-samplei

is compared to the original balanced accuracy of the test sample
(Strobl et al. 2007). In other words, if αi is not correlated to other
features, the information stored in each αi is destroyed, and its direct
impact on the balanced-accuracy metric is measured.

The permutation importance test does not depend on model
parametrization (e.g. to interpret model coefficients, Breiman 2001a),
which renders it versatile to apply in all our cases. However, when
features are correlated, e.g. features αi and αj, the information about
αi is mapped into αj, and shuffling αi alone is not enough to erase its
information. As a result, the impact over the final balanced accuracy
is small and biased towards low importance.

To visualize the relation between features, we build the corre-
lation matrix, Fig. 10 (top), which shows the Pearson’s coefficient
between all combinations of spectral slopes (α). We do add an extra
column (rdm) to our data frame, consisting of random Gaussian and
standardized noise (〈rdm〉 ∼0.0 and σ ∼1.0). The random column
works as a test-control, given we do expect negligible impact over
the balanced accuracy when shuffling it.

Indeed, our training data frame has at least four pairs of spectral
slopes with relevant correlation (Pearson’s coefficient > 0.8): αrw1

ro ,
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Figure 9. Balanced-accuracy distribution for all the ML algorithms with optimal configuration, including results for the Ludwig auto-ML tool. The bottom
density-box shows the distribution of individual bal-acc values.

αw1w3
w2w1 , αrx

ro , αrw1
rx ; and a weak one for αrw1

w1w3. We consider all those
five pairs for a joint-feature permutation test. The scatter plots for
the most relevant correlations are shown in Fig. 10 (bottom).

We carried out the single-feature permutation test with the PYTHON

library mlxtend (MLX; Raschka 2018) mlxtend.evaluate. feature-
importance-permutation.13 The MLX implementation has an internal
option (num-rounds) that allows to randomly re-shuffle the feature
permutation test n times (we adopt n = 25) within a single loop, to
probe the impact on balanced accuracy. For the joint-feature permu-
tation test we use the PYTHON library rfpimp14 which implements
the shuffling of pairs of features (αrw1

ro , αw1w3
w2w1 , αrx

ro , αrw1
rx , and αrw1

w1w3).
The results for both the single- and joint-features permutation tests
are shown in Fig. 11.

To evaluate the degree of variability/uncertainty associated with
each ML model, we run the entire test loop over 300 re-samples
(for both the single and joint-feature permutation tests), and track
the mean value and standard deviations of the impacts on the
balanced-accuracy metric. The models are trained at their optimum,
as described in Section 5.2, and accounting for the unbalanced
number of LSP and HSP sources (either via considering a class-
weight correction, or applying SMOTE over the training sample). We
use the random split option to produce the trained and tested samples
(with 0.65 and 0.35 fraction, respectively) for each re-sample loop.

It is interesting to compare the results for the single- and joint-
feature tests. For the joint-feature test, the most relevant pair of
features is αrw1

ro , for all models, followed by αw1w3
w2w1 , αrx

ro , αrw1
rx , and

αrw1
w1w3. For the single-feature test, each model seems – misleadingly

– to have a strong dependence in a particular spectral slope. The
RF, SVM, KNN, and GNB models have, respectively: αw2w1, αw1w3,
αrx, and αro as the most important feature for each model, with no
apparent reason behind the variability between models. However, the
single-feature permutation test is biased because of the correlation
between spectral slopes (as shown in Fig. 10), and the use of joint-
features showed to be very useful to remove that bias.

The RF model had the largest σ for both single and joint-feature
permutation tests. Note, this does not indicate the RF modelling is
weaker (more unstable) concerning others, but that it is more sensible

13The mlxtend:github documentation.
14The rfpimp:github documentation.

to the scrambling of a feature (or pair of features). In fact, the RF,
SVM, KNN, and GNB models are similar concerning model stability,
as seen from the balanced-accuracy distribution in Fig. 9, given that
the σ are similar (see Table 4).

The rdm feature (introduced by hand) showed nearly no impact
over the balanced accuracy during the single and joint-permutation
tests. This was envisaged as a test control, to which we expected null
permutation impact.

5.4 The intersection among classification models

In addition to the performance of each algorithm alone, we also
compared the classification of each object among the models. The
approach was to generate 1000 randomly split train and test samples,
to guarantee that all objects appear in the test set a reasonably large
n number of times (and smooth out fluctuations associated with
n). We used these 1000 samples to train all the ML algorithms,
including Ludwig.

Given the train and test process, we use two approaches to compare
the classifications. The first one is to save the number of objects that
are classified wrongly by at least one of the algorithms in each of
the 1000 test samples, what we call as misclassification. The result
of this approach is that a mean of 148.4 objects are misclassified at
least once, with σ of 19.2. Recall that our entire data set has 4178
objects, so that the test sample has 1462 objects, meaning that about
10 per cent of them are classified wrongly by at least one algorithm.
The second approach is to track and record how many times each
object is misclassified, which we call by misclassification rate (miss-
rate). The result is that a total of 1244 objects have a miss rate
≥ 1, meaning those are cases classified at least one time wrongly.
The remaining 2934 objects were always classified correctly by all
algorithms, suggesting that those have a clear distinction about which
class they belong.

We plot the distribution of the 1244 objects with miss rate ≥ 1,
Fig. 12 (top), highlighting the miss rate = zero bin with 2934 objects.
As seen, there is a group with hundreds of objects accumulating
around the miss rate of ∼350 counts, which follows approximately
a Gaussian distribution having a mean of 348.7 ± 0.7 and σ of
17.1 ± 0.6. We interpret this group of objects has an intrinsic
ambiguity concerning the class they belong. Using a criteria of
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Figure 10. Top: Correlation matrix showing Pearson’s coefficients to evalu-
ate the linear correlation between features. Bottom: The four most correlated
features, separated according to class: HSP (blue) and LSP (orange).

5σ , we assume a threshold at a miss-rate ≥262 to mark (with
a flag) these objects. Given the 1279 HSPs and the 2899 LSPs,
1073 (83.9 per cent) HSPs and 2499 (86.2 per cent) LSPs fall in the
category with stable classification; 206 HSPs and 400 LSPs got the
ambiguity flag. The flag will be useful for future works, to help refine
the classification and better understand the ML-Blazar data frame.

Fig. 12 (bottom) shows a histogram according to log(νpeak),
separating between sources which are well classified most of times
(miss-rate < 262) and cases which are relatively harder to classify
(miss-rate ≥ 262). The histogram only considers HSPs because the
log(νpeak) is only available for the entire HSP subsample (from,
Chang et al. 2019). The 5BZcat has no log(νpeak) information.

We notice a growing number of misclassified objects when
the synchrotron peak approaches 1015 Hz, revealing that the ML
algorithms have increasing difficulty in classifying sources close to
the decision border. In case of a human-based classification, both
source variability (characteristic of blazars) and poor data coverage
(for faint objects) can influence the determination of the νpeak (Arsioli
et al. 2015). Those uncertainties may also drive the misclassification
in ML-based methods.

However, the information stored in the data frame is not blind
to variability. It builds over extensive work done with the 1WHSP,
2WHSP, and 3HSP catalogues, selecting HSP sources while consid-
ering all available multifrequency and multiepoch data to compute
the average νpeak. In this sense, both ML models and humans tend to
misclassify border sources, and it seems there would be no induced
(or uncontrolled) cost by using ML instead of human classification,
as discussed in Lipton (2016). The feasibility of using ML instead
of human classification will rely on comparing their uncertainties,
along with other aspects as availability of computation power, run-
time, and data/storage size.

6 C O N C L U S I O N S

We build the ML-Blazar data frame condensing multifrequency
information on Radio, IR, optical, and X-rays, for sources listed in the
5BZcat and 3HSP catalogues. The ML-Blazar sample includes 4178
objects labelled as 1279 HSPs and 2899 LSPs. Section 3 describes
the cross-matching between catalogues and give details about the six
flux channels available to describe each source.

The multifrequency fluxes were used to calculate spectral slopes
(α) that work as input features for training ML algorithms. In
Section 3.2, we use statistical tests (KS and t-test) to compare the
HSP and LSP distributions concerning each feature and select the
five spectral slopes which better separate between HSPs and LSPs:
αrw1 , αro, αrx, αw2w1 , αw1w3 .

In Section 4, we described five ML algorithms and the evaluation
metrics used to train and test our blazar classification models. Those
algorithms include SVM, RF, KNN, GNB, and Ludwig (auto-ML
framework from Uber). Given that the ML-Blazar is unbalanced,
we select the balanced-accuracy metric as a proxy for model
optimization. Besides, the training always corrects for unbalance
via SMOTE-oversampling the HSPs, or by assigning larger weight
to them.

In Section 5.1, we study the influence of sample size and test
fraction over the balanced accuracy and shown that a 0.35 test fraction
can deliver low levels of uncertainly (∼1 per cent) for the evaluation
metrics, with no substantial penalty over the model’s predictive
power. In Section 5.2, we describe the optimization and best results
for the SVM, RF, KNN, GNB, and Ludwig algorithms. We show that
scanning over the parameter space available for each ML algorithm
is an effective optimizations strategy. All data points derived during
the optimization phase are mean values calculated from 300 re-
sample, from which we extract the σ as a measure of the uncertainty
associated with the means. We test the importance of the input
features for the SVM, RF, KNN, and GNB algorithms, via a joint-
feature permutation test, that account for the correlation between
spectral slopes. The pair of features that produce the main impacts
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Figure 11. Top histogram: The impact of a single-feature permutation over the bal-acc. Bottom histogram: The absolute impact of joint-feature permutation
over the bal-acc. The results refer to the ML models: RF, SVM, KNN, and GNB. The points and error bars are the mean and standard deviation of each metric,
considering 300 re-samples. Note, the random (rdm) feature is introduced by hand as a test-control and is composed by a standardized Gaussian noise: zero
mean and unitary standard deviation.

in prediction power is αrw1
ro , for all models, followed by αw1w3

w2w1 , αrx
ro ,

αrw1
rx , and αrw1

w1w3. We have shown that supervised ML can be used
to classify blazars into HSPs and LSPs based on multifrequency
information, reaching up to ∼93 per cent of balanced accuracy with
the SVM algorithm. We had a focus in optimization strategies (to
improve the balanced accuracy) but also intended to provide the
basis to investigate automated methods that can determine broadband
spectral parameters, as the synchrotron ν-peak.

The high balanced accuracy (∼93 per cent) shows that LSPs
and HSPs are highly separable in the multidimensional space of
spectral slopes. The separability could be connected to a physi-
cal distinction between the synchrotron-emission regime in each
class. As known, in single-zone self-synchrotron Compton (SSC)
scenarios, the transition between Thomson to Klein–Nishina emis-
sion regime happens at log(νpeak) ∼14.7 (Hz) (see the ‘Tramacere
Plane’, Arsioli & Chang 2018), close to the LSP-HSP threshold at
log(νpeak) = 15.0. The presence of external photon fields interacting
with the blazar’s jet (in external Compton scenarios, EC) can also
play a whole for the interpretation. Moreover, Keenan et al. (2020)
report on the AGNs weak-jet and strong-jet modes (respectively,
in inefficient and efficient accretion systems) that is tightly related
to a distinction between LSPs and HSPs. The separability of
LSPs and HSPs can be investigated in future, using unsupervised
clustering methods with a focus on the physical difference between
classes.

A multifrequency ML approach can be used to unveil new
blazars and other types of sources, looking forward to explore

the full potential of currently available astrophysical archives. We
envision the application of ML algorithms as a highly effective tool
to automate the extraction of spectral parameters and to classify
astrophysical sources, especially useful for the upcoming generation
of deep-sky surveys.
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NVSS, SUMSS, PMN, and TAPMN (Wright et al. 1994; Condon
et al. 1998; Manch et al. 2003; McConnell et al. 2012; Helfand et al.
2015); IR: AllWISE survey (Cutri et al. 2013); Optical: GAIA DR2,
SDSS DR12, PanStars DR1, and Usno B.1 (Monet et al. 2003; Alam
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Figure 12. Top: Histogram of the miss-rate showing how many times an
object is misclassified by at least one classifier, within 1000 re-samples.
The vertical axes shows the number of objects in logarithmic scale. The
orange bins represent the objects with miss rate ≥ 1, and the green bin
represents the objects with miss rate = 0. The red line corresponds to
a Gaussian fit to the cases with miss-rate ≥ 262. Bottom: The log(νpeak)
(Hz) distribution associated with the most ambiguous cases with miss-
rate ≥ 262 times (orange), and cases with miss-rate < 262 (green). This
histogram only considers the 1132 HSPs with confident νpeak estimate,
following the νpeak flag from the 3HSP catalogue.

et al. 2015; Chambers et al. 2016; Gaia Collaboration 2018); X-ray:
3XMM DR8, Swift-1SWXRT, Swift-XRTGRB, XMM-SL2, 2RXS-
RASS, and Chandra V1.1. (Saxton et al. 2008; Evans et al. 2010;
Puccetti et al. 2011; Evans et al. 2014; Boller et al. 2016; Rosen
et al. 2016); Gamma-ray: 4FGL and 2BIGB (Abdollahi et al. 2020;
Arsioli et al. 2020); Blazars: 5BZcat and 3HSP (Massaro et al. 2009,
2015; Chang et al. 2019).
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