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ABSTRACT
Optical weak measurements are a powerful tool for measuring small shifts of optical paths. When
applied to the measurement of the Goos–Hänchen shift, in particular, a special step must be added
to its protocol: the removal of the relative Goos-Hänchen phase, since its presence generates a
destructive influence on themeasurement. There is, however, a lack of description in the literature of
the precise effect of the Goos–Hänchen phase on weak measurements. In this paper we address this
issue, developing an analytic study for a Gaussian beam transmitted through a dielectric structure.
We obtain analytic expressions for weak measurements as a function of the relative Goos–Hänchen
phase and show how to remove it without the aid of waveplates.
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1. Introduction

The geometrical optics is well suited for plane waves
(1, 2), but for bounded light beams corrections must be
made to the optical path when interactions with inter-
faces between different media take place. In particular,
one of the better known of such corrections is the so-
called Goos-Hänchen shift (3–8), which induces spatial
translations of the optical path in the plane of incidence
for totally internally reflected beams. It was first observed
experimentally by Herman Goos and Hilda Hänchen in
1947 (3) for transverse electric (TE) polarized light, being
theoretically analysed by Artmann the following year (4).
Artmann also presented in his paper an analysis of the
transverse magnetic (TM) polarization, which was con-
firmed experimentally in 1949 by Goos andHänchen (5).
This phenomenon is present in several different optical
systems such as waveguides (9), photonic crystals (10),
and resonators(11), but because it is intrinsically linked
to the wave nature of the electromagnetic field, it can
also be observed in other oscillatory systems such as for
acoustic (12) and seismic waves (13).

The measurement of this shift is usually a challenging
task because it is a minute phenomenon when compared
to the transverse extent of the beam, which is typically of
a few wavelengths. To deal with this problem, optical
weak measurements have been successfully employed
(14, 15). This technique is an optical analogue of the
quantum weak measurement, which was devised origi-
nally for spin-1/2 particles (16, 17), playing the TE and
TM polarization modes the roles of the up and down
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modes. The principle behind it is simple. A laser beam
diagonally polarized is made to interact with a dielectric
structure, which will produce a different shift for each
of its components. A polarizer then mixes these compo-
nents producing an intensity profile which is dependent
on the relative shift between the TE and TM contribu-
tions. By changing the polarization angle, we change the
position of the intensity peaks and by measuring the
distance between such peaks it is possible to indirectly
measure the relative shift. Under appropriate conditions
the distance between the peaks is greater than the Goos–
Hänchen shift, hence the status of weakmeasurements as
an amplification technique.

An important step of this process is the phase removal.
Upon interaction with the dielectric the light beam is not
only shifted, but also acquires an additional polarization-
dependent phase, the Goos–Hänchen phase. In weak
masurement experiments the relative phase between po-
larization states is usually removed with the aid of wave-
plates before the second polarizer (14), since it creates an
interference effect which is destructive to the measure-
ment. To the best of our knowledge, however, up to this
point, there is lack of a formal description of the effect of
the Goos–Hänchen phase in optical weakmeasurements,
which is the point we hope to address in this paper.
Since this phase is a function of the incidence angle and
of the number of reflections inside the dielectric, it is
possible to control it by changing this angle as well as
the length of the prism. For particular choices of these
parameters the Goos–Hänchen phase can be completely
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removed,without need ofwaveplates. This analysis is also
relevant as an efficiency test for such devices. Since the
relative phase has a destructive effect on measurements,
a waveplate that leaves a residual phase may compromise
experimental results. Knowing how phases affect weak
measurements may helps us identify when they were not
completely removed.

The paper is organized as follows: in Section 2 we
describe the optical system used, the electric fields in-
volved aswell as theGoos–Hänchenphase induced by the
Fresnel coefficients of the prism. Section 3 is dedicated to
obtain the closed expression for weak measurement with
phase. We show how our result reproduce the usual for-
mula found in the literature. In Section 4 we discuss these
results, analysing the influence of the Goos–Hänchen
phase on measurements. Finally, in Section 5, we present
our conclusions and future perspectives.

2. The optical system

The optical system of interest is shown in Figure 1(a).
The laser source generates an unpolarizedGaussian beam
which then passes through the first polarizer, set at an
angle of π/4, making it an equal mixture of TE and
TM polarized waves. After this, it enters the dielectric
structure from its left interface,making an angle θ with its
normal and being refracted with an angle ψ . Both angles
are connected via the Snell’s law, sin θ = n sinψ , wheren
is the refractive index of the structure. Once inside it, the
beam undergoes multiple total internal reflections at the
downandupper interfaces of thedielectric. The incidence
(and reflection) angle at these interfaces is given by ϕ =
ψ+π/4. After exiting the prism, light passes through the
second polarizer, whose polarization angle is a control-
lable parameter of the system, being subsequently col-
lected by the camera. The dielectric structure is built as a
chain of an even number of right angle triangular prisms,
as shown in Figure 1(b). Since each triangular prism
amounts to one internal reflection, the total number of
reflections can be controlled by the number of prisms in
the chain. The even number allows the transmitted beam
to be parallel to the incident one. This choice is made to
simplify the geometrical description of the system.

Let us start our analysis by considering the Gaussian
light beam propagating from the source to the dielectric.
After the first polarizer have selected it into a mixed
polarization state, assuming polarization in the x (TE)
and y (TM) directions and propagation in the z direction,
the electric field is given by:

EINC(x, y, z) = E(x, y, z)
(
x̂ + ŷ

)
, (1)

with

E(x, y, z) = E0 eik z

1 + i z/zR
exp

[
− x2 + y2

w2
0

(
1 + i z/zR

)
]
, (2)

where zR = kw2
0/2 is theRayleighdistance, k = 2π/λ the

wave number, being λ the wavelength, w0 the minimum
beam waist, and x̂ and ŷ unit vectors. The incoming
intensity profile is:

I0(x, y, z) = E
2
0

w2
0

w2(z)
exp

[
−2

x2 + y2

w2(z)

]
, (3)

where

w(z) = w0

√
1 + (

z/zR
)2
. (4)

The beam then hits the left interface of the dielectric
structure at an angle compatible with the total internal
reflection regime, which happens for

ϕ ≥ arcsin
[
1
n

]
,

implying the following relation for the incidence angle,

θ ≥ arcsin

[
1 − √

n2 − 1√
2

]
. (5)

For a borosilicate glass prism, n = 1.515, we have that
θ ≥ −5.609◦.

Inside the prism, multiple internal reflections take
place and the outputted beam is modified by the Fresnel
transmission coefficient of the dielectric, which is given
by the product of the Fresnel coefficients at each interface:

Tσ = 4 aσ cos θ cosψ
(aσ cos θ + cosψ)2

exp[i (
�0 +�σ

)], (6)

where
aσ = {aTE , aTM} = {1/n, n} .

�0 is the geometrical phase, which depends on the ge-
ometry of the system, as the name suggests, and is inde-
pendent of the polarization state. It is given by:

�0 = Nk
(√

2 n cosϕ + n cosψ − cos θ
)
b, (7)

being the parameter b the small length of the planar
section of the structure, see Figure 1(b), and N the num-
ber of internal reflections. The Goos-Hänchen phase,
which is independent of the geometry of the system and
dependent on the polarization state of the beam, is given
by:
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Figure 1. (a) The schematic representation of an optical weak measurement experimental set-up. The optical beam coming from the
source passes through the α polarizer which makes it an equal mixture of TE and TM polarization states. The beam then enters the
dielectric structure, in the total internal reflection regime, coming then out of it and passing through the β polarizer. This polarizer mixes
the two polarized components of the beam which, finally, arrives at camera. The intensity profile collected by the camera leading to
the weak measurement amplification is controlled by a perturbation ±|�ε|) of the β polarizer’s angle. (b) The basic building block of
the dielectric structure: A right angle triangular prism with refraction index n. The relevant angles are also represented. θ andψ are the
angles of the incident and refracted beams, respectively. They are related through the Snell’s law. ϕ is the internal reflection angle and
its relation to the refraction angle is set by the geometry of the system.

�σ = −2N arctan

⎡
⎣aσ

√
n2 sin2 ϕ − 1

cosϕ

⎤
⎦ . (8)

The optical path and the radiation’s phase are intrin-
sically related and using the stationary phase method
(18) the first can be calculated by a first-order derivative
with respect to incidence angle of the second. Applying
this method to the geometrical phase we obtain, in the
direction orthogonal to the propagation direction of the
beam, the distance between the incoming and the outgo-

ing beams, which are parallel,

y0 = �
′
0/k = N

(
cos θ−sin θ+2 tanψ cos θ

)
b, (9)

which is of the order of the length of the block. Applying
this method to the Goos-Hänchen phase we find the
Goos-Hänchen shifts,

yTE = �
′
TE
/k = N cos θ sin ϕ

π cosψ
√
n2 sin2 ϕ − 1

λ (10)
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and

yTM = �
′
TM
/k = yTE

n2 sin2 ϕ − cos2 ϕ
(11)

for TE and TM polarized light, respectively.
The transmitted beam is then given by:

ETRA(x, y, z) = ETE(x, y, z)x̂ + ETM(x, y, z) ŷ (12)

where the approximation

Eσ (x, y, z) ≈ |Tσ | E (
x, y − y0 − yσ , z

)
× exp

[
i
(
�0 +�σ

)]
, (13)

is used. By passing it through the second polarizer, at
an angle β with respect to the x-axis, the electric field
amplitude becomes the weighted sum of the components
Eσ , having then the beam collected by the camera of the
form:

ECAM(x, y, z) = [
cosβ ETE(x, y, z)+ sin β ETM(x, y, z)

]
× (

cosβ x̂ + sin β ŷ
)
, (14)

being the associated intensity profile

I = ∣∣cosβ ETE(x, y, z)+ sin β ETM(x, y, z)
∣∣2 . (15)

Notice that the intensity is the superposition of two
Gaussian functions, with displaced centres and a relative
phase between them. This generates a double peaked
curve, with the peaks controlled by the weights of the
Gaussians, the sine and cosine functions. In the next
section, we will evaluate the position of the peaks as a
way to measure the relative Goos–Hänchen shift.

3. The optical weakmeasurement

By putting Equation (13) in Equation (15), and with the
aid of the definitions,

Y = 1
w(z)

(
y − y0 − yTE + yTM

2

)

�yGH = yTM − yTE
w(z)

τ = |TTE| / |TTM|
��GH = �TE −�TM

= 2N arctan

⎡
⎣

√
n2 sin2 ϕ − 1
n sin ϕ tan ϕ

⎤
⎦ , (16)

we obtain the outputted intensity

I ∝
∣∣∣∣τ exp

[
− (

Y +�yGH/2
)2] exp[i��GH]

+ tan β exp[− (
Y −�yGH/2

)2]|2 . (17)

A few approximations can bemade to Equation (17). The
difference in the transmission of TE and TM waves can
be neglected, rendering τ ≈ 1. Besides that, by choosing
the angle of the second polarizer as:

β = 3π/4 +�ε,

and considering a very small perturbation �ε about the
fixed angle 3π/4, that is,�ε � 1, it can be shown that

tan β ≈ 2�ε − 1 . (18)

With these approximations, the electric field intensity
collected by the camera is then

I ∝
∣∣∣∣ (

1 − Y �yGH
)
exp[i��GH]

+ (2�ε − 1)
(
1 + Y �yGH

) ∣∣∣∣
2
exp

[−2Y2] , (19)

which can be simplified as:

I ∝
[(
�ε − Y �yGH

)2 + sin2
(
�φGH/2

)]
exp

[−2Y2] .
(20)

We can see that this equation is a function of two sig-
nificant physical quantities, the Goos-Hänchen shift and
phase, and one experimental parameter, the perturbation
rotation angle. The positions of the intensity maximums
are given by the solutions of the quadratic equation:

Y2 − 2AY − 1/4 = 0, (21)

which are
Y±
MAX = A ±

√
A2 + 1/4, (22)

with

A = [
2�ε2 −�y2GH + 2 sin2

(
�φGH/2

)]
/ 8�ε �yGH.

Only the positive solution will be considered, since the
intensity associated to it is the greater one. Bymaking two
successivemeasurements of the intensity, one for a coun-
terclockwise rotation (−|�ε|) of the secondpolarizer and
one for a clockwise rotation (|�ε|), the intensity peak is
displaced, and the distance between both positions,

�YMAX = Y+
MAX(− |�ε|)− Y+

MAX(|�ε|), (23)
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can be used to indirectly determine the relative Goos–
Hänchen shift. Remembering that the shift is of the or-
der of the wavelength and choosing �ε to satisfy the
condition

|�yGH| � √
2 |�ε|,

we obtain

�YMAX = �yGH
|�ε|

{
1 +

[
sin (��GH/2)

|�ε|
]2}−1

.

(24)
This equation represents the standard weak measure-
ment formula modified by the Goos-Hänchen phase. A
detailed analysis of its effect onmeasurements is provided
in the next section.

4. The Goos-Hänchen phase

In the laboratory, one measures the distance between
intensity maximums,�YMAX. The behaviour of this dis-
tance is, however, governed by the behaviour of the sinu-
soidal function sin (��GH/2). When its argument is an
integral multiple of π ,

��GH = 2mπ for m = 0, 1, 2 . . .
(25)

the effect of the Goos-Hänchen phase on the weak mea-
surement is null and the usual formula for �YMAX is
reconstructed. This occurs for particular combinations of
N and θ , as can be seen in Figure 2, where the sinusoidal
function is plotted for various N as a function of the
incidence angle. We can see that there is a minimum
number of internal reflections to trigger the reconstruc-
tion of the usual formula. For a borosilicate prism and
for N < 8, ��GH is never an integer multiple of 2π .
As the number of reflections increases, however, this
result becomes accessible to more angles, starting with
two angles for N = 8.

Figure 3 shows the effect of the Goos–Hänchen phase
on �YMAX for N = 8 and N = 16. The dashed line
corresponds to the standard weakmeasurement formula,

�YMAX = �yGH/|�ε|,

while the solid line represents the weak measurement
with phase. We can see that the Goos–Hänchen phase
renders the distance between intensity peaks virtually
zero, except for angles at which ��GH = 2mπ . This
effect is strongly local, with �YMAX falling rapidly to
zero around such incidence angles. We can estimate how
narrow the�YMAX peaks are by calculating the angles at
which they fall to half their maximum value. Expanding
the sinusoidal function up to the first order around the
maximum, we have

�yGH(θMAX)+�y′
GH(θMAX) δ

|�ε|
× 1

1 +
[
��′

GH(θMAX)
2 |�ε|

]2
δ2

= �yGH(θMAX)

2 |�ε| , (26)

where
δ = θ1/2 − θMAX . (27)

From Equation (26), we can find

θ1/2 = θMAX +
[

2 |�ε|
kw(zCAM)�yGH

]2 {
�y′

GH
�yGH

±
√(

�y′
GH

�yGH

)2

+
[
kw(zCAM)�yGH

2|�ε|
]2}

θMAX

. (28)

The angular distance between the half-peak intensity
points for a borosilicate prism and N = 8 is 0.819◦ for
the first peak and 1.299◦ for the second, see Figure 3(a).
For comparison, forN = 16, the first peak has an angular
width of 0.032◦ while its broadest peak, the third one, is
only 0.648◦ wide, see Figure 3(b).

In Figure 4,we can see contour plots of�YMAX against
�ε and θ . We can see that the greater the amplification
sought, the smaller the angular range for the allowed
incidence angles as well as smaller the value of the per-
turbation angle.

5. Conclusions

We have reexamined the optical weak measurement of
Goos-Hänchen shifts for a Gaussian beam transmitted
through a dielectric block chain, considering the effect
of the Goos-Hänchen phase, and showing that it has
a strong destructive influence on measurements. This
result does not go against the literature on this subject, but
simply addresses an overlooked point, that is, the effect of
a relative Goos-Hänchen phase onWeakMeasurements.
In the excellent papers by Dennis and Götte describing
the general theory of optical weak measurements for
beam shifts, for instance (19, 20), an operator approach
is taken, but the particularities of the Fresnel coefficients
in the total internal reflection regime are not considered,
while in the experimental work of Jayaswal et al. (14) a
system of waveplates is used to remove the relative Goos–
Hänchen phase.

Our analysis provides an alternative way of removing
the effect of this relative phase and reobtain the standard
theoretical formula of weakmeasurements. Since the dis-
tance between intensity peaks, which is used to calculate
the relative Goos–Hänchen shift, depends on the relative
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Figure 2. sin
(
��GH/2

)
as function of the incidence angle for different values of N with w0 = 1mm and n = 1.515 (borosilicate glass).
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Figure 3.Weak measurement amplification. The plot shows the distance between the intensity peaks as function of the incidence angle
for N = 8 and 16 internal reflections, w0 = 1mm, λ = 633μm and n = 1.515 (solid blue line). The maximums are located where the
sinusoidal function is null. The dashed red line represents the curve of the standard formula in the literature.
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Figure 4. Level curves of�YMAX , plotted as a function of the incidence angle θ0 and the perturbation angle�ε of the second polarizer,
for a beam waist of w0=1 mm and refraction index n = 1.515.
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phase through a sine function, and since the relative phase
is a function of the incidence angle and of the number of
internal reflections, we can control these parameters in
order to null the sine function. As can be seen in Figure
2, however, this is not always possible. For a borosilicate
prism (n = 1.515), incidence angles for which the sine
function is zero only appear for a number of internal
reflections equal or greater than 8. Nevertheless, after
this threshold, it is always possible to find such angles,
and their number increases with the number of internal
reflections.

In Figure 3, we can compare the standard optical weak
measurement (dashed red line) with the weak measure-
ment with phase (solid blue line). The relative Goos–
Hänchen phase completely destroys the measurement,
except around the angles for which sin

(
��GH/2

) = 0,
providing a way of having the standard result without
the aid of waveplates. This method, however, demands
accuracy in the selection of the incidence angle. Using
Equation (28), we can calculate the angular width around
the angle that maximizes the distance between intensity
peaks for which such a distance is at least half of its
maximum value. We can see that increasing the number
of internal reflections the peaks become greater, but the
application of this amplification has to be considered
against the available precision in the choice of the in-
cidence angle. For N = 8 and N = 16, there are peaks
for θ = 4.63◦ and θ = 15.37◦, but their angular width is
0.819◦ and 1.299◦ for N = 8 and 0.407◦ and 0.648◦ for
N = 16, respectively.

Finally, we notice that transverse shifts, such as the
Imbert–Fedorov effect (21), can also be subject to a simi-
lar analysis since it is generatedbypolarization-dependent
phase shifts in the Total Internal Reflection regime. Such
an analysis cannot, however, be extended to angular de-
viations. Despite the fact that weak measurements have
been successfully employed in the study of such phe-
nomena (22), the mechanism behind them is quite dif-
ferent than the mechanism behind lateral and transverse
shifts. In both theAngularGoos-Hänchen shift and in the
Fresnel Filtering (23), the angular shift is caused by the
symmetry breaking of the incoming beam by the Fresnel
coefficients (24). Since symmetry breaking requires real
Fresnel coefficients, no additional phase is gained by the
electric field, and the phase removal problem ceases to be
a concern. Another system that is an interesting topic for
future research is that of reflection on metallic surfaces,
since the Fresnel coefficients for this case are complex,
the reflected beam will always gain an additional phase.

We hope our results stimulate interest in the effects
of relative phases on weak measurements on other phe-
nomena such as the Imbert–Fedorov and the optical spin
hall effects (25), high precision phase estimations (26),

the use of Mach–Zehnder interferometers to detect glu-
cose concentration (27) and the amplification of the time
delays in quantum mechanics (28), to give only a few
examples.
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