

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.022001

DOI: 10.1103/PhysRevLett.123.022001

Direitos autorais / Publisher's copyright statement:

©2019 by American Physical Society. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br

Studies of Beauty Suppression via Nonprompt D^0 Mesons in Pb-Pb Collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

A. M. Sirunyan *et al.*^{*} (CMS Collaboration)

(Received 25 October 2018; revised manuscript received 27 February 2019; published 9 July 2019)

The transverse momentum spectra of D^0 mesons from *b* hadron decays are measured at midrapidity (|y| < 1) in *pp* and Pb-Pb collisions at a nucleon-nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D^0 mesons from *b* hadron decays are distinguished from prompt D^0 mesons by their decay topologies. In Pb-Pb collisions, the $B \rightarrow D^0$ yield is found to be suppressed in the measured p_T range from 2 to 100 GeV/*c* as compared to *pp* collisions. The suppression is weaker than that of prompt D^0 mesons and charged hadrons for p_T around 10 GeV/*c*. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured $B \rightarrow D^0$ suppression at higher p_T , the data show an indication of larger suppression than the model predictions in the range of $2 < p_T < 5 \text{ GeV}/c$.

DOI: 10.1103/PhysRevLett.123.022001

Quantum chromodynamics (QCD) predicts the existence of a quark-gluon plasma (OGP) phase, consisting of deconfined quarks and gluons, at extremely high temperatures and/or densities [1-3]. Experiments at the BNL RHIC and the CERN LHC indicate that a strongly coupled QGP is created in relativistic heavy ion collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{\rm NN}}$ from 200 GeV to several TeV [4-8]. Heavy quarks (charm and beauty) produced in heavy ion collisions are valuable probes for studying the properties of this deconfined medium. They are mostly produced in primary hard QCD scatterings at an early stage of the collision. During their propagation through the QGP, heavy quarks lose energy via radiative and collisional interactions with the medium constituents, with the two processes dominating at high and low transverse momentum $(p_{\rm T})$, respectively. Parton energy loss can be studied using the nuclear modification factor (R_{AA}) , which is defined as the ratio of the particle yield in nucleus-nucleus (AA) to that in proton-proton (pp) collisions, normalized by the number of binary nucleon-nucleon collisions (N_{coll}) [9]. Precise measurements of R_{AA} for particles containing light, charm, and beauty quarks over a wide $p_{\rm T}$ range can test the predicted flavor (parton mass) and energy dependence of the parton energy loss in the QGP [10]. This can provide both important tests of QCD at extreme densities and temperatures, and constraints on theoretical models describing the system evolution in heavy ion collisions.

Charm suppression in heavy ion collisions was reported by RHIC and LHC experiments [11-16]. For beauty production, the CMS Collaboration measured R_{AA} for nonprompt J/ψ mesons (coming from decays of b hadrons) and for fully reconstructed $B \pm$ mesons [17–19]. A suppression by a factor of about two was observed in both channels for $p_{\rm T} > 6 \, {\rm GeV}/c$ at midrapidity. At the same time, the R_{AA} of nonprompt J/ψ mesons in the $p_{\rm T}$ range of 6.5–30 GeV/c was found to be larger than the R_{AA} of prompt D mesons in the 8–16 GeV/c $p_{\rm T}$ region for central events, which is in line with a mass ordering of quark energy loss [10]. An indication of less suppression of nonprompt J/ψ mesons is seen at forward rapidity (1.8 < |y| < 2.4), at low $p_{\rm T}$, down to 3 GeV/c. Extending measurements of charm and beauty suppression to a broader $p_{\rm T}$ coverage should provide improved discrimination between the radiative and collisional parton energy loss mechanisms, leading to better constraints on theoretical predictions.

In this Letter, we report a study of beauty production and in-medium energy loss performed by measuring nonprompt $D^0 p_T$ spectra in pp and 0–100% centrality (i.e., the degree of overlap of the two colliding nuclei) Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the CMS detector. The measurement is done in the rapidity region |y| < 1, in a wide p_T range from 2 to 100 GeV/c. The D^0 and D^0 mesons, whose yields are merged in this analysis, are reconstructed via the hadronic decay channel $D^0 \rightarrow K^-\pi^+$ that has a branching fraction of 3.93% [20]. The combined branching fractions of B mesons $\rightarrow D^0X/D^0X$ and the following $D^0 \rightarrow K^-\pi^+$ are significantly higher than those for

^{*}Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

FIG. 1. (a) Example of a three-component invariant mass fit of a D^0 DCA bin for p_T of 6–7 GeV/*c* in Pb-Pb collisions. (b) DCA distributions for D^0 candidates in the signal invariant mass region and in the sidebands (scaled by the mass range ratio of 0.5) for $D^0 p_T$ of 6–7 GeV/*c* in *pp* collisions. (c) Signal DCA distribution obtained with the invariant mass fit for each DCA bin, and a prompt + nonprompt two-component fit to it, for $D^0 p_T$ of 6–7 GeV/*c* in Pb-Pb collisions. (d) Signal DCA distribution obtained with the sideband subtraction, and a prompt + nonprompt two-component fit to it, for $D^0 p_T$ of 6–7 GeV/*c* in *pp* collisions.

previous measurements via nonprompt J/ψ mesons and fully reconstructed B^{\pm} mesons.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.5$. For nonisolated particles of $1 < p_T < 10 \text{ GeV}/c$ and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μ m in the transverse (longitudinal) impact parameter [21]. A detailed description of the CMS experiment can be found in Ref. [22].

This analysis is performed using pp and Pb-Pb data collected in 2015 at $\sqrt{s_{\rm NN}} = 5.02$ TeV. For $D^0 p_{\rm T}$ less than 20 GeV/*c*, minimum-bias samples corresponding to about 2.67 billion pp (294 million Pb-Pb) collisions are used. For $D^0 p_{\rm T}$ above 20 GeV/*c*, we use samples from dedicated D^0 high-level trigger (HLT) algorithms [16], corresponding to integrated luminosities of 27.4 pb⁻¹ [23] and 530 μ b⁻¹ for *pp* and Pb-Pb collisions, respectively. The same event selection as in Refs. [16,24,25] is used to reject instrumental background processes (beam-gas collisions, beam scraping events, and ultraperipheral nonhadronic collisions).

Monte Carlo (MC) simulated events are used to evaluate detector acceptance, reconstruction, and selection efficiency for D^0 , and to obtain geometrical distributions for prompt and nonprompt D^0 meson decay vertices relative to the primary vertex (PV, the reconstructed collision point). The MC samples are produced by generating *pp* collisions containing a D^0 meson with PYTHIA 8.122 [26] tune CUETP81M1 [27]. The decay kinematics of the heavy flavor hadrons are simulated with EVTGEN 1.3.0 [28]. Each pp event is then overlaid with a Pb-Pb collision event generated with HYDJET 1.8 [29]. The centrality distribution in real data is approximated by weighting the HYDJET event sample by the number of inelastic nucleon-nucleon collisions. The generated B meson $p_{\rm T}$ distributions are also weighted such that they reproduce the measured nonprompt D^0 spectra in this analysis. The detector response is simulated with GEANT4 [30].

The D^0 candidates are reconstructed by combining pairs of oppositely charged tracks. Each track is required to pass a high purity selection based on a multivariate analysis of track quality variables [31]. Tracks are required to have $|\eta| < 1.5$ and $p_{\rm T}$ larger than 1 GeV/c for the pp and Pb-Pb minimum-bias data, and 2 and 8.5 GeV/c for pp and Pb-Pb D^0 -triggered samples, respectively. For each pair of selected tracks, two D^0 candidates are created by assuming that one of the particles has the pion mass and the other has the kaon mass, and vice-versa. The D^0 candidates are required to have |y| < 1, where the track resolution is better. In order to reduce the combinatorial background and prompt D^0 contribution, the D^0 candidates are selected based on several geometrical criteria: a minimum probability that the two tracks come from a common decay vertex, a minimum distance between the decay vertex and the PV divided by its uncertainty, and minimum distances of closest approach (DCA) to the PV for the pion and kaon tracks divided by their uncertainties. The selection is optimized using simulated signal samples complemented by background events from mass sidebands in the data. Dedicated optimizations are performed for different $p_{\rm T}$ ranges and for pp and Pb-Pb collisions, in order to maximize the statistical significance of the $B \rightarrow D^0$ (i.e., D^0 mesons from b hadron decays) yield.

The $B \rightarrow D^0$ decays are distinguished from prompt D^0 mesons by fitting the distribution of DCA between the D^0 path and the PV. The signal D^0 DCA distribution, including both the prompt and nonprompt components, is extracted by two methods. For p_T bins in which there is abundant background ($D^0 p_T < 20 \text{ GeV}/c$ for Pb-Pb), the D^0 meson yield in each D^0 DCA bin is obtained from an invariant

mass fit with three components: a double-Gaussian function describing the signal, a broad Gaussian function describing $K-\pi$ swapped pairs, and a third-order polynomial component for the combinatorial background. Figure 1(a) shows an example of a three-component invariant mass fit for a selected D^0 DCA and p_T bin. For the pp data and for D^0 candidates with $p_T >$ 20 GeV/c from Pb-Pb events, for which the background is low, a sideband subtraction method is used to obtain the signal D^0 DCA distribution. Figure 1(b) shows the DCA distributions for D^0 candidates in the signal invariant mass region $(|m_{\rm rec} - m_{D^0}| < 0.025 \text{ GeV}/c^2)$ and for candidates in the sidebands $(0.05 < |m_{\rm rec} - m_{D^0}| < 0.1 \,{\rm GeV}/c^2)$. The latter is scaled by the mass range ratio of 0.5 in order to estimate the background yield in the narrower signal region. Here $m_{\rm rec}$ is the reconstructed $K-\pi$ invariant mass and m_{D^0} is the nominal mass of the D^0 meson, 1.8648 GeV/ c^2 [20]. The signal D^0 DCA distribution is calculated as the difference of the D^0 DCA distributions in the signal region and the sidebands.

In order to obtain the $B \rightarrow D^0$ yield, a two-component fit to the signal D^0 DCA distribution is carried out using prompt and nonprompt D^0 DCA templates obtained from MC simulations, as shown in Figs. 1(c) and 1(d), for Pb-Pb and pp, respectively. The prompt D^0 mesons have a narrow DCA distribution near zero, with the width purely resulting from the detector resolution, while the nonprompt D^0 DCA distribution is much wider because of the kink between the b hadron and D^0 meson directions. This two-component fit is sensitive to the modeling of the D^0 DCA distributions in the simulation. To assess systematic effects on the twocomponent fit arising from potential differences between the resolution in data and simulation, the widths of the simulated DCA distributions are varied by a floating scale factor. The best simulated DCA width scale factor to match the data is determined by minimizing the χ^2 of the two-component fit. It is found to be in the range of $1.0 \pm$ 0.1 for all $p_{\rm T}$ bins, indicating a good data-to-simulation consistency.

The $B \rightarrow D^0$ differential cross section with |y| < 1 in pp collisions is calculated with the following equation:

$$\frac{\mathrm{d}\sigma_{pp}^{B\to D^0}}{\mathrm{d}p_{\mathrm{T}}}\bigg|_{|y|<1} = \frac{1}{2\mathcal{L}\Delta p_{\mathrm{T}}\mathcal{B}} \frac{N_{pp}^{B\to D^0 + \bar{D}^0}}{\alpha \varepsilon}\bigg|_{|y|<1}.$$
 (1)

Here $N_{pp}^{B \to D^0 + \bar{D}^0}$ are the nonprompt D^0 and \bar{D}^0 meson yields extracted in each p_T interval; \mathcal{L} is the integrated luminosity for the corresponding trigger; Δp_T is the width of the p_T interval; \mathcal{B} is the decay branching fraction; and $\alpha\epsilon$ represents the product of acceptance and efficiency. The factor 1/2 accounts for the fact that the yields were measured for D^0 plus \bar{D}^0 , but the cross section is for either D^0 or \bar{D}^0 production. The $B \to D^0$ yield with |y| < 1 in Pb-Pb collisions is calculated similarly, and normalized by the nuclear overlap function $T_{AA} = N_{\text{coll}}/\sigma_{\text{NN}}^{\text{inelastic}} = 5.61 \text{ mb}^{-1}$ [24] calculated with the Glauber model [9], to facilitate the comparison with the *pp* spectrum, as

$$\frac{1}{T_{AA}} \frac{\mathrm{d}N_{\mathrm{Pb-Pb}}^{B\to D^0}}{\mathrm{d}p_{\mathrm{T}}} \bigg|_{|y|<1} = \frac{1}{T_{AA}} \frac{1}{2N_{\mathrm{events}} \Delta p_{\mathrm{T}} \mathcal{B}} \frac{N_{\mathrm{Pb-Pb}}^{B\to D^0 + \bar{D}^0}}{\alpha \epsilon} \bigg|_{|y|<1},$$
(2)

where the number of sampled inelastic collision events N_{events} replaces the integrated luminosity \mathcal{L} .

The nuclear modification factor is defined as

$$R_{AA} = \frac{1}{T_{AA}} \frac{\mathrm{d}N_{\mathrm{Pb-Pb}}^{B\to D^0}}{\mathrm{d}p_{\mathrm{T}}} / \frac{\mathrm{d}\sigma_{pp}^{B\to D^0}}{\mathrm{d}p_{\mathrm{T}}}.$$
 (3)

The global systematic uncertainty (common to all points) of the $B \rightarrow D^0 p_{\rm T}$ spectrum in pp collisions (2.5%) is the sum in quadrature of the uncertainties in the integrated luminosity (2.3% [23]) and in the $D^0 \rightarrow K^-\pi^+$ branching fraction (1% [20]). The global uncertainty in the Pb-Pb measurement (+4.1%, -3.6%) includes the uncertainties in the number of sampled Pb-Pb inelastic collision events (2%), in the branching fraction (1%), and in T_{AA} (+2.8%, -3.4% [24]). In the calculation of R_{AA} , the uncertainty in the branching fraction cancels out. The other uncertainties are summed in quadrature, amounting to a total global systematic uncertainty in the R_{AA} of +4.6%, -4.1%.

The following systematic uncertainties are evaluated separately in different $p_{\rm T}$ ranges. The systematic uncertainty due to the signal extraction from the invariant mass fit (3.2-5.3%) is evaluated by varying the function used to fit the background, and by comparing the default double-Gaussian signal yield with that obtained with a different method, in which the integral of a third-order polynomial function describing the background and the $K-\pi$ swapped pairs in the signal invariant mass region is subtracted from the number of candidate counts. The uncertainty due to the signal extraction with the sideband subtraction method (1.4-8.6%) is obtained by comparing the D^0 meson yield from the sideband method with the yield from the invariant mass fit, both obtained within the D^0 DCA range where the nonprompt D^0 component dominates. The systematic uncertainty associated with the separation of prompt D^0 mesons and D^0 mesons from b hadron decays (4.2–30.4%) comes from two sources. The first part, which is due to the data-simulation difference in the D^0 DCA shapes, is estimated by comparing the default $B \rightarrow D^0$ yields (from the two-component fit using MC DCA templates with varied widths to match the data) with that obtained using the original MC DCA templates without the width variation. The second part, which is due to statistical uncertainty in the simulated samples, is obtained by smearing

FIG. 2. Upper panel: $B \to D^0 p_{\rm T}$ -differential cross section in pp collisions and invariant yield in Pb-Pb collisions normalized with T_{AA} , at $\sqrt{s_{\rm NN}} = 5.02$ TeV. The vertical bands around the data points represent the bin-by-bin systematic uncertainties. Uncertainties are smaller than the symbols in most cases. The cross section in pp collisions is compared to FONLL calculations [33]. Lower panel: The data/FONLL ratio for the $B \to D^0 p_{\rm T}$ spectra in pp collisions.

simulated D^0 DCA distributions according to the statistical uncertainties in each individual bin, and repeating the twocomponent fit 1000 times. The systematic uncertainty in the tracking efficiency is 4% for a single track [32], and 8% for a pair of tracks. For R_{AA} , the systematic uncertainty in the tracking efficiency ratio between Pb-Pb and pp data is 6% for a track [24], and 12% for a pair of tracks. The systematic uncertainty in the selection efficiency due to the geometrical criteria (6.9-11.6%) is evaluated by varying the selection variables. The systematic uncertainty in the D^0 HLT trigger efficiency (2.0-7.9%) is from the statistical precision of the number of D^0 meson candidates in the events common to the D^0 triggered and minimum-bias triggered samples. The systematic uncertainty in the acceptance and efficiency due to the simulated B meson $p_{\rm T}$ distribution (0.0-3.6%) is estimated by changing the default B meson $p_{\rm T}$ shapes (that reproduce the measured nonprompt D^0 spectra) to the fixed-order next-to-leading logarithm (FONLL) [33] perturbative QCD (pQCD) calculated (*pp*) and FONLL + TAMU model [34,35] predicted (Pb-Pb) B meson $p_{\rm T}$ shapes. The systematic uncertainty in the acceptance and efficiency due to the simulated B meson centrality distribution (0.4-2.3%) is estimated by assuming the B meson yield to be proportional to the number of participating nucleons instead of the number of inelastic nucleon-nucleon collisions. The total systematic uncertainty in each $p_{\rm T}$ interval is computed as the sum in quadrature of the individual uncertainties listed above.

In Fig. 2, the $B \rightarrow D^0 p_{\rm T}$ -differential cross section in pp collisions and the invariant yield in Pb-Pb collisions normalized with T_{AA} are presented. The plot also shows the nonprompt $D^0 p_{\rm T}$ spectra found by decaying a *B* meson $p_{\rm T}$ spectrum calculated using FONLL [33] *p*QCD. The ratio of the measured *pp* spectrum over the FONLL prediction is shown in the bottom panel. The measurement in *pp* collisions lies close to the upper limit of the FONLL predicted range.

Figure 3 shows the $B \to D^0$ nuclear modification factor R_{AA} . It can be seen that the $B \to D^0 R_{AA}$ is below unity in the measured $p_{\rm T}$ range from 2 to 100 GeV/c. In the upper panel, the $B \to D^0 R_{AA}$ is compared with the R_{AA} of B mesons [18], nonprompt J/ψ mesons from b hadron decays [19], prompt D^0 mesons [16], and charged hadrons [24]. The $B \to D^0 R_{AA}$ is close to the B meson and

FIG. 3. The $B \rightarrow D^0$ nuclear modification factor R_{AA} for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV (red circles) compared to other particles [16,18,19,24] (upper panel), and to various theoretical predictions [34–41] (lower panel). The vertical bands around the data points and at unity represent the bin-by-bin and global systematic uncertainties, respectively.

nonprompt J/ψ meson results, and extends the reach of *b* quark related R_{AA} studies to a larger $p_{\rm T}$ coverage at midrapidity. The $B \rightarrow D^0$ yield is less suppressed than prompt D^0 mesons and charged hadrons with $p_{\rm T}$ around 10 GeV/*c*. This may reflect a dependence of the suppression effects on the quark mass [10], although a direct comparison requires a full modeling of the quark initial spectrum and hadronization, as well as of the decay kinematics.

In the lower panel of Fig. 3, the measured $B \rightarrow D^0 R_{AA}$ is compared with various theoretical predictions. The CUJET and EPOS2+MC@SHQ models are perturbative QCD-based calculations that include both collisional and radiative energy loss [36–39]. The TAMU model is a transport model based on a Langevin equation that includes collisional energy loss and heavy quark diffusion in the medium [34,35]. The PHSD model is a microscopic off-shell transport model based on a Boltzmann approach that includes collisional energy loss only [40,41]. At higher $p_{\rm T}$, the CUJET, EPOS2+MC@SHQ and TAMU models all match the data well. However, at $p_{\rm T}$ below 5 GeV/c, our measurements show a hint of stronger suppression than predicted by all available models in this $p_{\rm T}$ range. This could indicate a stronger energy loss of b quarks in QGP than predicted at low $p_{\rm T}$, where collisional parton energy loss begins to dominate. It could also be due to other effects. For example, the fraction of b baryons out of all b hadrons may be enhanced at low $p_{\rm T}$ in Pb-Pb collisions, because b quarks can hadronize by coalescing with light quarks in the medium [42–45]. Given the much lower decay fractions of b baryons $\rightarrow D^0$ with respect to the $B^{\pm} \rightarrow D^0$ and $B^0 \rightarrow D^0$ cases, fewer b hadrons are seen in this analysis than expected by the models. This baryon enhancement effect is not accounted for by the models considered.

In summary, this Letter presents the transverse momentum spectra of D^0 mesons from b hadron decays measured in *pp* and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} =$ 5.02 TeV per nucleon pair with the CMS detector at the LHC. The D^0 mesons from b hadron decays are distinguished from the prompt D^0 mesons by the distance of closest approach of the D^0 path relative to the primary vertex. The measured spectrum in pp collisions is close to the upper limit of a fixed-order next-to-leading logarithm perturbative quantum chromodynamics calculation. In Pb-Pb collisions, the $B \rightarrow D^0$ yield is suppressed in the measured transverse momentum $(p_{\rm T})$ range from 2 to 100 GeV/c. The $B \rightarrow D^0$ nuclear modification factor R_{AA} is higher than for prompt D^0 mesons and charged hadrons around 10 GeV/c, which is in line with a quark mass ordering of suppression. Compared to theoretical predictions, the measured R_{AA} is consistent with some models at higher $p_{\rm T}$, but shows a hint of stronger suppression than all of the available models at low $p_{\rm T}$. This could indicate a stronger energy loss of b quarks in the quarkgluon plasma than predicted at low $p_{\rm T}$, or could reflect an enhanced b baryon production due to quark coalescence in Pb-Pb collisions.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); and DOE and NSF (USA).

- É. V. Shuryak, Theory of hadron plasma, Sov. Phys. JETP 47, 212 (1978).
- [2] J. C. Collins and M. J. Perry, Superdense Matter: Neutrons or Asymptotically Free Quarks?, Phys. Rev. Lett. 34, 1353 (1975).
- [3] F. Karsch and E. Laermann, Thermodynamics and in-medium hadron properties from lattice QCD, in *Quark-Gluon Plasma III*, edited by R. Hwa (World Scientific Press, Singapore, 2003), https://doi.org/10.1142/ 9789812795533_0001.
- [4] J. Adams *et al.* (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions, Nucl. Phys. A757, 102 (2005).
- [5] K. Adcox *et al.* (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A757, 184 (2005).
- [6] B. B. Back *et al.* (PHOBOS Collaboration), The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A757, 28 (2005).

- [7] I. Arsene *et al.* (BRAHMS Collaboration), Quark gluon plasma and color glass condensate at RHIC? the perspective from the BRAHMS experiment, Nucl. Phys. A757, 1 (2005).
- [8] B. Müller, J. Schukraft, and B. Wyslouch, First results from Pb + Pb collisions at the LHC, Annu. Rev. Nucl. Part. Sci. 62, 361 (2012).
- [9] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).
- [10] A. Andronic *et al.*, Heavy-flavour and quarkonium production in the LHC era: From proton-proton to heavy-ion collisions, Eur. Phys. J. C 76, 107 (2016).
- [11] L. Adamczyk *et al.* (STAR Collaboration), Observation of D^0 Meson Nuclear Modifications in Au + Au Collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, Phys. Rev. Lett. **113**, 142301 (2014).
- [12] ALICE Collaboration, Centrality dependence of high- p_T D meson suppression in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, J. High Energy Phys. 11 (2015) 205; Addendum, J. High Energy Phys. 06 (2017) 32.
- [13] ALICE Collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} =$ 2.76 TeV, J. High Energy Phys. 03 (2016) 081.
- [14] ALICE Collaboration, Production of charged pions, kaons and protons at large transverse momenta in pp and PbPb collisions at $\sqrt{s_{NN}}$ =2.76TeV, Phys. Lett. B **736**, 196 (2014).
- [15] ALICE Collaboration, Centrality dependence of charged particle production at $\sqrt{s_{\text{NN}}} = 2.76$ TeV, Phys. Lett. B **720**, 52 (2013).
- [16] CMS Collaboration, Nuclear modification factor of D⁰ mesons in PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, Phys. Lett. B **782**, 474 (2018).
- [17] CMS Collaboration, Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, Eur. Phys. J. C 77, 252 (2017).
- [18] CMS Collaboration, Measurement of the B^{\pm} Meson Nuclear Modification Factor in Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. **119**, 152301 (2017).
- [19] CMS Collaboration, Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV, Eur. Phys. J. C 78, 509 (2018).
- [20] C. Patrignani *et al.* (Particle Data Group), Review of particle physics, Chin. Phys. C 40, 100001 (2016).
- [21] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).
- [22] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).
- [23] CMS Collaboration, CMS luminosity calibration for the pp reference run at $\sqrt{s} = 5.02$ TeV, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-16-001 (2016), https://cds.cern.ch/record/2235781.
- [24] CMS Collaboration, Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, J. High Energy Phys. 04 (2017) 039.
- [25] CMS Collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 0.9$ and 2.36 TeV, J. High Energy Phys. 02 (2010) 041.

- [26] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. **191**, 159 (2015).
- [27] CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76, 155 (2016).
- [28] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
- [29] I. P. Lokhtin and A. M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high- $p_{\rm T}$ hadron spectra at RHIC, Eur. Phys. J. C **45**, 211 (2006).
- [30] S. Agostinelli *et al.* (GEANT4 Collaboration), GEANT4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [31] CMS Collaboration, Tracking and vertexing results from first collisions, CMS Physics Analysis Summary Report No. CMS-PAS-TRK-10-001 (2010), http://cds.cern.ch/ record/1258204.
- [32] CMS Collaboration, Measurement of tracking efficiency, CMS Physics Analysis Summary Report No. CMS-PAS-TRK-10-002 (2010), http://cds.cern.ch/record/1279139.
- [33] M. Cacciari, M. Greco, and P. Nason, The $p_{\rm T}$ spectrum in heavy flavor hadroproduction, J. High Energy Phys. 05 (1998) 007.
- [34] M. He, R. J. Fries, and R. Rapp, Heavy-quark diffusion and hadronization in quark-gluon plasma, Phys. Rev. C 86, 014903 (2012).
- [35] M. He, R. J. Fries, and R. Rapp, Heavy flavor at the large hadron collider in a strong coupling approach, Phys. Lett. B 735, 445 (2014).
- [36] J. Xu, J. Liao, and M. Gyulassy, Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0, J. High Energy Phys. 02 (2016) 169.
- [37] J. Xu, A. Buzzatti, and M. Gyulassy, Azimuthal jet flavor tomography with CUJET2.0 of nuclear collisions at RHIC and LHC, J. High Energy Phys. 08 (2014) 063.
- [38] J. Xu, J. Liao, and M. Gyulassy, Consistency of perfect fluidity and jet quenching in semi-quark-gluon monopole plasmas, Chin. Phys. Lett. 32, 092501 (2015).
- [39] P.B. Gossiaux, J. Aichelin, T. Gousset, M. Nahrgang, V. Ozvenchuk, and K. Werner, Gluon radiation by heavy quarks at intermediate energies and consequences for the mass hierarchy of energy loss, Nucl. Phys. A931, 581 (2014).
- [40] T. Song, H. Berrehrah, D. Cabrera, J. M. Torres-Rincon, L. Tolos, W. Cassing, and E. Bratkovskaya, Tomography of the quark-gluon-plasma by charm quarks, Phys. Rev. C 92, 014910 (2015).
- [41] T. Song, H. Berrehrah, D. Cabrera, W. Cassing, and E. Bratkovskaya, Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93, 034906 (2016).
- [42] K. P. Das and Rudolph C. Hwa, Quark-antiquark recombination in the fragmentation region, Phys. Lett. 68B, 459 (1977); Erratum, Phys. Lett. 73B, 504(E) (1978).
- [43] R. J. Fries, V. Greco, and P. Sorensen, Coalescence models for hadron formation from quark gluon plasma, Annu. Rev. Nucl. Part. Sci. 58, 177 (2008).

- [44] B. I. Abelev *et al.* (STAR), Identified Baryon and Meson Distributions at Large Transverse Momenta from Au + Au Collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, Phys. Rev. Lett. **97**, 152301 (2006).
- [45] Y. Oh, C. Ming Ko, S. H. Lee, and S. Yasui, Heavy baryon/ meson ratios in relativistic heavy ion collisions, Phys. Rev. C 79, 044905 (2009).

A. M. Sirunyan,¹ A. Tumasyan,¹ W. Adam,² F. Ambrogi,² E. Asilar,² T. Bergauer,² J. Brandstetter,² M. Dragicevic,² J. Erö,² A. Escalante Del Valle,² M. Flechl,² R. Frühwirth,^{2,b} V. M. Ghete,² J. Hrubec,² M. Jeitler,^{2,b} N. Krammer,² I. Krätschmer,² D. Liko,² T. Madlener,² I. Mikulec,² N. Rad,² H. Rohringer,² J. Schieck,^{2,b} R. Schöfbeck,² M. Spanring,² D. Spitzbart,² A. Taurok,² W. Waltenberger,² J. Wittmann,² C.-E. Wulz,^{2,b} M. Zarucki,² V. Chekhovsky,³ V. Mossolov,³ J. Suarez Gonzalez,³ E. A. De Wolf,⁴ D. Di Croce,⁴ X. Janssen,⁴ J. Lauwers,⁴ M. Pieters,⁴ H. Van Haevermaet,⁴ P. Van Mechelen,⁴ N. Van Remortel,⁴ S. Abu Zeid,⁵ F. Blekman,⁵ J. D'Hondt,⁵ I. De Bruyn,⁵ J. De Clercq,⁵ K. Deroover,⁵ G. Flouris,⁵ D. Lontkovskyi,⁵ S. Lowette,⁵ I. Marchesini,⁵ S. Moortgat,⁵ L. Moreels,⁵ Q. Python,⁵ K. Skovpen,⁵ S. Tavernier,⁵ W. Van Doninck,⁵ P. Van Mulders,⁵ I. Van Parijs,⁵ D. Beghin,⁶ B. Bilin,⁶ H. Brun,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ H. Delannoy,⁶ B. Dorney,⁶ G. Fasanella,⁶ L. Favart,⁶ R. Goldouzian,⁶ A. Grebenyuk,⁶ A. K. Kalsi,⁶ T. Lenzi,⁶ J. Luetic,⁶ N. Postiau,⁶ E. Starling,⁶ L. Thomas,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ D. Vannerom,⁶ Q. Wang,⁶ T. Cornelis,⁷ D. Dobur,⁷ A. Fagot,⁷ M. Gul,⁷ I. Khvastunov,^{7,c} D. Poyraz,⁷ C. Roskas,⁷ D. Trocino,⁷ M. Tytgat,⁷ W. Verbeke,⁷ B. Vermassen,⁷ M. Vit,⁷ N. Zaganidis,⁷ H. Bakhshiansohi,⁸ O. Bondu,⁸ S. Brochet,⁸ G. Bruno,⁸ C. Caputo,⁸ P. David,⁸ C. Delaere,⁸ M. Delcourt,⁸ A. Giammanco,⁸ G. Krintiras,⁸ V. Lemaitre,⁸ A. Magitteri,⁸ A. Mertens,⁸ M. Musich,⁸ K. Piotrzkowski,⁸ A. Saggio,⁸ M. Vidal Marono,⁸ S. Wertz,⁸ J. Zobec,⁸ F. L. Alves,⁹ G. A. Alves,⁹ M. Correa Martins Junior,⁹ G. Correia Silva,⁹ C. Hensel,⁹ A. Moraes,⁹ M. E. Pol,⁹ P. Rebello Teles,⁹ E. Belchior Batista Das Chagas,¹⁰ W. Carvalho,¹⁰ J. Chinellato,^{10,d} E. Coelho,¹⁰ E. M. Da Costa,¹⁰ G. G. Da Silveira,^{10,e} D. De Jesus Damiao,¹⁰ C. De Oliveira Martins,¹⁰ S. Fonseca De Souza,¹⁰ H. Malbouisson,¹⁰ D. Matos Figueiredo,¹⁰ M. Melo De Almeida,¹⁰ C. Mora Herrera,¹⁰ L. Mundim,¹⁰ H. Nogima,¹⁰ W. L. Prado Da Silva,¹⁰ L. J. Sanchez Rosas,¹⁰ A. Santoro,¹⁰ A. Sznajder,¹⁰ M. Thiel,¹⁰ E. J. Tonelli Manganote,^{10,d} F. Torres Da Silva De Araujo,¹⁰ A. Vilela Pereira,¹⁰ S. Ahuja,^{11a} C. A. Bernardes,^{11a} L. Calligaris,^{11a} T. R. Fernandez Perez Tomei,^{11a} E. M. Gregores,^{11a,11b} P. G. Mercadante,^{11a,11b} S. F. Novaes,^{11a} Sandra S. Padula,^{11a} A. Aleksandrov,¹² R. Hadjiiska,¹² P. Iaydjiev,¹² A. Marinov,¹² M. Misheva,¹² M. Rodozov,¹² M. Shopova,¹² G. Sultanov,¹² A. Dimitrov,¹³ L. Litov,¹³ B. Pavlov,¹³ P. Petkov,¹³ W. Fang,^{14,f} X. Gao,^{14,f} L. Yuan,¹⁴ M. Ahmad,¹⁵ J. G. Bian,¹⁵ G. M. Chen,¹⁵ H. S. Chen,¹⁵ M. Chen,¹⁵ Y. Chen,¹⁵ C. H. Jiang,¹⁵ D. Leggat,¹⁵ H. Liao,¹⁵ Z. Liu,¹⁵ F. Romeo,¹⁵ S. M. Shaheen,^{15,g} A. Spiezia,¹⁵ J. Tao,¹⁵ Z. Wang,¹⁵ E. Yazgan,¹⁵ H. Zhang,¹⁵ S. Zhang,^{15,g} J. Zhao,¹⁵ Y. Ban,¹⁶ G. Chen,¹⁶ A. Levin,¹⁶ J. Li,¹⁶ L. Li,¹⁶ Q. Li,¹⁶ Y. Mao,¹⁶ S. J. Qian,¹⁶ D. Wang,¹⁶ Z. Xu,¹⁶ Y. Wang,¹⁷ C. Avila,¹⁸ A. Cabrera,¹⁸ C. A. Carrillo Montoya,¹⁸ L. F. Chaparro Sierra,¹⁸ C. Florez,¹⁸ C. F. González Hernández,¹⁸ M. A. Segura Delgado,¹⁸ B. Courbon,¹⁹ N. Godinovic,¹⁹ D. Lelas,¹⁹ I. Puljak,¹⁹ T. Sculac,¹⁹ Z. Antunovic,²⁰ M. Kovac,²⁰ V. Brigljevic,²¹ D. Ferencek,²¹ K. Kadija,²¹ B. Mesic,²¹ A. Starodumov,^{21,h} T. Susa,²¹ M. W. Ather,²² A. Attikis,²² M. Kolosova,²² G. Mavromanolakis,²² J. Mousa,²² C. Nicolaou,²² F. Ptochos,²² P. A. Razis,²² H. Rykaczewski,²² M. Finger,^{23,i} M. Finger Jr.,^{23,i} E. Ayala,²⁴ E. Carrera Jarrin,²⁵ Y. Assran,^{26,j,k} S. Elgammal,^{26,j} S. Khalil,^{26,1} S. Bhowmik,²⁷ A. Carvalho Antunes De Oliveira,²⁷ R. K. Dewanjee,²⁷ K. Ehataht,²⁷ M. Kadastik,²⁷ M. Raidal,²⁷ C. Veelken,²⁷ P. Eerola,²⁸ H. Kirschenmann,²⁸ J. Pekkanen,²⁸ M. Voutilainen,²⁸ J. Havukainen,²⁹ J. K. Heikkilä,²⁹ T. Järvinen,²⁹ V. Karimäki,²⁹ R. Kinnunen,²⁹ T. Lampén,²⁹ K. Lassila-Perini,²⁹ S. Laurila,²⁹ S. Lehti,²⁹ T. Lindén,²⁹ P. Luukka,²⁹ T. Mäenpää,²⁹ H. Siikonen,²⁹ E. Tuominen,²⁹ J. Tuominiemi,²⁹ T. Tuuva,³⁰ M. Besancon,³¹ F. Couderc,³¹ M. Dejardin,³¹ D. Denegri,³¹ J. L. Faure,³¹ F. Ferri,³¹ S. Ganjour,³¹ A. Givernaud,³¹ P. Gras,³¹ G. Hamel de Monchenault,³¹ P. Jarry,³¹ C. Leloup,³¹ E. Locci,³¹ J. Malcles,³¹ G. Negro,³¹ J. Rander,³¹ A. Rosowsky,³¹ M. Ö. Sahin,³¹ M. Titov,³¹ A. Abdulsalam,^{32,m} C. Amendola,³² I. Antropov,³² F. Beaudette,³² P. Busson,³² C. Charlot,³² R. Granier de Cassagnac,³² I. Kucher,³² A. Lobanov,³² J. Martin Blanco,³² C. Martin Perez,³² M. Nguyen,³² C. Ochando,³² G. Ortona,³² P. Pigard,³² J. Rembser,³² R. Salerno,³² J. B. Sauvan,³² Y. Sirois,³² A. G. Stahl Leiton,³² A. Zabi,³² A. Zghiche, ³² J.-L. Agram, ^{33,n} J. Andrea, ³³ D. Bloch, ³³ J.-M. Brom, ³³ E. C. Chabert, ³³ V. Cherepanov, ³³ C. Collard, ³³
E. Conte, ^{33,n} J.-C. Fontaine, ^{33,n} D. Gelé, ³³ U. Goerlach, ³³ M. Jansová, ³³ A.-C. Le Bihan, ³³ N. Tonon, ³³ P. Van Hove, ³³
S. Gadrat, ³⁴ S. Beauceron, ³⁵ C. Bernet, ³⁵ G. Boudoul, ³⁵ N. Chanon, ³⁵ R. Chierici, ³⁵ D. Contardo, ³⁵ P. Depasse, ³⁵

H. El Mamouni,³⁵ J. Fay,³⁵ L. Finco,³⁵ S. Gascon,³⁵ M. Gouzevitch,³⁵ G. Grenier,³⁵ B. Ille,³⁵ F. Lagarde,³⁵ I. B. Laktineh,³⁵ H. Lattaud,³⁵ M. Lethuillier,³⁵ L. Mirabito,³⁵ S. Perries,³⁵ A. Popov,^{35,o} V. Sordini,³⁵ G. Touquet,³⁵ M. Vander Donckt,³⁵ S. Viret,³⁵ T. Toriashvili,^{36,p} Z. Tsamalaidze,^{37,i} C. Autermann,³⁸ L. Feld,³⁸ M. K. Kiesel,³⁸ K. Klein,³⁸ M. Lipinski,³⁸ M. Preuten,³⁸ M. P. Rauch,³⁸ C. Schomakers,³⁸ J. Schulz,³⁸ M. Teroerde,³⁸ B. Wittmer,³⁸ V. Zhukov,^{38,0} A. Albert,³⁹ D. Duchardt, ³⁹ M. Erdmann, ³⁹ S. Erdweg, ³⁹ T. Esch, ³⁹ R. Fischer, ³⁹ S. Ghosh, ³⁹ A. Güth, ³⁹ T. Hebbeker, ³⁹ C. Heidemann, ³⁹ K. Hoepfner,³⁹ H. Keller,³⁹ L. Mastrolorenzo,³⁹ M. Merschmeyer,³⁹ A. Meyer,³⁹ P. Millet,³⁹ S. Mukherjee,³⁹ T. Pook,³⁹ M. Radziej,³⁹ H. Reithler,³⁹ M. Rieger,³⁹ A. Schmidt,³⁹ D. Teyssier,³⁹ S. Thüer,³⁹ G. Flügge,⁴⁰ O. Hlushchenko,⁴⁰ T. Kress,⁴⁰ A. Künsken,⁴⁰ T. Müller,⁴⁰ A. Nehrkorn,⁴⁰ A. Nowack,⁴⁰ C. Pistone,⁴⁰ O. Pooth,⁴⁰ D. Roy,⁴⁰ H. Sert,⁴⁰ A. Stahl,^{40,q}
M. Aldaya Martin,⁴¹ T. Arndt,⁴¹ C. Asawatangtrakuldee,⁴¹ I. Babounikau,⁴¹ K. Beernaert,⁴¹ O. Behnke,⁴¹ U. Behrens,⁴¹ A. Bermúdez Martínez,⁴¹ D. Bertsche,⁴¹ A. A. Bin Anuar,⁴¹ K. Borras,^{41,r} V. Botta,⁴¹ A. Campbell,⁴¹ P. Connor,⁴¹ C. Contreras-Campana,⁴¹ V. Danilov,⁴¹ A. De Wit,⁴¹ M. M. Defranchis,⁴¹ C. Diez Pardos,⁴¹ D. Domínguez Damiani,⁴¹ G. Eckerlin,⁴¹ T. Eichhorn,⁴¹ A. Elwood,⁴¹ E. Eren,⁴¹ E. Gallo,^{41,s} A. Geiser,⁴¹ A. Grohsjean,⁴¹ M. Guthoff,⁴¹ M. Haranko,⁴¹ A. Harb,⁴¹ J. Hauk,⁴¹ H. Jung,⁴¹ M. Kasemann,⁴¹ J. Keaveney,⁴¹ C. Kleinwort,⁴¹ J. Knolle,⁴¹ D. Krücker,⁴¹ W. Lange,⁴¹ A. Lelek,⁴¹ T. Lenz,⁴¹ J. Leonard,⁴¹ K. Lipka,⁴¹ W. Lohmann,^{41,t} R. Mankel,⁴¹ I.-A. Melzer-Pellmann,⁴¹ A. B. Meyer,⁴¹ M. Meyer,⁴¹ M. Missiroli,⁴¹ G. Mittag,⁴¹ J. Mnich,⁴¹ V. Myronenko,⁴¹ S. K. Pflitsch,⁴¹ D. Pitzl,⁴¹ A. Raspereza,⁴¹ M. Savitskyi,⁴¹ P. Saxena,⁴¹ P. Schütze,⁴¹ C. Schwanenberger,⁴¹ R. Shevchenko,⁴¹ A. Singh,⁴¹ H. Tholen,⁴¹ O. Turkot,⁴¹ A. Vagnerini,⁴¹ G. P. Van Onsem,⁴¹ R. Walsh,⁴¹ Y. Wen,⁴¹ K. Wichmann,⁴¹ C. Wissing,⁴¹ O. Zenaiev,⁴¹ R. Aggleton,⁴² S. Bein,⁴² L. Benato,⁴² A. Benecke,⁴² V. Blobel,⁴² T. Dreyer,⁴² A. Ebrahimi,⁴² E. Garutti,⁴² D. Gonzalez,⁴² P. Gunnellini,⁴² J. Haller,⁴² A. Hinzmann,⁴² A. Karavdina,⁴² G. Kasieczka,⁴² R. Klanner,⁴² R. Kogler,⁴² N. Kovalchuk,⁴² S. Kurz,⁴² V. Kutzner,⁴² J. Lange,⁴² D. Marconi,⁴² J. Multhaup,⁴² M. Niedziela,⁴² C. E. N. Niemeyer,⁴² D. Nowatschin,⁴² A. Perieanu,⁴² A. Reimers,⁴² O. Rieger,⁴² C. Scharf,⁴² P. Schleper,⁴² S. Schumann,⁴² J. Schwandt,⁴² J. Sonneveld,⁴² H. Stadie,⁴² G. Steinbrück,⁴² F. M. Stober,⁴² M. Stöver,⁴² A. Vanhoefer,⁴² B. Vormwald,⁴² I. Zoi,⁴² M. Akbiyik,⁴³ C. Barth,⁴³ M. Baselga,⁴³ S. Baur,⁴³ E. Butz,⁴³ R. Caspart,⁴³ T. Chwalek,⁴³ F. Colombo,⁴³ W. De Boer,⁴³ A. Dierlamm,⁴³ K. El Morabit,⁴³ N. Faltermann,⁴³ B. Freund,⁴³ M. Giffels,⁴³ M. A. Harrendorf,⁴³ F. Hartmann,^{43,q} S. M. Heindl,⁴³ U. Husemann,⁴³ F. Kassel,^{43,q} I. Katkov,^{43,o} S. Kudella,⁴³ S. Mitra,⁴³ M. U. Mozer,⁴³ Th. Müller,⁴³ M. Plagge,⁴³ G. Quast,⁴³ K. Rabbertz,⁴³ M. Schröder,⁴³ I. Shvetsov,⁴³ G. Sieber,⁴³ H. J. Simonis,⁴³ R. Ulrich,⁴³ S. Wayand,⁴³ M. Weber,⁴³ T. Weiler,⁴³ S. Williamson,⁴³ C. Wöhrmann,⁴³ R. Wolf,⁴³ G. Anagnostou,⁴⁴ G. Daskalakis,⁴⁴ T. Geralis,⁴⁴ A. Kyriakis,⁴⁴ D. Loukas,⁴⁴ G. Paspalaki,⁴⁴ I. Topsis-Giotis,⁴⁴ B. Francois,⁴⁵ G. Karathanasis,⁴⁵ S. Kesisoglou,⁴⁵ P. Kontaxakis,⁴⁵ A. Panagiotou,⁴⁵ I. Papavergou,⁴⁵ N. Saoulidou,⁴⁵ E. Tziaferi,⁴⁵ K. Vellidis,⁴⁵ K. Kousouris,⁴⁶ I. Papakrivopoulos,⁴⁶ G. Tsipolitis,⁴⁶ I. Evangelou,⁴⁷ C. Foudas,⁴⁷ P. Gianneios,⁴⁷ P. Katsoulis,⁴⁷ P. Kokkas,⁴⁷ S. Mallios,⁴⁷ N. Manthos,⁴⁷ I. Papadopoulos,⁴⁷
 E. Paradas,⁴⁷ J. Strologas,⁴⁷ F. A. Triantis,⁴⁷ D. Tsitsonis,⁴⁷ M. Bartók,^{48,u} M. Csanad,⁴⁸ N. Filipovic,⁴⁸ P. Major,⁴⁸ M. I. Nagy,⁴⁸ G. Pasztor,⁴⁸ O. Surányi,⁴⁸ G. I. Veres,⁴⁸ G. Bencze,⁴⁹ C. Hajdu,⁴⁹ D. Horvath,^{49,v} Á. Hunyadi,⁴⁹ F. Sikler,⁴⁹ T. Á. Vámi,⁴⁹ V. Veszpremi,⁴⁹ G. Vesztergombi,^{49,a,u} N. Beni,⁵⁰ S. Czellar,⁵⁰ J. Karancsi,^{50,w} A. Makovec,⁵⁰ J. Molnar,⁵⁰ Z. Szillasi,⁵⁰ P. Raics,⁵¹ Z. L. Trocsanyi,⁵¹ B. Ujvari,⁵¹ S. Choudhury,⁵² J. R. Komaragiri,⁵² P. C. Tiwari,⁵² S. Bahinipati,^{53,x} C. Kar,⁵³ P. Mal,⁵³ K. Mandal,⁵³ A. Nayak,^{53,y} D. K. Sahoo,^{53,x} S. K. Swain,⁵³ S. Bansal,⁵⁴ S. B. Beri,⁵⁴ V. Bhatnagar,⁵⁴ S. Chauhan,⁵⁴ R. Chawla,⁵⁴ N. Dhingra,⁵⁴ R. Gupta,⁵⁴ A. Kaur,⁵⁴ M. Kaur,⁵⁴ S. Kaur,⁵⁴ R. Kumar,⁵⁴ P. Kumari,⁵⁴ M. Lohan,⁵⁴ A. Mehta,⁵⁴ K. Sandeep,⁵⁴ S. Sharma,⁵⁴ J. B. Singh,⁵⁴ A. K. Virdi,⁵⁴ G. Walia,⁵⁴ A. Bhardwaj,⁵⁵ B. C. Choudhary,⁵⁵ R. B. Garg,⁵⁵ M. Gola,⁵⁵ S. Keshri,⁵⁵ Ashok Kumar,⁵⁵ S. Malhotra,⁵⁵ M. Naimuddin,⁵⁵ P. Priyanka,⁵⁵ K. Ranjan,⁵⁵ Aashaq Shah,⁵⁵ R. Sharma,⁵⁵ R. Bhardwaj,^{56,z} M. Bharti,^{56,z} R. Bhattacharya,⁵⁶ S. Bhattacharya,⁵⁶ U. Bhawandeep,^{56,z} D. Bhowmik,⁵⁶ S. Dey,⁵⁶ S. Dutt,^{56,z} S. Dutta,⁵⁶ S. Ghosh,⁵⁶ K. Mondal,⁵⁶ S. Nandan,⁵⁶ A. Purohit,⁵⁶ P. K. Rout,⁵⁶ A. Roy,⁵⁶ S. Roy Chowdhury,⁵⁶ G. Saha,⁵⁶ S. Sarkar,⁵⁶ M. Sharan,⁵⁶ B. Singh,^{56,z} S. Thakur,^{56,z} P. K. Behera,⁵⁷ R. Chudasama,⁵⁸ D. Dutta,⁵⁸ V. Jha,⁵⁸ V. Kumar,⁵⁸ P. K. Netrakanti,⁵⁸ L. M. Pant,⁵⁸ P. Shukla,⁵⁸ T. Aziz,⁵⁹ M. A. Bhat,⁵⁹ S. Dugad,⁵⁹ G. B. Mohanty,⁵⁹ N. Sur,⁵⁹ B. Sutar,⁵⁹ Ravindra Kumar Verma,⁵⁹ S. Banerjee,⁶⁰ S. Bhattacharya,⁶⁰ S. Chatterjee,⁶⁰ P. Das,⁶⁰ M. Guchait,⁶⁰ Sa. Jain,⁶⁰ S. Karmakar,⁶⁰ S. Kumar,⁶⁰ M. Maity,^{60,aa} G. Majumder,⁶⁰ K. Mazumdar,⁶⁰ N. Sahoo,⁶⁰ T. Sarkar,^{60,aa} S. Chauhan,⁶¹ S. Dube,⁶¹ V. Hegde,⁶¹ A. Kapoor,⁶¹ K. Kothekar,⁶¹ S. Pandey,⁶¹ A. Rane,⁶¹ S. Sharma,⁶¹ S. Chenarani,^{62,bb} E. Eskandari Tadavani,⁶² S. M. Etesami,^{62,bb} M. Khakzad,⁶² M. Mohammadi Najafabadi,⁶² M. Naseri,⁶² F. Rezaei Hosseinabadi,⁶² B. Safarzadeh,^{62,cc} M. Zeinali,⁶² M. Felcini,⁶³ M. Grunewald,⁶³ M. Abbrescia,^{64a,64b} C. Calabria,^{64a,64b} A. Colaleo,^{64a} D. Creanza,^{64a,64c} L. Cristella,^{64a,64b} N. De Filippis,^{64a,64c} M. De Palma,^{64a,64b} A. Di Florio,^{64a,64b} F. Errico,^{64a,64b} L. Fiore,^{64a} A. Gelmi,^{64a,64b} G. Iaselli,^{64a,64c}

M. Ince,^{64a,64b} S. Lezki,^{64a,64b} G. Maggi,^{64a,64c} M. Maggi,^{64a} G. Miniello,^{64a,64b} S. My,^{64a,64b} S. Nuzzo,^{64a,64b} A. Pompili,^{64a,64b} M. Ince, S. Lezki, G. Maggi, M. Maggi, G. Mineno, S. My, S. Nuzzo, A. Fompin, G. Pugliese, ^{64a,64c} R. Radogna, ^{64a} A. Ranieri, ^{64a} G. Selvaggi, ^{64a,64b} A. Sharma, ^{64a} L. Silvestris, ^{64a} R. Venditti, ^{64a} P. Verwilligen, ^{64a} G. Zito, ^{64a} G. Abbiendi, ^{65a} C. Battilana, ^{65a,65b} D. Bonacorsi, ^{65a,65b} L. Borgonovi, ^{65a,65b} S. Braibant-Giacomelli, ^{65a,65b} R. Campanini, ^{65a,65b} P. Capiluppi, ^{65a,65b} A. Castro, ^{65a,65b} F. R. Cavallo, ^{65a} S. S. Chhibra, ^{65a,65b} C. Ciocca, ^{65a} G. Codispoti, ^{65a,65b} M. Cuffiani, ^{65a,65b} G. M. Dallavalle, ^{65a} F. Fabbri, ^{65a} A. Fanfani, ^{65a,65b} E. Fontanesi, ^{65a} P. Giacomelli,^{65a} C. Grandi,^{65a} L. Guiducci,^{65a,65b} F. Iemmi,^{65a,65b} S. Lo Meo,^{65a} S. Marcellini,^{65a} G. Masetti,^{65a}
 A. Montanari,^{65a} F. L. Navarria,^{65a,65b} A. Perrotta,^{65a} F. Primavera,^{65a,65b,q} T. Rovelli,^{65a,65b} G. P. Siroli,^{65a,65b} N. Tosi,^{65a} A. Montanari, and F. L. Navarria, oracle A. Perrotta, and F. Primavera, and T. Kovelli, and G. P. Siroli, and N. Tosl,
S. Albergo, ^{66a,66b} A. Di Mattia, ^{66a} R. Potenza, ^{66a,66b} A. Tricomi, ^{66a,66b} C. Tuve, ^{66a,66b} G. Barbagli, ^{67a} K. Chatterjee, ^{67a,67b} V. Ciulli, ^{67a,67b} C. Civinini, ^{67a} R. D'Alessandro, ^{67a,67b} E. Focardi, ^{67a,67b} G. Latino, ^{67a} P. Lenzi, ^{67a,67b} M. Meschini, ^{67a} S. Paoletti, ^{67a} L. Russo, ^{67a,dd} G. Sguazzoni, ^{67a} D. Strom, ^{67a} L. Viliani, ^{67a} L. Benussi, ⁶⁸ S. Bianco, ⁶⁸ F. Fabbri, ⁶⁸ D. Piccolo, ⁶⁸ F. Ferro, ^{69a} F. Ravera, ^{69a,69b} E. Robutti, ^{69a} S. Tosi, ^{69a,69b} A. Benaglia, ^{70a} A. Beschi, ^{70a,70b} L. Brianza, ^{70a,70b} F. Brivio, ^{70a,70b} V. Ciriolo, ^{70a,70b} G. Di Guida, ^{70a,70b,q} M. E. Dinardo, ^{70a,70b} S. Fiorendi, ^{70a,70b} S. Gennai, ^{70a} A. Ghezzi, ^{70a,70b} P. Govoni, ^{70a,70b} V. Ciriolo, ^{70a,70b} S. Di Guida, ^{70a,70h} M. E. Dinardo, ^{70a,70b} S. Fiorendi, ^{70a} S. Genmai, ^{70a,70a} A. Gnezzi, ^{70a,70b} D. Menasce, ^{70a} F. Monti, ^{70a} L. Moroni, ^{70a} M. Paganoni, ^{70a,70b} D. Pedrini, ^{70a} S. Ragazzi, ^{70a,70b} T. Tabarelli de Fatis, ^{70a,70b} D. Zuolo, ^{70a,70b} S. Buontempo, ^{71a} N. Cavallo, ^{71a,71c}
A. De Iorio, ^{71a,71b} A. Di Crescenzo, ^{71a,71b} F. Fabozzi, ^{71a,71c} F. Fienga, ^{71a} G. Galati, ^{71a} A. O. M. Iorio, ^{71a,71b} W. A. Khan, ^{71a} L. Lista, ^{71a} S. Meola, ^{71a,71d,q} P. Paolucci, ^{71a,q} C. Sciacca, ^{71a,71b} E. Voevodina, ^{71a,71b} P. Azzi, ^{72a} N. Bacchetta, ^{72a,72b} D. Bisello,^{72a,72b} A. Boletti,^{72a,72b} A. Bragagnolo,^{72a} R. Carlin,^{72a,72b} P. Checchia,^{72a} M. Dall'Osso,^{72a,72b} D. Bisello, ^{72a}, ^{72b} A. Boletti, ^{72a}, ^{72b} A. Bragagnolo, ^{72a} R. Carlin, ^{72a}, ^{72b} P. Checchia, ^{72a} M. Dall'Osso, ^{72a}, ^{72a} J. Dorigo, ^{72a} U. Dosselli, ^{72a} F. Gasparini, ^{72a,72b} U. Gasparini, ^{72a,72b} A. Gozzelino, ^{72a} S. Y. Hoh, ^{72a} S. Lacaprara, ^{72a} P. Lujan, ^{72a} M. Margoni, ^{72a,72b} A. T. Meneguzzo, ^{72a,72b} J. Pazzini, ^{72a,72b} P. Ronchese, ^{72a,72b} R. Rossin, ^{72a,72b} F. Simonetto, ^{72a,72b} A. Tiko, ^{72a} E. Torassa, ^{72a} M. Zanetti, ^{72a,72b} P. Zotto, ^{72a,72b} G. Zumerle, ^{72a,72b} A. Braghieri, ^{73a} A. Magnani, ^{73a} P. Montagna, ^{73a,73b} S. P. Ratti, ^{73a,73b} V. Re, ^{73a} M. Ressegotti, ^{73a,73b} C. Riccardi, ^{73a,73b} P. Salvini, ^{73a} I. Vai, ^{73a,73b} P. Vitulo, ^{73a,73b} M. Biasini, ^{74a,74b} G. M. Bilei, ^{74a} C. Cecchi, ^{74a,74b} D. Ciangottini, ^{74a,74b} L. Fanò, ^{74a,74b} P. Lariccia, ^{74a,74b} R. Leonardi, ^{74a,74b} E. Manoni, ^{74a} G. Mantovani, ^{75a} G. Bagliesi, ^{75a} L. Bianchini, ^{75a} T. Boccali, ^{75a} L. Borrello, ^{75a} R. Castaldi, ^{75a} M. A. Ciocci, ^{75a,75b} R. Dell'Orso, ^{75a} G. Fedi, ^{75a} F. Fiori, ^{75a,75c} L. Giannini, ^{75a,75c} A. Giassi, ^{75a} M. T. Grippo, ^{75a} R. Tenchini, ^{75a,75c} E. Manca, ^{75a,75c} G. Mandorli, ^{75a,75c} A. Messineo, ^{75a,75b} F. Palla, ^{75a} A. Rizzi, ^{75a,75b} P. Spagnolo, ^{75a} R. Tenchini, ^{75a} A. Rizzi, ^{75a,75b} P. Spagnolo, ^{75a} R. Tenchini, ^{75a} A. Rizzi, ^{75a,75b} P. Spagnolo, ^{75a} R. Tenchini, ^{75a} A. Rizzi, ^{75a,75b} P. Spagnolo, ^{75a} R. Tenchini, ^{75a} A. Rizzi, ^{75a,75b} P. Spagnolo, ^{75a} R. R. Tenchini, ^{75a} G. Tonelli, ^{75a,75b} A. Venturi, ^{75a} P. G. Verdini, ^{75a} L. Barone, ^{76a,76b} F. Cavallari, ^{76a} M. Cipriani, ^{76a,76b} D. Del Re, ^{76a,76b} E. Di Marco, ^{76a,76b} M. Diemoz, ^{76a} S. Gelli, ^{76a,76b} E. Longo, ^{76a,76b} B. Marzocchi, ^{76a,76b} P. Meridiani, ^{76a} G. Organtini, ^{76a,76b} F. Pandolfi, ^{76a} R. Paramatti, ^{76a,76b} F. Preiato, ^{76a,76b} S. Rahatlou, ^{76a,76b} C. Rovelli, ^{76a} F. Santanastasio, ^{76a,76b} N. Amapane, ^{77a,77b} R. Arcidiacono, ^{77a,77c} S. Argiro, ^{77a,77b} M. Arneodo, ^{77a,77c} N. Bartosik, ^{77a} R. Bellan, ^{77a,77b} C. Biino, ^{77a} N. C. Hill, ^{77a,77b} R. Arcidiacono, ^{77a,77b} S. Argiro, ^{77a,77b} R. Arneodo, ^{77a,77b} N. Bartosik, ^{77a} R. Bellan, ^{77a,77b} C. Biino, ^{77a,77b} N. Cartiglia,^{77a} F. Cenna,^{77a,77b} S. Cometti,^{77a} M. Costa,^{77a,77b} R. Covarelli,^{77a,77b} N. Demaria,^{77a} B. Kiani,^{77a,77b} C. Mariotti,^{77a} S. Maselli,^{77a} E. Migliore,^{77a,77b} V. Monaco,^{77a,77b} E. Monteil,^{77a,77b} M. Monteno,^{77a} M. M. Obertino,^{77a,77b} L. Pacher,^{77a,77b} N. Pastrone,^{77a} M. Pelliccioni,^{77a} G. L. Pinna Angioni,^{77a,77b} A. Romero,^{77a,77b} M. Ruspa,^{77a,77c} L. Pacher, ^{7/a,7/b} N. Pastrone, ^{7/a} M. Pelliccioni, ^{7/a} G. L. Pinna Angioni, ^{7/a,7/b} A. Romero, ^{7/a,7/b} M. Ruspa, ^{7/a,7/c} R. Sacchi, ^{77a,77b} K. Shchelina, ^{77a,77b} V. Sola, ^{77a} A. Solano, ^{77a,77b} D. Soldi, ^{77a,77b} A. Staiano, ^{77a} S. Belforte, ^{78a} V. Candelise, ^{78a,78b} M. Casarsa, ^{78a} F. Cossutti, ^{78a} A. Da Rold, ^{78a,78b} G. Della Ricca, ^{78a,78b} F. Vazzoler, ^{78a,78b} A. Zanetti, ^{78a} D. H. Kim, ⁷⁹ G. N. Kim, ⁷⁹ M. S. Kim, ⁷⁹ J. Lee, ⁷⁹ S. Lee, ⁷⁹ S. W. Lee, ⁷⁹ C. S. Moon, ⁷⁹ Y. D. Oh, ⁷⁹ S. I. Pak, ⁷⁹ S. Sekmen, ⁷⁹ D. C. Son, ⁷⁹ Y. C. Yang, ⁷⁹ H. Kim, ⁸⁰ D. H. Moon, ⁸⁰ G. Oh, ⁸⁰ J. Goh, ^{81,ee} T. J. Kim, ⁸¹ S. Cho, ⁸² S. Choi, ⁸² Y. Go, ⁸² D. Gyun, ⁸² S. Ha, ⁸² B. Hong, ⁸² Y. Jo, ⁸² K. Lee, ⁸² K. S. Lee, ⁸² S. Lee, ⁸² J. Lim, ⁸² S. K. Park, ⁸² Y. Roh, ⁸² H. S. Kim, ⁸³ J. Almond, ⁸⁴ J. Kim, ⁸⁴ H. Lee, ⁸⁴ K. Lee, ⁸⁴ K. Nam, ⁸⁴ S. B. Oh, ⁸⁴ B. C. Radburn-Smith, ⁸⁴ S. h. Seo, ⁸⁴ U. K. Yang, ⁸⁴ H. D. Yoo, ⁸⁴ G. B. Yu, ⁸⁴ D. Jeon, ⁸⁵ H. Kim, ⁸⁵ J. H. Kim, ⁸⁵ J. S. H. Lee, ⁸⁵ I. C. Park, ⁸⁵ Y. Choi, ⁸⁶ C. Hwang, ⁸⁶ J. Lee, ⁸⁶ I. Yu, ⁸⁶ V. Dudenas, ⁸⁷ A. Juodagalvis, ⁸⁷ J. Vaitkus, ⁸⁷ I. Ahmed, ⁸⁸ Z. A. Ibrahim, ⁸⁸ M. A. B. Md Ali, ^{88,ff} F. Mohamad Idris,^{88,gg} W. A. T. Wan Abdullah,⁸⁸ M. N. Yusli,⁸⁸ Z. Zolkapli,⁸⁸ J. F. Benitez,⁸⁹ A. Castaneda Hernandez,⁸⁹ J. A. Murillo Quijada,⁸⁹ H. Castilla-Valdez,⁹⁰ E. De La Cruz-Burelo,⁹⁰ M. C. Duran-Osuna,⁹⁰ I. Heredia-De La Cruz,^{90,hh} R. Lopez-Fernandez,⁹⁰ J. Mejia Guisao,⁹⁰ R. I. Rabadan-Trejo,⁹⁰ M. Ramirez-Garcia,⁹⁰ G. Ramirez-Sanchez,⁹⁰ R Reyes-Almanza,⁹⁰ A. Sanchez-Hernandez,⁹⁰ S. Carrillo Moreno,⁹¹ C. Oropeza Barrera,⁹¹ F. Vazquez Valencia,⁹¹ J. Eysermans,⁹² I. Pedraza,⁹² H. A. Salazar Ibarguen,⁹² C. Uribe Estrada,⁹² A. Morelos Pineda,⁹³ D. Krofcheck,⁹⁴ S. Bheesette, ⁹⁵ P. H. Butler, ⁹⁵ A. Ahmad, ⁹⁶ M. Ahmad, ⁹⁶ M. I. Asghar, ⁹⁶ Q. Hassan, ⁹⁶ H. R. Hoorani, ⁹⁶ A. Saddique, ⁹⁶ M. A. Shah, ⁹⁶ M. Shoaib, ⁹⁶ M. Waqas, ⁹⁶ H. Bialkowska, ⁹⁷ M. Bluj, ⁹⁷ B. Boimska, ⁹⁷ T. Frueboes, ⁹⁷ M. Górski, ⁹⁷ M. Kazana, ⁹⁷ M. Szleper, ⁹⁷ P. Traczyk, ⁹⁷ P. Zalewski, ⁹⁷ K. Bunkowski, ⁹⁸ A. Byszuk, ^{98,ii} K. Doroba, ⁹⁸ A. Kalinowski, ⁹⁸

M. Konecki,⁹⁸ J. Krolikowski,⁹⁸ M. Misiura,⁹⁸ M. Olszewski,⁹⁸ A. Pyskir,⁹⁸ M. Walczak,⁹⁸ M. Araujo,⁹⁹ P. Bargassa,⁹⁹ C. Beirão Da Cruz E Silva,⁹⁹ A. Di Francesco,⁹⁹ P. Faccioli,⁹⁹ B. Galinhas,⁹⁹ M. Gallinaro,⁹⁹ J. Hollar,⁹⁹ N. Leonardo,⁹⁰ C. Beirão Da Cruz E Silva,⁹⁹ A. Di Francesco,⁹⁹ P. Faccioli,⁹⁹ B. Galinhas,⁹⁹ M. Gallinaro,⁹⁹ J. Hollar,⁹⁹ N. Leonardo,⁹⁹ M. V. Nemallapudi,⁹⁹ J. Seixas,⁹⁹ G. Strong,⁹⁹ O. Toldaiev,⁹⁹ D. Vadruccio,⁹⁹ J. Varela,⁹⁹ S. Afanasiev,¹⁰⁰ P. Bunin,¹⁰⁰ M. Gavrilenko,¹⁰⁰ I. Golutvin,¹⁰⁰ I. Gorbunov,¹⁰⁰ A. Kamenev,¹⁰⁰ V. Karjavine,¹⁰⁰ A. Lanev,¹⁰⁰ A. Malakhov,¹⁰⁰ V. Matveev,¹⁰⁰ J. Golutvin,¹⁰⁰ I. Gorbunov,¹⁰⁰ A. Kamenev,¹⁰⁰ V. Karjavine,¹⁰⁰ A. Lanev,¹⁰⁰ A. Malakhov,¹⁰⁰ V. Matveev,¹⁰⁰ J. Moisenz,¹⁰⁰ V. Palichik,¹⁰⁰ V. Perelygin,¹⁰⁰ S. Shundav,¹⁰⁰ S. Shulha,¹⁰⁰ N. Skatchkov,¹⁰⁰ V. Smirnov,¹⁰⁰ N. Voytishin,¹⁰⁰ A. Zarubin,¹⁰⁰ V. Golovtsov,¹⁰¹ Y. Ivanov,¹⁰¹ V. Kim,^{101,11} E. Kuznetsova,^{101,mm}
P. Levchenko,¹⁰¹ V. Murzin,¹⁰¹ V. Oreshkin,¹⁰¹ I. Smirnov,¹⁰¹ D. Sosnov,¹⁰¹ V. Sulimov,¹⁰¹ L. Uvarov,¹⁰¹ S. Vavilov,¹⁰¹ A. Vorobyev,¹⁰¹ Yu. Andreev,¹⁰² A. Dermenev,¹⁰² S. Gninenko,¹⁰² N. Golubev,¹⁰² A. Karneyeu,¹⁰² M. Kirsanov,¹⁰² N. Krasnikov,¹⁰² A. Pashenkov,¹⁰² D. Tlisov,¹⁰² A. Toropin,¹⁰² V. Epshteyn,¹⁰³ V. Gavrilov,¹⁰³ N. Lychkovskaya,¹⁰³ V. Popov,¹⁰³ I. Pozdnyakov,¹⁰³ G. Safronov,¹⁰³ A. Spiridonov,¹⁰³ A. Stepennov,¹⁰³ V. Stolin,¹⁰³ M. Toms,¹⁰³ E. Vlasov,¹⁰³ A. Zhokin,¹⁰³ T. Aushev,¹⁰⁴ R. Chistov,^{105,nn} M. Danilov,^{105,nn} P. Parygin,¹⁰⁵ D. Philippov,¹⁰⁵ S. Polikarpov,^{105,nn}
E. Tarkovskii,¹⁰⁵ V. Andreev,¹⁰⁶ M. Azarkin,¹⁰⁶ I. Dremin,^{106,kk} M. Kirakosyan,¹⁰⁶ S. V. Rusakov,¹⁰⁶ A. Terkulov,¹⁰⁶ A. Baskakov,¹⁰⁷ A. Belyaev,¹⁰⁷ E. Boos,¹⁰⁷ A. Demiyanov,¹⁰⁷ A. Ershov,¹⁰⁷ A. Gribushin,¹⁰⁷ O. Kodolova,¹⁰⁷ V. Korotkikh,¹⁰⁷ I. Lokhtin,¹⁰⁷ I. Miagkov,^{108,00} T. Dimova,^{108,00} L. Kardapoltsev,^{108,00} Y. Skovpen,^{108,00} I. Azhgirey,¹⁰⁹ I. Vardanyan,¹⁰⁷ A. Barnyakov,^{108,00} V. Blinov,^{108,00} T. Dimova,^{108,00} L. Kardapoltsev,¹⁰⁹ A. Kalinin,¹⁰⁹ D. Konstantinov,¹⁰⁹ P. Mandrik,¹⁰⁹ V. Petrov,¹⁰⁹ R. Ryutin,¹⁰⁹ S. Slabospi P. Mandrik,¹⁰⁹ V. Petrov,¹⁰⁹ R. Ryutin,¹⁰⁹ S. Slabospitskii,¹⁰⁹ A. Sobol,¹⁰⁹ S. Troshin,¹⁰⁹ N. Tyurin,¹⁰⁹ A. Uzunian,¹⁰⁹ A. Volkov,¹⁰⁹ A. Babaev,¹¹⁰ S. Baidali,¹¹⁰ V. Okhotnikov,¹¹⁰ P. Adzic,^{111,pp} P. Cirkovic,¹¹¹ D. Devetak,¹¹¹ M. Dordevic,¹¹¹ J. Milosevic,¹¹¹ J. Alcaraz Maestre,¹¹² A. Álvarez Fernández,¹¹² I. Bachiller,¹¹² M. Barrio Luna,¹¹² J. A. Brochero Cifuentes,¹¹² M. Cerrada,¹¹² N. Colino,¹¹² B. De La Cruz,¹¹² A. Delgado Peris,¹¹² C. Fernandez Bedoya,¹¹² J. P. Fernández Ramos,¹¹² J. Flix,¹¹² M. C. Fouz,¹¹² O. Gonzalez Lopez,¹¹² S. Goy Lopez,¹¹² J. M. Hernandez,¹¹² M. I. Josa,¹¹² D. Moran,¹¹² A. Pérez-Calero Yzquierdo,¹¹² J. Puerta Pelayo,¹¹² I. Redondo,¹¹² L. Romero,¹¹² M. S. Soares,¹¹² A. Triossi,¹¹² C. Albajar,¹¹³ J. F. de Trocóniz,¹¹³ J. Cuevas,¹¹⁴ C. Erice,¹¹⁴ J. Fernandez Menendez,¹¹⁴ S. Folgueras,¹¹⁴ I. Gonzalez Caballero,¹¹⁴ J. R. González Fernández,¹¹⁵ A. Coldaron,¹¹⁵ P. Charin Ouero,¹¹⁵ L. Duarta Cruz,¹¹⁴ P. Vischia,¹¹⁴ J. M. Vizan Garcia,¹¹⁴ I. J. Cabrillo,¹¹⁵ A. Calderon,¹¹⁵ B. Chazin Quero,¹¹⁵ J. Duarte Campderros,¹¹⁵
M. Fernandez,¹¹⁵ P. J. Fernández Manteca,¹¹⁵ A. García Alonso,¹¹⁵ J. Garcia-Ferrero,¹¹⁵ G. Gomez,¹¹⁵ A. Lopez Virto,¹¹⁵ J. Marco,¹¹⁵ C. Martinez Rivero,¹¹⁵ P. Martinez Ruiz del Arbol,¹¹⁵ F. Matorras,¹¹⁵ J. Piedra Gomez,¹¹⁵ C. Prieels,¹¹⁵ J. Marco, C. Martínez Rivero, T. Martínez Ruiz del Arboi, T. Matonas, J. Fledra Goniez, C. Friedra, T. Rodrigo, ¹¹⁵ A. Ruiz-Jimeno, ¹¹⁵ L. Scodellaro, ¹¹⁵ N. Trevisani, ¹¹⁵ I. Vila, ¹¹⁵ R. Vilar Cortabitarte, ¹¹⁵ N. Wickramage, ¹¹⁶ D. Abbaneo, ¹¹⁷ B. Akgun, ¹¹⁷ E. Auffray, ¹¹⁷ G. Auzinger, ¹¹⁷ P. Baillon, ¹¹⁷ A. H. Ball, ¹¹⁷ D. Barney, ¹¹⁷ J. Bendavid, ¹¹⁷ M. Bianco, ¹¹⁷ A. Bocci, ¹¹⁷ C. Botta, ¹¹⁷ E. Brondolin, ¹¹⁷ T. Camporesi, ¹¹⁷ M. Cepeda, ¹¹⁷ G. Cerminara, ¹¹⁷ E. Chapon, ¹¹⁷ Y. Chen, ¹¹⁷ G. Cucciati, ¹¹⁷ D. d'Enterria, ¹¹⁷ A. Dabrowski, ¹¹⁷ N. Daci, ¹¹⁷ V. Daponte, ¹¹⁷ A. David, ¹¹⁷ A. De Roeck, ¹¹⁷ Y. Chen, ¹¹⁷ D. Lagrange, ¹¹⁷ M. Diragona, ¹¹⁷ A. Diragona, ¹¹⁷ A. De Roeck, ¹¹⁷ A. Diragona, ¹¹⁷ A. Diragona, ¹¹⁷ A. De Roeck, ¹¹⁷ A. Diragona, ¹¹⁷ Y. Chen,¹¹⁷ G. Cucciati,¹¹⁷ D. d'Enterria,¹¹⁷ A. Dabrowski,¹¹⁷ N. Daci,¹¹⁷ V. Daponte,¹¹⁷ A. David,¹¹⁷ A. De Roeck,¹¹⁷ N. Deelen,¹¹⁷ M. Dobson,¹¹⁷ M. Dünser,¹¹⁷ N. Dupont,¹¹⁷ A. Elliott-Peisert,¹¹⁷ P. Everaerts,¹¹⁷ F. Fallavollita,^{117,qq} D. Fasanella,¹¹⁷ G. Franzoni,¹¹⁷ J. Fulcher,¹¹⁷ W. Funk,¹¹⁷ D. Gigi,¹¹⁷ A. Gilbert,¹¹⁷ K. Gill,¹¹⁷ F. Glege,¹¹⁷ M. Guilbaud,¹¹⁷ D. Guilhan,¹¹⁷ J. Hegeman,¹¹⁷ C. Heidegger,¹¹⁷ V. Innocente,¹¹⁷ A. Jafari,¹¹⁷ P. Janot,¹¹⁷ O. Karacheban,^{117,t} J. Kieseler,¹¹⁷ A. Kornmayer,¹¹⁷ M. Krammer,^{117,b} C. Lange,¹¹⁷ P. Lecoq,¹¹⁷ C. Lourenço,¹¹⁷ L. Malgeri,¹¹⁷ M. Mannelli,¹¹⁷ F. Meijers,¹¹⁷ A. Kornmayer,¹¹⁷ M. Krammer,^{117,b} C. Lange,¹¹⁷ P. Lecoq,¹¹⁷ C. Lourenço,¹¹⁷ L. Malgeri,¹¹⁷ M. Mannelli,¹¹⁷ F. Meijers,¹¹⁷ J. A. Merlin,¹¹⁷ S. Mersi,¹¹⁷ E. Meschi,¹¹⁷ P. Milenovic,^{117,rr} F. Moortgat,¹¹⁷ M. Mulders,¹¹⁷ J. Ngadiuba,¹¹⁷ S. Nourbakhsh,¹¹⁷ S. Orfanelli,¹¹⁷ L. Orsini,¹¹⁷ F. Pantaleo,^{117,q} L. Pape,¹¹⁷ E. Perez,¹¹⁷ M. Peruzzi,¹¹⁷ A. Petrilli,¹¹⁷ G. Petrucciani,¹¹⁷ A. Pfeiffer,¹¹⁷ M. Pierini,¹¹⁷ F. M. Pitters,¹¹⁷ D. Rabady,¹¹⁷ A. Racz,¹¹⁷ T. Reis,¹¹⁷ G. Rolandi,^{117,ss} M. Rovere,¹¹⁷ H. Sakulin,¹¹⁷ C. Schäfer,¹¹⁷ C. Schwick,¹¹⁷ M. Seidel,¹¹⁷ M. Selvaggi,¹¹⁷ A. Sharma,¹¹⁷ P. Silva,¹¹⁷ P. Sphicas,^{117,tt} A. Stakia,¹¹⁷ J. Steggemann,¹¹⁷ M. Tosi,¹¹⁷ D. Treille,¹¹⁷ A. Tsirou,¹¹⁷ V. Veckalns,^{117,uu} M. Verzetti,¹¹⁷ W. D. Zeuner,¹¹⁷ L. Caminada,^{118,vv} K. Deiters,¹¹⁸ W. Erdmann,¹¹⁸ R. Horisberger,¹¹⁸ Q. Ingram,¹¹⁸ H. C. Kaestli,¹¹⁸ D. Kotlinski,¹¹⁸ U. Langenegger,¹¹⁸ T. Rohe,¹¹⁸ S. A. Wiederkehr,¹¹⁸ M. Backhaus,¹¹⁹ L. Bäni,¹¹⁹ P. Berger,¹¹⁹ D. Hits,¹¹⁹ T. Klijnsma,¹¹⁹ W. Lustermann,¹¹⁹ R. A. Manzoni,¹¹⁹ M. Marionneau,¹¹⁹ M. T. Meinhard,¹¹⁹ F. Micheli,¹¹⁹ N. Chernyavskaya, ¹⁰ G. Dissertori, ¹⁰ M. Dittmar, ¹⁰ M. Donega, ¹⁰ C. Dorfer, ¹⁰ I. A. Gomez Espinosa, ¹⁰ C. Grab, ¹¹ D. Hits, ¹¹⁹ T. Klijnsma, ¹¹⁹ W. Lustermann, ¹¹⁹ R. A. Manzoni, ¹¹⁹ M. Marionneau, ¹¹⁹ M. T. Meinhard, ¹¹⁹ F. Micheli, ¹¹⁹ P. Musella, ¹¹⁹ F. Nessi-Tedaldi, ¹¹⁹ J. Pata, ¹¹⁹ F. Pauss, ¹¹⁹ G. Perrin, ¹¹⁹ L. Perrozzi, ¹¹⁹ S. Pigazzini, ¹¹⁹ M. Quittnat, ¹¹⁹ C. Reissel, ¹¹⁹ D. Ruini, ¹¹⁹ D. A. Sanz Becerra, ¹¹⁹ M. Schönenberger, ¹¹⁹ L. Shchutska, ¹¹⁹ V. R. Tavolaro, ¹¹⁹ K. Theofilatos, ¹¹⁹ M. L. Vesterbacka Olsson, ¹¹⁹ R. Wallny, ¹¹⁹ D. H. Zhu, ¹¹⁹ T. K. Aarrestad, ¹²⁰ C. Amsler, ¹²⁰, ¹²⁰ D. Brzhechko, ¹²⁰ M. F. Canelli, ¹²⁰ A. De Cosa, ¹²⁰ R. Del Burgo, ¹²⁰ S. Donato, ¹²⁰ C. Galloni, ¹²⁰ T. Hreus, ¹²⁰ B. Kilminster, ¹²⁰ S. Leontsinis, ¹²⁰ I. Neutelings, ¹²⁰ G. Rauco, ¹²⁰ P. Robmann, ¹²⁰ D. Salerno, ¹²⁰ K. Schweiger, ¹²⁰ C. Seitz, ¹²⁰

PHYSICAL REVIEW LETTERS 123, 022001 (2019)
Y. Takahashi,¹²⁰ A. Zucchetta,¹²⁰ Y. H. Chang,¹²¹ K. y. Cheng,¹²¹ T. H. Doan,¹²¹ R. Khurana,¹²¹ C. M. Kuo,¹²¹ W. Lin,¹²¹ A. Pozdnyakov,¹²¹ S. S. Yu,¹²¹ P. Chang,¹²² Y. Chao,¹²² K. F. Chen,¹²² P. H. Chen,¹²² M. St. Hou,¹²² Arun Kumar,¹²² Y. F. Liu,¹²² R.-S. Lu,¹²² E. Paganis,¹²² A. Psallidas,¹²² A. Steen,¹²⁴ B. Asavapibhop,¹²³ N. Srimanobhas,¹²³ N. Suwonjandee,¹²³ M. N. Bakirci,^{124,xx} A. Bat,¹²⁴ F. Boran,¹²⁴ S. Cerci,^{124,yy} S. Damarseckin,¹²⁴ Z. S. Demiroglu,¹²⁴ F. Dolek,¹²⁴ C. Dozen,¹²⁴ E. Eskut ¹²⁴ S. Girgis,¹²⁴ G. Gokbulut,¹²⁴ Y. Guler,¹²⁴ E. Gurpinar,¹²⁴ I. Hos,^{124,zz} C. Isi,¹²⁴ E. E. Kangal,^{124,aua} O. Kara,¹²⁴ U. Kiminsu,¹²⁴ M. Oglakci,¹²⁴ G. Onengut,¹²⁴ K. Ozdemir,^{124,bbb} A. Polatoz,¹²⁴ D. Sunar Cerci,^{124,yy} U. G. Tok,¹²⁴ H. Topakli,^{124,xx} S. Turkcapar,¹²⁴ I. S. Zorbakir,¹²⁴ C. Zorbilmez,¹²⁴ B. Isildak,^{125,cee} G. Karapinar,^{125,ddd} M. Yalvac,¹²⁵ M. Zeyrek,¹²⁵ I. O. Atakisi,¹²⁶ E. Gülmez,¹²⁶ M. Kaya,^{126,fff} S. Ozkorucuklu,^{126,ggg} S. Tekten,¹²⁶ E. A. Yetkin,^{126,hhh} M. N. Agaras,¹²⁷ A. Cakir,¹²⁷ K. Cankocak,¹⁷ Y. Komurcu,¹²⁷ S. Sen,^{127,iii} B. Grynyov,¹²⁸ L. Levchuk,¹²⁹ F. Ball,¹³⁰ L. Beck,¹³⁰ J. J. Brooke,¹³⁰ D. Burns,¹³⁰ E. Clement,¹³⁰ D. Cussans,¹³⁰ O. Davignon,¹³⁰ H. Flacher,¹³¹ D. Geldstein,¹³⁰ G. P. Heath,¹³⁰ H. F. Heath,¹³⁰ L. Krezko,¹³⁰ D. M. Newbold,^{130,ijj} S. Paramesvaran,¹³⁰ B. Penning,¹³¹ T. Sakuma,¹³⁰ D. Smith,¹³⁰ V. J. Smith,¹³⁰ J. Taylor,¹³⁰ A. Titterton,¹³⁰ A. Belyaev,^{131,kkk}
C. Brew,¹³¹ R. M. Brown,¹³¹ D. Cieri,¹³¹ D. J. A. Cockerill,¹³¹ J. A. Coughlan,¹³¹ K. Harder,¹³¹ S. Harper,¹³¹ J. Linacre,¹³¹ E. Olaiya,¹³¹ D. Petyt,¹³¹ C. H. Shepherd-Themistocleous,¹³¹ A. Thea,¹³¹ I. R. Tomalin,¹³¹ T. Williams,¹³² M. Della Negra,¹³² R. Di Maria,¹³² Y. Haddad,¹³² G. Hall,¹³² G. Iles,¹³² T. James,¹³² P. Dauncey,¹³² G. Da D. Winterbottom.¹²⁷ J. Wright.¹²⁷ S. C. Zenz, ¹³² J. E. Cole, ¹³³ P. R. Hobson, ¹³³ A. Khan, ¹³³ P. Kyberd, ¹³³ C. K. Mackay, ¹³³ A. Morton, ¹³¹ I. D. Reid, ¹³³ L. Teodorescu, ¹³³ S. Zahid, ¹³³ K. Call, ¹³⁴ J. Dittmann, ¹³⁴ K. Hatakeyama, ¹³⁴ H. Liu, ¹³⁴
 C. Madrid, ¹³⁴ B. Mcmaster, ¹³⁴ N. Pastika, ¹³⁴ C. Smith, ¹³⁴ R. Bartek, ¹³⁵ A. Dominguez, ¹³⁵ A. Buccilli, ¹³⁶ S. I. Cooper, ¹³⁶ C. Hest, ¹³⁶ D. Zustav, ¹³⁷ T. Bose, ¹³⁷ D. Gastler, ¹³⁷ D. Rankin, ¹³⁷
 C. Richardson, ¹³⁷ J. Rohlf, ¹³⁷ L. Sulak, ¹³⁷ D. Zou, ¹³⁷ G. Benelli, ¹³⁸ X. Coubez, ¹³⁸ D. Cutts, ¹³⁸ M. Hadley, ¹³⁸ J. Hakala, ¹³⁸
 U. Heintz, ¹³⁸ J. M. Hogan, ^{138,mmn} K. H. M. Kwok, ¹³⁸ E. Laird, ¹³⁸ G. Landsberg, ¹³⁸ J. Lee, ¹³⁸ Z. Mao, ¹³⁸ M. Narain, ¹³⁸ S. Sagit, ^{138,mm} R. Syarif, ¹³⁸ E. Usai, ¹³⁹ D. Yu, ¹³⁸ R. Band, ¹³⁹ C. Brainerd, ¹³⁹ P. Tcox, ¹³⁹ P. Burns, ¹³⁹
 M. Calderon De La Barca Sanchez, ¹³⁹ M. Chertok, ¹³⁹ J. Conway, ¹³⁹ R. Conway, ¹³⁹ P. Tcox, ¹³⁹ R. Etaacher, ¹³⁹ C. Flores, ¹³⁹
 G. Funk, ¹³⁹ W. Ko, ¹³⁹ O. Kukral, ¹⁵⁹ N. Lander, ¹³⁹ M. Mulheam, ¹³⁰ D. Pellett, ¹³⁹ J. Flot, ¹³⁹ S. Shalhout, ¹³⁰ M. Shi, ¹³⁹
 D. Stolp, ¹³⁹ D. Taylor, ¹³⁰ K. Tos, ³³ M. Tripathi, ³³⁰ Z. Wang, ¹³⁹ F. Zhang, ¹³⁹ M. Bachtis, ¹⁴⁰ C. Bravo, ¹⁴⁰ R. Cousins, ¹⁴⁰
 A. Dasgupta, ¹⁴⁰ A. Florent, ¹⁴¹ J. Hauser, ¹⁴⁰ M. Ignatenko, ¹⁴⁰ N. Mccoll, ¹⁴⁰ S. Regnard, ¹⁴⁰ D. Saltzberg, ¹⁴⁰ C. Schnaible, ¹⁴⁰
 V. Valuev, ¹⁴⁰ E. Benvier, ¹⁴¹ K. Burt, ¹⁴¹ J. G. Branson, ¹⁴² S. Cittolin, ¹⁴² M. Derdzinski, ¹⁴²
 K. Garosa, ¹⁴² D. Gilbert, ¹⁴² B. Hashemi, ¹⁴² A. Holzer, ¹⁴⁴ J. G. Ginson, ¹⁴² V. Krutelyov, ¹⁴² J. Letts, ¹⁴²
 K. Waserbaech, ¹⁴² S. Wasserbaech, ¹⁴² S. Padhi, ¹⁴² M. Pieri, ¹⁴² M. Sani, ¹⁴² V. Sharma, ¹⁴² S. Simon, ¹⁴⁴ M. Tadel, ¹⁴³</lii A. Canepa,¹⁴⁸ G. B. Cerati,¹⁴⁸ H. W. K. Cheung,¹⁴⁸ F. Chlebana,¹⁴⁸ M. Cremonesi,¹⁴⁸ J. Duarte,¹⁴⁸ V. D. Elvira,¹⁴⁸ J. Freeman,¹⁴⁸ Z. Gecse,¹⁴⁸ E. Gottschalk,¹⁴⁸ L. Gray,¹⁴⁸ D. Green,¹⁴⁸ S. Grünendahl,¹⁴⁸ O. Gutsche,¹⁴⁸ J. Hanlon,¹⁴⁸ R. M. Harris,¹⁴⁸ S. Hasegawa,¹⁴⁸ J. Hirschauer,¹⁴⁸ Z. Hu,¹⁴⁸ B. Jayatilaka,¹⁴⁸ S. Jindariani,¹⁴⁸ M. Johnson,¹⁴⁸ U. Joshi,¹⁴⁸

PHYSICAL REVIEW LETTERS 123, 022001 (2019)
B. Klima,¹⁴⁸ M. J. Kortelainen,¹⁴⁸ B. Kreis,¹⁴⁸ S. Lammel,¹⁴⁸ D. Lincoln,¹⁴⁸ R. Lipton,¹⁴⁸ M. Liu,¹⁴⁸ T. Liu,¹⁴⁸ J. Lykken,¹⁴⁸ K. Maeshima,¹⁴⁸ J. M. Marraffino,¹⁴⁸ D. Mason,¹⁴⁸ P. McBride,¹⁴⁸ P. Merkel,¹⁴⁸ S. Mrenna,¹⁴⁸ S. Nahn,¹⁴⁸ V. O'Dell,¹⁴⁸ K. Maeshima,¹⁴⁸ D. Prokofyev,¹⁴⁸ G. Rakness,¹⁴⁸ L. Ristori,¹⁴⁸ A. Savoy-Navarro,^{148,ppp} B. Schneider,¹⁴⁸ E. Sexton-Kennedy,¹⁴⁸ A. Soha,¹⁴⁸ W. J. Spalding,¹⁴⁸ L. Spiegel,¹⁴⁸ S. Stoynev,¹⁴⁸ J. Strait,¹⁴⁸ N. Strobbe,¹⁴⁸ L. Taylor,¹⁴⁸ S. Tkaczyk,¹⁴⁸ N. V. Tran,¹⁴⁸ L. Uplegger,¹⁴⁸ E. W. Vaandering,¹⁴⁸ C. Vernieri,¹⁴⁸ M. Verzocchi,¹⁴⁸ R. Vidal,¹⁴⁸ M. Wang,¹⁴⁸ S. Tkaczyk,¹⁴⁸ N. V. Tran,¹⁴⁸ L. Uplegger,¹⁴⁸ E. W. Vaandering,¹⁴⁹ C. Vernieri,¹⁴⁹ M. Verzocchi,¹⁴⁸ R. Vidal,¹⁴⁸ M. Wang,¹⁴⁸ S. Tkaczyk,¹⁴⁸ N. V. Tran,¹⁴⁸ L. Uplegger,¹⁴⁹ E. W. Vaandering,¹⁴⁹ C. Vernieri,¹⁴⁹ M. Verzocchi,¹⁴⁸ R. Vidal,¹⁴⁸ M. Wang,¹⁴⁸ S. Tkaczyk,¹⁴⁸ N. V. Tran,¹⁴⁸ L. Uplegger,¹⁴⁹ P. Avery,¹⁴⁹ P. Bortignon,¹⁴⁹ D. Bourilkov,¹⁴⁹ A. Brinkerhoff,¹⁴⁹ L. Cadamuro,¹⁴⁹ A. Carnes,¹⁴⁹ M. Carver,¹⁴⁹ D. Curry,¹⁴⁹ R. D. Field,¹⁴⁹ S. V. Gleyzer,¹⁴⁹ B. M. Joshi,¹⁴⁰ J. Konigsberg,¹⁴⁹ A. Korytov,¹⁴⁹ K. H. Lo,¹⁴⁹ P. Ma,¹⁴⁹ Y. Zuo,¹⁴⁹ Y. R. Joshi,¹⁵⁰ S. Linn,¹⁵⁰ A. Ackert,¹⁵¹ T. Adams,¹⁵¹ A. Askew,¹⁵¹ S. Hagopian,¹⁵¹ V. Hagopian,¹⁵¹ M. M. Baarmand,¹⁵² V. Bhopatkar,¹⁵² S. Colafranceschi,¹⁵² D. Hohlmann,¹⁵² D. Noonan,¹⁵² S. Causauagh,¹⁵³ X. Chen,¹⁵³ S. Dittmer,¹⁵³ O. Evdokimov,¹⁵³ C. E. Gerber,¹⁵³ D. A. Hangal,¹⁵³ D. J. Hofman,¹⁵⁴ X. Jung,¹⁵³ J. Kamin,¹⁵³ J. Chen,¹⁵³ S. Dittmer,¹⁵³ O. Evdokimov,¹⁵³ C. E. Gerber,¹⁵³ D. A. Hangal,¹⁵³ D. J. Hofman,¹⁵⁴ X. Jung,¹⁵³ J. Kamin,¹⁵⁴ X. Chen,¹⁵⁵ S. Dittmer,¹⁵⁴ O. Noolas,¹⁵⁴ K. Julsz,¹⁵⁴ M. S. Jung,¹⁵⁵ J. Rokes,¹⁵⁴ M. Alusseini,¹⁵⁴ A. Paezo,¹⁵⁴ K. Dilsz,¹⁵⁴ M. S. Jurgut,¹⁵⁴ R. Juagut,¹⁵⁴ M. Haytmyradov,¹⁵ A. Bean, ¹⁵⁶ S. Boren, ¹⁵⁶ J. Bowen, ¹⁵⁶ A. Bylinkin, ¹⁵⁶ J. Castle, ¹⁵⁶ S. Khalil, ¹⁵⁶ A. Kropivnitskaya, ¹⁵⁶ D. Majumder, ¹⁵⁶ W. Mcbrayer, ¹⁵⁶ M. Murray, ¹⁵⁶ C. Rogan, ¹⁵⁶ S. Sanders, ¹⁵⁷ E. Schmitz, ¹⁵⁷ J. D. Tapia Takaki, ¹⁵⁶ Q. Wang, ¹⁵⁶ S. Duric, ¹⁵⁷ A. Ivanov, ¹⁵⁷ K. Kaadze, ¹⁵⁷ D. Kim, ¹⁵⁷ Y. Maravin, ¹⁵⁷ D. R. Mendis, ¹⁵⁷ T. Mitchell, ¹⁵⁷ A. Modak, ¹⁵⁷ A. Mohammadi, ¹⁵⁷ L. K. Saini, ¹⁵⁷ N. Skhirtladze, ¹⁵⁷ F. Rebassoo, ¹⁵⁸ D. Wright, ¹⁵⁸ A. Baden, ¹⁵⁹ O. Baron, ¹⁵⁹ A. Belloni, ¹⁵⁹ S. C. Eno, ¹⁵⁹ Y. Feng, ¹⁵⁹ C. Ferraioli, ¹⁵⁹ N. J. Hadley, ¹⁵⁹ S. Jabeen, ¹⁵⁹ G. Y. Jeng, ¹⁵⁹ R. G. Kellogg, ¹⁵⁹ J. Kunkle, ¹⁵⁹ A. C. Mignerey, ¹⁵⁹ S. Nabill, ¹⁵⁰ F. Reicci-Tam, ¹⁵⁹ Y. H. Shin, ¹⁵⁹ A. Skuja, ¹⁵⁹ S. C. Tonwar, ¹⁵⁰ K. Wong, ¹⁵⁹ D. Abercrombie, ¹⁶⁰ B. Allen, ¹⁶⁰ O. Azzolini, ¹⁶⁰ A. Baty, ¹⁶⁰ G. Bauer, ¹⁶⁰ R. Bi, ¹⁶⁰ S. Brandt, ¹⁶⁰ W. Busza, ¹⁶⁰ I. A. Cali, ¹⁶⁰ M. D'Alfonso, ¹⁶⁰ Z. Demiragli, ¹⁶⁰ G. Gomez Ceballos, ¹⁶⁰ M. Goncharov, ¹⁶⁰ P. Harris, ¹⁶⁰ D. Hu, ¹⁶⁰ V. Kusana, ¹⁶⁰ G. M. Innocenti, ¹⁶⁰ M. Klute, ¹⁶⁰ D. Kovalskyi, ¹⁶⁰ Y. J. Lee, ¹⁶⁰ P. O. Luckey, ¹⁶⁰ B. Maier, ¹⁶⁰ A. C. Marini, ¹⁶¹ C. Mcginn, ¹⁶⁰ C. Mironov, ¹⁶⁰ S. Narayanan, ¹⁶⁰ C. Nuag, ¹⁶⁰ T. W. Wang, ¹⁶⁰ C. Roland, ¹⁶⁰ G. S. F. Stephans, ¹⁶⁰ K. Sumorok, ¹⁶⁰ K. Tatar, ¹⁶¹ A. Evans, ¹⁶¹ P. Hansen, ¹⁶¹ S. Jain, ¹⁶¹ S. Kalafut, ¹⁶¹ Y. Kubota, ¹⁶² Z. Lexko, ¹⁶¹ J. Mans, ¹⁶¹ N. Ruckstuhl, ¹⁶¹ R. Rusack, ¹⁶¹ J. Turkewitz, ¹⁶¹ M. A. Wadud, ¹⁶¹ J. G. Acosta, ¹⁶² S. Oliveros, ¹⁶² E. Avdeeva, ¹⁶³ K. Bloom, ¹⁶³ D. R. Claes, ¹⁶³ A. Godshalk, ¹⁶⁴ C. Harrington, ¹⁶⁴ L. Lashviti, ¹⁶⁴ M. H. Schmitt, ¹⁶⁶ A. Hortiangtham, ¹⁶⁵ D. M. Wayee, ¹⁶⁵ A. Gotzlez, ¹⁶³ A. Godshalk, ¹⁶⁴ C. Harrington, ¹⁶⁴ G. Alerson, ¹⁶⁵ B. Sugeer, ¹⁶⁵ A. Hortiangtham, ¹⁶⁵ S. Sonov, ¹⁶³ B. Stieger, ¹⁶³ A. Godshalk, ¹⁶⁴ C. Harrington, ¹⁶⁴ K. Buoro, ¹⁶⁵ J. Monroy, M. Galanti,¹⁷⁴ A. Garcia-Bellido,¹⁷⁴ J. Han,¹⁷⁴ O. Hindrichs,¹⁷⁴ A. Khukhunaishvili,¹⁷⁴ P. Tan,¹⁷⁴ R. Taus,¹⁷⁴ A. Agapitos,¹⁷⁵ J. P. Chou,¹⁷⁵ Y. Gershtein,¹⁷⁵ E. Halkiadakis,¹⁷⁵ M. Heindl,¹⁷⁵ E. Hughes,¹⁷⁵ S. Kaplan,¹⁷⁵ R. Kunnawalkam Elayavalli,¹⁷⁵ S. Kyriacou,¹⁷⁵ A. Lath,¹⁷⁵ R. Montalvo,¹⁷⁵ K. Nash,¹⁷⁵ M. Osherson,¹⁷⁵ H. Saka,¹⁷⁵ S. Salur,¹⁷⁵ S. Schnetzer,¹⁷⁵ D. Sheffield,¹⁷⁵ S. Somalwar,¹⁷⁶ R. Stone,¹⁷⁵ S. Thomas,¹⁷⁵ P. Thomassen,¹⁷⁵ M. Walker,¹⁷⁵ A. G. Delannoy,¹⁷⁶ J. Heideman,¹⁷⁶ G. Riley,¹⁷⁶ S. Spanier,¹⁷⁶ O. Bouhali,^{177,uuu} A. Celik,¹⁷⁷ M. Dalchenko,¹⁷⁷ M. De Mattia,¹⁷⁷ A. Delgado,¹⁷⁷ S. Dildick,¹⁷⁷ R. Eusebi,¹⁷⁷ J. Gilmore,¹⁷⁷ T. Huang,¹⁷⁷ T. Kamon,¹⁷⁸ F. De Guio,¹⁷⁸ R. Mueller,¹⁷⁷ D. Overton,¹⁷⁷ L. Perniè,¹⁷⁷ D. Rathjens,¹⁷⁷ A. Safonov,¹⁷⁷ N. Akchurin,¹⁷⁸ J. Damgov,¹⁷⁸ F. De Guio,¹⁷⁸ P. R. Dudero,¹⁷⁸ S. Kunori,¹⁷⁸ K. Lamichhane,¹⁷⁸ S. W. Lee,¹⁷⁸ T. Mengke,¹⁷⁹ S. Muthumuni,¹⁷⁸ T. Peltola,¹⁷⁸ S. Undleeb,¹⁷⁸ I. Volobouev,¹⁷⁸ Z. Wang,¹⁷⁸ S. Greene,¹⁷⁹ A. Gurrola,¹⁷⁹ R. Janjam,¹⁷⁹ W. Johns,¹⁷⁹ C. Maguire,¹⁷⁹ A. Melo,¹⁷⁹ H. Ni,¹⁷⁹ K. Padeken,¹⁷⁹ J. D. Ruiz Alvarez,¹⁷⁹ P. Sheldon,¹⁷⁹ S. Tuo,¹⁷⁹ J. Velkovska,¹⁷⁹ M. Verweij,¹⁷⁹ Q. Xu,¹⁷⁹ M. W. Arenton,¹⁸⁰ P. Barria,¹⁸⁰ B. Cox,¹⁸⁰ R. Hirosky,¹⁸⁰ M. Joyce,¹⁸⁰ A. Ledovskoy,¹⁸⁰ H. Li,¹⁸⁰ C. Neu,¹⁸⁰ T. Sinthuprasith,¹⁸⁰ Y. Wang,¹⁸⁰ E. Wolfe,¹⁸⁰ F. Xia,¹⁸⁰ R. Harr,¹⁸¹ P. E. Karchin,¹⁸¹ N. Poudyal,¹⁸¹ J. Sturdy,¹⁸¹ P. Thapa,¹⁸¹ S. Zaleski,¹⁸¹ M. Brodski,¹⁸² J. Buchanan,¹⁸² U. Hussain,¹⁸² P. Klabbers,¹⁸² A. Lanaro,¹⁸² K. Long,¹⁸² R. Loveless,¹⁸² T. Ruggles,¹⁸² A. Savin,¹⁸² V. Sharma,¹⁸² N. Smith,¹⁸² W. H. Smith,¹⁸² and N. Woods¹⁸²

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia

²Institut für Hochenergiephysik, Wien, Austria ³Institute for Nuclear Problems, Minsk, Belarus ⁴Universiteit Antwerpen, Antwerpen, Belgium ⁵Vrije Universiteit Brussel, Brussel, Belgium ⁶Université Libre de Bruxelles, Bruxelles, Belgium ⁷Ghent University, Ghent, Belgium ⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium ⁹Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil ¹⁰Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^{11a}Universidade Estadual Paulista, São Paulo, Brazil ^{11b}Universidade Federal do ABC, São Paulo, Brazil ¹²Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria ¹³University of Sofia, Sofia, Bulgaria ¹⁴Beihang University, Beijing, China ¹⁵Institute of High Energy Physics, Beijing, China ¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ¹⁷Tsinghua University, Beijing, China ¹⁸Universidad de Los Andes, Bogota, Colombia ¹⁹University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia ²⁰University of Split, Faculty of Science, Split, Croatia ²¹Institute Rudier Boskovic, Zagreb, Croatia ²²University of Cyprus, Nicosia, Cyprus ²³Charles University, Prague, Czech Republic ²⁴Escuela Politecnica Nacional, Quito, Ecuador ²⁵Universidad San Francisco de Quito, Quito, Ecuador ²⁶Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt ²⁷National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

²⁸Department of Physics, University of Helsinki, Helsinki, Finland

²⁹Helsinki Institute of Physics, Helsinki, Finland

³⁰Lappeenranta University of Technology, Lappeenranta, Finland

³¹IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

³²Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

³³Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

³⁴Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules,

CNRS/IN2P3, Villeurbanne, France

³⁵Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³⁶Georgian Technical University, Tbilisi, Georgia ³⁷Tbilisi State University, Tbilisi, Georgia ³⁸RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany ³⁹RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ⁴⁰RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ⁴¹Deutsches Elektronen-Synchrotron, Hamburg, Germany ⁴²University of Hamburg, Hamburg, Germany ⁴³Karlsruher Institut fuer Technologie, Karlsruhe, Germany ⁴⁴Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece ⁴⁵National and Kapodistrian University of Athens, Athens, Greece ⁴⁶National Technical University of Athens, Athens, Greece ⁴⁷University of Ioánnina, Ioánnina, Greece ⁴⁸MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary ⁴⁹Wigner Research Centre for Physics, Budapest, Hungary ⁵⁰Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁵¹Institute of Physics, University of Debrecen, Debrecen, Hungary ⁵²Indian Institute of Science (IISc), Bangalore, India ⁵³National Institute of Science Education and Research, HBNI, Bhubaneswar, India ⁵⁴Panjab University, Chandigarh, India ⁵⁵University of Delhi, Delhi, India ⁵⁶Saha Institute of Nuclear Physics, HBNI, Kolkata,India ⁵⁷Indian Institute of Technology Madras, Madras, India ⁵⁸Bhabha Atomic Research Centre, Mumbai, India ⁵⁹Tata Institute of Fundamental Research-A, Mumbai, India ⁶⁰Tata Institute of Fundamental Research-B, Mumbai, India ⁶¹Indian Institute of Science Education and Research (IISER), Pune, India ⁵²Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ⁶³University College Dublin, Dublin, Ireland ^{64a}INFN Sezione di Bari, Bari, Italy ^{64b}Università di Bari, Bari, Italy ^{64c}Politecnico di Bari, Bari, Italy ^{65a}INFN Sezione di Bologna, Bologna, Italy ^{65b}Università di Bologna, Bologna, Italy ^{66a}INFN Sezione di Catania, Catania, Italy ^{66b}Università di Catania, Catania, Italy ^{67a}INFN Sezione di Firenze, Firenze, Italy ^{67b}Università di Firenze, Firenze, Italy ⁶⁸INFN Laboratori Nazionali di Frascati, Frascati, Italy ^{69a}INFN Sezione di Genova, Genova, Italy ^{69b}Università di Genova, Genova, Italy ^{70a}INFN Sezione di Milano-Bicocca, Milano, Italy ^{70b}Università di Milano-Bicocca, Milano, Italy ^{71a}INFN Sezione di Napoli, Napoli, Italy ^{71b}Università di Napoli 'Federico II', Napoli, Italy ⁷¹*c*Università della Basilicata, Potenza, Italy ^{71d}Università G. Marconi, Roma, Italy ^{72a}INFN Sezione di Padova, Padova, Italy ^{72b}Università di Padova, Padova, Italy ^{72c}Università di Trento, Trento, Italy ^{73a}INFN Sezione di Pavia ^{73b}Università di Pavia ^{74a}INFN Sezione di Perugia, Perugia, Italy ^{74b}Università di Perugia, Perugia, Italy ^{75a}INFN Sezione di Pisa, Pisa, Italy ^{75b}Università di Pisa, Pisa, Italy ⁷⁵cScuola Normale Superiore di Pisa, Pisa, Italy ^{76a}INFN Sezione di Roma, Rome, Italy ^{76b}Sapienza Università di Roma, Rome, Italy

^{77a}INFN Sezione di Torino, Torino, Italy ^{77b}Università di Torino, Torino, Italy ⁷⁷^cUniversità del Piemonte Orientale, Novara, Italy ^{8a}INFN Sezione di Trieste, Trieste, Italy ^{78b}Università di Trieste, Trieste, Italy ⁷⁹Kyungpook National University, Daegu, Korea ⁸⁰Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁸¹Hanyang University, Seoul, Korea ⁸²Korea University, Seoul, Korea ⁸³Sejong University, Seoul, Korea ⁸⁴Seoul National University, Seoul, Korea ⁸⁵University of Seoul, Seoul, Korea ⁸⁶Sungkyunkwan University, Suwon, Korea ⁸⁷Vilnius University, Vilnius, Lithuania ⁸⁸National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia ⁸⁹Universidad de Sonora (UNISON), Hermosillo, Mexico ⁹⁰Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ⁹¹Universidad Iberoamericana, Mexico City, Mexico ⁹²Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁹³Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico ⁹⁴University of Auckland, Auckland, New Zealand ⁹⁵University of Canterbury, Christchurch, New Zealand ⁹⁶National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ⁷National Centre for Nuclear Research, Swierk, Poland ⁹⁸Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ⁹Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ¹⁰⁰Joint Institute for Nuclear Research, Dubna, Russia ¹⁰¹Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia ¹⁰²Institute for Nuclear Research, Moscow, Russia ¹⁰³Institute for Theoretical and Experimental Physics, Moscow, Russia ¹⁰⁴Moscow Institute of Physics and Technology, Moscow, Russia ¹⁰⁵National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia ¹⁰⁶P.N. Lebedev Physical Institute, Moscow, Russia ¹⁰⁷Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
¹⁰⁸Novosibirsk State University (NSU), Novosibirsk, Russia ¹⁰⁹Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia ¹¹⁰National Research Tomsk Polytechnic University, Tomsk, Russia ¹¹¹University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia ¹¹²Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ¹¹³Universidad Autónoma de Madrid, Madrid, Spain ¹¹⁴Universidad de Oviedo, Oviedo, Spain ¹¹⁵Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ¹¹⁶University of Ruhuna, Department of Physics, Matara, Sri Lanka ¹¹⁷CERN, European Organization for Nuclear Research, Geneva, Switzerland ¹¹⁸Paul Scherrer Institut, Villigen, Switzerland ¹¹⁹ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland ¹²⁰Universität Zürich, Zurich, Switzerland ¹²¹National Central University, Chung-Li, Taiwan ¹²²National Taiwan University (NTU), Taipei, Taiwan ¹²³Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand ²⁴Cukurova University, Physics Department, Science and Art Faculty, Adana, Turkey ¹²⁵Middle East Technical University, Physics Department, Ankara, Turkey ¹²⁶Bogazici University, Istanbul, Turkey ¹²⁷Istanbul Technical University, Istanbul, Turkey ¹²⁸Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine ¹²⁹National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹³⁰University of Bristol, Bristol, United Kingdom ¹³¹Rutherford Appleton Laboratory, Didcot, United Kingdom ²Imperial College, London, United Kingdom ¹³³Brunel University, Uxbridge, United Kingdom

PHYSICAL REVIEW LETTERS 123, 022001 (2019)

¹³⁴Baylor University, Waco, Texas, USA ¹³⁵Catholic University of America, Washington, DC, USA ³⁶The University of Alabama, Tuscaloosa, USA ¹³⁷Boston University, Boston, Massachusetts, USA ¹³⁸Brown University, Providence, Rhode Island, USA ¹³⁹University of California at Davis, Davis, California, USA ¹⁴⁰University of California at Los Angeles, Los Angeles, California, USA ¹⁴¹University of California at Riverside, Riverside, California, USA ¹⁴²University of California at San Diego, La Jolla, California, USA ¹⁴³University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA California Institute of Technology, Pasadena, California, USA ¹⁴⁵Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ¹⁴⁶University of Colorado Boulder, Boulder, Colorado, USA ¹⁴⁷Cornell University, Ithaca, New York, USA ¹⁴⁸Fermi National Accelerator Laboratory, Batavia, Illinois, USA ¹⁴⁹University of Florida, Gainesville, Florida, USA ¹⁵⁰Florida International University, Miami, Florida, USA ¹⁵¹Florida State University, Tallahassee, Florida, USA ¹⁵²Florida Institute of Technology, Melbourne, Florida, USA ¹⁵³University of Illinois at Chicago (UIC), Chicago, Illinois, USA ¹⁵⁴The University of Iowa, Iowa City, Iowa, USA ¹⁵⁵Johns Hopkins University, Baltimore, Maryland, USA ¹⁵⁶The University of Kansas, Lawrence, Kansas, USA ¹⁵⁷Kansas State University, Manhattan, Kansas, USA ¹⁵⁸Lawrence Livermore National Laboratory, Livermore, California, USA ¹⁵⁹University of Maryland, College Park, Maryland, USA ¹⁶⁰Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ¹⁶¹University of Minnesota, Minneapolis, Minnesota, USA ¹⁶²University of Mississippi, Oxford, Mississippi, USA ¹⁶³University of Nebraska-Lincoln, Lincoln, Nebraska, USA ¹⁶⁴State University of New York at Buffalo, Buffalo, New York, USA ¹⁶⁵Northeastern University, Boston, Massachusetts, USA ¹⁶⁶Northwestern University, Evanston, Illinois, USA ¹⁶⁷University of Notre Dame, Notre Dame, Indiana, USA ¹⁶⁸The Ohio State University, Columbus, Ohio, USA ¹⁶⁹Princeton University, Princeton, New Jersey, USA ¹⁷⁰University of Puerto Rico, Mayaguez, Puerto Rico ¹⁷¹Purdue University, West Lafayette, Indiana, USA ¹⁷²Purdue University Northwest, Hammond, Indiana, USA ¹⁷³Rice University, Houston, Texas, USA ¹⁷⁴University of Rochester, Rochester, New York, USA ¹⁷⁵Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA ¹⁷⁶University of Tennessee, Knoxville, Tennessee, USA ¹⁷⁷Texas A&M University, College Station, Texas, USA ¹⁷⁸Texas Tech University, Lubbock, Texas, USA ¹⁷⁹Vanderbilt University, Nashville, Tennessee, USA ¹⁸⁰University of Virginia, Charlottesville, Virginia, USA ¹⁸¹Wayne State University, Detroit, Michigan, USA ¹⁸²University of Wisconsin–Madison, Madison, Wisconsin, USA

^aDeceased.

^bAlso at Vienna University of Technology, Vienna, Austria.

^cAlso at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.

^dAlso at Universidade Estadual de Campinas, Campinas, Brazil.

^eAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

- ^fAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
- ^gAlso at University of Chinese Academy of Sciences.

^hAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.

¹Also at Joint Institute for Nuclear Research, Dubna, Russia.

^jAlso at British University in Egypt, Cairo, Egypt.

- ^kAlso at Suez University, Suez, Egypt.
- ¹Also at Zewail City of Science and Technology, Zewail, Egypt.
- ^mAlso at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
- ⁿAlso at Université de Haute Alsace, Mulhouse, France.
- ^oAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
- ^pAlso at Tbilisi State University, Tbilisi, Georgia.
- ^qAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
- ^rAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
- ^sAlso at University of Hamburg, Hamburg, Germany.
- ^tAlso at Brandenburg University of Technology, Cottbus, Germany.
- ^uAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
- ^vAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
- ^wAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary.
- ^xAlso at IIT Bhubaneswar, Bhubaneswar, India.
- ^yAlso at Institute of Physics, Bhubaneswar, India.
- ^zAlso at Shoolini University, Solan, India.
- ^{aa}Also at University of Visva-Bharati, Santiniketan, India.
- ^{bb}Also at Isfahan University of Technology, Isfahan, Iran.
- ^{cc}Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- ^{dd}Also at Università degli Studi di Siena, Siena, Italy.
- ^{ee}Also at Kyunghee University, Seoul, Korea.
- ^{ff}Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
- ^{gg}Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
- ^{hh}Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
- ⁱⁱAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
- ^{jj}Also at Institute for Nuclear Research, Moscow, Russia.
- ^{kk}Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
- ¹¹Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
- ^{mm}Also at University of Florida, Gainesville, Florida, USA.
- ⁿⁿAlso at P.N. Lebedev Physical Institute, Moscow, Russia.
- ⁰⁰Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
- ^{pp}Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
- ^{qq}Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
- ^{rr}Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
- ^{ss}Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
- ^{tt}Also at National and Kapodistrian University of Athens, Athens, Greece.
- ^{uu}Also at Riga Technical University, Riga, Latvia.
- ^{vv}Also at Universität Zürich, Zurich, Switzerland.
- ^{ww}Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
- ^{xx}Also at Gaziosmanpasa University, Tokat, Turkey.
- ^{yy}Also at Adiyaman University, Adiyaman, Turkey.
- ^{zz}Also at Istanbul Aydin University, Istanbul, Turkey.
- aaa Also at Mersin University, Mersin, Turkey.
- bbb Also at Piri Reis University, Istanbul, Turkey.
- ^{ccc}Also at Ozyegin University, Istanbul, Turkey.
- ^{ddd}Also at Izmir Institute of Technology, Izmir, Turkey.
- eee Also at Marmara University, Istanbul, Turkey.
- fffAlso at Kafkas University, Kars, Turkey.
- ^{ggg}Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
- ^{hhh}Also at Istanbul Bilgi University, Istanbul, Turkey.
- ⁱⁱⁱAlso at Hacettepe University, Ankara, Turkey.
- ⁱⁱⁱAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
- kkk Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
- ^{III}Also at Monash University, Faculty of Science, Clayton, Australia.
- ^{mmm}Also at Bethel University, St. Paul, USA.
- ⁿⁿⁿAlso at Karamanoğlu Mehmetbey University, Karaman, Turkey.
- ⁰⁰⁰Also at Utah Valley University, Orem, Utah, USA.
- ppp Also at Purdue University, West Lafayette, Indiana, USA.
- ^{qqq}Also at Beykent University, Istanbul, Turkey.
- ^{rrr}Also at Bingol University, Bingol, Turkey.

- ^{sss}Also at Sinop University, Sinop, Turkey.
 ^{ttt}Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
 ^{uuu}Also at Texas A&M University at Qatar, Doha, Qatar.
 ^{vvv}Also at Kyungpook National University, Daegu, Korea.