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Abstract

Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated
screening algorithms have the potential to improve identification of patients who need further medical attention. However,
the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm
employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions
such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-
processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of
lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with
different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW
classification approach can identify different lesions within an image without having to utilize different algorithms for each
lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-
level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-
soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver
operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation
protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique
associated with semi-soft coding and max pooling obtained an AUC of 94.2+2.0%, outperforming current methods. Those
results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses
results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level
descriptors.
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Introduction

For progressive diseases, such as complications of diabetes mellitus,

early diagnosis has a huge impact on prognosis, allowing corrective

or palliative measures before irreversible organ damage takes

place. In the case of Diabetic Retinopathy (DR), early detection is

crucial to prevent vision loss. Therefore, screening patients for

early signs of DR pathology is important to prevent the disease or

limit its progression. However, in disfavored, rural or isolated

communities, the access to healthcare professionals – particularly

to ophthalmology specialists – is difficult or not possible, therefore

reducing opportunities for early detection and timely treatment of

DR.

Computer-aided diagnosis may solve that dilemma by auto-

matically deciding who should be referred to an ophthalmologist

for further investigation. However, in order to be useful, the

automated system must identify a specific type of lesions that

occurs both in isolation and in combination with other types of

lesions, and make accurate decisions on the need to refer the

patient to a specialist for further assessment.

Most detection algorithms explore specific structural character-

istics of a single type of DR lesion. Thus each method is specifically

developed for a type of lesions. Those algorithms, therefore,

require extensive image pre-processing and many ad hoc decisions

[1–14]. As each algorithm is limited to dealing with a specific

lesion, the system must employ a separate algorithm for each DR-

related lesion present in the image and combine the results of very

distinct algorithms in order to make a decision on referral.
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The methodology we propose is based upon the bag-of-visual-

words (BoVW) model and employs a different strategy, associating

a two-tiered image representation to maximum-margin support-

vector machine (SVM) classifiers. Such methodology was widely

explored for general-purpose image classification, and consists of

the following steps: (i) extraction of low-level local features from

the image; (ii) learning of a codebook using a training set of

images; (iii) creation of the mid-level (BoVW) representations for

the images based on that codebook; (iv) learning of a classification

model for one particular lesion using an annotated training set; (v)

using the BoVW representation and the learned classification

model for deciding on whether or not a specific lesion is present in

a retinal image. One advantage of this very flexible framework is

that it can employ the same scheme for all lesions, varying only the

data used to learn the codebook and the classification model.

The two-tiered image representation rests upon the extraction

of low-level local features and their aggregation into mid-level

BoVW representation. The mid-level BoVW consists of two

operations: the coding of the low-level feature vectors using the

codebook, and the pooling of the codes, which are combined into a

single aggregated feature vector [15]. There are several options

available for the coding and pooling operations.

The work presented here extends prior work that considered

BoVW for detecting DR-related lesions in retinal images [16–18]

by systematically exploring several alternatives for both the low-

level and mid-level feature extraction of two large datasets and

performing a full statistical analysis in order to determine the best

combination of parameters for classification of DR.

This work focuses on the problem of screening and identifica-

tion of diabetic retinopathy rather than on evaluating diabetic

retinopathy severity. An important contribution of our work is the

decision for referral. The decision for referral is estimated

directly from a normalized vector of the ‘‘probability of presence’’

(confidence scores) of the individual lesions (as assigned by the

individual lesion detectors) without the need for an intermediate

severity estimation step. The criterion for judging the performance

of the automatic referral algorithm is whether it agrees with a set

of medical specialists on the need that the patient see an

ophthalmologist in the 12 months that follow the fundus image

assessment. This work brings important contributions to the

empirical evaluation of DR-related lesion detection, in order to

make the evaluation more rigorous. First, is the use of a cross-

dataset protocol, an important precaution in the design, since in

clinical practice, the images that need to be classified have rarely

the same image specification (camera, resolution, operator, field of

view (FOV)) than the images used for training. Second, is the use

of a global statistical analysis to establish the parameters for the

BoVW model that achieve the most positive overall effect on

improving detection rates.

Diabetic Retinopathy
Diabetes mellitus is a chronic end-organ disease that affects the

circulatory system, including the blood vessels of the retina, where

it may trigger diabetic retinopathy (DR). DR is the major cause of

blindness for people of working age in Europe and the U.S. Due to

the long asymptomatic phase of DR, retinal vascular complica-

tions may already be widespread when diagnosis is finally

established, compromising the treatment outcomes [19].

As of 2012, diabetes affected 347 million people worldwide [20].

According to the International Diabetes Federation (http://www.

idf.org/diabetesatlas/5e/diabetes), prevalence may reach 552

million people by the year 2030. Since the number of ophthal-

mologists is not increasing at the same rate, there is concern that

medical personnel will be unable to cope with the increasing

number of DR patients. Therefore, automated screening appears

as an important adjunct for diabetes clinics by reducing specialist

workload [3,21,44]. Automated detection and referral information

is particularly important for poor, isolated, or rural communities,

where the full-time presence of an ophthalmologist is not possible.

The current state of the art on aided diagnosis of DR, although

obtaining a high sensitivity and specificity, tends to be specialized

for a specific type of lesion [1–14]. For bright lesion detection,

sensitivities range from 70.5 to 100.0% and specificities from 84.6

to 99.7% [1,4,10–14]; for red lesion detection, sensitivities range

from 77.5 to 97.0% and specificities from 83.1 to 88.7% [1–3]. A

summary of results found in the literature is presented in Tables 1

and 2.

The development and implementation of single-lesion algo-

rithms is a limitation for accurate referral as, in general, a method

developed for one lesion cannot be directly applied to other

lesions, preventing the development of a general framework for

multi-lesion detection and referral. In order to overcome this,

several multi-lesion schemes were proposed. Li et al. [22]

implemented a real-time management tool for diabetic eye disease

that focuses on the two main DR-related lesions: microaneurysms

and hard exudates. However, their framework does not exploit a

unique technique for the detection of both lesions simultaneously.

Lesions are first detected using several image analysis criteria

including texture measurements. This provides a content-based

image retrieval framework once the microaneurysms and exudates

have been detected in each image. The information is grouped

together and a complete description of the retinal image is created

as query, which is then compared to a database of past images with

known diagnoses.

Another common limitation of using current algorithms for DR

detection and classification is the need for complex and ad hoc pre-

and post-processing of the retinal images, depending on the lesion

of interest. The pre- and post- processing address issues like image

acquisition and field-of-view variations, or adaptations to take

ethnicity of the patients into account [21,23]. Preprocessing of

retinal images may include standardizing the resolution of the

image, normalizing color, segmenting and removing blood vessels

[24], and detecting and removing the optic disk [3,25]. For this

task, morphological operators [26] are often employed as part of

the pre-processing step [12–14].

Automated techniques for DR detection are not restricted to the

detection of lesion types but can also be aimed at identification of

the disease stage/severity. Nayak et al. [27], for example, used

morphological operations and texture analysis to extract the

features for an automated classification algorithm with neural

networks. The features are related to the area of blood vessels, area

of hard exudates and image texture. The neural network then

classifies the images as non-proliferative retinopathy, proliferative

retinopathy, or normal. A simple scheme for classification of DR

progression ranging from healthy to mild, moderate and severe

non-proliferative retinopathy was proposed by Jelinek et al. [28]

based upon the colorization of the optic disc. Yun et al. [29] also

used morphological operations and neural networks for the

identification of DR progression. The process begins with contrast

improvement, histogram equalization, morphological operations

and binarization. After preprocessing the images with morpho-

logical operations, the system extracts six features by counting the

pixels contained in the perimeter and the area of interest for each

RGB channel. Four groups can be identified using this procedure:

normal retina, moderate non-proliferative retinopathy, severe

non-proliferative retinopathy and proliferative retinopathy. Both

methods [27,29] achieved a sensitivity of 90.0% and a specificity of

100.0% for retinopathy classification.

Lesion Classification in Retinal Images
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The decision process for referring or not referring a patient

using individual lesion classifiers has also received attention [41–

44]. Niemeijer et al. [4] combined different detectors for specific

lesions into a single automatic decision scheme. More recently,

Jelinek et al. [18] also investigated fusion schemes for obtaining

decisions from the evidence of specific anomaly detectors.

Research in automated retinal lesion classification is becoming

more general, bypassing the need for pre- and post-processing.

Rocha et al. [16] proposed a unified framework for detection of

both hard exudates and microaneurysms. The authors introduced

the use of bags-of-visual-words representations for DR-related

lesion detection, creating a framework easily extendible to different

types of retinal lesions. However, the bags-of-visual-words model

employed in that work was simple and chosen without any

theoretical or experimental design analysis but rather from

experimental results in other fields of image analysis [30]. This

has opened up the opportunity for substantial improvements,

which are explored in this paper. Furthermore, alternative

combinations for the bags of visual words were evaluated in a

more statistically rigorous experimental design, supporting the

claims and decisions based on bags of visual words for DR

detection and referral versus non-referral classification.

BoVW Representations
A two-tiered feature extraction scheme, based upon the creation

of an aggregation of encoded local features became a staple of the

image classification literature. The technique was popularized by

the work of Sivic and Zisserman [30], who made explicit an

analogy with the traditional bag-of-words representation used in

information retrieval [31]. That formalism from information

retrieval is reformulated for local image descriptors as ‘‘visual

words’’ by associating the low-level local features to the elements of

a codebook, which is aptly named a ‘‘visual dictionary’’. The

number of visual words for a given image is represented as a

histogram named bag of visual words (BoVW), and used as a mid-

level representation.

Learning the codebook is a challenge for BoVW representa-

tions. The traditional way involves unsupervised learning over a

set of low-level features from a training set of images. K-means

clustering, for example, can be used on a sample of these features

and the k centroids be employed as codewords. There is also

Table 1. State of the art for the detection of bright lesions.

Work Sens Spec AUC Dataset Approach

Sinthanayothin et al. [1] 88.5% 99.7% – 30 Recursive Region-Growing Segmentation (RRGS) and
thresholding

Niemeijer et al. [4] 95.0% 88.0% 95.0% 300 Each pixel is classified in a so-called lesion probability map.

Sánchez et al. [10] 100% 90.0% – 80 Mixture models and dynamic threshold for segmentation,
followed by a postprocessing to distinguish the lesions.

Giancardo et al. [11]**** – – 88.0% 169*+1200**+89*** Features based on color, wavelet decomposition and exudate
probability. Several classification algorithms.

Fleming et al. [12] 95.0% 84.6% – 13219 Multi-scale morphological process followed by thresholding

Sopharak et al. [13] 80.0% 99.5% – 60 Mathematical morphology methods followed by thresholding

Welfer et al. [14] 70.5% 98.8% – 89*** Mathematical morphology methods and thresholding

*HEI-MED dataset.
**MESSIDOR dataset.
***ROC dataset.
****AUC obtained for training on HEI-MED dataset and test on Messidor dataset.
doi:10.1371/journal.pone.0096814.t001

Table 2. State of the art for the detection of red lesions.

Work Sens Spec AUC Dataset Approach

Sinthanayothin et al. [1] 77.5% 88.7% – 23 RGGS in green channel.

Jelinek et al. [2] 97.0% 88.0% – 758 A microaneurysms (MA) detector notes the number of MAs and dot-
hemorrhages detected

Fleming et al. [3] 85.4% 83.1% 90.1% 1441 MA detection with emphasis on the role of local contrast normalization

Giancardo et al. [5]* – – – 100** Microaneurysms Detection with Radon Cliff Operator

Antal & Hajdu [6] – – 90.0% 1200*+100** Combination of internal component of MA detectors

Lazar & Hajdu [7]* – – – 100** Statistical measures of attributes on peaks are used in a naı̈ve Bayes
classification. Scores are thresholded for a binary output

Zhang et al. [8]* – – – 100** Multiscale Correlation Filtering (MSCF) and dynamic thresholding for intensity-
based detection and localization

Sánchez et al. [9]* – – – 100** Statistical approach based on mixture model-based clustering and logistic
regression

*MESSIDOR dataset.
**ROC dataset.
doi:10.1371/journal.pone.0096814.t002

Lesion Classification in Retinal Images
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considerable variation throughout the literature on the size of the

codebook, ranging from a few hundred codewords up to hundreds

of thousands.

The metaphor of ‘‘visual word’’ should not be taken too literally.

While textual words are intrinsically semantic, visual words are

usually appearance-based only. Moreover, the BoVW model was

considerably extended since the seminal work of Sivic and

Zisserman. New ways of encoding the local descriptors using the

codebook were proposed, as well as new ways of aggregating the

obtained codes. This stretched the metaphor of ‘‘visual word’’ too

much, and a more formal model was proposed by Boureau et al.

[15], making the coding and pooling operations more explicit.

Therefore, the BoVW formalism evolved into a meta-model for

which myriads of variations are possible, based upon the

combinations of low-level descriptors, codebook learning, coding

and pooling.

The coding and pooling operations can be conveniently

understood in matrix form proposed by Precioso and Cord (see

Figure 1, adapted from [32,33]). Their formalism starts with

the choice of the codebook (e.g., by sampling or learning on the

low-level feature space) as an indexed set of vectors,

C~ cif g, i[ 1, :::, Mf g, where ci[Rd . Then, the low-level local

features for each image, which are represented by the index set

X~ xj

� �
, j[ 1, :::, Nf g, where xj[Rd is a local feature and N is the

number of salient regions, points of interest, or points in a dense

sampling grid on the image are extracted. The final BoVW vector

representation encodes a relationship between X and C [15,33].

The coding step transforms the low-level descriptors into a

representation based upon the codewords, which is better adapted

to the specific task and preserves relevant information, while

discarding noise. Coding can be modeled by a function

f : Rd?RM , f xj

� �
~aj that takes the individual local descriptors

xj and maps them onto individual codes aj . The classical BoVW

model employs the ‘‘hard assignment’’ of a low-level descriptor to

the closest codeword, and can be modeled by:

am,j~1 if m~ arg min k ck{xj

�� ��2

2
else 0 ð1Þ

where am,j is the mth component of the encoded descriptor.

Recent publications [15,34], however, suggest that ‘‘soft’’

assignment schemes, which allow degrees of association between

the low-level descriptors and the elements of the codebook, work

better, avoiding both the boundary effects and the imprecision of

hard assignment [34].

The pooling step takes place after coding, and can be

represented by a function g : fajgj [ 1, :::, N?RM , g aj

� �� �
~z.

The classical BoVW corresponds to a ‘‘counting of words’’ (called

sum-pooling) and can be modeled as:

g aj

� �� �
~z : Vm,zm~

XN

j~1
am,j ð2Þ

This simplistic pooling has been criticized, and taking the

maximum activation of each codeword (in a scheme aptly named

max-pooling) is often much more effective [35]:

g aj

� �� �
~z : Vm,zm~ max

j[ 1, :::, Nf g
am,j ð3Þ

The vector z[RM obtained from pooling is the BoVW

representation, which is used for classification.

There are a number of choices to normalize the BoVW vector.

For example, in the classical BoVW scheme, ‘1-normalization is

often employed to turn a vector of occurrences into a vector of

relative frequencies.

The methods section outlines how the traditional BoVW models

can be modified to improve discrimination as part of developing

DR-related lesion detectors. In addition, it discusses how to

combine the classification outcomes of different detectors in order

to obtain a more global decision for an image.

Materials and Methods

This section provides a complete description of the proposed

technique. First a detailed overview of each conceptual aspect of

technique is discussed; then, a precise procedural description of the

scheme, detailing all steps and parameters is provided. The

scheme proposed here employs a two-tiered image representation

based upon the extraction of low-level local features from the

images, and then the aggregation of those local features into mid-

level BoVW features. Finally, the BoVW features are used as input

to a maximum-margin SVM classifier [36].

BoVW-based Representation
The mid-level BoVW representation is the main contribution of

this paper and outlined here. Several BoVW-based representations

have been proposed in the literature [16,18,38]. However, the

methods discussed in these papers do not explore and compare the

Figure 1. The BoVW model illustrated as a matrix. The figure highlights the relationship between the low-level features xj, the codewords cm

of the visual dictionary, the encoded features am, the coding function f and the pooling function g.
doi:10.1371/journal.pone.0096814.g001

Lesion Classification in Retinal Images
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different possible implementations associated with BoVW-based

representations nor do they present any elaborate discussion on

the rationale for using the representations proposed therein.

BoVW-based representation rests upon several possible choices

that have to be made for low-level feature extraction, type of

codebook, coding and pooling when applying this method to

image classification. The factors considered for this research are

listed below and explained in the remainder of this section:

N Low-level feature extraction: mid-level BoVW features

depend upon low-level features. The features used for low-level

feature extraction have a large impact on subsequent

performance of the classifier. Two low-level BoVW feature

extraction possibilities (factor levels) are sparse features,

based upon the detection of salient regions or points-of-

interest; and dense features, sampled over dense grids of

different scales;

N Choice of codebook: ‘‘codebook learning’’ was performed

by a k-means clustering over features chosen at random from

a training set of images. An alternative class-aware factor

level is also proposed;

N Coding: For this factor, three levels were compared:

N Hard assignment: associates each descriptor fully and

only to its closest codeword in the codebook, (Eq. 1). The

advantage of these schemes is the sparsity of the codes; the

disadvantages are that they are subject to imprecision and

noise when the descriptors fall in regions close to the limit

between the codewords in the feature space. This scheme

was explored in previous work for detecting DR-related

lesions [16–18].

N Soft assignment: there are several ‘‘soft’’ assignment

schemes to deal with the deficiencies associated with hard

assignment. The option employed here was codeword

uncertainty [34], which has not been explored as a DR-related

lesion detector but is generally considered the most effective

for other classification tasks:

am,j~
ka( cm{xj

�� ��
2
)P

c[C ka( c{xj

�� ��
2
)
, ð4Þ

where ka is the Gaussian kernel.

N Semi-soft assignment: soft assignment solves the bound-

ary effects of hard assignment, but creates too dense codes. A

‘‘semi-soft’’ scheme is often more desirable. One such

scheme, designed specially for the DR-related lesion

detection, is described below.

N Pooling: For the pooling step, both the traditional sum-

pooling (Eq. 2) and the more recent max-pooling, described in

Eq. 3, are employed. The pooling step is considered one of the

most critical for the performance of BoVW representations,

and max-pooling is considered an effective choice [15,33,35].

In all cases a ‘1-normalization on the final BoVW vector was

used.

Semi-soft Coding
The semi-soft coding tries to combine the advantages of both

hard and soft assignments, i.e., avoiding the boundary effects of

the former, and the dense codes of the latter. The main idea is to

perform a soft assignment, but just to the codewords that are the

closest to the descriptor, keeping all others at zero. This concept

can be translated into many designs of which two were used for

this research:

N only the closest codeword is activated;

N the activation is proportional to the inverse of the distance

between the codeword and the descriptor.

Therefore, the generated codes are very sparse. On the other

hand, the effect of the descriptors is ‘‘felt’’ even at relatively long

distances (compared to exponential decay of a Gaussian kernel as

in (4)). The scheme has the advantage of requiring no parameters.

The coding function can be described as:

am,j~

1

cm{xj

�� ��
2

, if m~ arg mink ck{xj

�� ��
2

0, otherwise,

8<
: ð5Þ

Class-aware Codebook
Rocha et al. [16] proposed employing a ‘‘double codebook’’,

extending the usual scheme in a class-aware fashion, especially

adapted for DR-related lesions. This is possible because, in

addition to the training images being annotated for each lesion,

the regions where the lesions appear are also identified (usually 2

to 5 per image from affected patients).

Using the class-aware codebook ensures a sufficient number of

codewords representing the appearance of the lesion structures.

Because the lesion areas are relatively small, a non-class-aware

codebook tends to be dominated by codewords representing

healthy regions. During the coding phase, a good codebook is

important, as the local feature vectors need to be assigned to the

components of the mid-level feature vector in a way that allows

discriminating the positive and negative classes. Having very few

codewords for the lesion structures reduces this discriminating

power. Selection of feature vectors is usually employed for general-

purpose visual recognition – but in those tasks, recognition does

not hinge on such subtle differences, as is the case for DR-related

lesions. The scheme can be employed for both dense and sparse

Figure 2. Regions of interest (dashed black regions) and the
points of interest (blue circles). Points of interest falling within the
regions marked by the specialist are considered for creating the class-
aware codebook – half of the codebook is learned from local features
sampled inside the regions marked as lesions, and half the codebook is
learned from local features outside those regions.
doi:10.1371/journal.pone.0096814.g002

Lesion Classification in Retinal Images
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low-level descriptors, and is illustrated for the latter case in

Figure 2.

The class-aware scheme works by creating two independent

codebooks, one from descriptors sampled from regions marked as

containing lesions by the specialist, and one from descriptors

outside those regions (which includes images from healthy

patients). Then, two independent k-means clustering methods

are performed, each with k corresponding to half the size of the

desired codebook. After the clustering is finished, the two sets of

centroids are simply concatenated, generating a codebook of the

desired size.

The Procedure in Detail
Creation of the training model for one type of lesion:

1. Factor: Low-level feature detection –

a. Factor level: dense – on each image, patches are selected

on a dense grid using radii of 12, 19, 31, 50, 80, 128 pixels.

These radii are used both as scale and as the vertical/

horizontal sampling steps of the grid;

b. Factor level: sparse – on each image, the SURF

algorithm version 1.0.9, released by Bay et al. [39], is

used to detect salient patches. Compared to the alternative

SIFT [40], SURF is faster and has shown superior results

in previous evaluation studies for DR-related lesion

detection [16,18,38]. SURF sensitivity parameters are

pre-tuned to detect 400 points of interest (PoIs) per image

(after the filtering of step 2) on average, and to operate on

twice the image resolution.

2. The edge of the retina in the images is found using a threshold

and features falling outside the threshold are discarded.

3. Low-level feature description: SURF is used to create a feature

vector for each detected point of interest. The algorithm is

parameterized to operate on twice the image resolution and to

extract 128-dimensional extended feature vectors instead of the

default 64-dimensional ones.

4. Using the annotations of lesion regions provided by the medical

specialists, two sets of feature vectors are found: ‘‘lesion’’ and

‘‘normal’’ (in our experiments, and average of 2,820 vectors for

the lesion features and 19,710 vectors for identification of

normal features were found).

5. Independently, a k-means clustering is employed on each set

‘‘lesion’’ and ‘‘normal’’, using Euclidean distance, for 200

rounds or until convergence. For all treatments using sparse
low-level feature detection k = 250, and for all treatments using

dense feature detection k = 750. The larger codebook for

dense extraction was an attempt to improve the results of dense

extraction by considering a finer codebook that would be able

to accommodate the extra amount of features being extracted;

6. The two sets of centroids are concatenated to form a codebook

of 2k vectors;

7. Factor: BoVW-based representation –

a. Factor level: hard assignment – for each image, the

BoVW is created by encoding its low-level feature vectors

according to Eq. 1, and pooling using sum-pooling;

b. Factor level: soft assignment – for each image, the

BoVW is created by encoding its low-level feature vectors

according to Eq. 4, and pooling using max pooling. The

standard-deviation employed in the Gaussian kernel was

s = 45, a value derived from observing a population of

distances between pairs of SURF descriptors in a very

large dataset of images independent from the ones used in

this work;

c. Factor level: semi-soft assignment – for each image,

the BoVW is created by encoding its low-level feature

vectors according to Eq. 5, and pooling using max pooling;

8. The BoVW feature vectors, together with the medical

specialists annotations into positive (with lesion) 6 negative

(normal) classes are used to train an SVM model with a

Gaussian kernel using LibSVM [37]. The classifier parameters

C (the margin ‘‘hardness’’, an inverse regularization parameter)

and c (the standard deviation of the kernel) are found by cross-

validation, using the default built-in grid-search fine-tuning

algorithm.

9. The output training model is composed of the midlevel

codebook created at steps 4–6 and the classifier model created

at step 8. No other data (images, low-level features, etc.) has to

be preserved in order to make the classification step possible.

One training model is created for each lesion, varying the

annotations used in steps 4 and 8.

The scales 12, 19, 31, 50, 80, 128 chosen in step 1(a), allow the

characterization of both small lesions, such as superficial

hemorrhages, and very large ones, such as cotton-wool spots.

The smallest and largest scales were selected after surveying the

lesions (manually) in training images and determining the smallest

and largest size of the structures of interest. The intermediate steps

were chosen to form (roughly) a geometric progression. This

methodology is usually applied in Computer Vision [56], [57],

although recent works on very large training datasets – containing

up to millions of images – tend to favor fewer scales. For smaller

datasets such as medical images, where accuracy is at premium, a

more exhaustive analysis, with a greater number of scales, is

feasible.

Obtaining the classification scores for one type of lesion:

10. The image to be classified is described following steps 1–3

and 7, using the learned codebook. It is important to employ

the same treatment used in the creation of the model (e.g., if

the model was created using dense low-level features and

hard assignment, this same treatment must be used for the

images to be classified);

11. Using the learned SVM model and the BoVW feature vector

created in step 10, a classification score is obtained, allowing

deciding whether the lesion is present.

Experiments

Data, Protocol and Metrics
The experiments were performed using three different retinal

image datasets annotated by medical specialists:

N DR1 dataset, provided by the Department of Ophthalmol-

ogy, Federal University of São Paulo (Unifesp). Each image

was manually annotated by three medical specialists and all the

images in which the three annotations agree were kept in the

final dataset. The images were captured using a TRC-50X

(Topcon Inc., Tokyo, Japan) mydriatic camera with maximum

resolution of one megapixel (6406480 pixels) and a field of

view (FOV) of 45u.

N DR2 dataset, provided by the Department of Ophthalmol-

ogy, Federal University of São Paulo (Unifesp) but images
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annotated by two medical specialists (none of them worked on

the DR1 dataset). The dataset was captured using a TRC-

NW8 retinograph with a Nikon D90 camera, creating 12.2

megapixel images, which were then reduced to 8676575 pixels

for accelerating computation.

N Messidor dataset, captured in three different French

ophthalmologic departments. There are three subsets, one

for each department. The images were captured using a

Topcon TRC-NW6 non-mydriatic retinograph with a 45u
field of view, at the resolutions of 1,4406960, 2,24061,488 or

2,30461,536 pixels.

Both DR1 and DR2 datasets are publicly available under

accession number 10.6084 and URL http://dx.doi.org/10.6084/

m9.figshare.953671. The datasets were collected in different

environments with different cameras, at least one year apart and

in different hospitals. The Messidor dataset is also available for the

scientific community: http://messidor.crihan.fr. Image character-

istics of the three datasets are given in Table 3.

All experiments were performed using a cross-dataset protocol,

an important precaution in the design, since in clinical practice the

images that need to be classified have rarely the same image

specification (camera, resolution, operator, FOV) than the images

used for training. The datasets were collected in very different

environments with different cameras, at least one year apart and in

different hospitals. The entire DR1 dataset was employed as the

training dataset. The DR2 and Messidor datasets were then

employed for testing. The cross-dataset protocol poses experimen-

tal design challenges, because of the different standards used in the

annotations of the three datasets. In DR1, images are annotated

with the specific tags deep and superficial hemorrhage. In DR2, only the

general red lesion tag is employed. In Messidor, the images are

annotated not only for the presence of the lesions, but also for the

severity, evaluating the number of microaneurysms and hemor-

rhages (red lesions), the presence or absence of neovascularization

(not evaluated in this work), and the proximity of the exudates to

the macula. In order to make the cross-dataset classification

possible, and the joint statistical analysis of the two sets of

experiments (DR2 and Messidor) feasible, we proposed corre-

spondences in the annotations, detailed in Table 4.

The DR2 dataset has an additional annotation indicating the

need for referral by the patient for follow-up by an ophthalmol-

ogist in the following 12 months after retinal assessment. Details

about the annotation are presented in Fusion (referral vs. non-referral

classification). The dataset is freely available through FigShare

repository, under accession number 10.6084 and URL http://dx.

doi.org/10.6084/m9.figshare.953671.

To quantify precisely the performance of the proposed method

and enable reliable comparisons, we employed receiver operating

characteristic curves (ROCs), which plot the compromise between

specificity (few false positives) and sensitivity (few false negatives).

To quantify performance as a single scalar, the area under the

ROC curve (AUC) was applied. Since the classifier can trade

specificity for sensitivity, the AUC gives a better overall

performance measure than any particular point of the specifici-

ty-sensitivity metrics.

The source code implementing the technique, as well as

the scripts performing the experiments are available through

GitHub: https://github.com/piresramon/retina.BoVW.plosone.

git. The source code and scripts are written in Python, and use

python.numpy 1.3.0, python.matplotlib 0.99.1.1, and python.scipy

0.9.0 as dependencies. The adopted license for the code is GPLv3.

Slight differences in the feature extraction phase are expected

since some parts of the code rely on other publicly available

libraries and they are in constant update.

Results

The detailed results are presented in Tables 5 and 6, which

show the AUCs obtained for each lesion with the DR2 and

Messidor datasets.

Results shown in Tables 5 and 6 suggest that the best

configuration of the BoVW for each lesion (and dataset) are the

proposed semi-soft coding on sparse features, except for the

drusen, where semi-soft coding performs best with dense features.

We believe that the good performance of dense features on

Messidor is due to the presence of very challenging images

(patients with very early DR signs, showing very few lesions).

However, the results show show that the semi-soft coding scheme

works well on the Messidor dataset when associated either with

sparse features or dense features.

Such local case-by-case analysis, however, fails to account for

random effects. A less naı̈ve analysis must take into account all

results across BoVW parameters, datasets and lesions. The goal in

DR classification is to obtain the overall best configuration for the

BoVW, if such configuration can be found with confidence. The

Table 3. Annotation occurrences for the three datasets.

Lesion DR1 DR2 Messidor

Hard Exudates (HE) 234 79 654

Superficial Hemorrhages (SH) 102 – –

Deep Hemorrhages (DH) 146 – –

Red Lesions (RL)* – 98 226

Cotton-wool Spots (CS) 73 17 –

Drusen (D) 139 50 –

Other lesions, excluding above – 71 –

All lesions** 482 149 654

Normal (no lesions) 595 300 546

All images 1,077 520 1,200

*‘‘Red Lesion’’ is a more general annotation that encompasses both SH and DH, besides microaneurysms.
**The lesions do not sum to this value because an image can present several types of lesion at once.
doi:10.1371/journal.pone.0096814.t003
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DR2 and Messidor datasets provide different annotation stan-

dards, with the former having annotations for all four levels of

lesions, but the latter having annotations only for hard exudates

(HE) and red lesions (RL). This presents a challenge for

performing (and to interpreting) such unbalanced experimental

designs and separate balanced studies were performed: one

considering only DR2 and all four lesions; and another for both

test sets, but with only HE and RL lesions.

The box-plot in Figure 3 illustrates, for each treatment, how

much it improves or decreases the performance of the detection of

the lesions, in comparison to the other treatments. As the lesions

and datasets vary widely in difficulty, and we are interested in

determining a treatment (combination of factor levels) that

performs globally better than the others, we analyzed the

normalized impact on the AUC of each factor. In order to do

that, for each combination of lesion–dataset, we normalized the

AUCs (subtracting the mean and dividing by the standard

deviation of AUCs for that combination). More formally, the

procedure takes each specific lesion ,, computes the mean AUC m,

for all treatments on that lesion, computes the standard deviation

of those AUCs s,, and then, if the AUC of a specific treatment on

that lesion is b,, the normalized AUC will be n‘~ b‘{m‘ð Þ=s‘.
Therefore, Figure 3 shows, graphically, those standardized effects.

The correct interpretation of the box-plot shows, for example, that

the treatment ‘‘sparse–semi-soft’’ is, on average for all lesions on

DR2, one standard deviation above the mean of AUCs obtained

by all treatments, i.e., avg‘ n‘½ �&1.

The synergy between sparse feature extraction and semi-soft

coding for DR-lesion classification can be appreciated in the box-

plot of Figure 3. Remark that most combinations of feature

extraction and coding function have a wide distribution of

standardized effect, meaning that they improve the detection of

some lesions at the cost of decreasing the performance of others. In

contrast, sparse feature extraction and semi-soft coding offer

consistently improved results.

In order to obtain quantitative results, we have also performed a

factorial ANOVA that formalizes the same experimental design

used on Figure 3. The following factors (and levels) were

employed:

(1) low-level feature extractor (Sparse, Dense),

(2) coding (Soft, Semisoft, Hard), and

(3) test dataset (DR2, Messidor)

with repeated measures for each lesion (HE, RL, CS, D) and all

errors measured within-subjects (the subjects are each individual

combinations of lesion and dataset). To remove the strong scaling

effect of the lesions and datasets, each subject was independently

standardized by subtracting the average and dividing by the

standard deviation, as explained above.

The analysis on the DR2 subset indicated an important

interaction effect between the choice of Low-level Features and

Coding (p = 0.007). The main effect of Coding alone just fails

significance (p = 0.062), and all other effects and interactions are

non-significant. These factors have a significant interaction effect

due to the two low-level feature extractors providing better results

with different coding schemes (Table 5). The analysis on the other

data subset, with both test datasets and only HE and RL lesions,

shows similar results, with significantly better outcomes for the

sparse+semi-soft combination (p = 0.011).

A crucial factor of the current study is the validation protocol.

The training and testing was performed using distinct datasets,

exploring the cross-validation protocol, which is more robust than

the 5-folds cross-validation used previously. Despite using this

stricter protocol of different datasets for training and testing, our

Table 4. Composition of the cross-dataset training and testing.

Train Test

Lesion DR1 DR2 Messidor

Hard Exudates (HE) 234 79 654

Superficial Hemorrhages (SH) 102 – –

Deep Hemorrhages (DH) 146 – –

Red Lesions (RL)* 180 98 226

Cotton-wool Spots (CS) 73 17 –

Drusen (D) 139 50 –

*The annotations SH and DH are added to form the training set in DR1, summing 180 images due to the overlap.
doi:10.1371/journal.pone.0096814.t004

Table 5. Accuracy for Training with DR1, Testing with DR2.*

Sparse features Dense features

Hard Semi-soft Soft Hard Semi-soft Soft

Hard Exudates (HE) 93.1 97.8 95.5 94.5 95.6 95.6

Red Lesions (RL) 92.3 93.5 87.1 89.1 90.6 89.9

Cotton-Wool Spots (CS) 82.1 90.8 84.9 84.5 90.4 90.3

Drusen (D) 66.5 82.8 62.6 84.1 82.5 75.5

*AUC in %; best accuracy is shown in bold.
doi:10.1371/journal.pone.0096814.t005
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results for hard-sum compare well to previous results obtained by

our team.

Fusion (Referral vs. Non-referral Classification)
One important challenge in DR-related lesion detection is

making a decision about the necessity of referral to a specialist,

instead of only indicating the presence of particular anomalies

[41–44]. This section is an extension of a previous work, in which

we proposed a method that recommends referring a patient with

diabetes for diabetic retinopathy assessment based on the image

classification outcome [44].

As in our previous publication [44] this work also investigates

the need for referral. However, now we prioritized the develop-

ment of a new algorithm aiming at improving the accuracy of the

individual lesion detectors and consequently also the assessment of

the referral classifier. In addition to all the contributions

mentioned in the Introduction, we highlight the original innova-

tion regarding the proposed semi-soft pooling technique, which is

highly effective for common DR-related lesions such as red and

white lesions as well as for the hard-to-detect lesions, such as

cotton-wool spots and drusen, creating a better representation that

can be explored for referral assessment.

The approach taken here was to use the best individual

detectors i.e., the ones that employ sparse feature extraction with

semi-soft assignment, and employing fusion techniques in order to

make a final decision. For comparison the coding and pooling

approaches employed in [44], hard-sum and soft-max assign-

ments, both with the sparse features in the low-level extraction

were implemented.

The most advanced way to perform the fusion is using a meta-

classification approach. This referral-decider operates on high-

level features obtained from a vector of scores consisting of the

individual lesion detectors. The referral-decider is then trained

using independent annotations.

Considering the sparse feature detection as the best choice to

detect DR-related lesions, for each coding/pooling technique

explored and proposed in this work, we employed all six detectors

trained on the DR1 dataset. The scores of the detectors are then

used to compose the feature-vectors of a second-layer classifier.

Note that one important parameter for the individual classifier

is their operational setup (the sensitivity-specificity compromise).

This parameter can vary widely. In order to make the meta-

classification feature-space more stable, a 562-fold cross-valida-

tion design was applied [45] for validating the results using meta-

classification of the DR2 dataset: the set is divided in half; one half

is used for training and the other for testing; the procedure is

repeated five times. Training and testing are carried out on the

DR2 ‘‘same lesions’’ scenario, as described above. The training

part is used for finding the best operational points for each

detector learned from the DR1 dataset as well as for finding the

classification parameters regarding the meta-classification SVM

model (second layer classifier).

DR2 contains 98 images annotated as referable and 337 images

labeled as non-referable. For annotation, the specialists usually

consider the number and the location of DR-related lesions,

among other factors. The Messidor dataset could not be used in

assessment for referral as it lacks the needed annotations.

Figure 4 shows the ROC curves that express the mean and the

standard deviation obtained using meta-classification. The area

under the curve is equal to 89.9+3.8% for hard-sum as the

assignment technique. Using the soft assignment technique

associated to the max pooling, an AUC of 92.1+3.0% was

obtained. The semi-soft approach, proposed in this work for DR-

related lesion detection, outperformed the already known tech-

niques (e.g., [16]) also for a higher-level classification stage with an

AUC of 94.2+2.0%.

To evaluate the significance of the referral results, the Friedman

test was employed followed by the Nemenyi post hoc analysis,

which indicated that the semi-soft coding analysis was superior to

the others for referring accuracy (p = 0.007) [46,47].

Table 6. Accuracy for Training with DR1, Testing with Messidor.*

Sparse features Dense features

Hard Semi-soft Soft Hard Semi-soft Soft

Hard Exudates (HE) 64.4 70.3 66.2 70.5 70.0 70.0

Red Lesions (RL) 77.4 83.1 76.6 85.2 85.1 82.5

*AUC in %; best accuracy is shown in bold.
doi:10.1371/journal.pone.0096814.t006

Figure 3. Standardized AUCs per lesion, for six combinations
of feature extraction and coding (horizontal axis). In the box-
plots (black), the whiskers show the range up to 1.56 the interquartile
range, and outliers are shown as small circles. Averages (small squares)
and 95%-confidence intervals (error bars) are also shown, in red, for the
same data. The strong synergy between sparse feature extraction and
semi-soft coding is evident: it has consistently improved results for all
lesions, while the other combinations improve the results of some
lesions at the cost of decreasing it for other lesions (as shown by the
spread of the standardized effects in the vertical axis). This plot is based
on a balanced design with the DR2 dataset and all lesions, the other
balanced design with both datasets and two lesions show similar
results.
doi:10.1371/journal.pone.0096814.g003
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Discussion

Automated lesion detection has a huge potential to facilitate the

identification of diabetic retinopathy progression, and the access to

care, for rural and remote communities, providing a screening tool

able to determine which patients need to be referred to specialists.

Moreover, by providing an accurate detection of lesions at the

early stages of DR, automated lesion detection has the potential to

reduce treatment costs and improve prognosis.

Previous research on the detection of diabetic retinopathy

related lesions obtained satisfactory results for the detection of

single DR-related lesions. However, the detection of different

lesions normally relied upon the use of distinct image classification

approaches based on specific properties of each lesion type. That

made the detection of multi-lesion detection as part of DR

progression a complex procedure, since it requires the implemen-

tation, parameterization and validation of multiple very distinct

detection methods. On the other hand, recent advances in DR-

related lesion detection based on bags-of-visual-words approach

proposed an elegant unified approach for all DR-related lesions,

with the additional advantage of bypassing the need of pre- and

post-processing operations.

The state of the art in BoVW methods for DR-lesion detection

was advanced by extending possible combinations of applying

BoVW for detecting DR-related lesions in retinal images. We

explored several combinations of alternatives for the extraction of

low-level features, and the creation of mid-level representations

pointing out important choices when designing a unified

framework for detecting DR lesions.

One of the contributions in this paper is the proposal of a new

semi-soft coding scheme, which explores the advantages of the

most traditional hard-sum coding (sparse coding) as used in prior

work for DR lesion detection [16] and soft assignments (which

better deal with imprecisions and noise). As we show in the

experiments, with ANOVA, the semi-soft coding associated with

sparse feature extraction provides a good balance for designing an

efficient and effective DR-related lesion detector. A comparison

with Rocha et al.’s paper [16], in which the class-aware scheme is

proposed for the detection of bright and red lesions exploiting the

classical hard-sum approach, indicates that the current innovation

significantly improves the outcome of DR lesion classification.

Rocha et al. obtained AUCs of 95.3% and 93.3% for bright and

red lesions respectively, whilst the current results obtained an

AUC of 97.8% for bright lesions and 93.5% for red lesions from

images of the DR2 data set. New findings from the current study

include excellent results for two hard-to-detect DR lesions: cotton-

wool spots (AUC = 90.8%) and drusen (AUC = 82.8%).

At least for the particular problem of DR-related lesion

detection, the sparse feature extraction + semi-soft coding

combination implemented for this work leads to a different

conclusion to the current art on Computer Vision for general

object recognition, in which dense sampling + soft assignment is

consistently reported to give better results.

In this research, we prioritized the decision on need of

consultation directly from the lesion detectors, instead of relying

on intermediate steps of localizing individually the lesions, or

assessing lesion severity. Given the best representation, we devised

fusion techniques for defining whether the patient need or not be

referred to a specialist. In this sense, using an elaborated fusion

technique based on meta-classification (which seeks a pattern

based upon the classification score confidences returned by each

individual lesion detector), we achieved an AUC of 94.2%+2.0%

that outperforms other approaches and represents a step forward

for automatic assessment of referral necessity. That result

outperformed also the best one obtained in our previous work

for referral vs. non-referral classification (93.4+2.1%) [44].

Our work here did not aim at evaluating diabetic retinopathy

severity, but at detecting the presence or absence of DR-related

lesions, an active area of research (see [4], [44], [52], and [53], for

some examples). The current protocols employed are not

comparable with diabetic retinopathy classification protocols used

in studies such as Early Treatment Diabetic Retinopathy Study

(ETDRS) [49], and the Wisconsin Epidemiologic Study of

Diabetic Retinopathy (WESDR) [48], because the aims of the

current research were to identify images that required referral

based on the presence of red and white lesions. It must also be

noted that grading systems like ETDRS are somewhat complicat-

ed and pose a challenge for correct use in clinical situations [51].

That has motivated further recommendations, including the

Australian Guidelines [50], which simplified the diabetic retinop-

athy classification.

The current contribution is important in a practical context, as

it simplifies screening procedures, which can be carried out in

rural and remote communities with the use of nonmydriatic

cameras, and without the presence of a specialist. The sensitivity

and specificity obtained in our experiments are high and fall within

international guidelines for DR detection accuracy for multi-lesion

detection [50], [54], [55]. Necessity of referral however does not

require determining the exact location of either red or white

lesions. The current protocol however does provide the type of

lesion present in the image. Presence of either or both these lesions

would require further investigation by an ophthalmologist.

Although we have not directly focused on the computing time

(or processing cost) herein, we note that none of the techniques

tested as part of the current research is much expensive. To put

the figures into context, the training step (which is performed once

and offline) takes a few hours (typically less than six hours), and the

testing step (performed online for each patient image) takes at most

two minutes. Those times are for a computer with a 2.6 GHz

processor, four computing cores, and 16 GB of RAM. To offer a

qualitative idea, the combinations that employ dense extraction for

the low-level descriptors are slower than the ones that employ

sparse extraction; and, for the coding, the hard assignment is the

Figure 4. Final decision for necessity of referral. The decision is
based upon meta-classification using the scores of the individual lesion
detectors as features. The meta-classifier is trained and tested on the
DR2 dataset.
doi:10.1371/journal.pone.0096814.g004
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fastest, the soft assignment is the slowest, and the semi-soft falls in-

between.

Finally, the discovery of the best method for effective DR-

related lesion detection opens the opportunity for deploying the

sparse technique with semi-soft coding to other applications. A

possible future work consists of identifying the precise location of

the lesion, as well as the size and quantity of different lesion types

associated with DR, and defining the degree of DR severity of a

patient as early, mild, moderate nonproliferative retinopathy and

proliferative.
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