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Electromagnetic Propagation in a Relativistic Electron Gas
at Finite Temperatures

Daniel M. Reis,* Ernesto Reyes-Gómez, Luiz E. Oliveira, and Carlos A. A. de Carvalho

The electromagnetic propagation in a relativistic electron gas at finite
temperatures and carrier densities is described. Using quantum
electrodynamics at finite temperatures, electric and magnetic responses and
general constitutive relations are obtained. Rewriting the propagator for the
electromagnetic field in terms of the electric and magnetic responses, the
modes that propagate in the gas are identified. As expected, the usual
collective excitations are obtained, i.e., a longitudinal electric and two
transverse magnetic plasmonic modes. In addition, a purely photonic mode is
found, which satisfies the wave equation in vacuum, for which the electron
gas is transparent. Dispersion relations for the plasmon modes at zero and
finite temperatures are presented and the intervals of frequency and
wavelength where both electric and magnetic responses are simultaneously
negative are identified, a behavior previously thought not to occur in natural
systems. The investigation of the electromagnetic responses of a relativistic
electron gas shows that, apart from the usual longitudinal electric plasmon
mode and the two transverse magnetic plasmon modes, there is also a pure
photonic mode that propagates with the speed of light, as if the medium were
transparent. Furthermore, there is a region of frequencies and wavenumbers
of the external fields where both the longitudinal electric permittivity and
magnetic permeability are simultaneously negative, a property found in
artificially constructed metamaterials.

1. Introduction

The knowledge of the responses of a relativistic electron gas
(REG) at finite temperatures and densities to electromagnetic
(EM) radiation is a useful tool for understanding the physics of
several systems, as we will outline below. The present article uses
a quantum field theory treatment to describe the interaction of
the EM field with the REG. It focuses on the calculation of the
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responses and on the description of the
modes of propagation within the gas.
Investigations of the response of a

REG to the action of an external electro-
magnetic (EM) perturbation have many
similarities with studies in the fields of
photonics and plasmonics,[1,2] where it is
crucial to understand the propagation of
EM and plasmonic modes that are also
present in the REG.
In photonics and plasmonics one

normally uses phenomenological ex-
pressions for the responses of the media
of interest. Here, however, one may
actually compute such responses from
first-principles, so that we envisage
applying our techniques in the future to
the actual computation of the responses
of artificially constructed materials.
In the context of plasma physics, the

REG has been the subject of many
articles.[3] The treatment presented here
uses a field theory approach that can be
quite naturally generalized to encompass
the study of several other plasmas, whose
physical properties may be then com-
pared to those of the REG.

In astrophysical scenarios, it has been shown that electron-
positron pairs may be obtained in systems such as compact
stars.[4,5] There again, the study of the REG is of importance, espe-
cially with respect to the propagation of EM and collective modes
through the gas, which may even show up in the observations.
Related situations of interest whose analysis can profit from

a good understanding of the REG may be obtained in the labo-
ratory by using high intensity lasers in a plasma gas,[6] with the
laser photons acquiring an effective mass in the medium, thus
characterizing a collective excitation.[7,8]
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Finally, heavy-ion collison experiments at RHIC and LHC[9]

produce collective excitations in the hot QCD liquid matter,
known as the quark-gluon plasma (QGP). Its transverse and lon-
gitudinal collective plasma excitations, also known as plasmons,
have similar behaviour to the plasmons in a REG.[10]

Recently, it has been theorized[11] that the REGmight be a can-
didate for the realization of a natural metamaterial, understood,
as proposed originally by Veselago in 1968,[12] as a material that
can have simultaneously negative values for its electric permittiv-
ity and magnetic permeability.
Although the existence of natural metamaterials has not been

reported so far, such systems have already been artificially con-
structed. A successful design of an artificial metamaterial was
reported by Smith et al.[13] and consisted of a periodic array of
metallic split-ring resonators and wires, which exhibited simul-
taneously negative values of the electric permittivity (ε) and mag-
netic permeability (μ) in a microwave-frequency band of the EM
spectrum. Subsequently, metamaterials were realized up to the
visible range[14] and all-dielectric metamaterials based on Si/SiO2

heterostructures have been reported.[15]

The possibility that the REG may behave as a natural
metamaterial[11] deserves further investigation. To investigate the
EM responses of the REG it is natural to adopt the quantum-
electrodynamics (QED) formalism for physical systems at finite
temperatures,[16,17] within linear response and in the random-
phase approximation (RPA).
In that formalism, it has been shown that, in the limit of tem-

perature T → 0, theoretical results for the electric permittivity
agree with previous non-relativistic calculations performed by
Lindhard.[18] Moreover, in the long-wavelength limit both ε and
μ−1 exhibit Drude-like EM responses andmay be simultaneously
negative.[11]

In addition, the validity of the model has been tested in the
non-relativistic limit by successfully[19] describing the experimen-
tal behavior of the plasmon energy, as a function of both temper-
ature and wave vector, in low-energy condensed-matter systems
such as graphite[20,21] and tin oxide.[22] The study of the EM re-
sponse of a REG in the regime of high temperatures and densi-
ties is, therefore, in order.
The aim of the present work is to investigate the behavior

of the EM response functions of the REG, as functions of the
temperature, density, frequency, and wave vector, as well as the
EM propagation modes within the REG. This study is organized
as follows: In Section 2 we describe the theoretical procedure
used for obtaining the EM responses and propagation in the
REG. Results are presented in Section 3 and conclusions are in
Section 4.

2. Electromagnetic Propagation

In refs. [11] and [27] we have used a semiclassical expansion,
where the electromagnetic part is treated as a classical external
field plus quantum fluctuations, but the electrons are subject to
a full quantum treatment, just as it is done in the nonrelativistic
case that leads to the celebrated Lindhard expression.[18]

In fact, integrating over the electron field yields a fermionic
determinant which is expanded in the classical gauge field, as-
sumed to be weak. Only the lowest-order term in the expansion

is kept, which is equivalent to the linear response approxima-
tion (terms of order α(αE 2/m4) or α(αB2/m4) are neglected), and
electron-electron interactions are also neglected, as they give rise
to higher-order terms in α ≡ e2/(4π ) = 1/137. The responses
we compute are quantum mechanical, only the electromagnetic
fields are treated classically.
The partition function for QED at finite temperatures in linear

response and RPA is given by a quadratic functional integral in
Euclidean space over fields obeying Aμ(β, �x) = Aμ(0, �x)[11,16]

Z[A] =
∮
[d Aμ] det[−∂2] exp

(
−1
2

∑∫
Ãμ�̃μν Ãν

)
(1)

�̃μν = q 2δμν −
(
1− 1

λ

)
qμqν − �̃μν (2)

q 2 = q 24 + |�q |2 and Ãμ is the Fourier transform of the gauge field
Aμ. The determinant comes from the Lorentz gauge condition
and λ is a gauge parameter. We have used the simplified notation

∑∫
≡ 1

β

+∞∑
n=−∞

∫
d3q
(2π )3

(3)

and the polarization tensor of QED[17]

�̃μν = − e2

β

+∞∑
n=−∞

∫
d3 p
(2π )3

Sp[γμG0(p)γνG0(p − q )] (4)

where G0 is the free electron propagator at finite density. The
summation over n in (4) is performed over Matsubara frequen-
cies p4 = (2n + 1)πT .
One may write �̃νσ = �̃

(v)
νσ + �̃

(m)
νσ to separate vacuum and

medium contributions. The vacuum contribution is

− �̃
(v)
νσ

q 2
=

(
δνσ − qνqσ

q 2

)
C(q 2) (5)

whereas the medium contribution is given by

− �̃
(m)
i j

q 2
=

(
δi j − qiq j

|�q |2
)
A + δi j

q 24
|�q |2B (6)

− �̃
(m)
44

q 2
= B, − �̃

(m)
4i

q 2
= −q4qi

|�q |2 B (7)

where the three scalar functionsA(q4, |�q |), B(q4, |�q |), and C(q 2 =
q 24 + |�q |2) are determined from the Feynman graph in Equa-
tion (4).[11]

Following ref. [16], we introduce the projector

Pμν = δμν − qμqν

q 2
(8)

and the transverse PT
μν projector

PT
i j = δi j − q̂i q̂ j (9)

PT
44 = PT

4i = 0 (10)
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with q̂i = qi/|�q |. The longitudinal projector is then P L
μν ≡

Pμν −PT
μν so that the polarization tensor is given by

�̃μν = �̃(v)
μν + �̃(m)

μν = FP L
μν + GPT

μν (11)

where

F = −q 2
(
C + B + q 24

|�q |2B
)

(12)

G = −q 2
(
C + A + q 24

|�q |2B
)

(13)

The quadratic kernel is then

�̃μν = (q 2 − F )P L
μν + (q 2 − G)PT

μν + 1
λ
qμqν (14)

and its inverse, the photon propagator, reads

�̃−1
μν = P L

μν

q 2 − F + PT
μν

q 2 − G + λ

q 2
qμqν

q 2
(15)

On the other hand, one may also obtain EM responses from
the polarization tensor. Indeed, we have recently[11] shown that
the (Fourier transformed) constitutive equations of the REG are
Dj = ε j k Ek + τ j k Bk , Hj = ν j k Bk + τ j k Ek , where we have used
the notation ν ≡ μ−1. The linear-response RPA tensors are ε j k =
εδ j k + ε ′q̂ j q̂k , ν j k = νδ j k + ν ′q̂ j q̂k , and τ j k = τε j kl q̂l . The eigen-
values of ε j k are ε + ε ′ and ε. The eigenvector associated to ε + ε ′

is along q̂k , thus longitudinal, whereas the two eigenvectors cor-
responding to the eigenvalues ε are in directions transverse to q̂k .
The same occurs for ν j k , with eigenvalues ν + ν ′ and ν, whereas
τ j k is clearly transverse.
The permittivities and inverse permeabilities are determined

by the three scalar functions A∗, B∗ and C∗, with the asterisk de-
noting the continuation to Minkowski space, q4 → iω − 0+, of
the Euclidean scalar functions A(q4, |�q |), B(q4, |�q |) and C(q 24 +
|�q |2) obtained from the polarization tensor �̃μν ,[11,23,24] i.e.,

ε=1+ A∗ +
(
1− ω̃2

q̃ 2

)
B∗ +

(
2+ ω̃2

q̃ 2 − ω̃2

)
C∗ (16)

ν = 1+ A∗ − 2
ω̃2

q̃ 2
B∗ +

(
2− q̃ 2

q̃ 2 − ω̃2

)
C∗ (17)

ε ′ = −ν ′ = −
[
A∗ + q̃ 2

q̃ 2 − ω̃2
C∗

]
(18)

and

τ = − ω̃

q̃

[
q̃ 2

q̃ 2 − ω̃2
C∗ + B∗

]
(19)

For the longitudinal responses, one then obtains

εL = ε + ε ′ = 1+ C∗ +
(
1− ω̃2

q̃ 2

)
B∗ (20)

νL = ν + ν ′ = 1+ 2C∗ + 2A∗ − 2
ω̃2

q̃ 2
B∗ (21)

Our formulae make use of the dimensionless variables q̃ =
|�q |/qc , ω̃ = ω/ωc , β̃ = mc2β, and ξ̃ = ξ/(mc2), where qc = mc/�

is the Compton wave vector, ωc = mc2/� is the Compton fre-
quency, β = 1/(kBT ), T is the absolute temperature, and ξ is the
chemical potential of the electron gas.
We now use Equations (12) and (13) and write the propagators

in Minkowski space by letting q4 → iω − 0+, q 2 = q 24 + |�q |2 →
−q 2 = |�q |2 − ω2 andA,B, C → A∗,B∗, C∗. Then, one obtains

1
q 2 − F → 1

−q 2εL
(22)

1
q 2 − G → 2

−q 2[νL + 1]
(23)

Equation (22) leads to a pole in the P L
μν longitudinal propagator

whenever

εL (ω, |�q |) = 0 (24)

Note that the pole at q 2 = 0 is not realized in this case as it cor-
responds to a transverse mode, as we shall explicitly show. We
remark that (24) corresponds to the usual condensed matter dis-
persion relation of longitudinal plasmon collective excitations.
The PT

μν transverse propagator [cf. Equation (23)] has poles
whenever

νL (ω, |�q |) = −1 (25)

q 2 = ω2 − |�q |2 = 0 (26)

Analogously to the longitudinal case, Equation (25) yields the
dispersion relation of transverse plasmon collective excitations
whereas Equation (26) yields a photonic mode that propagates
with the speed of light c (= 1) in vacuum.
In order to have more explicit expressions for the plasmon

modes, it is useful to write the projectors as

Pμν = n(1)μ n(1)ν + n(2)μ n(2)ν + n(3)μ n(3)ν (27)

PT
μν = n(1)μ n(1)ν + n(2)μ n(2)ν (28)

where n(i )μ = (0, n̂(i )), q̂ .n̂(i ) = 0, |n̂(i )| = 1, for i = 1, 2, satisfying
n̂(1)i n̂(1)j + n̂(2)i n̂(2)j + q̂i q̂ j = δi j . For n

(3)
μ , we find

n(3)μ =
(

−|�q |√
q 2

,
q4q̂√
q 2

)
(29)

if we demand that it must be normalized and orthogonal to
qμ and n(i )μ , i = 1, 2, thus satisfying n(1)μ n(1)ν + n(2)μ n(2)ν + n(3)μ n(3)ν +
(qμqν/q 2) = δμν . Then

P L
μν = n(3)μ n(3)ν (30)

PT
μν = n(1)μ n(1)ν + n(2)μ n(2)ν (31)
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A few observations are in order:

(i) in Minkowski space, we have

n(3)μ =
(
i |�q |√
q 2

,
ωq̂√
q 2

)
(32)

which in the long-wavelength limit becomes n(3)μ = (0, q̂ );
(ii) in that limit, ref. [11] obtains Drude expressions for εL = 1−

(ω2
e /ω

2) and νL = 1− (ω2
m/ω2). Inserting this into (22) and

(23), and using the fact thatω2
m = 2ω2

e , we findω2
e − ω2 as the

denominator for both longitudinal and transverse plasmon
propagators.

The collective plasmon excitations correspond to charge den-
sity and current density oscillations. Indeed, the collective field
AL ≡ n(3)μ P L

μν Aν = Aνn
(3)
ν , in Euclidean space, is given by

AL = −i �q .(−i �q A4 + iq4 �A)√
q 2|�q | = −�∇. �E√

q 2|�q | (33)

Since the field has a longitudinal component, we may define an
effectice charge density ρe as �∇. �E ≡ ρe (q ). Similarly, the collec-
tive field AT

μ ≡ PT
μν Aν is given by (0, �AT ), where �AT = A1n̂(1) +

A2n̂(2) and Ai = �A.n̂(i ). One then obtains

�AT = i �q ∧ (i �q ∧ �A)
|�q |2 =

�∇ ∧ �B
|�q |2 (34)

We may then define an effective current density �je through
�∇ ∧ �B = �je . Then, if we use (12), (13), and (14), and leave
aside a gauge term, the plasmon Lagrangean may be written, in
Minkowski space, as

ρe (q )
(

εL

�q 2
)

ρe (q )+ j ke (q )

⎡
⎣ (νL + 1)

(
1− ω2

|�q |2
)

2�q 2

⎤
⎦ j ke (q ) (35)

where q = (ω, �q ). The above expression physically describes the
interaction of charge densities induced by the longitudinal com-
ponent of the fluctuating electric fields and current densities
(loops in the plane perpendicular to q̂ ) induced by the fluctuating
magnetic fields. Apart from that, whenever εL �= 0 and νL �= −1,
we just have the propagation of an electromagnetic wave with a
propagator given by (23).
An alternative and somewhat complementary analysis may be

obtained from Maxwell’s equations combined with the constitu-
tive relations written out previously. Maxwell’s equations are (we
have now restored the speed of light c)

qiDi = 0 (36a)

qiBi = 0 (36b)

εi j kq j Ek = ω

c
Bi (36c)

(36c)

and

εi j kq j Hk = −ω

c
Di (36d)

The constitutive equations were defined in the paragraph after
Equation (15). FromEquation (36a) and the constitutive relations,
we derive

(�q . �E )εL = 0 (37)

If εL �= 0, then wemust have �q . �E = 0, so that Equation (36d) and
the constitutive relations give[
τ |�q | + ε

ω

c

]
�E +

[
ν|�q | − τ

ω

c

]
(q̂ ∧ �B) = 0 (38)

which combined with Equation (36c) yields[25] a generalized wave
equation for �E (and an analogous one for �B)
[
|�q |2 − με

ω2

c2
− 2μτ |�q |ω

c

]
�E = 0 (39)

However, using Equations (16) to (19), (20) and (21), Equa-
tion (38) becomes

(νL + 1)[�q ∧ �B + ω

c
�E ] = 0 (40)

whereas Equation (39) yields

(νL + 1)q 2 = (νL + 1)
[

ω2

c2
− |�q |2

]
= 0 (41)

We see that Maxwell’s equation (36a) will be satisfied if εL = 0.
This coincides with the longitudinal plasmon condition. If εL �=
0, then �E is transverse and Equation (41) will be satisfied if either
νL = −1 (transverse plasmons) or q 2 = 0 (photons). The fact that
the wave equation factors out into two terms is a consequence of
the specific form of the EM responses for the REG.
The plasmon modes and the photonic mode obtained from

quantum responses to the electromagnetic fields will appear
whenever the dispersion relation ω = ω(|�q |) obeys one of the
conditions derived on Equations (24)–(26) (εL = 0; νL = −1 and
ω = |�q |, respectively). Otherwise, the electromagnetic field will
propagate with responses given by εi j (ω, |�q |) and νi j (ω, |�q |).
Before proceeding, we note that A∗,B∗, C∗ are given explicitly

by [11,19]

A∗ = Aα

q̃ 2 − ω̃2
I +

[
1− 3

2
q̃ 2 − ω̃2

q̃ 2

]
B∗ (42)

B∗ = Bα

q̃ 2 − ω̃2
J (43)

and

C∗ = −Cα

{
1
3

+ (
3+ γ 2) [

γ arccot(γ )− 1
]}

(44)

where

γ =
√

4
ω̃2 − q̃ 2

− 1 (45)
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Aα = Bα = 4α/π , Cα = Aα/12, α is the fine-structure constant,
and the functions I and J are the one-dimensional integrals

I =
∫ ∞

0
dy

y2√
y2 + 1

F0(y, β̃, ξ̃ )

×
[
1+ 2− q̃ 2 + ω̃2

8yq̃
F1(y, q̃ , ω̃)

]
(46)

and

J =
∫ ∞

0
dy

y2√
y2 + 1

F0(y, β̃, ξ̃ )

×
[
1+ 4(y2 + 1)− q̃ 2 + ω̃2

8yq̃
F1(y, q̃ , ω̃)

− ω̃
√
y2 + 1
2yq̃

F2(y, q̃ , ω̃)

]
(47)

respectively. The functions F0,F1 and F2 are defined as

F0
(
y, β̃, ξ̃

) = 1

eβ̃
(√

y2+1−ξ̃
)
+ 1

− 1

eβ̃
(√

y2+1+ξ̃
)
+ 1

(48)

F1(y, q̃ , ω̃) = ln
[
(q̃ 2−ω̃2 + 2yq̃ )2−4(y2 + 1)ω̃2

(q̃ 2−ω̃2 − 2yq̃ )2−4(y2 + 1)ω̃2

]
(49)

and

F2(y, q̃ , ω̃) = ln

[
ω̃4 − 4(ω̃

√
y2 + 1+ yq̃ )2

ω̃4 − 4(ω̃
√
y2 + 1− yq̃ )2

]
(50)

respectively.

3. Results and Discussion

3.1. The Chemical Potential

To compute the electromagnetic responses of the REG through
Equations(16)-(19), one needs to obtain the ξ chemical potential
which depends on the temperature and carrier density. The car-
rier density is η = �N/V , where �N = N− − N+ is the differ-
ence between the N− number of particles and the N+ number
of antiparticles in the system. Then, one needs to solve the tran-
scendental equation[11]

�N = N− − N+ =
∑
�p

g f (p, β, ξ ) (51)

where

f (p, β, ξ ) = 1

eβ(�p−ξ) + 1
− 1

eβ(�p+ξ) + 1
(52)

is the distribution function accounting for the presence of both
particles and antiparticles, �p =

√
p2c2 + m2c4 is the relativistic

Figure 1. Chemical potential as a function of the gas temperature. Solid,
dashed, and dotted lines correspond to η̃ = 0.01, η̃ = 1, and η̃ = 10, re-
spectively.

energy of a carrier with momentum p, and g = 2 is the degener-
acy factor of the electron gas. Equation (51) reduces to

η̃ = η

η0
=

∫ +∞

0
dy y2 F0

(
y, β̃, ξ̃

)
(53)

where η0 = g q 3c /(2π
2) ≈ 1.76× 1030 cm−3 only depends on uni-

versal constants and may, therefore, be used as a natural unit to
measure the η effective carrier density of the REG. It should be
noted [Equation (48)] that F0(y, β̃, −ξ̃ ) = −F0(y, β̃, ξ̃ ), i.e, F0 =
F0(y, β̃, ξ̃ ) is an odd function of the chemical potential. Equa-
tion (53) implicitly defines the function ξ̃ = ξ̃ (β̃, η̃). One sees that
ξ̃ = 0 leads to η/η0 = 0, a case with corresponds to vacuum.
The chemical potential as a function of β̃ is displayed in

Figure 1. Calculations were performed for three different values
of the density expressed in units of η0. The numerical results sug-
gest a weak temperature dependence of the chemical potential,
if compared withmc2 ≈ 0.511 MeV, in the low-temperature limit
(β̃ → ∞). Actually, the chemical potential exhibits variations of
a few eV in the low-temperature limit, a fact which agrees with
the non-relativistic theory of the electron gas (see below).
The chemical potential is displayed in Figure 2 as a function

of the density expressed in units of η0. Numerical results were
obtained for three different values of the gas temperature. The
chemical potential is a growing monotonic function of η̃. One
may note that the chemical potentials for β̃ = 10 and β̃ = 100
essentially coincide in the scale of the figure [cf. dashed and dot-
ted lines in Figure 2].
The ratio

ρ = N+

N− =

∫ +∞
0 dy y2

e
β̃

(√
y2+1+ξ̃

)
+1∫ +∞

0 dy y2

e
β̃

(√
y2+1−ξ̃

)
+1

(54)
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Figure 2. Chemical potential as a function of the gas density. Solid,
dashed, and dotted lines correspond to β̃ = 1, β̃ = 10, and β̃ = 100, re-
spectively.

Figure 3. The ratio ρ = N+/N− [cf. Equation (54)] as a function of β̃.
Solid, dashed, and dotted lines correspond to η̃ = 0.01, η̃ = 1, and η̃ =
10, respectively.

as a function of β̃ is displayed in Figure 3 for various values of
the density. For a given temperature, it is apparent that the num-
ber of particles exceeds the number of antiparticles in all cases
and the ratio ρ = N+/N− decreases as the density of particles
in the electron gas is increased, as expected. One may also note
that ρ → 0 as β̃ → ∞, since in the low-temperature limit one has
N+ � N−. In other words, in the limit β̃ → ∞, the term corre-
sponding to the occupation factor of antiparticles in the Fermi-
Dirac distribution function [cf. the second term in the RHS of
Equation (52)] may essentially be neglected (N+ << N−) and the
non-relativistic limit of the Fermi–Dirac distribution function is
eventually recovered.

We have also explored the behavior of the chemical potential
for density and temperature values appropriate for solid-statema-
terials. In this respect, we have defined

ξe (T ) = ξ (T )− mc2 (55)

as the non-relativistic chemical potential. According to the non-
relativistic theory of the free-electron gas, it is well known that

ξe (T ) ≈ EF

[
1− π 2

12

(
T
TF

)2 ]
(56)

where

EF =
(
6π 2

g
η

)2
3 �

2

2m
(57)

is the Fermi energy and TF = EF /kB is the Fermi temperature.
The ξe chemical potential is depicted in Figure 4 as a function of
the gas temperature. Calculations in Figure 4a were performed
for three different values of η varying within the range exhib-
ited by most of the solid-state materials. In Figure 4b we have
assumed η ≈ 2.0× 1023 cm−3 corresponding to the electron den-
sity in silicon. The solid line corresponds to the result computed
by combining Equations (53) and (55), whereas the dashed line
was obtained from Equation (56). The Fermi energy computed
from the non-relativistic electron-gas model [cf. full dot in the
vertical axis of Figure 4b and Equation (57)] essentially coincides
with the numerical result obtained from Equations (53) and (55)
in the limit T → 0. Low-temperature results obtained from the
non-relativistic model agree with those derived from the relativis-
tic theory, as expected.

3.2. Longitudinal Plasmon Modes of the REG

Now we focus our attention on the εi j electric permittivity tensor.
According to Equation (20) one has

εL = ε + ε ′ = 1+ C∗ +
(
1− ω̃2

q̃ 2

)
B∗ (58)

The real part of εL is depicted in Figure 5 as a function of ω in
units ofωc . Results were computed for η̃ = 0.01 and different val-
ues of |�q | expressed in units of qc . In Figures 5a and 5b we have
set β̃ = 1000 and β̃ = 1, respectively. The real part of the longitu-
dinal electric permittivity exhibits two zeros for a given value of q̃
at a given temperature. The lower zero lies within a region where
Im[εL ] �= 0. Therefore, in spite of the fact that Re[εL ] = 0 in this
case, such a zero cannot be considered as a plasmon frequency.
In the vicinity of the upper zero, on the other hand, onemay have
Im[εL ] = 0 (see discussion below), so that it corresponds to the
ωL

p longitudinal plasmon frequency. We then show in Figure 6
the upper (solid lines) and lower (dashed lines) frequency zeros
of the real part of εL as functions of q̃ . Numerical calculations
were performed for η̃ = 0.01 and two different values of β̃.
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Figure 4. Chemical potential, measured with respect to the mc2 rest en-
ergy [cf. Equation (55)], as a function of the gas temperature for different
values of the η gas density. Solid and dashed lines corresponds to numer-
ical results obtained from Equations (53) and (56), respectively. The set
of curves 1, 2, and 3 in (a) correspond to η = 1021 cm−3, η = 1022 cm−3,
and η = 1023 cm−3, respectively. In (b), calculations were performed for
η corresponding to the electron density in silicon. The full dot in the left
vertical axis corresponds to the Fermi energy obtained from Equation (57).

For sufficiently small values of the q̃ wave vector, the
longitudinal-plasmon dispersion relation may be approximately
described by the expression

(ω̃L
p )
2 = (ω̃L

0p)
2 + v2T

c2
q̃ 2 (59)

where the frequencies and wave vector are given in units of
ωc and qc , respectively. In the above expression ω̃L

0p is the
temperature-dependent longitudinal plasmon frequency in the
long-wavelength limit and vT plays the role of the carrier ther-
mal speed, except for a numeric factor. The low-temperature
non-relativistic case v2T = 3/(mβ) leads to the well-known Bohm–
Gross dispersion relation.[26] To estimate the carrier thermal

Figure 5. Real part of εL as a function of the ω frequency in units of the ωc
Compton frequency, for various values of the wave vector |�q| expressed in
units of the qc Compton wave vector, and for η̃ = 0.01. The results of (a)
and (b) were obtained for β̃ = 1000 and β̃ = 1, respectively. Solid, dashed,
dotted, and dot-dashed lines in (a) [(b)] correspond to q̃ = 0.002, q̃ =
0.004, q̃ = 0.006, and q̃ = 0.008, respectively (q̃ = 0.001, q̃ = 0.002, q̃ =
0.003, and q̃ = 0.004, respectively).

speed corresponding to the REG, we have computed the average
of p2 from the expression

〈p2〉 =
∑

�p g p2 f (p, β, ξ )∑
�p g f (p, β, ξ )

(60)

which reduces to

〈p2〉 = m2c2K(β̃, ξ̃ ) (61)
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Figure 6. Upper (ωL
p longitudinal plasmon frequency) and lower frequency

zeros (solid and dashed lines, respectively) of the real part of εL as func-
tions of the |�q| wave vector. Calculations were performed for β̃ = 1 and
β̃ = 1000, by taking η̃ = 0.01. Open circles correspond to the analytical
results obtained from Equation (65). Both ω and |�q| are expressed in units
of ωc and qc , respectively.

where

K(β̃, ξ̃ ) = 1
η̃

+∞∫
0

dy y4 F0
(
y, β̃, ξ̃

)
(62)

The vT carrier thermal speed is given by

〈p2〉 = m2

1− v2T
c2

v2T (63)

which results in

v2T = c2
K(β̃, ξ̃ )

1+ K(β̃, ξ̃ )
(64)

Then Equation (59) becomes

(ω̃L
p )
2 = (ω̃L

0p)
2 + K(β̃, ξ̃ )

1+ K(β̃, ξ̃ )
q̃ 2 (65)

The above equation is a generalization of the Bohm-Gross dis-
persion relation to the case of a REG at finite temperatures and
is valid in the limit q̃ � q̃max, i.e, far from the region where
particle–antiparticle excitations occur. In condensed matter, that
corresponds to electron–hole pairs whereas in a relativistic gas
that corresponds to electron–positron pairs. Theoretical results
obtained from Equation (65) are displayed in Figure 6 as open cir-
cles, for both β̃ = 1 and β̃ = 1000, and for η̃ = 0.01. In the long-
wavelength regime, the agreement with the curve from Equa-
tion (24) is quite good.
We display in Figure 7 the upper (solid lines) and lower

(dashed lines) frequency zeros of the real part of εL as functions
of q̃ = |�q |/qc . Numerical results were computed for η̃ = 0.01 and
different values of β̃. Figure 7 clearly indicates that there is amax-

Figure 7. Upper (ωL
p plasmon frequency) and lower frequency zeroes of

εL (solid and dashed lines, respectively) as functions of the |�q| wave
vector. Calculations were performed for β̃ = 100, β̃ = 10 and β̃ = 1
by taking η̃ = 0.01. The shaded area corresponds to the region where
particle–antiparticle excitations occur. Note the maximum value of the
wave vector (q̃max ) beyond which the longitudinal plasmon decays into
particle–antiparticle pairs. Both the frequency and wave vector are given
in units of ωc and qc , respectively.

imum value of the wave vector (q̃max) beyond which the longitu-
dinal plasmon decays into particle–antiparticle pairs.

3.3. Transverse Plasmon Modes of the REG

The condition νL = −1 [cf. (25)] leads to the ωT
p frequency of the

REG transverse plasmon modes. We display in Figure 8 the real
part of νL as a function of theω frequency in units ofωc , obtained
for η̃ = 0.01 and different values of the wave vector |�q | in units
of qc . Results depicted in Figures 8a and 8b where computed for
β̃ = 1000 and β̃ = 1, respectively.Wewould like to stress that nu-
merical results (not shown here) indicate that Im[νL ] = 0 within
the respective frequency ranges considered in both Figure 8a and
8b. Therefore, in the present cases, the transversal plasmon fre-
quenciesmay be obtained by solving the transcendental equation
Re[νL ] = −1.
The ωT

p transverse plasmon frequency is displayed in Figure 9
as a function of the q̃ = |�q |/qc wave vector for different values of
the gas temperature. Calculations were performed for η̃ = 0.01.
Solid lines correspond to the numerical results obtained from
νL = −1 [cf. Equation(25)]. Such results indicate the existence
of one single positive zero of νL + 1 for a given value of q̃ at a
given gas temperature. Therefore, the dispersion exhibits only
a single branch. We also note that, at a given temperature, the
wave vector dependence of the resonance frequency may be
approximated by

(ω̃T
p )

2(q ) = (ω̃T
0p)

2 + q̃ 2 (66)
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Figure 8. Real parts of νL as a function of the ω frequency in units of the
ωc Compton frequency, for various values of the wave vector |�q| given in
units of the qc Compton wave vector. Calculations were performed for η̃ =
0.01. The results of (a) [(b)] were obtained for β̃ = 1000 (β̃ = 1). Solid,
dashed, dotted, and dot–dashed lines in (a) [(b)] correspond to q̃ = 0.002,
q̃ = 0.004, q̃ = 0.006, and q̃ = 0.008, respectively (q̃ = 0.001, q̃ = 0.002,
q̃ = 0.003, and q̃ = 0.004, respectively).

which fits quite well the numerical results obtained from Equa-
tion (25). In the above equation ω̃T

0p is the temperature-dependent
transverse plasmon frequency numerically obtained from Equa-
tion (25) in the limit q̃ → 0. Results obtained from Equation (66)
are displayed in Figure 9 as open circles.

3.4. Decays and Responses of the REG

We display in Figure 10 the dispersion curves for the transverse
and longitudinal plasmonmodes at T = 0 [cf. Equations (24) and
(25)]. The shaded area corresponds to the region where the exci-
tation of particle–antiparticle pairs occurs. The dashed line is dis-

Figure 9. Transverse plasmon frequency (zero of νL + 1 = 0) as a func-
tion of the |�q| wave vector. The ωT

p transversal plasmon frequency and the
|�q| wave vector are given in units of the ωc Compton frequency and qc
Compton wave vector, respectively. Solid lines correspond to theoretical
results obtained from νL + 1 = 0. Calculations were performed for β̃ = 1
and β̃ = 1000, by taking η̃ = 0.01. Open circles correspond to the analyti-
cal results obtained from Equation (66).

Figure 10. The dispersion curves for transverse and longitudinal plasmon
modes at T = 0 and η̃ = 0.01 [cf. Equations (24) and (25)]. In the shaded
area, Im[εL ] �= 0, indicating decay of the longitudinal mode. The dashed
line is discarded as a solution for the longitudinal dispersion as it lies en-
tirely in the region of nonzero imaginary part of εL . We have also shown the
dispersion (dotted line) for the photon mode ω̃γ = q̃ [see Equation (26)].

carded as a solution for the longitudinal plasmon dispersion as
it lies entirely in the region of nonzero imaginary part of εL . We
have also shown the dispersion for the photon mode ω̃γ = q̃ [cf.
(26)]. Although not shown in the figure, the straight dotted line
for the photon dispersion will eventually reach the upper region
where the excitation of electron–positron pairs will take place.[11]
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Figure 11. Regions of the (q̃, ω̃) plane according to the signs of the real
parts of εL and νL . Outside the shaded regions the real parts of εL and νL
are positive. Results were obtained for T = 0 and η̃ = 0.01.

Finally, we display in Figure 11 the different relevant regions
of the (q̃ , ω̃) plane where the real parts of εL and νL have differ-
ent signs.[27] We would like to stress there is a region where both
εL and νL are simultaneously negative, indicating that the REG
exhibits a behavior has not been experimentally observed in nat-
ural materials. This fact was previously remarked by one of the
authors,[11] as mentioned. It is important to note that, in contrast
to the non-relativistic case where the refractive index is defined as
n = √

ε
√

μ, simultaneous negative values of εL and νL observed
in the present relativistic case do not imply negative refraction.
A figure similar to Figure 11 can be obtained using the val-

ues of densities and temperatures encountered in astrophysical
scenarios, as in a superdense electron-plasma (e-p) in gamma-
ray bursts (GRBs),[5,28] where the e-p density is in the range of
η = (1030 − 1037) cm−3.
According to ref. [5], in condensed matter, e-p plasmas will

eventually be produced in the laboratory with laser systems. Laser
pulses with focal densities I = 1022 W cm−2 incident onmaterial
targets could lead to e-p plasmas with the densities in the range of
(1023 − 1028) cm−3. We have used the upper limit of that density
range in our calculations.
A study of the refractive index of the REG will be the subject

of a further investigation, in which we intend to generalize the
results of Lepine and Lakhatakia.[29,30]

4. Conclusions

Summing up, we have presented a theoretical study of the EM
propagation and responses of a REG for various temperatures
and carrier densities. Using linear response and RPA, we have
identified the propagation modes and their dispersion relations
from the QED propagators as well as from Maxwell’s equations
with the added input of the constitutive relations obtained from

the QED responses. We found a longitudinal plasmonmode, two
transverse plasmon modes, and a photonic mode which prop-
agates with the speed of light in vacuum, i.e., for which the
medium is transparent thanks to the specific form of its relativis-
tic electromagnetic responses. In deriving dispersion relations,
we were able to identify stable solutions and regions of instability
where the plasmon modes decay. Finally, we have also identified
the regions in the (|�q |, ω) plane where the longitudinal permit-
tivity εL and longitudinal inverse permeability νL are both simul-
taneously negative.
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