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Abstract

Some phenomena that occur in the Sun have consequences on Earth. Among these phenomena, solar flares
release large amounts of radiation and energy that impact on the Earth’s life and technological systems. These
flares usually come from sunspots, which derive from solar magnetic activities. One strategy to predict solar
flares is to identify active regions, i.e., a group of sunspots with a high potential to cause solar flares. This
paper reports the use of the deep learning technique to identify and classify active regions from magnetogram
analysis. To achieve these tasks, we assembled a dataset with magnetograms and performed tests to choose the
best deep learning models for the identification and classification of active regions. The results of the best models
reached accuracies higher than 80% for both the identification and classification tasks. Based on these results,
we implemented a system in Python to automate the complete identification and classification process based on
magnetograms’ analysis.

Keywords: Classification; Deep Learning; Detection; Magnetograms; Solar Flares.

Resumo

Alguns fen6menos que ocorrem no Sol tém consequéncias na Terra. Entre esses fendmenos, as explosdes solares
liberam grandes quantidades de radiagdo e energia que impactam a vida e os sistemas tecnolégicos da Terra.
Essas explosdes nascem geralmente a partir de manchas solares, que derivam de atividades magnéticas solares.
Uma estratégia para prever explosoes solares é identificar as regides ativas, i. e., um grupo de manchas solares
com alto potencial de causar explosdes solares. Este artigo relata o uso da técnica de aprendizado profundo para
identificar e classificar regides ativas a partir da andlise de magnetogramas. Para realizar essas tarefas, montamos
um conjunto magnetogramas e realizamos testes para escolher os melhores modelos de aprendizado profundo
para identificagdo e classificacdo de regides ativas. Os resultados dos melhores modelos alcancaram precisées
superiores a 80% para as tarefas de identificacdo e classificacdo. Com base nesses resultados, implementamos
um sistema em Python para automatizar o processo completo de identificacdo e classificacdo baseado na analise
de magnetogramas.

Palavras-Chave: Aprendizado Profundo; Classifica¢do; Deteccao; Explosoes Solares; Magnetogramas.

1 Introduction

Many of the technology systems used today depend on
power distribution or satellite communication. Because
of these characteristics, these systems can be affected
by phenomena that occur in the Sun and have impacts
on the Earth (Royal Academy of Engineering, 2013).

We call Space Weather the solar phenomena and
its effects on the solar system (Echer et al., 2005).
Among the Space Weather phenomena, one of the
events with a direct impact on the Earth is solar flares.
This phenomenon generates an intense flash in images
captured from the Sun and can release protons and
electrons toward the Earth in a phenomenon called
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coronal mass ejection (CME). This mass of particles,
with temperatures in the order of one million degrees
Celsius, is a magnetized plasma.

When solar flares occur, they release x-rays and
eventually gamma rays. Astrophysics analyze the
strength of these rays from the peak that an X-
ray reaches, measured in Angstrﬁms (). Sensors
embedded in GOES satellites obtain solar flares data
whose intensity can be classified as A, B, C, M, or X, as
illustrated in Table 1 (Messerotti et al., 2009).

Table 1: Solar flares classes.
X-ray Peak Flux in W/m?

Class between 14 e 84
A <1077
B >10"7 and <1076
C >10"% and <1075
M >1075 and <1074
X >10"4

Class X solar flares are the most intense. Besides,
the classes are logarithmic in scale, and each class has
nine subdivisions. Therefore, a class X.2 explosion
is twice as massive as an X.1 explosion. These
phenomena impact three main areas: the ionosphere,
space systems, and terrestrial systems.

In the ionosphere, the disturbances manifest a
few moments after a solar flare occurs and affect
long-distance radio communications on the Earth’s
face facing the sun. The gradual disappearance of
shortwave waves is caused by X-ray penetration into
the Earth’s lowest levels. High-frequency radio waves
are absorbed rather than passed to higher levels, which
causes malfunctions in communications systems that
may last an hour or more.

In addition to these sudden disturbances in
communication systems, this phenomenon gives rise
to auroras at the Earth’s poles. Protons reach the
terrestrial magnetic field through the solar winds and
are guided by the terrestrial magnetic field lines to the
polar ice caps. They then penetrate to an approximate
altitude of 50 km, where they release energy by ionizing
neutral particles from the atmosphere and thus causing
auroras.

Moreover, in space-based systems, a charge on a
spacecraft may appear, which is a variation of the
electrostatic potential, the tendency of a charge to
shift from the spacecraft surface with its surrounding
plasma. During geomagnetic storms, the number of
electrons and ions increases. Thus, when a satellite
travels in a geomagnetic storm, the charged particles’
shock can cause a potential difference that generates
current in the spacecraft’s components, damaging
them and probably disabling them.

1.1 Research objectives

Currently, Space Weather forecasting centers around
the world analyze the active regions of the Sun to

calculate the probability of a solar flare. By calculating
the chance of a solar flare occurring in advance, one
can mitigate the effects of this phenomenon on the
Earth or on orbiting technologies on the planet.

The analysis of the active regions on the Sun plays
a fundamental role in solar flares forecasting, as these
regions are precursors of various solar phenomena,
especially the solar flares and CMEs (McAteer et al.,
2005). It is from the intense magnetic activity in a
particular region in the Sun that solar flares occur.

Therefore, the objective of the research described in
this paper is to use deep learning neural networks to
automatically identify active regions in magnetograms
and classify them according to their “morphology”,
analyzing their format, presence, and disposition of
different polarities.

1.2 Paper structure

We organized this paper with the following structure.
Section 2 presents some fundamental concepts used in
this paper. Section 3 show other works related to the
theme. In turn, Section 4 describes the methodology
adopted in this research, as well as the metrics
used to evaluate the results. Section 5 discusses the
results obtained and, finally, Section 6 points to the
conclusions and future works.

2 Fundamental concepts

This section presents two essential concepts for this
work. The first concept is the magnetograms, i.e.,
the images we will analyze to identify and classify the
active regions in the Sun. The second concept is the
Deep Learning technique, a method used for automatic
detection and classification of active regions.

2.1 Magnetograms

A magnetogram is a graphical representation of the
variation of the Sun’s magnetic field. It is an image
formed from a set of magnetic data obtained from a
magnetometer (Bobra et al., 2014a,b). Fig. 1 illustrates
an example of a magnetogram.

Notice that, in Fig. 1 three types of colors occur:
white spots appear, which represent regions with
positive polarities or that move against the Sun’s core;
black spots representing negative polarities or that
move toward the Sun’s core; and other gray areas. A
group of spots forms an active region, which, in turn, is
related to the occurrence of solar flares. This situation
occurs because, between spots of different polarities,
magnetic arcs can arise, which, when broken, cause
solar flares and, eventually, coronal mass ejections.

Fig. 2 illustrates on the right side several magnetic
field lines extending from the sunspots, forming
magnetic arcs, sending overheated plasma into the
solar system.

Therefore, the visual information contained in a
magnetogram serves to identify the active regions of
the Sun. We can classify these regions according to
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Figure 1: A magnetogram from May 15, 2013 at
1:48 UTC. Source: The Helioviewer Project (2019).

the Mt. Wilson classification, which considers the
distribution of magnetic polarities within groups of
sunspots (Li and Zhu, 2013).

According to the Mt. Wilson classification, there are
eight magnetic classes defined according to how these

groups of sunspots form. The classes are the following:

- Alpha (): a unipolar group of sunspots.

- Beta (B): a group of sunspots of positive and negative
(or bipolar) polarities with a simple division between
polarities.

+ Gamma (v): a complex region in which the positive
and negative polarities are so irregularly distributed
that they cannot be classified as a bipolar group.

+ Beta-Gamma (3-+): a group of bipolar sunspots, but
complex enough that no lines can be drawn between
points of opposite polarity.

- Delta (6): the opposite polarity umbra in a single
penumbra.

- Beta-Delta (5-04): a group of sunspots with a general
magnetic configuration g, but containing one (or
more) § sunspots.

+ Beta-Gamma-Delta (5 - v - §): a group of sunspots
with a 3 - ¥ magnetic configuration but containing
one or more § sunspots.

+ Gamma-Delta (v - §): A group of sunspots with a v
magnetic configuration but containing one or more
4 sunspots.

Observation, analysis, and classification of sunspots
are an essential part of deepening the knowledge
about the Sun, solar weather, and their effects on the
Earth (Phillips and White, 1996). Specific categories

of sunspot groups are associated with solar flares.

Observatories around the world track every visible
sunspot to detect solar flares at an early stage of
their formation. Today, sunspot recognition and

Figure 2: Magnetic arcs formed between active
regions. Source: SDO/NASA -
https://sdo.gsfc.nasa.gov/gallery.

classification are manual and intensive processes that
can be automated if successfully learned by a machine
(Nguyen et al., 2006).

The identification of active regions in the Sun by
magnetogram analysis and the automatic classification
of these active regions by the Mt. Wilson classification
helps to predict the occurrence of solar flares. Notice,
however, that this identification is entirely subjective,
as it is based on the morphological analysis of these
active regions (McAteer et al., 2010).

Therefore, sunspots are detected by satellites and
described in image format (magnetograms), which
is unstructured data. Thus, we sought a technique
that assisted the process of detection and automatic
classification of active regions in magnetograms. We
describe this technique briefly in the following section.

2.2 Deep Learning

The deep learning technique is part of a set of machine
learning methods based on artificial neural networks
(LeCun et al., 2015). According to Wang and Alexander
(2016), one can use machine learning to process large
volumes of structured data and unstructured data that
are difficult to process using traditional database and
software techniques.

Since 2010, researchers have been using artificial
intelligence and machine learning as tools for
predicting solar flares, as seen in the works of Yu et al.
(2010), Colak and Qahwaji (2009) and Gensler et al.
(2016). In particular, the Deep Learning technique may
have some advantages in Space Weather applications,
notably in the identification and classification of active
regions in magnetograms.
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Other more traditional imaging processing
algorithms, such as Filament Diffusion-Detection
based on graphs or morphological operators, employed
by Andrijauskas and Gradvohl (2012), could be used to
identify and classify active regions. However, these
techniques require higher computational processing
power or processing time, making them less feasible
in simpler systems or for real-time processing.

Some deep learning techniques rely on convolutional
neural networks (CNN) for object detection. The
advantage of CNNs is that they do not depend on
manually created resource pullers or filters. Instead,
they train themselves from the pixel level to the
identification of objects as a whole. Deep neural
network architectures handle complex models more
efficiently than less layered networks. Besides,
CNNs are less accurate for small datasets but show
significant accuracy in large image datasets. For this
procedure, CNNs require a large number of labeled data
sets to perform computer vision related tasks, e.g.,
recognition, classification, and detection (Pathak et al.,
2018).

For its training, a deep neural network usually
uses a dataset of considerable size. This dataset shall
describe as much as possible of the situations of the
environment in which it will operate. Once well-
trained, a deep neural network can process data as
it becomes available without waiting for the whole
dataset to be ready for processing (Zhao et al., 2019).

CNNs exploit the so-called spatial-local correlation,
reinforcing a pattern of local connectivity between
adjacent neuron layers. In other words, the inputs
of hidden neurons in the m layer come from a subset
of neurons in the m - 1 layer.

The image is convoluted through the activation
function to obtain feature maps. To reduce the spatial
complexity of the network, feature maps are treated
as layers to obtain abstract feature maps. A neural
network system repeats this process for the desired
number of filters and hence creates feature maps.
Eventually, the system renders these feature maps
with fully connected layers to get an image recognition
output, showing the confidence score for the predicted
class labels.

In short, each of the various intermediate layers
progressively extracts characteristics from the object
under analysis. For example, in image processing,
lower layers can distinguish edges, while the upper
layers can identify items of more considerable
significance, such as objects or faces (Guo et al., 2016).

Following, we present some details about the two
types of convolutional neural networks used in this
work, GoogLeNet and DetectNet.

2.3 GoogLeNet

GoogLeNet is a 22-layer deep pre-trained convolutional
neural network. The network uses a LeNet-inspired
CNN but has implemented a new element that is called
the “Inception module”. Used batch normalization,
image distortion, and RMSprop. This module is
based on several very small convolutions to reduce

the number of parameters drastically. Its architecture
consists of a 22-layer deep CNN, but reduced the
number of parameters from 60 million (AlexNet) to
4 million (Das, 2017).

The main idea of Inception architecture is to consider
how an ideal local sparse structure of a convolutional
vision network can be approximated and covered by
available dense components. Notice that assuming
translational invariance means that the neural network
will be constructed through convolutional blocks. To
perform this task, it is necessary to find the best local
construction and repeat it spatially (Szegedy et al.,
2015). Fig. 3 shows the representation of an Inception
module.

Filter
concatenation

,_.---'T‘“f-—f:.—__—__—_;_-_ S

1x1 convolufions 3x3 convolutions Ex5 convolutions 3x3 max pooling

— — —

~— _— _
~ -

T —

|

Previous layer

(a) Inception module, naive version

Figure 3: Inception module example. Source: Szegedy
et al. (2015).

Therefore, different convolution sizes run under
the same input image, resulting in different types of
extracted resources, plus a maximum pool operation.
Then all characteristics are concatenated together to
result in the entry of the next network module. As
these Inception modules are stacked, their outbound
correlation statistics tend to vary. As higher layers
capture the features of higher abstraction, we expect
that their spatial concentration decreases. This
situation suggests that the ratio of 3 x 3 and 5 x 5
convolutions should increase as it moves to higher
layers (Szegedy et al., 2015).

The convolution 1 x 1 is introduced by Network In
Network (NIN). The 1 x 1 convolution is used with
the ReLU activation function. Thus, NIN originally
uses it to introduce more nonlinearity to increase the
representational power of the neural network, since
the NIN authors believe that the data is in the form
of nonlinearity. In GoogLeNet, 1 x 1 convolution is
used as a dimension reduction module to reduce the
calculation. By reducing the computation bottleneck,
the system can increase the neural network depth and
width (Tsang, 2018). Fig. 4 brings the representation
of an Inception module using 1 x 1 convolutions.

One argument for choosing GooLeNet is the
following. ImageNet’s Large-Scale Visual Recognition
Challenge (ILSVRC) evaluates algorithms for object
detection and large-scale image classification. A high-
level motivation is to allow researchers to compare
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Filter

concatenation
33 convolutions 55 convolutions 1x1 convolutions
1x1 convolutions [ [) [)

1x1 convolutions 3x3 max pooling

ﬂmms
P a————

Previous layer

(b) Inception module with dimensionality reduction

Figure 4: Example of Inception module using 1 x 1
convolutions. Source: Szegedy et al. (2015).

detection progress on a broader range of objects, taking
advantage of the expensive labeling effort. Another
motivation is to measure the progress of computer
vision for indexing large-scale images for retrieval and
annotation. GoogLeNet’s submission to ILSVRC 2014
(ImageNet, 2014) uses 12 times fewer parameters than
the winning architecture of years ago (Krizhevsky et al.,
2017) and proved significantly more accurate (Szegedy
et al., 2015).

2.4 DetectNet

For the development of this work, we used the
pre-trained neural network DetectNet, developed by
NVIDIA. One can train such a network through the
Caffe framework.

DetectNet training data samples are large images
that contain multiple objects. For each object in the
image, the training label must capture not only the
object’s class but also the corner coordinates of the
bounding box (Tao et al., 2016).

According to Tao et al. (2016), the DetectNet
framework introduces a fixed three-dimensional tag

1. Data ingest and
Augmentation

Images +
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g
a
w
P4
|
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o

2. GoogLeNet FCN

format that allows DetectNet to accept images of any
size with a variable number of objects present. The
representation used by Redmon et al. (2016) inspires
DetectNet’s data representation.

During the application of the DetectNet model within
the DIGITS software, the software overlays the image
with a regular grid with slightly smaller spacing than
the smallest object to be detected. We labeled each
grid square with two information: the object class
present in the grid square and the pixel coordinates of
the bounding box corners of that object relative to the
center of the grid square (Tao et al., 2016).

2.4.1 DetectNet Architecture

The DetectNet architecture has five parts specified in
the Caffe model definition file (Tao et al., 2016), as
illustrated in the Figs. 5 and 6.

i. The data layers ingest images and training
labels, and a transformer layer applies online data
augmentation.

ii. A fully convolutional network (FCN) performs
resource extraction and prediction of object classes
and bounding boxes per grid square.

iii. Loss functions simultaneously measure the error
in both tasks of predicting object coverage and the
edges of the object’s bounding box per grid square.

iv. A grouping function produces the final set of
bounding boxes provided during validation.

v. The system calculates a simplified version of the
mAP to measure the model performance against the
validation dataset Tao et al. (2016).

The DetectNet network uses a linear combination
of two separate loss functions to produce its final loss
function for optimization. For training purposes, Caffe
minimizes a weighted sum of the following loss values
(Tao et al., 2016).

- cover_loss: is the sum of the squares of the
differences between the true and predicted object

DetectNet Training

Augmented Bounding Boxes

Augmented Coverage Map

Predicted
' Coverage

M
SIPREETY 12 Loss
’ ——) K N T

)
! Predicted
Bounding
Boxes

1+~

3. Loss Functions

Figure 5: Flowchart of DetectNet network training operation, displaying items 1, 2, and 3. Source: Tao et al.
(2016).
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Figure 6: Flowchart of DetectNet network training operation, displaying items 4 and 5. Source: Tao et al. (2016).

coverage in all grid squares in a training data sample.
Eq. (1) calculates the cover_loss.

N
_ 1 t P2
cover_loss = SN ) _ |coverage; - coverage?|* (1)
i=1

- bbox_loss: is the average loss of L1 (mean absolute
difference) for the actual and predicted corners of
the bounding box for the object covered by each grid
square. Eq. (2) calculates the bbox_ loss.

N
_ 1 t_ P t_ P
bbox loss_—E X1—-X |+ |yi-vi|+
2N i:1“ 1 1‘ ’1 1’ (2)

o =28+ v - 2]

In the final layers of DetectNet, it uses the OpenCV
openCV groupRectangles algorithm to aggregate and to
filter the set of bounding boxes generated for grid
squares with coverage values greater than or equal
to the gridbox_cvg_threshold specified in the DetectNet
template definition file.

3 Related works

This section presents some works focusing on
extracting attributes for forecasting space weather
from images of the Sun.

Nguyen et al. (2006) used machine learning
approaches to the problem of classifying active regions.
In the paper, the authors used the Modified Zurich
classification scheme with seven classes. They cropped
active regions from images using image processing
algorithms, and later, they classified the images
according to the Modified Zurich scheme. The authors
used the decision tree algorithms C4.5, k-nearest
neighbors (k-NN), and LEM2.

On the other hand, Ahmed et al. (2013) used
machine learning methods to estimate the magnetic
complexity of active regions, among other important
attributes for trying to predict solar flares 24 hours in
advance. To this end, the authors used the number of
sunspots and magnetic field properties as attributes for
machine learning algorithms. They chose attributes
from algorithms for attribute selection. For sunspot
forecasting, they used the Cascade Correlation Neural
Network (CCNN) algorithm.

On another front, Banda and Angryk (2015) described
an automated, unsupervised methodology for reducing
the space for image research in an attempt to find
similar solar phenomena. The work analyzed some
clustering algorithms - among them K-means, K-
medoids, and EM - to identify regions of interest in
solar images.

In turn, Bobra and Couvidat (2015) reported a
proposal to predict class M and X solar flares using
the support vector machine (SVM) algorithm and four
years of data from the Solar Dynamics Observatory
(SDO). The data referred to the magnetic parameters of
the active regions, and they used for the classification
of active regions. The proposed mechanism has reached
an accuracy of around 96% for 24 and 48 hours.

Still, Hada-Muranushi et al. (2016) tries to
predict solar flares automatically using Deep Learning.
According to the authors, the system can forecast over
a 24-hour horizon, taking an image every 360 seconds
and x-ray information every 60 seconds. However, the
work did not apply the Deep Learning technique to
identify active regions.

In turn, Park et al. (2018) applied deep convolutional
networks to try to predict the occurrence of solar flares.
In this case, the work used the deep neural network
to associate images to the probability of solar flares
occurrence. The output of the neural network received
an image and informed if there would be an explosion
or not.

Finally, Nishizuka et al. (2018) reports the
development of a solar flare prediction model using the
Deep Flare Net (DeFN) deep neural network structure.



Oliveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.67-79 73

The reported model calculates the probability of solar
flares happening 24 hours in advance for each active
region. However, manual intervention is required to
select the attributes required to make the forecast.

Based on the works mentioned above, we observed
the importance of the classification of the active regions
for the forecasting of solar flares. However, there is
no prior application of a deep convolutional neural
network in the identification and classification of active
solar regions through magnetogram analysis.

Thus, this work elaborated a methodology to identify
and classify the active regions through deep neural
models. In the literature survey performed for this
work, we did not identify other works with the same
proposal as ours.

4 Methodology

Facing the problem of identifying and classifying the
active regions of a magnetogram, it is possible to apply
convolutional neural networks to detect objects that
already include the classification of found objects. An
example of such a network for this situation is the

DetectNet. In this case, we only need a neural model.

However, its application was limited only to identifying
the location of the spots, because, since the generated
database did not include all the sunspot classifications
contained in an image, it was not possible to perform
the training of a single network.

Therefore, it was about the creation of two distinct
neural networks: one to identify the sunspots and
another to classify them. In this context, for each type
of neural network, its metrics were used to evaluate
DIGITS software standard performance.

By having an existing dataset, the selected
neural networks are feed-forward supervised learning
networks, adjusting their weights through the
backpropagation process. Thus, the methodology used
in this paper consists of four steps. The first step
consisted of creating a database with magnetograms
selected from the following characteristics.

For the detection of the active regions, we gathered
1000 solar magnetograms from the image dataset. Each
magnetogram has a 256 x 256 pixels resolution.

On the other hand, we obtained the images for the
classification of active regions from the image dataset
mentioned in the previous paragraph. For this, we
created a small Python script, which cuts out the
active regions and classifies them according to The
Helioviewer Project (2019) portal information. This
base contains 1548 images.

We highlight that the Helioviewer portal contains
the identification of active regions and their respective
magnetic classifications in four main classes (o, a - v,
B, or B - v). Therefore, the information obtained from
the Helioviewer served as the ground truth. After we
assembled the datasets, the second step was to segment
them into three parts. The first part consists of 70%
of the total samples for training. The second part

consists of 20% of the total samples for validation.

It is noteworthy that the subset of tests, the third

part, contains data never presented to the deep neural
network. Therefore, it is a piece of new information,
which was subsequently submitted to the deep neural
network to prove its accuracy. This set represents the
remaining 10% of the image dataset.

Then, in the third stage, we trained a deep neural
network. At this stage, we used the NVIDIA Deep
Learning GPU Training System (DIGITS). The DIGITS
software is a neural network training system that uses
graphics processing units (GPUs) to accelerate and
optimize the training process (NVIDIA Corporation,
2019).

The DIGITS facilitates the creation of a training and
validation image dataset, the training of a model based
on the dataset created, and the testing of the model
in a variety of ways. A RESTful web application, built
on the Python Flask web framework, allows users to
create and delete datasets and templates through a web
page (Yeager et al., 2015).

In addition to DIGITS, we used the Fiji software —
Image]J (Schindelin et al., 2012) - for image processing
in conjunction with the Alp’s Labeling Tools for Deep
Learning (2017) for labeling the active regions.

We did the active region labeling. The labels
did not contain the identified active region classes.
We wrote the scripts responsible for consulting the
labeling performed by experts, as discussed later in
this text. Therefore, there was only the demarcation
of sunspots with an area greater than 36 pixels in the
magnetograms contained in the database.

Furthermore, as support for the realization of the
project, we used the Python programming language at
two different times. Initially, to obtain data to complete
the database and, later, to integrate the different
products from the project: models for detection and
classification of active regions.

In the last stage, we evaluated the result of the
deep neural network. Therefore, we performed an
analysis of the precision level by comparing the results
returned by the DIGITS software and manual analysis,
comparing the actual results of the database with those
produced by the model. We described these analyzes
as follows.

The DIGITS performance analysis is based on several
metrics. However, in this study, we considered only
four of them: accuracy for both classification and object
detection and Recall, mAP, and F1 score for object
detection only. The metrics are better described as
follows:

« Accuracy: Measures how accurate the predictions
are, i.e., what percentage of the predictions is
correct. Accuracy is calculated from the number of
true positives (TP) and the number of false positives
(FP) according to the relationship established in
Eq. (3).

TP

(TP + FP) (3)

accuracy =
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+ Recall: how many of the true positives were actually
found. In this case, the recall considers the false
negatives (FN), according to the relation defined in
Eq. (4).

TP
recall = TP+ FN) (4)

- mean Average Precision (mAP) (simplified): the
score based on the product between accuracy and
Recall for the DetectNet network. It is a good
measure of how sensitive the network is for objects
of interest and how well it avoids false alarms.

+ F1 score: the harmonic mean of Accuracy and Recall,
where an F1 score reaches its best value at 1 (perfect
accuracy and recovery) and worst at zero.

For all Accuracy, Recall, and mAP metrics, high
values are desired because maximizing them represents
a good model. In the initial project definition, we
expected the model to achieve an 80% accuracy level.

For the manual analysis, in the case of identification
of the active regions, for every image, we created a
corresponding text file, containing the coordinates
of the regions present in the image. In the case
of the classification of active regions, we organized
the images of the active regions in their respective
directories. We performed the analysis by comparing
the data provided by the deep neural networks with
the correct data obtained from The Helioviewer Project
(2019) portal. Therefore, we looked at the accuracy,
i.e., the number of correct predictions.

5 Results

One of the results of this research was a database with
magnetogram images adequately organized and labeled.
We obtained the original information with dates and
images, when and where the most massive explosions
occurred, from another database curated by Gradvohl
and Fernandes (2017).

Besides the magnetogram database, we report
other results in the next two sections, which deal,
respectively, with the detection and classification of
active regions, as well as the construction of a system
that automates these processes.

5.1 Active region detection

After obtaining the samples (images), 1000 of them
were adequately labeled using Fiji software, together
with the ALP’s plugin, indicating the location of the
active regions present in the image. Such indications
or labels were recorded in a text file with the same
name as the image, resulting in 1000 new text files
with this information. Fig. 7 is an example of a text
containing the coordinates of the active regions present
in a magnetogram.

Arquive Editar Formatar Exibir  Ajuda

sunspot 0.0 0 0.0 56 143 82 163 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sunspot 0.0 0 0.0 226 171 234 181 0.0 0.0 0.0 0.0 0.0 0.0 0.

0

Figure 7: Labels containing the coordinates of the
active regions.

After obtaining the complete database with labels
and coordinates of the active regions, we organized the
images into three distinct sets:

+ Training Set (train): a subset of images intended
for training the neural network. We submitted the
images to the neural network. Later, the images
were used to adjust the node weights based on the
backpropagation technique. 70% of the dataset
comprises this subset.

« Validation Set (val): a subset of images intended
for neural network validation. The DIGITS used
this set of images automatically and required no
manual intervention. The images contained in this
set do not influence the maintenance of the neural
network. Also, the observatories use the images for
live monitoring of the performance of the network
over the seasons. This subset contains 20% of the
original dataset.

Test set (test): subset of images intended for manual

testing of neural network performance. These are

images that were only submitted to the network

when the model was ready. This subset has 10%

from the dataset.

Once organized, we submitted the relevant image
sets to DIGITS software, which in turn organized and
formatted the base according to its models. Every
image submitted to the DIGITS software received the
specified treatment at the time of dataset creation.
Possible modifications made by the DIGITS software
are the standardization of image size, the method for
changing the size, adding borders, subtracting the
average image, modifying color channels, among other
possibilities. However, in this work, the images in the
databases were only resized, and there was no other
changes.

After image normalization, we applied a pre-trained
neural network model architecture called DetectNet
(Tao et al., 2016). This architecture is a derivation of the
GoogLeNet model (Szegedy et al., 2015) and has already
won some competitions as the best adaptive neural
network architecture, proving to be very efficient for
learning new objects. These characteristics motivated
the choice of this architecture.

For each model developed, we tuned the network’s
hyper-parameters to optimize the learning process
by modifying the learning rate, batch size and
accumulation, solver type, learning policy, and the
number of epochs as needed. For the performance
evaluation of the spot detection network, we used the
evaluation metrics mentioned in Section 4.
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After several tests, the best model obtained for the
detection of active regions reached a maximum degree
of 80.75% accuracy, 74.22% Recall, 61.37% mAP, and
77-35% F1 score. Fig. 8 shows the performance of the
neural network in the training phase, where the brown
line at the top of the figure represents the accuracy,
the purple line represents mAP, and the pink line
represents Recall.

It is important to note that although DetectNet has
one of the best structures for modeling object detection
models, it was necessary to adjust some parameters
and values in its structure. This procedure is because
their filters work better with larger images (1248 x 384
pixels), making their sensitivity to detect small objects
low.

Therefore, to adapt the model and increase its ability
to identify smaller objects, we made some adjustments
to the DetectNet model structure described as follows:

+ We zeroed the probabilities of changes in the image,
i.e., we informed the deep neural network that
the images are normalized. Therefore, the model
should not consider any probability that the images
have been resized, rotated, overlapped, or any other
changes.

- Resizing the image dimensions, i.e., we reported
that the model would handle 512 x 512 pixels.

- To identify the objects, several filters run through
the original image. In DetectNet, when panning the
image, the convolution operation sets the stride to
16 pixels, making the model less sensitive to smaller

Loss

objects, especially when detecting active regions in
low-resolution images. Therefore, we adjusted this
stride for 8 pixels offsets.

+ As we reduced the stride, it was also necessary to
reduce the number of layers in the deep neural
network. Then, we set the “pool1/3x3_s2” layer
kernel and stride parameters to 1.

Analyzing the graph in Fig. 8, there is a rapid rise
in model accuracy, as well as a rapid fall in loss values.
This situation shows that DetectNet’s altered structure
model has a high learning rate, learning to identify
sunspots at a certain speed. However, still, there is a
sequence of later times, which have a lower learning
rate. The need for these times is to improve the model
by making slight adjustments to the weights.

5.2 Classification of identified active regions

For the classification of the active regions, we
developed a program to extract the regions from the
dataset for object detection and classify them according
to their active regions through information from the
Helioviewer portal. Thus, we obtained a dataset of
active regions, containing 1548 images, distributed in
the following classes (magnetic configurations):

+ A (): 223 images.

+ AG (a - ): 111 images.
+ B (B): 408 images.

« BG (8 - v): 774 images.

n
Accuracy (%)

20 40 60 50 100

Epoch

W loss_bbox (train)

loss_coverage (train) M loss_bbax (val)

B loss_coverage (val) I mAP (val) B precision (val)

recall (val)

Figure 8: Learning performance graph of the active regions identification model.
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Although there are several classifications for spot
groups, we took the classifications assigned to the
active regions in this project from the Helioviewer
portal. The portal provides only the four magnetic
configurations (a, « - v, 8, and 8 - v) mentioned in the

previous paragraph and which are the most relevant.

Notice that magnetic configurations are more likely to
be associated with the occurrence of solar flares.
Thus, we separated the images belonging to the
dataset according to their magnetic classification. In
addition to this primary separation, we divided the
base according to the need to train, validate, and test
a network, following the same pattern as the object
detection base: 70% of its volume was allocated to the

training phase, 20% to validation and 10%for testing.

Once organized, we submitted the dataset to the DIGITS
software to segment it according to the specifications
required for the training of the classification model.
Once the dataset was ready for use, we developed
several active region classification models, which we

classified as A (o), AG (a - 7), B (B), or BG (8 - 7).

For the performance evaluation of the active region
classification network, we used the evaluation metric
mentioned earlier in Section 4, accuracy (represented
by the red line in the graph).

The best model obtained reached a maximum level
of 88% accuracy. Fig. 9 shows the evolution of this
model during its training. The red color line represents
the accuracy of the model at the top of the figure.

Analyzing Fig. 9, it is possible to see the difference
between the learning curve and the sunspot detection

Epoch

B loss (train) oss1/loss (train)

loss1loss (val)

M loss2/oss (train) M accuracy (val)
W loss2/accuracy (val)

model, shown in Fig. 8. During the learning process
of the active region classification model, the learning
stabilization of the model only occurs near epoch
100, proving that even after the initial learning leap,
the model continued to learn. This fact differs from
the learning of the active region identification model,
which only had a higher learning rate until epoch 20,
working only with adjustments after that period.

5.3 System for identifying and classifying
active regions

Finally, with the elaborated models, we developed a
system, implemented in Python, able to integrate both
models for the identification and classification of active
regions. Fig. 10 illustrates the tasks performed by the
system.

The system receives images from a magnetogram
dataset stored on disk. These images are then
normalized to fit the models. The normalization
includes, for example, adjustments to the dimensions
that the model works on.

After normalization, the system identifies the active
regions present in the image from the best active region
detection model. This module provides the coordinates
of the active regions detected for the classification of
these regions.

Finally, each active region detected is classified.
After this classification, the system generates new files
with the images from each identified active region, cut

— 100

Accurmcy (")

B loss (val
oss2floss (val)

W loss1/accuracy (val)

Figure 9: Graph of learning performance of the selected active region classification model.
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Figure 10: System for identifying and classifying
active regions.

from the image received by this module. The system
also produces an image with the visual identification
of the locations of the active regions (delimited by
rectangles), as well as the classification accuracy levels
of each region, as Fig. 11 shows.

Figure 11: Magnetogram from Fig. 1 with some
identified and classified active regions.

Thus, as an example of the operation, the system
produces the image in Fig. 11 from the magnetogram
processing in Figure Fig. 1, with the active regions
adequately identified and classified. Besides, from
this image, the system cropped the active regions
indicated in Fig. 12. There are six active regions in
the magnetogram, four of which are 3 - v, marked as
BG in Figs. 12a to 12d, and the others are o« marked A
in Figs. 12e and 12f.

Notice that in Fig. 11, the system did not label some
tiny active regions automatically. This result is due

(a) Active region (b) Active region (c) Active region

BG on upper left BG approximately BG on the upper
side of in the center of the right side of the

magnetogram. magnetogram. magnetogram.

i

(e) Active Region (f) Active region A
near the center of on the far right
the magnetogram. side of the
magnetogram.

(d) Active region
BG on the lower
left side of the
magnetogram.

Figure 12: Active regions extracted automatically from
the magnetogram in Fig. 11.

to the following reasons: (i) these active regions do
not fall within those with the potential to cause solar
flares; (ii) they have such a relatively small area that
they also have no potential for class C, M or X solar
flares; or (iii) due to errors in detection, as its accuracy
is currently 80%.

6 Conclusions

The models obtained and the system developed in this
research were satisfactory and with results compatible
with the best works described in the literature on the
subject. Deep learning neural network models, both
for identification and classification of active regions,
showed accuracy equal to or greater than 80%.

Besides, the system that incorporates these models
for the identification and classification of active regions
provides an automatic mechanism that highlights
and indicates the likelihood of classification of active
regions on a magnetogram, with the accuracy given in
the previous paragraph.

However, despite the promising results, there are
still possibilities for improvement. Thus, we propose
as a future work the investigation of the use of deep
learning techniques in the images of the Sun obtained
at higher resolutions and other wavelengths, notably at
1700 A and 1600 A. These wavelengths highlight other
features of the active regions that can help improve the
solar flares forecasting.
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