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c© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature, 2018

Abstract. We present a scheme for cavity-assisted generation of hybrid entanglement between a moving
mirror belonging to an optomechanical cavity and a single trapped ion located inside a second cavity. Due
to radiation pressure, it is possible to entangle the states of the moving mirror and the corresponding cavity
field. Also, by tuning the second cavity field with the internal degrees of freedom of the ion, an entangled
state of the cavity field/ion can be independently generated. The fields leaking from each cavity may be
then combined in a beam splitter, and following the detection of the outgoing photons by conveniently
placed photodetectors, we show that it is possible to generate entangled states of the moving mirror and
the single trapped ion’s center-of-mass vibration. In our scheme the generated states are hybrid entangled
states, in the sense that they are constituted by discrete (Fock) states and continuous variable (coherent)
states.

1 Introduction

The two fast growing fields of cavity optomechanics [1] and trapped ions [2] have been opening new avenues for the
investigation of quantum phenomena. In particular, one may consider the confinement of a trapped ion in a cavity [3]
which would allow, for instance, the coupling of the quantized cavity field with the trapped ion itself [4–6]. This forms
a bipartite quantum system constituted by a massive particle (ion) and the electromagnetic field. Among the possible
applications related to the trapped ion system, we could cite proposals for quantum information processing, e.g.,
quantum computing using laser driven trapped ions [7], as well as cavity-assisted quantum computing [8]. Needless to
say that a high degree of control over the ionic dynamics has been achieved, allowing the generation of non-classical
states [9] as well as the reconstruction of the density matrix [10]. Another interesting massive system is the one involving
a “macroscopic” object (mirror) interacting with the electromagnetic field. In fact, in such an optomechanical cavity, it
is possible to couple the moving mirror (via radiation pressure) with the cavity field [11,12]. Considering the trapped
ion-field and mirror-field systems independently, the involved interactions naturally lead, on the one hand, to the
entanglement between the vibrating ion and the field (cavity 1) [3,13] and, on the other hand, the entanglement
between the oscillating mirror and the field (cavity 2) [14,15]. We could thus think about the feasibility of generating
entanglement between the (microscopic) ionic subsystem and the (macroscopic) mirror via the fields. Regarding the
optomechanical cavities, we should point out that there are already proposals for the generation of entanglement in
a system involving two cavities; more specifically, between two moving mirrors belonging to distinct cavities [16–18].
In particular, we highlight a scheme of entanglement generation involving two optomechanical cavities in the realm of
the single-photon regime [18].

Here we would like to discuss the possibility of entangling the moving ion located within cavity 1, with the
moving mirror in cavity 2, also in the single-photon regime [18], using an interferometry-based scheme of the outgoing
fields similar to the one presented in [19]. We show that the generation of ion-mirror entanglement may be achieved
under certain conditions, and that the resulting entangled states have component states involving (discrete) Fock and
(continuous variable) coherent states, i.e., they are hybrid entangled states [20]. The concept of hybrid entanglement
is also relevant for quantum information processing purposes. For instance, we may find in the literature proposals
of quantum gates [21] as well as quantum repeaters [22,23] based on hybrid (discrete/continuous variable) states.
We should mention the existence of previous (but different) works presenting proposals for generating entanglement
between trapped ions and mechanical oscillators. For instance, schemes based on electrostatic coupling are presented
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Fig. 1. Illustration of a cavity with a trapped ion (green circle) at arm 1, and an optomechanical cavity at arm 2. If the
radiation fields from both arms are simultaneously focused at the 50 : 50 beam splitter, an entangled state between the ionic
vibrational state and the moving mirror is generated after the detection of a photon.

in [24,25]. Other possibilities are also discussed in the review paper [26], we highlight a proposal involving the coupling
of an atom with a mechanical oscillator in a cavity [27]. However in those proposals the atom (or ion) and the mechanical
oscillator must be very close, while in our light-mediated scheme the corresponding quantum systems may be located
in cavities which are far apart. Note that an indirect coupling should also be suitable for entangling sub-systems having
a considerable mass difference [26], e.g., a trapped ion and a mirror. Our paper is organized as follows: in sect. 2 we
review the dynamics of the ion trapped in a cavity as well as the optomechanical cavity; in sect. 3 we present our
scheme for the ion-mirror entanglement, and in sect. 4 we discuss the amount of entanglement in the generated states.
In sect. 5 we summarize our conclusions.

2 Models for the trapped ion and the optomechanical systems

We consider, as shown in fig. 1, an interferometer having two arms; a cavity containing a single (two-level) ion confined
inside a Paul trap is positioned in arm 1 and an optomechanical cavity with a moving mirror is placed in arm 2. Firstly
we are going to describe the preparation of the ionic and optomechanical systems, which consists in the independent
preparation of an entangled state of the ion with the field in cavity 1, and the preparation of an entangled state
involving the moving mirror with the field in cavity 2.

2.1 Trapped ion in a cavity

The Hamiltonian describing the dynamics of the quantized cavity field coupled to the ion (vibrational motion +
internal electronic states) may be written as [3,13]

Ĥion = h̄ωcâ
†â + h̄ωv b̂†b̂ + h̄

ω0

2
σ̂z + h̄G(σ̂+ + σ̂−)(â + â†) sin η

(
b̂ + b̂†

)
, (1)

where â(â†) denotes the annihilation (creation) operator of the cavity field (with frequency ωc), b̂(b̂†) is the annihilation
(creation) operator of the vibrational degree of freedom of the center of mass of the ion (with frequency ωv), ω0 it is
the atomic frequency, G is the ion-field coupling constant, and η = 2πa0/λ is the Lamb-Dicke parameter; a0 being the
characteristic amplitude of the ion’s harmonic motion and λ is the wavelength of the cavity field. The Hamiltonian
above may be linearized if the ion is confined in a region typically much smaller than the wavelength of light, or η � 1
(Lamb-Dicke regime).
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2.1.1 Trapped ion with quantum jumps: first red sideband case

An adequate way of treating the photon leaking process (from the cavities) is via the quantum jump formalism [19,
28–30]. The effective Hamiltonian of the cavity (having decay rate γ) with a trapped ion governing the evolution while
there is no photon detection, is given by

Ĥion = Ĥion − i
h̄γ

2
â†â. (2)

If we tune the system to the first red sideband (δ = ω0 − ωc = ωv), we obtain, in the interaction picture,

Ĥr
ion,I = ηh̄G

(
σ̂−â†b̂† + σ̂+âb̂

)
− i

h̄γ

2
â†â. (3)

Thus the associated non-Hermitian evolution operator is

Ur
ion(t′) = exp

[
−i

Ĥr
ion,I

h̄
t′

]
. (4)

We may choose the initial joint ion-cavity state to be as

|ψion(0)〉 = |0〉1|0〉v(cos θ|e〉 + sin θ|g〉), (5)

where |0〉1 e |0〉v are the cavity field state (arm 1) and the vibrational ionic state, respectively, prepared in their
vacuum states. We remark that in order to generate an entangled (ion + field) state, the ion’s electronic states must
be prepared in a superposition of the “ground” state |g〉 and the “excited” state |e〉 [13], which could be done by
applying convenient π/2 Raman pulses to the ion [2]. Nevertheless, it is required a simple preparation of both the
ionic motion [2] and the cavity; they just need to be cooled down to their ground states.

The evolution of initial state in eq. (5) under (4) followed by a suitable measurement of the ion’s electronic state
results in (see appendix A)

|ψr
ion,g(t

′ = π/2ηG)〉 = N (r)

[
sin θ|0〉1|0〉v − i cosh

(
π2γ

8ηG

)
cos θ|1〉1|1〉v

]
, (6)

where N (r) is a normalizing constant. We may calculate the probability that there is no photodetection during the
evolution, which alows the generation of the state in eq. (6), or

P r
ND(ion) = |〈g|ψr

ion(t′ = π/2ηG)〉|2

=

⎡
⎣1 +

e−
πγ
ηG sinh2( π2γ

8ηG )

cosh2( π2γ
8ηG ) + tan2 θ

⎤
⎦
−1

. (7)

2.1.2 Trapped ion with quantum jumps: first blue sideband case

The ion-field detuning may also be adjusted to the first blue sideband, (δ = ω0 − ωc = −ωv), leading to the following
interaction picture Hamiltonian (with quantum jump):

Ĥb
ion,I = ηh̄G

(
σ̂−âb̂† + σ̂+â†b̂

)
− i

h̄γ

2
â†â, (8)

having the corresponding evolution operator

Ub
ion(t′) = exp

[
−i

Ĥb
ion,I

h̄
t′

]
. (9)

The cavity should be initially cooled to its vacuum state |0〉1, but contrarily to the previous case (first red sideband),
the ion should be initially prepared in its first excited state, or |1〉v [2]. Thus

|ψb
ion(t′)〉 = Ub

ion(t′)|0〉1|1〉v(cos θ|e〉 + sin θ|g〉). (10)

Following the same steps as in the red sideband case, we obtain (see appendix A)

|ψb
ion,g (t′ = π/2ηG)〉 = N (b)

[
sin θ|0〉1|1〉v − ie−

γt
2 cosh

(
π2γ

8ηG

)
cos θ|1〉1|0〉v

]
, (11)

N (b) being a normalizing constant.
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2.2 Optomechanical cavity

Now we turn our attention to arm 2, which contains the optomechanical cavity with a moving mirror. The Hamiltonian
for such a system is given by [15]

Ĥom = h̄ΩcÂ
†Â + h̄ΩmB̂†B̂ − h̄gÂ†Â

(
B̂ + B̂†

)
. (12)

Here Â, B̂ are the annihilation operator of the cavity field and the moving mirror (modeled as a simple harmonic

oscillator), respectively, and g is the moving mirror-cavity field coupling constant, g = Ωc

L

√
h̄

2mΩm
, being L the length

of the cavity and m the mirror’s mass.

2.2.1 Optomechanical cavity with quantum jumps

For an optomechanical cavity (decay rate Γ ), the effective Hamiltonian in the quantum jump formalism will read

Ĥom = Ĥom − i
h̄Γ

2
Â†Â, (13)

where Ĥom is the optomechanical Hamiltonian in eq. (12). Thus,

Ûom(t′′) = exp

[
−i

Ĥom

h̄
t′′

]
. (14)

We assume the following specific initial state for the optomechanical system:

|ψom(0)〉 =
1√
2
(|0〉2 + |1〉2)|α0〉m, (15)

where |ϕ(0)〉 = |0〉2 + |1〉2 and |α0〉m are the initial cavity field (superposition) state and the initial (coherent) state
of the moving mirror, respectively. Such an initial state could be prepared in the following way; the mirror should
be first cooled down to its ground state [31,32]. Then a coherent state of the oscillating mirror may be generated
via the application of a light pulse (displacement) [1,33]. The field of the corresponding cavity has to be prepared in
a superposition of the vacuum state and the one-photon state, or |Φ〉 ∝ |0〉 + |1〉. We find in the literature various
proposals of generation of such cavity superposition states, for instance, using travelling atoms, as discussed in [34].

Thus the evolved optomechanical state vector will read

|ψom(t′′)〉 = Ûom(t′′)|ψom(0)〉

= M
[
|0〉2

∣∣∣α0e
−iΩmt′′

〉
m

+ e−
Γ
2 t′′eiφ(t′′)|1〉2|α(t′′)〉m

]
, (16)

with φ(t′′) = κ2(Ωmt′′− sinΩmt′′), α(t′′) = α0e
−iΩmt′′ +κ(1− e−iΩmt′′), κ = g/Ωm, and M is a normalizing constant.

Now for t′′ = π/Ωm, we obtain

|ψom(t′′ = π/Ωm)〉 = M
[
|0〉2| − α0〉m + e−

πΓ
2Ωm eiπκ2 |1〉2| − α0 + 2κ〉m

]
, (17)

which corresponds to the preparation of the optomechanical cavity prior to the detection stage.

3 Generation of hybrid entanglement between the ionic and optomechanical systems

In order to establish entanglement between the ion and the moving mirror subsystems, the fields from each cavity are
combined in a beam splitter [19,29], as shown in fig. 1. After impinging the beam splitter, photons may be detected
by the photocounters DA or DB .
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3.1 Ion-mirror entanglement: first red sideband case

Firstly we are going to consider the first red sideband preparation for the ionic system. If no photons are detected by
DA (or DB), the joint state in the beginning of the detection stage will be the product of state |ψr

ion,g(t
′ = π/2ηG)〉,

the ionic-cavity field state (arm 1) in eq. (6) and state |ψom(t′′ = π/Ωm)〉, the mirror-cavity field (arm 2) in eq. (17).
Naturally it is required a synchronization of the actions during the process. We assume a finite detection time tD, and
thus for t ≤ tD the system’s joint state may be written as

|χ(t)〉 = |ψr
ion,g(t)〉 ⊗ |ψom(t)〉, (18)

where

|ψr
ion,g(t)〉 = exp

[
−γ

2
â†ât

]
|ψion,gr (t′ = π/2ηG)〉

= sin θ|0〉1|0〉v − ie−
γ
2 t cosh

(
π2γ

8ηG

)
cos θ|1〉1|1〉v (19)

and

|ψom(t)〉 = exp
[
−Γ

2
Â†Ât

]
|ψom(t′′ = π/Ωm)〉

=
1√
2
|0〉2| − α0〉m +

1√
2
e−

Γ
2 te−

πΓ
2Ωm eiπκ2 |1〉2| − α0 + 2κ〉m. (20)

After the fields from each cavity cross the beam splitter, if a photon is detected by DB (field state projected onto
|0〉A|1〉B), we obtain

|Ψ r
01(t)〉 = N

(r)
01

[
C

(r)
1 (t)|0〉v| − α0 + 2κ〉m + C

(r)
2 (t)|1〉v| − α0〉m

]
, (21)

with
C

(r)
1 (t) = e−

Γ t
2 e−

πΓ
2Ωm eiπκ2

(22)

and

C
(r)
2 (t) = e−

γt
2 cosh

(
π2γ

8ηG

)
cos θ. (23)

Now, if a photon is detected by DA (field state projected onto |1〉A|0〉B), the resulting state is

|Ψ r
10(t)〉 = N

(r)
10

[
C

(r)
1 (t)|0〉v| − α0 + 2κ〉m − C

(r)
2 (t)|1〉v| − α0〉m

]
. (24)

We have therefore demonstrated the possibility of generation of hybrid entangled states (Fock/coherent) in sub-
systems belonging to spatially separated cavities.

3.2 Ion-mirror entanglement: first blue sideband case

In what follows we discuss the first blue sideband case for the ionic system, with the optomechanical cavity having the
same preparation as in the previous case (see eq. (17)). Analogously to the red sideband case, we obtain from eq. (11)

|ψb
ion,g(t)〉 = exp

[
−γ

2
â†ât

]
|ψb

ion,g(t
′ = π/2ηG)〉

=
[
eiξ sin θ|0〉1|1〉v − ie−

γt
2 cosh

(
π2γ

8ηG

)
cos θ|1〉1|0〉v

]
. (25)

After the fields cross the beam splitter, the subsequent detection of a photon by DB will result in the following state:

|Ψ b
01(t)〉 = N

(b)
01

[
C

(b)
1 (t)|0〉v| − α0〉m + C

(b)
2 (t)|1〉v| − α0 + 2κ〉m

]
, (26)

where

C
(b)
1 (t) =

1
2
e−

γt
2 cosh

(
π2γ

8ηG

)
cos θ (27)



Page 6 of 9 Eur. Phys. J. Plus (2018) 133: 198

and
C

(b)
2 (t) =

1
2
e−

Γ t
2 e−

πΓ
2Ω eiπκ2

sin θ. (28)

If a photon is detected by DA, we obtain

|Ψ b
10(t)〉 = N

(b)
10

[
C

(b)
1 (t)|0〉v| − α0〉m − C

(b)
2 (t)|1〉v| − α0 + 2κ〉m

]
. (29)

Again, we have shown that entangled states of the hybrid type may be generated also for a different choice of
frequency detunings.

4 Degree of entanglement

An interesting peculiarity of the entangled states above is that, even if the mirror is initially just cooled down to its
ground vibrational state (α0 = 0), the resulting states will be entangled. For instance,

|φ〉 = A|0〉|2κ〉 ± B|1〉|0〉, (30)

for the red sideband case, and
|ϕ〉 = A′|0〉|0〉 ± B′|1〉|2κ〉, (31)

for the blue sideband case. We also note that if κ = α0, the generated states will be of the type

|χ〉 = A′′|0〉| ± α0〉 ± B′′|1〉| ∓ α0〉, (32)

which are entangled states relevant for quantum computation purposes [35–37]. Now we would like to discuss the
degree of entanglement, for instance, of the state generated in the red sideband case (eq. (21)). Firstly we define an
orthogonal basis for the continuous variable sub-space (via Gram-Schmidt process) as

|ψa〉m = | − α0〉m (33)

and
|ψb〉m =

1√
1 − e−4κ2

[| − α0 + 2κ〉m − eϕ| − α0〉m] , (34)

where ϕ = 1
2 (|α0|2 − 4κ2 − 2κ(α∗

0 − α0)). We may rewrite the state in eq. (21) in terms of the states above as

|Ψr
01(t)〉 = N

(r)
01

[
C

(r)
1 (t)

√
1 − e−4κ2 |0〉v|ψb〉m + C

(r)
1 (t)eϕ|0〉v|ψa〉m + C

(r)
2 (t)|1〉v|ψa〉m

]
. (35)

The negativity of the state above may be calculated via the usual definition [38]

N (ρ) = 2

∣∣∣∣∣
∑

i

λ−
i

∣∣∣∣∣ , (36)

λ−
i being the negative eigenvalues of the partial transpose of the density matrix associated to the state (35). In fig. 2

we plot the negativity as a function of the coherent amplitude α0. In this specific case, for which κ = 0.5, it is clear that
the state has maximum entanglement for α0 = 0. As expected, for larger values of α0, the ion-mirror state becomes
separable.

5 Discussion and conclusions

We have presented a scheme for entanglement generation between a moving mirror and a trapped ion assisted by the
quantized fields of two cavities. As a first step, the mirror as well as the ion should independently couple to the fields
of their own cavities. After an adequate preparation of the initial states, the corresponding outgoing cavity fields are
combined in a beam splitter. Then a subsequent photodetection would collapse the global state, making possible the
generation of entangled states of the ion and mirror subsystems. Note that in order to accomplish the entangled state
generation, one should wait (finite time) for a single click in either detector A or detector B.
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Fig. 2. Negativity relative to state in eq. (21) as a function of α0 calculated at t = 1.0 μs. The parameters of the optomechanical
system have been taken as: g = 5 MHz, Ωm = 10MHz, κ = 0.5, Γ = 0.5 MHz, while for the ionic system we have η = 0.1,
G = 5.0 MHz, γ = 0.025 MHz, and θ = π/4 rad.

Concerning the time scales involved, despite of the fact that the quantum sub-systems we are dealing with are of
a very different nature, namely, a “microscopic” ion and a “macroscopic” mirror, both of them could in principle have
equal (or very close) oscillating frequencies, e.g., in the MHz range [1,2,26]. We would like to remark that, due to the
large mass difference between the ion and the mirror, a sort of “impedance mismatch” occurs in schemes in which the
ion is directly coupled to the mirror [26]. Nevertheless, such a shortcoming is avoided in our light-mediated proposal,
as the quantum sub-systems (ion/mirror) are indirectly coupled via the electromagnetic fields.

Yet, there are sources of decoherence caused by dephasing in the ionic system, mechanical damping in the mirror as
well as cavity losses. The mechanical damping (mirror) and the dephasing (ion) rates are much smaller than the cavity
damping rate, γcav. Thus, in order to keep the integrity of the involved quantum states, we should have generation
times much shorter than typical decoherence times, or γcav � Ωm and γcav � ηG. Although those are experimentally
challenging conditions, we are witnessing recent significant advances in both ionic and optomechanical systems, even
approaching the single-photon strong coupling regime in optomechanical systems [1,39,40].

Finally, an important point is related to the verification of the existence of the generated entangled state. A
direct measurement of the entangled state may not be an easy task in general. As an alternative, we may envisage
an entanglement witness, which could be implemented via local measurements. After accomplishing the generation
of the entangled state in eq. (21), for instance, we could carry out the following procedure: i) perform a projective
measurement [41] corresponding to Π̂ = |1〉vv〈1| ⊗ Îm on the ionic vibrational state, thus collapsing the mirror’s
state to | − α0〉m; ii) displace the mirror (via a classical light pulse) by an amplitude α0, which would bring the
mirror to its ground (vacuum) state; iii) measure the mirror state [33] in order to check whether it is (or not) in
its vacuum state. This would allows us to discriminate the entangled state in eq. (21) from the pure product state
|Φ〉 = (| − α0 + 2κ〉m + | − α0〉m) ⊗ (|0〉v + |1〉v), for instance.

It should be emphasized that entanglement herein involves three important features of the resulting entangled
states: i) states are related to massive, although different physical systems, viz., a trapped ion and a vibrating mirror;
ii) the entangled states are constituted by discrete states (ionic vibration) and continuous variable states (moving
mirror), i.e., it is accomplished hybrid entanglement in spatially separated cavities; iii) states involve a microscopic
system (ion) and a macroscopic system (mirror), also referred as a micro-macro entangled state.

We would like to thank CNPq (Conselho Nacional para o Desenvolvimento Cient́ıfico e Tecnológico) and FAPESP (Fundação
de Amparo à Pesquisa do Estado de São Paulo), Brazil, for financial support through the National Institute for Science and
Technology of Quantum Information (INCT-IQ under grant 2008/57856-6) and the Optics and Photonics Research Center
(CePOF under grant 2005/51689-2).

Appendix A. Generation of ion-field states

For the first red sideband case, the quantum jump evolution will be

|ψr
ion(t′)〉 = Ur

ion(t′)|ψion(0)〉,
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which results in

|ψr
ion(t′)〉 = sin θ|0〉1|0〉v|g〉

+ cos (ηGt′) cosh
(γ

2
ηGt′2

)
cos θ|0〉1|0〉v|e〉

+ i cos (ηGt′) e−γt′ sinh
(γ

2
ηGt′2

)
cos θ|1〉1|1〉v|g〉

+ sin (ηGt′) e−γt′ sinh
(γ

2
ηGt′2

)
cos θ|0〉1|0〉v|e〉

− i sin (ηGt′) cosh
(γ

2
ηGt′2

)
cos θ|1〉1|1〉v|g〉.

Now, if the ion’s electronic state is projected (via fluorescence, formally by applying Π̂g = |g〉〈g|), we obtain

|ψr
ion,g(t

′)〉 = Π̂g|ψr
ion(t′)〉,

|ψr
ion,g(t

′)〉 = N (r)

[
sin θ|0〉1|0〉v

+ i cos (ηGt′) e−γt′ sinh
(γ

2
ηGt′2

)
cos θ|1〉1|1〉v

− i sin (ηGt′) cosh
(γ

2
ηGt′2

)
cos θ|1〉1|1〉v

]
.

For t′ = π/2ηG, we have

|ψr
ion,g(t

′ = π/2ηG)〉 = N (r)

[
sin θ|0〉1|0〉v − i cosh

(
π2γ

8ηG

)
cos θ|1〉1|1〉v

]
.

Analogously, in the first blue sideband case the quantum jump evolution will lead to

|ψb
ion(t′)〉 = cos (ηGt′) cosh

(γ

2
ηGt′2

)
cos θ|0〉1|1〉v|e〉

+ eiξ sin θ|0〉1|1〉v|g〉

− i cos (ηGt′) e−
γt′
2 sinh

(γ

2
ηGt′2

)
cos θ|1〉1|0〉v|g〉

− sin (ηGt′) e−
γt′
2 sinh

(γ

2
ηGt′2

)
cos θ|0〉1|1〉v|e〉

− i sin (ηGt′) cosh
(γ

2
ηGt′2

)
cos θ|1〉1|0〉v|g〉. (A.1)

If the electronic state is projected on |g〉, and at t′ = π/2ηG the resulting cavity-ion state will now read

|ψb
ion,g(t

′ = π/2ηG)〉 = N (b)

[
sin θ|0〉1|1〉v − ie−

γt
2 cosh

(
π2γ

8ηG

)
cos θ|1〉1|0〉v

]
. (A.2)
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