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Abstract

In this article, we consider LK, a cut-free sequent calculus able to faithfully characterize classical (propositional) non-
theorems, in the sense that a formula ¢ is provable in LK if, and only if, ¢ is not provable in LK, i.e., ¢ is not a classical
tautology. The LK calculus is here enriched with two admissible (unary) cut rules, which allow for a simple and efficient
cut-elimination algorithm. We observe two facts: (i) complementary cut-elimination always returns the simplest proof for a
given provable sequent, and (ii) provable complementary sequents turn out to be deductively polarized by the empty sequent.

Keywords: Complementary classical logic, refutation calculi, cut-elimination theorem.

1 Introduction

Two deductive systems . and .#, sharing a same language, are said to be complementa when:
F—= ¢ if, and only if, ¥ & ¢.

In other words, a system .7 turns out to be complementary with respect to another system .7 if
it proves exactly the non-theorems of . [m, |2—_][])] The conceptual idea underlying the study of
complementarity is that of the characterization of a decidable system .7 by taking, so to speak, its
picture in the negative. The term ‘characterization’ has here a precise meaning in the sense that
theorems of the positive part . can be ascertained by excluding the possibility of their provability
in the complementary system .#.

As a matter of fact, logical complementarity should be thought of as a way to sharpen our proof-
theoretical understanding of decidable calculi in two main respects. First, it allows us to widen the
space of proofs so as to include complementary derivations. Second, resorting to complementary
characterizations has the effect of making semantics almost dispensable. This latter aspect can be
better appreciated when considering a typical case in which one needs to prove that a formula ¢ is a
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'Formal calculi proving the non-theorems of a given logic are better known in the literature as ‘refutation systems’
, 4, E]. Actually, this kind of terminology turns out to be slightly inaccurate as, in line with the intuitionistic tradition,
the act of refuting a formula ¢ is usually taken as the act of providing a proof for the implication ¢ — L defining —¢. Now,
when ¢ is a contingent formula (neither a tautology nor a contradiction), provability in LK does not imply refutability in
LK since —¢ is not a LK-theorem either. For this reason, we prefer to follow Varzi and call these systems ‘complementary’
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274 Complementary classical logic

theorem of . if, and only if, some mathematical fact F occurs. Having at disposal the complemen-
tary formalism .7, the biconditional at issue can be proved just by supplying two soundness-style
inductive proofs for the following two claims: (i) if - o @, then it is the case that F, and (ii) if -= ¢,
then it is not the case that F.

Needless to say, the most interesting complementary systems are those complementing well-
known logical calculi, classical logic in primis. In this case, whereas the semantical characterization
proves straightforward (just consider all the formulas for which there is at least one falsifying valu-
ation), the proof-theoretic characterization can be a more challenging task. Lukasiewicz’s calculus
of refutations can be seen as the first proof system complementing classical logic [ﬂ, @, E]. More
than twenty years later, Caicedo provided the first Hilbert calculus for complementary classical logic
in [E]. Another, much simpler, Hilbert calculus was proposed by Varzi at the beginning of the 1990s;
we owe the term ‘complementarity’ to him [IE, |2__1|]. Almost in the same years, Tiomkin issued the
first sequent system for complementary classical logic with rules for negation and disjunction [@].
This system was independently extended by Bonatti and Goranko so as to include rules for the
whole spectrum of classical connectives ﬁ, E]. Finally, to complete the proof-theoretical picture,
Tamminga designed two natural deduction systems, one for classical non-theorems and the other
for classical contradictions [ﬂ]. However, the problem of giving a well-behaved natural deduction
system for complementary classical logic still remains open in many respects due to the fact that
these specific formalisms cannot enjoy the deduction theorem.

The aforementioned sequent calculi, however, do not consider cut rules and so the possibility of
implementing a cut-elimination algorithm is ipso facto excluded. Indeed, in complementary classical
logic, the cut rule in its standard multiplicative formulation is not admissible:

oA I'EA,
OLT'=AA

cut.

The following example shows how a (classically) valid sequent can be obtained by cutting two
(classically) invalid sequents:

p¥p—q p—>q¥Fp
pEp

cut.

In [@], Tiomkin considers a couple of ‘hybrid’ rules that he calls ‘cuts for the unprovability’ since
they are obtained by ‘reversing’ the (additive) standard cut rule:

'FA A, @ 'FA oA
IeFA 'FA,p

However, such a denomination turns out to be proof-theoretically inaccurate since both of these
rules do not display any cut formulas.

In this article, we consider the complementary sequent calculus as it appear in E,E] and we enrich
it with two unary cut rules which prove admissible in LK. The enriched complementary system is
here indicated by LK. The completeness proof reported, for instance, in [E] is developed without
resorting to any complementary version of the cut rule, therefore it clearly expresses a semantical
proof of cut-eliminability. Anyway, indirect proofs of this kind are usually not very informative
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Complementary classical logic 275

insofar as they do not indicate how to effectively transform proofs with cuts into proofs without
cuts. As a natural consequence, semantic proofs of cut-elimination usually fail to provide new proof-
theoretical insights. This is the reason why we provide here an efficient and simple normalization
procedure.

The specific proof-theoretical insights offered by the cut-elimination algorithm devised here high-
light the difference with respect to the implementation of the analogous process in the positive part
LK. These differences can be summarized as follows.

(1) It is well-known how cut-elimination in LK might make the size of proofs explode, so that
cut-free proofs are analytical — i.e., they do enjoy the subformula property — but analyticity
does not necessarily imply simplicity, at least when the term ‘simplicity’ is taken in its intuitive

meaning. On the contrary, cut-elimination in K" can be thought of as a procedure which
returns the shortest LK proof for a complementary sequent, given any of its proofs in input.
This means that, unlike what happens in LK, analyticity in the complementary part can actually
be taken as synonymous with simplicity. L

(2) The set of (classically) invalid sequents, that is those sequents provable in LK, is deductively

. . VA

polarized by the empty sequent in the sense that any LK proof can be seen as a subproof of
a longer proof ending with the empty sequent (but not vice versa). Consequently, as per the

previous point, LK proofs turn out to be polarized, via cut-elimination, by the complementary
axiom introducing the empty sequent.

2 The sequent calculus LK

Table[displays the LK sequent calculus as it has been introduced in [ﬁ, E]. According to the standard
notation, capital Greek letters I', A, ... stand for finite sequences of formulas. We indicate with [I"]
the multiset of all the formulas occurring in I'. Differently from the notation adopted in [E, , @],
we denote the complementary turnstile with ‘r~’ so that complementary sequents will come with the
form '~ A.

RemARk 1 L
The empty sequent b~ is provable in LK as a limit case of the axiom when {I"'}={A}=2.

ExawmpLE 2.1 L
We prove that the following formulas are both theorems of LK.

cpP—>9—>(Cpr—>9q)
s pA—PIA—(PA—D)

—F ax.
~q.p.p _ o
—ph r~ )
_PTEP () P A
p—>q,7prq ~pA—p
r~— ~A(1)
p—>gqh—p—gq ~ P A=P)A=(pA—p)
—
Mp—>q)—>(—p—>q)

It is worth observing here how the LK logical rules can be heuristically generated by a bottom-up
reading of the tableau rules for classical logic once: (i) formulas labelled as true are stored on the
left-hand side of the sequent symbol, (ii) formulas labelled as false are listed on the right-hand side,
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276 Complementary classical logic

TasLE 1. The LK sequent calculus

Axiom:

LA ax. [T'],[A] disjoint multisets of atoms

Structural rules:

Ta, A . FrVA,a,ﬁrV ;
T,Bar~A &t A Bo |

Logical rules:

oo, B A TrA,« TrA,B
_ —————— M A(l T
Tanprea N reaang D reaang NP
arA r,prA 'ra,B,A
—————— V(1 — V(2 _
Favpra /M Favgra '@ Travg,a Y
Tra, A Bk A TarB,A
e A gy PR e BRELINCE N
faspra W TS5 MO FramBA
rroa FakA
T—abrA Tt —a, A

and (iii) a context variable is put on both sides of the sequent. The leading idea is that branching
tableau rules generate two distinct LK logical rules, whereas non-branching rules generate a single
LK logical rule. As an illustrative example, consider the tableau rules for classical implication.

T:a— B Fia—p
/\ ‘
Fraa T:f T: o
|
F:B

If we take the first branch in which o comes out as false, the rule for T:oe — B induces the LK
rule — - (1). Just write the true formula on the left of the sequent symbol and the false one on the

. g .
right: Kind:iad . Then reverse the rule so as to get e, and finally add context variables
~a oa— pr
'r~a, A .. . .
. ’ . r\,
as follows: TasprA The rule —r~(2) can be produced similarly by taking the branch in

which B is labelled as true. Let us now consider the tableau rule for F: o — . Here we have only

one branch and so only one rule is expected to be produced. Following the same pattern, put the
~Ma— B

—— . Then reverse the rule and add
ab B

true formula on the left and the false ones on the right:
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Complementary classical logic 277

TaBLE 2. Some rules admissible in LK

arA I'~A o
—_— - — "~ :
TRA strength TRA strength
arA copy I~ I'MAa ~ co
INo,a~A Py I'tA o, Py
LoaA . ~ A e . ~
TRA.q lnverse— oA inverse ™=
FanBA " 'e~Ajavpg . ~
T, A inverse N\ TrA B inverse ™~V
'rMa—B,A =
Fa~B.A inverse -—
FabB,A

contexts so as to obtain: . Tt is easy to check that each one the other LK rules can

Fra— B, A
be produced in a similar fashion.

CoroLLARY 2.1 L
The rules displayed in Table 2 are admissible in LK, i.e., their inclusion does not extend the set of

LK theorems.

Proor. Easy, by observing that, for each one of the nine rules ﬁ reported in Table 2,

the very same valuation that falsifies the premise formula AT — \/ A also falsifies the conclusion

AT — /A [ |

DEerNITION 1 (contingencies)
Formulas that are neither tautologies nor contradictions are said to be contingent [IE].

ProposiTION 2.2
(i) LK proves i« if, and only if, « is not a tautology;
(ii) LK proves o~ if, and only if, « is not a contradiction;
(iii) if LK proves '™ A, « then « is not a tautology;
(iv) if LK proves I',a I~ A then « is not a contradiction;
(v) LK proves both ~a and «r~ if, and only if, « is contingent.

Prook. (i) and (ii). Straightforward, by the fact that LK is sound and complete with respect to the
set of classical non-tautologies [4].

(iii) Apply a cluster of left and/or right strengthening rules so as to get o from '™ A «.
Then apply point (7).

(iv) Similar to point (iii).

(v) By points (7) and (i), « is neither a tautology nor a contradiction, so it is contingent. [ |
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278 Complementary classical logic

REMARK 2
Due to the fact that the LK sequent calculus displays only axioms and logical rules, and no structural

rules, the length of any LK proof 7 of a sequent It A always equals the number of occurrences of
logical connectives in [["]W[A] plus one, the axiom rule.

3 Cut-elimination and deductive polarization

In this section, the strengthening rules reported in Table 2 are regained as unary cut rules:

rara reda
r~a Tr~a o

Tiomkin and Goranko consider these rules as inverse weakenings [E,'E]. Indeed, since they display
a cut formula, it seems proof-theoretically more appropriate to consider them as cuts at all intents
and purposes and then pose the question of their procedural eliminability.

We indicate with LK~ the calculus obtained by enriching LK with the aforementioned unary cut
rules. LK also admits the following binary cuts:

'MA,a a b~ LarA ~a LarA I'MA o
e~ A '~ A rr~A

Nonetheless, we can ignore them since they are easily derivable from r~ cut and cut .

THEOREM 3.1 (cut—eliminati_ori) e
Any sequent provable in LK is also provable in LK.

Proor. As for the analogous process in the positive side LK, we always reduce the uppermost
cuthl Following the standard pattern, reduction steps are partitioned into commutations and logical
reductions. We report below a few cases, the others can be detailed similarly.

« Commutation cut/cut:

IBrAa ~ IBrrA,a ~
T BrA r";”’ — TrAua :”’t
r~a T~A

* (axiom) Here we use the fact that the set of axiomatic complementary sequents are closed under
cut applications.

2 Actually, LK does not enjoy the strong normalization property, i.e., there are reduction strategies which form a loop
configuration, and so never achieve a normal form. Consider for instance the reduction strategy illustrated below, which
consists in persistently reducing the lowest cut.

~ ax. ~ ax. ~ X.
p:q pP.q pP.4q
r~ ~ ~
~ cut ~q cut ~ cut
T r~ cut T r~ cut ? ~ cut

Clearly, the process never terminates since the second reduction returns the very first proof.
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Complementary classical logic 279

—F— ax.
L,pr~A —— ax.
_ > '~ A
T~A cut b~
s (AP
Lapra Lapra
TanprA _ — Tpra
r~a r~a <
(A
I'~A
B L. NI NN,
Fr\’A,Ol/\,B ~ —> Wl’\'cut
T~A cut

ExampLE 3.1
We propose here a concrete example of normalization.

ax

~qg,r ’ — ax.
_rPrer qu —r(1) phq,r ~ ax.
AT e — Tprr DM — PR e — T
~r cut b~ rr
P cuth~ ~r
~r
REMARK 3

Unlike standard cut-elimination algorithms for LK, ‘complementary’ cut-elimination always induces

a remarkable simplification of the size of proofs. In case of R+, we can say that cut-elimination has
the effect of returning the shortest proof for any given provable sequent (cf. RemarkP]). This peculiar
phenomenon is essentially due to the fact that complementary classical logic allows for a sequent
formulation LK which does not need to resort to the structural rules weakening and contraction,
neither explicitly nor implicitly. This fact is clearly relative to the specific sequent system under
consideration. Indeed, it is worth observing here that an alternative sequent calculus proving all
and only classically invalid sequents can be given by considering Kleene’s system G4 ﬂE] The
complementary system G G4 can be obtained just by: (i) enriching G4 with the complementary axiom
schema as it appear in LK, and (ii) requiring that any G4 proof displayed at least one complementary
axiom. Now, being based on G4, the system G4 comes with implicit structural rules (weakening is
implicit in generalized axioms and contraction is implicit in the additive formulation of the logical
rules) thus in some cases the cut-elimination procedure may have the effect of increasing the size
of G4 proofs as may be the case for G4 proofs.

REMARK 4 (uniqueness of the normal form) .
It is easy to check that cut-elimination in LK is confluent and so any LK proof has only one

normal form. However, there is a deeper sense in which this property holds true in LK. As already
observed in Remark ] any cut-free K" proof (i.e., any LK proof) displays exactly one axiom and a
sequence of logical rules introducing one by one each specific occurrence of the logical connectives
in the final sequent. This means that, if we consider complementary proofs modulo permutations of
(permutable) logical rules, there is exactly one cut-free proof for any provable sequent.
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280 Complementary classical logic

REMARK 4 (deductive polarization)

We say that provable sequents of a Gentzen system S are deductively polarized by a particular
S-sequent s if: (i) for any S-proof w there is a S-proof § of s such that w is a subproof of 8, and (ii)
s is the unique sequent which enjoys (i). Roughly speaking, in a deductively polarized system any
deduction points towards the polarizing sequent. Given this preliminary definition, it is easy to see

—t . .

that LK provable sequents turn out to be deductively polarized by the empty sequent. In fact, any
K proof w of a sequent I ™~ A can always be lengthened by means of a sequence of cut rules so as

to finally become a proof § of r~. Moreover, no R+—proof can display a proof of the empty sequent
as a proper subproof, so condition (ii) is satisfied as well. Since provable sequents are deductively
polarized by the empty sequent, proofs are polarized, via cut-elimination, by the axiom introducing
the empty sequent. To sum up, given any proof 7 of a sequent I' r~ A:

T
T
can be turned into 8: P A which normalizes to §: < %*-.
° —— P~ cut
'~ A I'r~ ~
———cu

This fact seems to be of a certain logical and philosophical relevance. In fact, from a proof-theoretical
point of view, whereas (classically) valid sequents form a wide and multifarious galaxy (actually,
any sequent provable in LK enjoys condition (i), therefore condition (ii) cannot be satisfied in
any way), the complementary set of (classically) invalid sequents is, so to speak, organized like a
gravitationally bound system in which provable sequents all ‘orbit’ the empty sequent.

4 Future Work

Many-valued logics represent the most immediate generalization of classical logic and have attracted
a great deal of attention among philosophers and computer scientists, besides logicians, due to their
philosophical interest from several viewpoints, and to their potentialities of application in knowledge-
based systems, fuzzy reasoning, software verification, etc. Although several sequent systems and
analytic calculi for many-valued logics are known in the literature, the results we address here
seem to be naturally generalizable to practically any propositional many-valued logic by means
of all-purpose proof systems such as the ones in [4]. The question of complementarity for many-
valued logics and for at least certain paraconsistent logics (as in [EI]), even if combinatorially more
complex and deferred for further work, seems to follow the same pattern of the relationship between
abstract normalization, weak normalization and confluence that is found in the classical two-valued
case.

As we have already seen, a byproduct of proof-theoretical approaches to complementarity is that
of the widening of the space of proofs. Once the space of proofs is complemented, a natural problem
to pose is that of restricting this actual space in such a way as to characterize some philosophically
or computationally relevant intermediate logics [ﬂ, E]. This idea of approximating falsities is in
some way specular to that of approximating truths proposed in [Id, [4].

Other possible directions of research may concern the so-called SAT problem. It is easy to check
that the complexity of testing the satisfiability of a given formula by implementing a proof-search
algorithm in LK is the same as that of accomplishing the same task by resorting to the tableaux
method (most likely exponential). An interesting result would be to enhance the effectiveness of
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Complementary classical logic 281

the E%roof—search algorithm by resorting to a complementary calculus dealing with analytic cuts
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