
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://thesai.org/Publications/ViewPaper?

Volume=8&Issue=3&Code=IJACSA&SerialNo=58

DOI: 10.14569/IJACSA.2017.080358

Direitos autorais / Publisher's copyright statement:

©2017 by The Science and Information Organization. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

High Performance of Hash-based Signature Schemes

Ana Karina D. S. de Oliveira
FACOM-UFMS

Federal University of Mato Grosso do Sul
MS, Brazil

Julio López
IC-UNICAMP

University of Campinas
SP, Brazil

Roberto Cabral
UFC-CRATEÚS

Federal University of Ceará
CE, Brazil

Abstract—Hash-based signature schemes, whose security is
based on properties of the underlying hash functions, are promis-
ing candidates to be quantum-safe digital signatures schemes. In
this work, we present a software implementation of two recent
standard proposals for hash-based signature schemes, Leighton
and Micali Signature (LMS) scheme and Extended Merkle
Signature Scheme (XMSS), using a set of AVX2 instructions on
Intel processors. The implementation uses several optimization
techniques for speeding up the underlying hash functions SHA2
or SHA3, and other building block functions which lead to high
performance for signature operations on both schemes. On an
Intel Skylake processor, using a tree of height 60 with 12 layers,
the signing operation for XMSS takes 3,841,199 cycles (1,043
signatures per second) at 128-bit security level (against quantum
attacks). For an equivalent security, the LMS system computes
a signature in 1,307,376 cycles (3,065 signatures per second). We
also provide the first comparative performance results for signing
and verification of both schemes using different parameters.
The results of our implementation indicate that both schemes
LMS and XMSS can achieve high performance using vector
instructions on modern processors.

Keywords—post-quantum cryptography; digital signature;
Merkle signature; LMS; XMSS

I. INTRODUCTION

A digital signature scheme is an important cryptographic
tool for public-key cryptography. Digital signature scheme are
widely used for providing authenticity, integrity, and non-
repudiation of data. Nowadays, the most commonly used
digital signature schemes are ECDSA [1], RSA [2] and
DSA [3]. These schemes have their security based on the
difficulty of factoring large integers or computing discrete
logarithms. In [4], Shor introduced a polynomial-time quantum
algorithm for factoring and computing discrete logarithms.
Thus, digital signature schemes that can resist an attack by
quantum computers are an active area of research.

A One-Time Signature (OTS) scheme allows using a key
pair to sign exactly one message [5]. These schemes are
inadequate for the most practical situations since each key pair
is used only for a single signature. In [6], Merkle proposed N-
Time Signature (NTS), that are built out of one-time signature
schemes. The Merkle Signature Scheme (MSS) makes one-
time signatures practical by combining N = 2h of them
in a single structure, which is a complete binary tree of
height h. These systems have regained interest since 2006
because of their resistance against quantum-computer-aided
attacks. Since the security of these schemes is based on the
underlying cryptographic hash function, they are called hash-
based signature schemes.

Independently of the actual realization of quantum com-
puting, governmental and standardization organizations are
encouraging the transition to post-quantum cryptography, i.e.
cryptographic schemes not known to be vulnerable to quantum
computer attacks [7]. Standardization efforts are under way, for
example, the National Institute of Standards and Technology
(NIST) is now accepting submissions for quantum-resistant
public-key cryptographic algorithms [8].

Some MSS variants were proposed: An improved Merkle
signature scheme (CMSS) [9] builds two chained trees allow-
ing the signature of 240 messages and also reduce the runtime
of key pair and signature generation. The Merkle signatures
with virtually unlimited signature capacity (GMSS) [10] allow
to sign a significant number of messages (280) with one
key pair. XMSS [11] introduced a signature scheme with
minimal security requirements. A hierarchical based-hash sig-
nature XMSSMT [12] allows signing a large but a fixed
number of messages. SPHINCS [13] is a practical stateless
hash-based signature scheme and introduces a new method
to randomize tree-based stateless signatures. SPHINCS has
significantly larger signatures, which could make it impractical
in some scenarios. In 2016, the work [7] analyzes the state
management in hash-based schemes N-times and proposes a
hybrid stateless/stateful scheme to protect against unintentional
copies of the state of the private key and has smaller and faster
signatures.

There are two proposals for standards of hash-based sig-
nature schemes: the first one [14] describes the LMS, an
adaptation of the one-time signature scheme Lamport-Diffie-
Winternitz-Merkle [15]. The second one [16] describes XMSS.
Therefore, the design and efficient implementation of secure
and practical digital signature schemes are crucial for appli-
cations that require data integrity assurance and data origin
authentication.

Our Contribution. In this work, we present a software
implementation of two recent standard proposals for hash-
based signatures schemes, LMS and XMSS, using the Intel
AVX2 vector instruction set. We use parallel optimization
techniques for improving the performance of the underlying
hash functions SHA2 and SHA3. We also show how to
speed up the main building blocks of LMS and XMSS by
taking advantage of the fastest implementation of SHA2 and
SHA3. We provide a comparative performance analysis of both
schemes.

Organization. The rest of this paper is organized as
follows. We describe: the Winternitz One-Time Signature
(WOTS) and (WOTS+) in Section II, the MSS and XMSS in
Section III, Hierarchical Signatures Scheme (HSS) in Section

www.ijacsa.thesai.org 421 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

IV and LMS and XMSS drafts in Section V. We present
the target microarchitectures in Section VI. We discuss the
software optimizations in Sections VII and VIII. In Section
IX we show the performance results. In Section X we present
the conclusions.

II. WINTERNITZ ONE-TIME SIGNATURE (WOTS) AND
(WOTS+)

The OTS are used to validate the authenticity of a message
by associating a secret private key with a shared public key
[14]. In these one-time signatures, each private key must be
used only one time to sign any given message. As a part of the
signing process, a digest of the original message is computed
using a cryptographic hash function H , and the resulting digest
is signed. The WOTS [15] is a modification of the Lamport
One-Time Signature (LOTS) [5]. WOTS uses a parameter
w which is the number of bits to be signed simultaneously.
This scheme produces smaller signatures than Lamport, but
increases the number of one-way function evaluations from 1
to 2w − 1, in each element of the signing key. Hülsing [17]
proposed WOTS+, a modification of WOTS that uses a chain-
ing function fe starting from random inputs. This modification
allows eliminating the requirement to use a collision-resistant
hash function.

WOTS uses a one-way function f : {0, 1}n → {0, 1}n and
a cryptographic hash function g : {0, 1}∗ → {0, 1}n, where n
is positive integer. The WOTS chaining function fe computes
e iterations of f on input x ∈ {0, 1}n where e ∈ N (e < w).

The WOTS chaining function is defined as:

fe(x) =

{
x if e = 0;
f(fe−1(x)) if e > 0.

Similarly, the WOTS+ chaining function fe computes e
iterations of fK on inputs key K ∈ {0, 1}n chosen randomly,
x ∈ {0, 1}n and bitmask bm = (bm1, ..., bmw−1) chosen
randomly, with e ∈ N. Then, the chaining function fe is
defined as:

fe(x, bm) =

{
x if e = 0;
fK(fe−1(x, bm)⊕ bme) if e > 0.

These schemes are parameterized by a security parameter
n and the Winternitz parameter w ∈ N, for w > 1. The values
n and w are used to compute len (number of elements of the
signature), where len = len1 + len2.

In WOTS: len1 = dn/we, len2 = d(blog2len1c + 1 +
w)/we.

In WOTS+: len1 = dn/(log2(w))e, and len2 =
b(log2(len1(w − 1)))/(log2(w))c+ 1.

A. WOTS/WOTS+ key pair generation

The private keys sk = (sk0, . . . , sklen−1) can be generated
uniformly at random, or via a pseudorandom process. The pub-
lic verification key is pk = (pk0, ..., pklen−1) ∈ {0, 1}(n,len).

In WOTS: pki = f2
w−1(ski).

In WOTS+: pki = fw−1(ski, bm).

B. WOTS/WOTS+ signature generation

To generate the signature of a message M , first compute
the message digest d = g(M). Then, d is split into len1
binary blocks, resulting in d = (m0||...||mlen1−1), where
|| denotes concatenation. The checksum c is computed and
added to d, where c can be divided into len2 blocks c =
(c0|| . . . ||clen2−1).

In WOTS: c =
∑len1−1
i=0 (2w −mi).

In WOTS+: c =
∑len1−1
i=0 (w − 1−mi).

Let b = d||c be the concatenation of the extended string d
with the extended string c. Thus b = (b0||b1|| . . . ||blen−1) =
(m0|| . . . ||mlen1−1||c0|| . . . ||clen2−1). The signature of the
message M is sig ots = (sig0, ..., siglen−1), where:

In WOTS: sigi = f bi(ski).

In WOTS+: sigi = f bi(ski, bm).

C. WOTS/WOTS+ verification

To verify the signature sig ots of the message M , we
compute (b0, ..., blen−1) in the same way as it was calculated
during signature generation. Then, we compute: temp sig =
(sig′0, . . . , sig

′
len−1).

In WOTS: sig′i = f2
w−1−bi(sigi).

In WOTS+: sig′i = fw−1−bi(sigi, bm).

If temp sig = pki for i = {0, 1, ..., len − 1}, then the
signature is valid, otherwise is invalid.

III. MERKLE SIGNATURE SCHEME (MSS)

MSS [15] is a digital signature scheme that consists of
three algorithms: key generation, signing and verification. This
scheme constructs a binary tree where the leaves are the
verification keys, and the public key is the root of the tree.
This key pair can sign/verify messages. A tree of height h and
2h leaves will have 2h one-time key pairs. The digest of the
one-time verification public key (g(pk0||...||pkt−1)) will be a
leaf of the Merkle tree.

A. MSS key pair generation

First, the signer must select the tree height h ∈ N , h ≥ 2.
Merkle uses a cryptographic hash function g : {0, 1}∗ →
{0, 1}n, where n is a positive integer. The treehash algo-
rithm [15] is used to generate the public key that is the root
of the tree. The authentication path (Aut) is formed by the
sibling right nodes, connecting the leaf up to the tree root,
which is used to validate the public key. Aut is saved during
the execution of the treehash algorithm.

B. MSS signature generation

The signature generation consists of two steps: first, the
signature of the message digest g(M) is generated using the
WOTS signature algorithm and the corresponding secret key
sks of the leaf s. Then, the signature SIG = (s, sigs, Aut)
contains the index of the leaf s, the WOTS signature sigs,
and the authentication path Aut. In the second step, the
next authentication path Aut is generated. This step can be

www.ijacsa.thesai.org 422 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

done efficiently with the algorithm proposed by [18] which
is a modification of the classic authentication path algorithm
proposed by Merkle [6].

C. MSS verification

The signature verification consists of two steps: first, the
signature sigs is used to recover a leaf of the tree. Second, the
public key of the Merkle tree is validated in the following way.
The receiver can reconstruct the path (p0, ..., ph) from leaf s
to root. The index s is used to decide the order in which the
authentication path is reconstructed. Initially, p0 = Ys. For
each i = 1, 2, . . . , h, pi is computed using the condition (if
bs/(2i−1)c ≡ 1 mod 2) and the recursive formula:

pi =

{
g(Auti−1‖pi−1) if bs/(2i−1)c ≡ 1 mod 2;
g(pi−1‖Auti−1) otherwise.

Finally, if the value ph is equal to the public key pub, the
signature is valid.

D. Extended Merkle Signature Scheme (XMSS)

XMSS [11] is a modification of MSS. This scheme uses
a slightly modified version of Winternitz WOTS+ described
in Section II. XMSS is provably forward-secure and efficient
when instantiated with two secure and efficient function fam-
ilies: one second-preimage resistant hash function family Gn
and the other a pseudorandom function family Fn, where
Gn = {gK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n} and
Fn = {fK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}.

The parameters of XMSS are: n ∈ N, the security param-
eter; w ∈ N(w > 1), the Winternitz parameter; m ∈ N, the
message digest length; and h ∈ N, the height of the binary
tree.

An XMSS binary tree is constructed to generate the public
key pub. The XMSS tree is a modification of the Merkle
tree. A tree of height h has h + 1 levels. The nodes on
level j are nodei,j , for 0 < j ≤ h and 0 ≤ i < 2h−j .
XMSS uses the hash function gK and bitmask (bitmaskTree)
bm ∈ {0, 1}2n, chosen uniformly at random, where bm2i+2j

is the left bitmask and bm2i+2j+1 is the right bitmask. The
bitmasks are the main difference among the others Merkle tree
constructions since they allow to replace the collision-resistant
hash function family by a second-preimage resistant hash
function family [11]. The nodes are computed as: nodei,j =
gK((node2i,j−1 ⊕ bm2i+2j)||(node2i+1,j−1 ⊕ bm2i+2j+1)).

To generate a leaf in the XMSS tree, a Ltree is used. The
Ltree [11] uses bitmasks in the same form as in the XMSS
tree. The WOTS+ public verification keys (pk0, . . . , pklen−1)
are the first len leaves of a Ltree. If len is not a power of 2,
then there are not sufficiently leaves to build a binary tree.
Therefore, a node that has a no right sibling is lifted to a
higher level of the Ltree until it becomes the right sibling of
another node.

IV. HIERARCHICAL SIGNATURES SCHEME (HSS)

A hierarchical signature scheme is an N-time signature
scheme that uses other hash-based signatures in its construc-
tion [7]. Some schemes use this constructions as in CMSS [9],
GMSS [10], XMSSMT [12], LMS [14] and SPHINCS [13].
The basic construction of HSS consists of a tree with d layers
of subtrees, for i = 0, . . . , d − 1, where the lower layer is
i = d−1. The trees on top and intermediate layers are used to
sign the root nodes of the trees on the respective layer below.
Trees on the lowest layer are used to sign the actual messages.
All trees can have equal height.

An HSS private key consists of the private keys of each
level. The public key is the root of the top level. A signature
HSS consists of the public keys of levels 1 to (d − 1), along
with the signatures in each level, and the signature of the
message M with the private key of the lower level (d − 1).
Hierarchical signatures allow for shorter signing time of a
message M while offering a larger number of signed messages.

V. LMS AND XMSS DRAFTS

Among the variants of the Merkle scheme, we chose the
two standard proposals for hash-based signatures to imple-
ment: LMS [14] and XMSS[16]. LMS system is an adaptation
of the original Lamport-Diffie-Winternitz-Merkle one-time sig-
nature system [15] and uses the WOTS and the HSS. XMSS
specifies the one-time signature scheme (WOTS+), a single-
tree (XMSS) and a multi-tree variant (XMSSMT) of XMSS.

A. LMS

Leighton and Micali [14], introduce a “security string”
that is distinct for each invocation of H to improve security
against attacks that amortize their effort against multiple invo-
cations of the hash function H . The following fields can appear
in a security string: (I , D ITER, D PBLC, D MESG,
D LEAF , D INTR, C, r, q, i, j) as described in [14]. The
values I , D and C must be chosen uniformly at random, or
via a pseudorandom process; r is the node number associated
with a particular node of a hash tree; q is set to be the leaf num-
ber of the hash tree; i is the index of the private key element
(pk[i]); and j is the iteration number used when the private
key element is being iteratively hashed. To generate a leaf
(leaf [q]) in the LMS tree, the hash functions are used: tmp =
H leaf(X)=Hash(X), where X = (S||pk[0]|| . . . ||pk[p −
1]||D PBLC) and leaf [q] = H node(Y)=Hash(Y), where
Y = (I||tmp||u32str(r)||D LEAF).

B. XMSS

XMSS [16] randomize each hash function call; this means
that aside of the initial message digest, for each hash function
call a different key and different bitmask is used. These values
are pseudorandomly generated using a pseudorandom function
that takes a key SEED and a 32-byte address ADRS and
outputs a n-byte value, where n is the security parameter. There
are three different types of addresses; one type for the hashes
used in one-time signature schemes, one for hashes used within
the main Merkle-tree construction, and one for hashes used in
the Ltrees.

www.ijacsa.thesai.org 423 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

C. Functions used in LMS and XMSS

This section describes the differences between the main
functions of both schemes LMS and XMSS. Let F be the
chain function used to generate the private keys, sign and verify
messages. Let G be the function used to generate the inner
nodes of the tree. Let I ,r,i,q,j be the security strings defined
in Section V-A; S=I+q; Left and Right be nodes left and
right; KEY be a key; BM , BM0 and BM1 be bitmasks;
ski be the WOTS secret key. The function uYstr(X) takes a
nonnegative integer X as input and return Y/8 byte strings.

In the LMS, the main functions have the following input
sizes:

• F (X) = Hash(X), where X is composed of
(S||ski||u16str(i)||u8str(j)||D ITER) and |X| is
(3n+ 8) bytes.

• G(Y) = Hash(Y), where Y is composed of
(I||node[2.r]||node[2.r + 1]||u32str(r)|| D INTR)
and |Y | is (4n+ 5) bytes.

In the XMSS, the main functions have the following input
sizes:

• F (X) = Hash(X), where X is composed of
((toByte(0, n)||KEY ||ski XOR BM)) and |X| is
(3n) bytes.

• G(Y) = Hash(Y), where Y is composed of
((toByte(1, n)||KEY ||(Left XOR BM0)||
(RightXORBM1)) and |Y | is (4n) bytes.

D. Keys LMS and XMSS

The sizes of the private key(SK), the verification key (PK)
and the signature (Sig) are described below.

In LMS:

• SK = (q, SEED sk, SEED I) has 2n + 4 bytes,
given that q requires 4 bytes, the seed to generate the
secret key and the seed to generate the identifier I
have n bytes.

• PK = (I, T [1]) has 3n bytes, given that the identifier
I has 2n bytes and the root of the tree (T [1]) has n
bytes.

• Sig = (q, sig ots, auth[0], . . . , auth[h−1]) has (p+
1+ h)n+4 bytes, given that the index q has 4 bytes,
the WOTS signature has a random value C with n
bytes and sig with pn bytes; the authentication path
has hn bytes.

In XMSS:

• SK = (idx, wots sk, SK PRF, root, SEED) has
4n+ 4 bytes, given that the index leaf idx requires 4
bytes, and the secret key wots sk, the key SK PRF ,
the root root and the seed SEED require n bytes.

• PK = (root, SEED) has 2n bytes, given the root
and SEED require n bytes.

• Sig = (idx sig, r, sig ots, auth[0], . . . , auth[h− 1])
has (len+h+1)n+4 bytes, given that the idx sig has

4 bytes, the random value r has n bytes, the WOTS+
signature require lenn bytes, and an authentication
path require hn bytes.

E. Security considerations

LMS is provably secure in the random oracle model, as
shown by Katz [19]. From Theorem 8 of that reference: for
any adversary attacking arbitrarily many instances of the one-
time signature scheme, and making at most q hash queries, the
probability with which the adversary can forge a signature with
respect to any of the instances is at most q2(1−8n) [14]. The
format of the inputs to the hash function have the property
that each invocation of that function has an input that is
distinct from all others, with high probability. This property is
important for a proof of security in the random oracle model.
Let n be the number of bytes in the output of the hash function.
Therefore, we use n = 32 to have a security level of 128
bits, even assuming that there are quantum computers that can
compute the input to an arbitrary function with a computational
cost equivalent to the square root of the size of the domain of
that function.

XMSS provides strong security guarantees and is even
secure when the collision resistance of the underlying hash
function is broken. Parameters are accompanied by a bit secu-
rity value. The meaning of bit security is that a parameter set
grants b bits of security if the best attack takes at least 2(b−1)
bit operations to achieve a success probability of 1/2. Hence,
to mount a successful attack, an attacker needs to perform 2b

bit operations on average [20]. According to the security proof
in [16], it is not sufficient to break the collision resistance of
the hash functions to generate a forgery. More specifically, the
requirements on the used functions are that F and G are post-
quantum multi-function multi-target second-preimage resistant
keyed functions, F fulfills an additional statistical requirement
that roughly says that most images have at least two preimages,
PRF is a post-quantum pseudorandom function, H msg is
a post-quantum multi-target extended target collision resistant
keyed hash function.

VI. TARGET MICROARCHITECTURES

In this section, we describe the microarchitecture details of
the Intel processors (Haswell and Skylake) used in this work.
The Haswell microarchitecture, launched in 2013, supports
the AVX2 vector instruction set, which expanded the integer
arithmetic instructions of 128-bit to 256-bit registers. A single
AVX2 instruction can operate eight 32-bit values or four
64-bit values at the same time. These instructions allowed
four hashes could be processed concurrently for the SHA2-
512/SHAKE128 and eight hashes for SHA2-256.

The Skylake microarchitecture, released in 2015, is based
on the Haswell and Broadwell microarchitecture [21]. Skylake
improved the latency of some instructions. Some instructions
in Skylake (such as vmov, vpand and vpsllq) have better
throughput and can be used to better schedule the instructions.

In the following, we describe general aspects of these
micro-architectures, and the most relevant vector instructions
used in this work.

www.ijacsa.thesai.org 424 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

A. Vector operations

In the late 1990s, processor manufacturers focused their
efforts on exploiting data parallelism rather than instruction
parallelism. Thus, they incorporated functional units that could
execute a single instruction over a set of data. This processing
fits into the paradigm of parallel computing known as Single
Instruction Multiple Data (SIMD) [22].

In 1997, Intel launched its first set of instructions to
implement the SIMD paradigm; called Multimedia eXtensions
(MMX). MMX added 64-bit registers and vector instructions
that enabled the processing of two 32-bit operations; at that
time, the architectures had native 32-bit registers [21].

In 1999, Intel released the Streaming SIMD Extensions
(SSE) that included eight 128-bit registers (XMMs); the num-
ber of registers was doubled in the next year when the size
of native registers increased to 64. In the following years, the
SSE has evolved with the launch of the new instructions sets
SSE2, SSE3, e SSE4 [21].

In 2011, it was launched the Advanced Vector eXtensions
(AVX) instruction set, which introduced significant contribu-
tions to the architecture; were included 256-bit registers, called
YMMs, that are overlapped on XMMs registers. Also, AVX
introduced a new encoding format that allows the use of three-
operand assembly code, making the assignment of registers
more flexible.

The code that is compiled for an instruction set can be
executed only if both the CPU and the operating system sup-
port such set. Some compilers, like GCC, Clang and ICC can
perform vector operations automatically (without programmer
interference); however, it is not easy to determine whether
the code can be vectorized. It is possible to vectorize code
explicitly, by writing the code in assembly or using intrinsic
functions. The intrinsic functions are primitive operations in
the sense that each intrinsic function is translated into one or
more machine instructions.

B. Haswell

The Haswell microarchitecture, Intel’s 4th generation Core
processor family, was launched in early 2013 and present-
ing a series of improvements on performance and also new
instructions. There are instructions in the Bit Manipulation
Instruction (BMI), feature group that aid in SHA2 (RORX) and
RSA (MULX) performance increases. Also besides, the new
instruction set AVX2 that promote vector operations from 128
bits to 256 bits, increasing performance of integer operations
[23]. AVX2 has permutation and combination instructions that
allow moving the words contained in vector registers [24].

C. Skylake

The Skylake microarchitecture was launched in 2015. Sky-
lake offers the following enhancements: larger internal buffers,
higher cache bandwidth, higher throughput, better branching
predictor, low power consumption, throughput balancing, and
reduced floating point. A significant portion of the SSE,
AVX, AVX2 and general purpose instructions also had latency
improvements [21].

D. Relevant instructions

According to Agner Fog [24], the latency of an instruction
is the delay that the instruction generates in a dependency
chain, the unit of measure is clock cycles. Another factor that
influences performance is throughput, which is the maximum
number of instructions of the same type that can be executed
per clock cycle when the operands of each instruction are
independent of the previous instructions.

In Table I are highlighted some instructions of the AVX2
set that are relevant to the context of the efficient imple-
mentation of XMSS and LMS. In this table are shown the
latency, the throughput and the execution ports in Haswell and
Skylake [24].

TABLE I. LATENCY, THROUGHPUT AND EXECUTION PORT [24], [25]

Haswell Execution port
Vector instruction Latency Throughput 0 1 2 . . . 4 5
vmov 1 3 x x x
vpadd 1 2 x x
vpand/vpor/vpxor 1 3 x x x
vpsllq 1 1 x

Skylake Execution port
Vector instruction Latency Throughput 0 1 2 . . . 4 5
vmov 1 4 x x x
vpadd 1 3 x x x
vpand/vpor/vpxor 1 3 x x x
vpsllq 1 2 x x

The ports 0, 1 and 5 in Table I are the most used ports, and
therefore, the most critical in determining the efficiency of the
implementation. Note that some instructions in Skylake have
better throughput; this can be used to schedule instructions to
take advantage of this fact.

VII. SOFTWARE OPTIMIZATIONS

In this section, we will discuss the software optimization
aspects applied in this work for Intel micro-architectures:
Haswell and Skylake. Software optimization is committed to
making software faster and smaller and goes beyond of writing
a program with few lines of code. One must consider the costs
of software development, the programming language used, the
security of the code, and the computing power of processors.
We will show the most critical parts of our program and how
we apply optimizations using AVX2 instructions.

One of the general objectives of this work was to provide
techniques that enable the efficient use of vector instruction
sets in the implementation of the XMSS and LMS. Because
both schemes are based on hash functions, this work shows the
results of an efficient implementation that uses 256-bit registers
to compute four hash values using SHA2-512/SHAKE128 or
eight hash values using SHA2-256 concurrently.

The first optimization for improving both signature
schemes uses the computation of multiple hashes at the same
time. We call this approach multi-buffer optimization. As data
buffers are independent of each other and have messages of
the same size, it is possible to take advantage of the data-level
parallelization of the hash algorithms. In addition, once the
data is loaded into the registers, the data is processed several
times by the hash function, performing several iterations of the
hash algorithm on the same data, avoiding memory accesses.
The result of hash is also returned in the same order as it

www.ijacsa.thesai.org 425 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

was sent, making it easy to implement. This optimization was
applied in both hash functions SHA2 and SHA3.

A. SHA2 optimizations

The 256-bit vector instructions can process four 64-bit
words or eight 32-bit words using only one instruction. The
SHA2-512/SHAKE128 algorithm works internally with 64-bit
words and SHA2-256 with 32-bit words. Thus, taking advan-
tage of the 256-bit registers, four hashes could be processed
concurrently for the SHA2-512/SHAKE128 and eight hashes
for SHA2-256.

For example, in the calculation of W [t]:

W [t] = σ
256
1 (W [t− 2]) +W [t− 7] + σ

256
0 (W [t− 15]) +W [t− 16].

The operations with the values of W [t] for the eight
messages can be performed in parallel using 256-bit registers.
Each W [t] receives and processes 32-bit values. Thus, it is
possible to compute the operations for the calculation of eight
hashes at the same time with SHA2-256.

1) Optimizations based on processor execution ports:
Another optimization was to reformulate the code of the
functions that compute the hash of the messages, scheduling
the execution of the instructions to improve the throughput.
The core strategy of our implementation was to analyze the
main functions that process the messages to generate the hash.
We look for the instructions for these functions, the ports
available to execute them, the latency, and throughput, and the
dependencies in the code. We have eliminated several depen-
dencies in the SHA2 algorithm code. This approach allows
us to parallelize calculations when there is no dependence
between instructions.

The most critical functions are:

• T1(h, e, f, g) = h+Sig1(e)+Ch(e, f, g)+K256+W.

• T2(a, b, c) = Sig0(a) +Maj(a, b, c).

Analyzing the dependency chain in the function T1:

• Sig1(x) = Rot6(x)⊕Rot11(x)⊕Rot25(x).
• Rotn(x) = (SL)∨(SR) = (x� (32−n))∨(x� n).

• Ch(e, f, g) = (((f ⊕ g) ∧ e)⊕ g).

As an example, the function Sig1(x) makes three calls to
the rotation function Rotn(x). Sig1(x) performs three shifts
to the left (SL), three shifts to the right (SR) and three OR
operations. If each call to the Rotn(x) is performed separately,
then the instructions of this function will also be executed
separately, underutilizing the available ports on the processor.

Both microarchitectures offer three ports to execute the OR
instruction; then we unroll the Rotn(x) function to perform
all (SL) first, followed by (SR). Then, three SL values and
the three SR values will be available to execute three OR
operations in parallel. In particular, Skylake has one additional
port to perform the shift operation; then it is possible to execute
two shifts at the same time.

This analysis of the logical functions of the SHA2 algo-
rithm has resulted in an implementation that takes advantage
of the available ports by the processor used and improves
the throughput. As an example, we illustrate in Figure 1,
the execution sequence of the T1 function instructions in the
Haswell processor; the graph represents dependency in the
bottom-up design; where the nodes represent the operations
of the instructions and the numbers below each node represent
the time in clock cycles.

T1

h

Sig1 (e)

Ch (e, f, g)

ADD

ADD

ADD

K ADD WRot6 XOR Rot11

XOR Rot25Rot6xorRot11

SL OR SR SL OR SR SL OR SR
3 67

f XOR g
8 88

9

2 7 51 7 4

ef xor g AND

9
K+W

h+K+W

9

10

11

f xor g and e XOR g
10

t1t0

t0

t2

t0

t3t4

Sig1(e) + h+K+W

Fig. 1. Instruction scheduling of the function T1

.

The shift (SH) to the left (SL) and right (SR) of Figure 1
can be calculated in time 1 to 6. According to Table I, this
instruction has one cycle of latency and throughput one on
Haswell. The three operations OR are executed at time seven
because the throughput of this logical operation is three. Since
the latency of the OR instruction is one cycle, at time eight
the next instructions already can be executed.

Overall, the latency will be one cycle if we look isolated
instructions, but if we look at a long chain of instructions of
the T1 function, the total latency will be eleven cycles, where
the most critical parts are bit rotations. We can calculate, on
average, the total latency in Haswell of the T1 function, with
the following formula:

Lat Haswell = 6(SH) + 4/2(ADD) + 8/3(LOGIC).

Lat Haswell ≈ 11 cycles.

Analyzing the latency and the throughput in the Skylake
processor for the T1 function, we observe that some operations
have the same latency, but a better throughput. The SH
operation has a throughput of two and the operation ADD
a throughput of three. Thus, the latency calculation for the
Skylake processor can be expressed as:

Lat Skylake = 6/2(SH) + 4/3(ADD) + 8/3(LOGIC).

Lat Skylake ≈ 8 cycles.

Section IX shows how these optimizations improved the
performance of SHA2 in Haswell and Skylake.

www.ijacsa.thesai.org 426 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

B. SHA3 optimization

The Secure Hash Algorithm-3 (SHA-3) is a family of
functions that was standardized by NIST in 2015 [26]. This
family consists of four cryptographic hash functions and two
extendable-output functions (XOFs), called SHAKE128 and
SHAKE256. The permutation function used in the SHA-3
family is KECCAK-p [1600,24] and is the one responsible
for algorithm efficiency.

The permutation function KECCAK-p [1600,24] is com-
posed of five steps that are processed 24 times. The steps are:
the θ step, where is computed an XOR of each word of the
state with the parity of the left column and the right column
rotated one bit; the ρ step, where each word of the state is
rotated a fixed amount of bits; the π step where the words
of the state are permuted; the χ step, where is processed a
non-linear function between the elements of the same row; the
ι step, where is computed an XOR between the first element
of the state with a constant value. The KECCAK-p [1600,24]
function uses a state of 25 words of 64 bits. The use of AVX2
instructions allows to gather four words in the same register
and to process four states at the same time. To map four states
are required 25 variables of 256 bits; after the mapping, each
one of the 25 variables will be composed by one word of each
state.

To implement the θ step, we need only XORs and rotations;
the AVX instructions vpsllq and vpsrlq can be used to
emulate rotation instructions. The other four steps can be
implemented in blocks of five words at the same time; it is
important to process these words together to avoid a large
number of memory accesses because the Intel architecture has
16 256-bit registers and this implementation uses 25 variables.

In the ρ step is required to rotate a different amount of bits
in each word of the state. It is possible to process this step in
parallel using the AVX2 instructions vpsllvq and vpsrlvq
to emulate a variable rotate. The π step permutes the words
of the state; as each word of each state was mapped in the
same variable, the permutation just change the name of the
variables, that in fact, no instruction is required.

The χ step is processed in parallel by using one XOR and
the vpandn instruction and the ι step is just one XOR of the
first word of the state with a constant. The complete code can
be found in [27].

VIII. OPTIMIZATIONS IN LMS AND XMSS

The following software optimizations were applied to the
standard proposal LMS and XMSS. We will show how these
optimizations improved the algorithms of key generation,
signature, and verification of these schemes. Each of these
operations is based on hash functions. Thus, by optimizing
the underlying hash functions, we speedup the execution of
the signature operations of both schemes.

The optimized functions, based on hash algorithms, were:

• the keyed hash functions of LMS and XMSS;

• the function F of LMS and XMSS;

• the functions PRF and PRG of LMS and XMSS;

• the function H of XMSS.

A. Optimization of keyed hash functions

The keyed hashed functions of both schemes LMS and
XMSS always work with message blocks of the same size.
Then, in order to accelerate the computation of the keyed hash
function, we made a specialized implementation based on the
size of the message input to be processed and set the block
values and the pad values. Since the pad values are fixed,
there is no need to calculate the pad each time the function is
called. Figure 2 shows the optimization of the function F of
the XMSS with fixed pad for SHA2-256.

00..000 KEY Pad(SHA2)

Block2

SHA2

fixed value

tmp

[e
 ti

m
es

]

pk

tmp=tmp xor BM

tmp

initialize tmp=sk

fixed value

Block1

Fig. 2. Function F of the WOTS+.

In the specialized implementation of these functions, we
have created an interface to receive and processes 32-bit
message blocks on the SHA2-256 and 64 bits on SHA2-
512/SHAKE128. The creation of an implementation of these
functions with input, processing, and output with values of
32/64-bits, has significantly reduced processing time over
generic functions that receive 8-bit characters because the
conversion from 32/64 bit to 8 bits is time-consuming for the
processor.

The hash function SHA2 processes blocks of 512 bits
while the SHA3/SHAKE128 can handle up to 1344 bits of the
message at the same time. An implementation of the function
F of XMSS with SHAKE128 needs to process just a single
block while in SHA2 must process two blocks to generate the
hash value.

B. Optimization of the function F

The function F is used in the chaining function algorithm
to generate the verification keys OTS. In the signature, the
chaining function algorithm is also used to update the leaves
in the authentication path. Thus, reducing the execution time
of the function F reflected a significant improvement in the
performance of both schemes LMS and XMSS.

Figure 3 shows our implementation of the function F
with SHA2-512 which computes four instances in parallel,
generating four public keys pk at the same time. We load
four secret keys sk into the 256-bit vector registers, perform e
iterations of the function F and then store four private keys pk
on memory. We can compute the private keys pk in parallel
because its generation is independent. Additionally, we store
four instances of the pad value in a 256 register because these
values will be used multiple times.

www.ijacsa.thesai.org 427 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

tmp

[e
 ti

m
es

]

pk1

sk1

SHA2-512 SHA2-512 SHA2-512 SHA2-512

tmp tmp tmp

Block1 + Block2

pk2

sk2 sk3

pk3

sk4

pk4

Block1 + Block2 Block1 + Block2 Block1 + Block2

[e
 ti

m
es

]

[e
 ti

m
es

]

[e
 ti

m
es

]

Fig. 3. Implementation of the chaining function F with SHA2-512.
.

The use of SIMD instructions helped to reduce the run-
time of the function F , which are the computationally most
expensive parts for key and signature generation.

1) The Function F in the signature and verification: For
the generation of OTS keys, the optimization of the function F
was simple, because in the generation of keys pk, the function
F is performed the same number of times on all elements of
the secret key sk. However, for OTS signature and verification
generation, the application of the function F in each signature
element depends on the message digest M . So we made a small
change in the one-time signature and verification algorithms to
apply the function F in parallel in elements of the signature.

We have added a sort algorithm before the function F .
The vector msg, which contains how many times the function
F will be performed, is sorted according to the number of
applications of the function F . After sorting, we select the msg
elements that have the same value to run the F in parallel. The
function F is executed, and at the end, the signature elements
are scaled according to the original order.

C. Optimizing the functions PRG and PRF

The PRG pseudo random generator generates the secret
key elements sk using the PRF function. The secret keys are
calculated as sk[i] = PRF (S, toByte(i, 32)), to 0 ≤ i ≤ len.
The string S is a secret value generated randomly and is used
as a seed to generate all keys sk. The value i is concatenated
with the value S to generate the values of sk. Since there is no
dependence on the generation of the elements of sk, we could
generate eight values of sk at the same time with SHA2-256
and four values of sk with SHAKE128, reducing the execution
time of these functions.

The PRF function is used to generate the pseudoran-
dom values. This generator was implemented in key gen-
eration and the signature of the LMS and the XMSS. The
PRF : Hash(toByte(3, n)||KEY ||M) function receives the
values of KEY and M as input. We created the function
PRF SIMD, which receives eight values of KEY and eight
values of M in SHA2-256 and four values in SHAKE128.
Then, processes these values in parallel and returns eight or
four pseudorandom values.

D. Optimizing the implementation of the Ltree

The Ltree from XMSS [11] is used to generate the leaves of
XMSS. In this section, we show an optimization in the gener-
ation of the Ltree for improving the performance of generating

each leaf of the XMSS tree. This optimization was suggested
in [13]. The function G is applied to each concatenation of
children nodes to generate the parent node. Then, we modified
the Ltree algorithm to perform eight evaluations of the function
G at the same time. We generate eight internal nodes at the
same time, from 16 children nodes, which are concatenated
two by two. If the number of remaining nodes is not multiple
of 16, we generate the next internal nodes one by one as the
traditional way. If len is not a power of two, then there are not
sufficient leaves to build a binary tree. Therefore, a node that
has not a right sibling is lifted to a higher level of the Ltree
until it becomes the right sibling of another node. Figure 4
shows the optimization performed in the generation of the
Ltree for w = 16 and l = 67.

1

a leaf of the XMSS tree

16 17 32 33 48 49 64 67

1 8 9 16

H H

17 24 25 32

H H

65 66

H

1 8 9 16

H H

17

33 34

H

91 2

H

3 4

H

5 6

H

7 8

H

H

1

1 2

H

2

3 4

H

5

3

1

H

2

H

1

Fig. 4. Construction of the Ltree.

IX. PERFORMANCE RESULTS

This section shows the experimental results for LMS and
XMSS of our implementation using AVX2 instructions. These
results were obtained by running benchmarks on a Haswell
processor Core i7-4770 at 3.4 GHz and a Skylake processor
Core i7-6700K at 4.0 GHz. The Intel Turbo Boost and the Intel
Hyper-Threading technologies were disabled to ensure the
reproducibility of the results. Our implementation was written
in C language and compiled using the GNU C Compiler
v6.2.0. In our work, the runtimes for signing and verifying
for H > 20, are calculated using the arithmetic average of the
first one million signatures.

A. Scheme parameters

We have selected a set of parameters provided by the drafts
LMS [14] and XMSS [16]. The parameters selected were:
w ∈ N, the Winternitz parameter; h ∈ N, the total height of
the tree; d, the number of layers; n, the output of the hash
function.

The output of the chosen hash function influences system
security. Considering classic computers, the parameter n = 32
provides a 256-bit security level and n = 64 provides 512-
bit security level. Considering quantum computers, for 128-bit

www.ijacsa.thesai.org 428 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

security, we use the SHA2-256 and SHAKE256 functions in
the LMS and the SHA2-256 and SHAKE-128 functions in
the XMSS. For 256-bit security, we use the SHA2-512 and
SHAKE256 functions in XMSS.

The value w influences the execution time and the size
of the signature. Larger values for w imply larger execution
times, but smaller signature sizes. The H and d values affect
the signature size. The output n of the chosen hash function
also influences the size of the public, private, and signature
keys. We used w = 2 or w = 4 for LMS and w = 16 for
XMSS. The maximum height of XMSSMT was H = 60 and
the maximum number of layers was d = 12 according to [16].

B. SHA2/SHA3 implementation results

In Table II, we show the performance of the implementa-
tion of the SHA2-256 and the SHAKE128 single-buffer (64-
bit) and multi-buffer(256-bit) on Haswell and Skylake. The
input sizes of these functions have been selected according to
the size of the functions F and G of LMS and XMSS.
TABLE II. PERFORMANCE FIGURES OF SHA2-256 AND SHAKE128.

runtime(cycles/bytes)
Single Buffer Multi Buffer

hash function Haswell Skylake Haswell Skylake
SHA2-256 F(104 bytes) 15.28 14.64 3.31 2.98
SHAKE128 F(104 bytes) 12.75 12.37 5.24 4.73
SHA2-256 G(133 bytes) 17.17 16.52 4.20 3.50
SHAKE128 G(133 bytes) 9.96 9.67 4.09 3.48

The function F processes message of 104 bytes in LMS
and 96 bytes in XMSS. The G function processes message
of 133 bytes in LMS and 128 bytes in XMSS. Then, the
function F on SHA2-256 processes two data blocks (512 bits)
and the functions G processes three data blocks (512 bits). In
SHAKE128, the functions F and G processes a single block
(1344 bits). Therefore, the implementation of F and G single-
buffer functions with SHAKE128 has better results.

The computation of the functions F and G with SHA2-
256 were faster than the versions using SHAKE128, for
multi-buffer implementations. The speedup of the function
F with SHAKE single-buffer is 1.2× compared to SHA2-
256 single-buffer implementation. SHA2-256 processes 8 in-
dependent hash values simultaneously and SHAKE128 pro-
cesses only four independent hash values in parallel. Also, the
speedup with SHA2 multi-buffer is approximate 4.6×, and
with SHAKE multi-buffer is approximate 2.4× compared to
the single-buffer.

We also note in Table II that the function F with SHA2-
256 presents a speedup of 4.6× per hashing on Haswell and
4.9× per hashing on Skylake. Performance on Skylake is better
because of the computer architecture features presented in
Section VI.

In the following sections, we will show that the perfor-
mance obtained in the multi-buffer implementation of the hash
functions impacts on the performance of the key generation,
signature, and verification algorithms.

C. XMSS/LMS implementation results

In this section, we present the results of our XMSS/LMS
single-buffer (64-bit) and multi-buffer (256-bit) implementa-
tion with the hash functions SHA2 and SHAKE.

In Table III, we compare our XMSS single-buffer (64-
bit) implementation with the single-buffer implementation pre-
sented on the author’s website [28]. The results were obtained
on a Haswell processor. A speedup of 1.4× is observed for key
generation, signature, and verification of our implementation
over the implementation [28]. This improvement was due to
the specialized implementation of each function of XMSS.
TABLE III. PERFORMANCE FIGURES OF XMSS FROM [28] AND OUR

XMSS IMPLEMENTATION ON HASWELL

runtime(ms) XMSS SHA2-256
Single Buffer [28] Single Buffer(our)

h KeyGen Sig Ver KeyGen Sig Ver
10 2241 9.78 1.2 1613 7.04 0.87
16 143329 16.31 1.22 103268 11.76 0.88
20 2286505 20.63 1.22 1652284 14.91 0.89

Table IV presents the results of the single-buffer (64-
bit) and multi-buffer (256-bit) implementation of XMSS with
SHA2 and SHAKE for different security levels. We compare
our results using single-buffer and using a multi-buffer for
h = 20.

We show that the speed up due to the multi-buffer optimiza-
tion, for key generation, signing, and verification respectively,
is: with SHA2-256 ranges from 4.4×, 4.2× and 2.4×; with
SHAKE128 ranges from 2.6×, 2.5× and 2.0×; with SHA2-
512 ranges from 2.4×, 2.4× and 2.0×; and with SHAKE256
ranges from 3.3×, 3.3× and 2.8×.

TABLE IV. PERFORMANCE FIGURES OF XMSS FOR PARAMETERS
h = 20 AND w = 16 FOR DIFFERENT SECURITY LEVELS ON SKYLAKE

runtime(ms) XMSS
Function Single Buffer Multi Buffer

security F/G KeyGen Sig Ver KeyGen Sig Ver
128 SHA2-256 1369770 12.36 0.73 312702 2.92 0.30
128 SHAKE128 1056084 9.49 0.60 410818 3.74 0.30
256 SHA2-512 3537106 32.49 1.85 1452600 13.57 0.90
256 SHAKE256 5339130 49.12 2.77 1586750 14.70 0.99

For key generation, the performance is greater because the
function F SIMD executes the same amount of times in all
elements of the secret key. However, in the WOTS signing and
verification process, it was necessary to sort the elements of
the signature before of the function F SIMD, because the
number of applications of the function depends on the bits of
the message.

The runtimes with SHA2-512/SHAKE256 are larger than
using SHA2-256/SHAKE128, but we get a higher level of
security (256-bit security level). For 128-bit security level, the
performance of the XMSS single-buffer with SHAKE128 is
better than with SHA2-256. However, the multi-buffer version
of SHA2-256 has better runtimes than the multi-buffer version
of SHAKE128, due to the performance of these functions
presented in Table II.

Table V represents the timing results of our software
for the multi-buffer version of LMS with SHA2-256 and
SHAKE256 at 128-bit security level. We observed that the
acceleration obtained with SHA2-256 multi-buffer and w = 4
is 4.2×, 4.1× and 2.0× for key generation, signature, and
verification respectively. The implementation with SHAKE256
multi-buffer and w = 4 ranges from 2.7×, 2.6× and 1.8× for
key generation, signing, and verification.

A larger value of w results in shorter signatures but slower
overall signing operations; it has little effect on security. For

www.ijacsa.thesai.org 429 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

TABLE V. PERFORMANCE FIGURES OF LMS 128-BIT SECURITY
LEVEL FOR DIFFERENT VALUES OF w ON SKYLAKE

runtimes(ms) LMS
Single Buffer Multi Buffer

HASH h w KeyGen Sig Ver KeyGen Sig Ver
SHA2-256 20 2 225069 2.06 0.12 61987 0.56 0.06
SHA2-256 20 4 436627 3.96 0.23 103053 0.96 0.11

SHAKE256 20 2 186187 1.73 0.10 76870 0.71 0.06
SHAKE256 20 4 353786 3.20 0.18 130802 1.20 0.10

keys and signature generation, performance is higher for the
same reasons as for XMSS implementation. As in XMSS, the
LMS single-buffer with SHAKE256 is faster than SHA2-256,
and the LMS multi-buffered with SHA2-256 is faster than with
SHAKE256.

D. Hierarchical signatures scheme implementation results

In this section, we show the performance results of our
software for both schemes HSS and XMSSMT on the Skylake
processor. We use the parameter w = 4 for LMS and w = 16
for XMSS, then the length of the signature OTS is len =
67 for both schemes. In Table VI, are given the runtimes
of HSS multi-buffer using the hash functions SHA2-256 and
SHAKE256 at 128-bit security level.

TABLE VI. PERFORMANCE FIGURES OF HSS MULTI-BUFFER FOR
w = 4 AND DIFFERENT VALUES OF h AND d ON SKYLAKE

runtimes(ms) HSS multi-buffer
HASH h d KeyGen Sig Ver

SHA2-256 40 4 402 0.57 0.39
SHA2-256 40 8 27 0.32 0.73
SHA2-256 60 6 602 0.57 0.60
SHA2-256 60 12 40 0.32 1.11

SHAKE256 40 4 552 0.76 0.42
SHAKE256 40 8 36 0.41 0.79
SHAKE256 60 6 827 0.76 0.62
SHAKE256 60 12 55 0.41 1.19

Table VII presents the results of our implementation of
XMSSMT with SHA2-256 and SHAKE128 for the 128-bit
security level.

TABLE VII. PERFORMANCE FIGURES OF XMSSMT MULTI-BUFFER
FOR w = 16 AND DIFFERENT VALUES OF h AND d ON SKYLAKE

runtimes(ms) XMSSMT multi-buffer
HASH h d KeyGen Sig Ver

SHA2-256 40 4 1236 1.74 1.15
SHA2-256 40 8 83 0.96 2.18
SHA2-256 60 6 1883 1.75 1.76
SHA2-256 60 12 124 0.96 3.32

SHAKE128 40 4 1667 2.28 1.14
SHAKE128 40 8 111 1.23 2.23
SHAKE128 60 6 2498 2.28 1.67
SHAKE128 60 12 167 1.23 3.33

Notice that by increasing the number of layers the runtime
is reduced for key generation and signing; however, the runtime
for verification increases because the signatures of all layers
must be checked. For subtrees that have the same height,
the signature time remains constant. Then, increasing the tree
height allows producing more signatures without impacting
the performance of signing and verifying. Additionally, by
increasing the number of layers the size of the secret key and
signature is larger because they store information of each layer.

E. Analysis of results

In this section, we examine the results with AVX2 and
compare the schemes LMS and XMSS.

Figure 5 shows the performance of XMSS/LMS multi-
buffer × single-buffer with AVX2. The multi-buffer imple-
mentations with SHA2-256 have better performance because
it allowed executing eight hashes at the same time whereas the
SHAKE allowed to perform only four hashes in parallel.

 0

 1

 2

 3

 4

 5

XM
SS SHA2-256

XM
SS SHAKE128

LM
S SHA2-256

LM
S SHAKE256

M
u
lt

i-
b
u
ff

e
r

sp
e
e
d
u
p

Key Pair Generation
Signature Generation

Verification

Fig. 5. Performance multi-buffer x single-buffer implementation.

Table VIII shows a summary of the code size, in C
language, for the main functions of the schemes LMS and
XMSS. We execute the GNU command nm in the Linux
compiler, and it returned the size of the objects in a file. Note
that the LMS has code size approximately 1.23× greater than
the XMSS code for the single-buffer implementation because
the LMS uses two hash functions H leaf and H node for the
generation of the leaves of the tree and XMSS uses only Ltree.

TABLE VIII. SIZE OF LMS AND XMSS CODES

size (bytes)
scheme F G H leaf/Ltree H no

LMS 9413 14168 15577 9552
XMSS 9664 13996 15819

Table IX shows the keys length and runtimes of both
schemes LMS and XMSS for a tree with height h = 20 and
128-bit security level (n = 32 bytes). If one uses w = 4 for
LMS and w = 16 for XMSS, then the length of the signature
OTS is len = 67 for both schemes.

TABLE IX. SIZES AND RUNTIMES OF THE LMS AND XMSS WITH
SHA2-256 FOR 220 SIGNATURES

sizes (bytes) runtimes(ms)
draft w SK PK Sig KeyGen Sig Ver
LMS 4 68 96 2820 103053 0.96 0.11

XMSS 16 132 64 2820 410818 3.74 0.30

Note that for the selected parameters, LMS secret key
size is shorter than XMSS secret key. On the other hand,
LMS public key size is larger than XMSS public key, and
the signature key of the both schemes has the same size.
Since LMS has fewer calls to the underlying hash function
than XMSS, the implementation of LMS with SHA2-256 is
approximate 2.7× faster than the implementation of XMSS
with SHA2-256. In addition, LMS does not use a Ltree tree
and performs fewer operations on generating the internal nodes
of the binary tree.

www.ijacsa.thesai.org 430 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

According to the results presented, the use of AVX2
contributes significantly to the implementation of the proposals
standard for the Merkle scheme and its variants. For 128-
bit security level, if the computer does not have instructions
AVX2, then the implementation of the schemes LMS/XMSS
with the hash function SHAKE128 single-buffer is a good
option for presenting better runtimes. However, if these in-
structions are available on the computer, the implementation
of the LMS/XMSS multi-buffer with SHA2-256 would be the
best option.

Also, if the choice of the signature scheme is based on
the runtimes, the LMS could be used because of better execu-
tion times. However, if there is a greater preoccupation with
information security, XMSS would be a better option because
the XMSS scheme provides strong security guarantees, XMSS
is existentially unforgeable under adaptively chosen message
attacks (EUCMA), it is forward security, and it is considered
safe even when the collision resistance of the underlying hash
function is broken.

X. CONCLUSION

The emerging transition to post-quantum cryptography
requires digital signature schemes that are immune to quantum
computers. Hash-based signatures schemes are promising can-
didates for replacing the current signatures schemes because
they do not depend on arithmetic operations such as the
problem of factorization of integers. These schemes are the
object of current standardization efforts. Many improvements
have already been made to the MSS making it feasible for
many nowaday applications. However, some additional issues
also appear as some signatures, storage resources, state man-
agement and slow generation of the key pair, leading to an
important question: How can we apply the Merkle scheme in
current applications?

New variants have emerged to improve the storage resource
problem, such as the use of pseudo-random generators, reduc-
ing key size. The use of multi-trees, allowed to increase the
number of signatures and reduce the time of generation of
signature and verification keys.

In this work, we present an efficient software implemen-
tation of the Merkle scheme proposals (LMS and XMSS)
using the set of vector instructions AVX2 on Intel proces-
sors. We show that our implementation presents significant
improvements in the execution times of the key generation
algorithms, signature, and verification of these standards. We
have used several optimization techniques for increasing the
performance in the software of both schemes. Our results show
the feasibility of using these post-quantum schemes in practical
applications.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their valuable comments and suggestions to improve the
quality of this paper. The second author was partially supported
by a research productivity scholarship from CNPq Brazil.

REFERENCES

[1] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International Journal of Information
Security, vol. 1, no. 1, pp. 36–63, 2001. [Online]. Available:
http://dx.doi.org/10.1007/s102070100002

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[3] N. FIPS, “186 digital signature standard,” 1994.
[4] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms

and factoring,” in Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on. IEEE, 1994, pp. 124–134.

[5] L. Lamport, “Constructing digital signatures from a one-way function,”
Technical Report CSL-98, SRI International Palo Alto, Tech. Rep.,
1979.

[6] R. C. Merkle, “A certified digital signature,” in Conference on the
Theory and Application of Cryptology. Springer, 1989, pp. 218–238.

[7] D. McGrew, P. Kampanakis, S. Fluhrer, S.-L. Gazdag, D. Butin, and
J. Buchmann, “State management for hash-based signatures,” in Security
Standardisation Research. Springer, 2016, pp. 244–260.

[8] NIST. (2016) Post-quantum cryptography standardization.
[Online]. Available: http://csrc.nist.gov/groups/ST/post-quantum-
crypto/index.html

[9] J. Buchmann, L. C. C. Garcı́a, E. Dahmen, M. Döring, and E. Klint-
sevich, “Cmss–an improved merkle signature scheme,” in International
Conference on Cryptology in India. Springer, 2006, pp. 349–363.

[10] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume,
“Merkle signatures with virtually unlimited signature capacity,” in
Applied Cryptography and Network Security. Springer, 2007, pp. 31–
45.

[11] J. Buchmann, E. Dahmen, and A. Hülsing, “Xmss-a practical forward
secure signature scheme based on minimal security assumptions,” in
International Workshop on Post-Quantum Cryptography. Springer,
2011, pp. 117–129.

[12] A. Hülsing, L. Rausch, and J. Buchmann, “Optimal parameters for
xmss-mt,” in International Conference on Availability, Reliability, and
Security. Springer, 2013, pp. 194–208.

[13] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen,
L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, “Sphincs: practical stateless hash-based signatures,” in Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2015, pp. 368–397.

[14] D. McGrew, M. Curcio, and S. Fluhrer, “Hash-based signatures,” 2016,
work in progress, draft-mcgrew-hash-sigs-05.

[15] R. C. Merkle, “Secrecy, authentication, and public key systems,” 1979,
ph.D. thesis, Electrical Engineering, Stanford.

[16] A. Hülsing, D. Butin, S. . Gazdag, and A. Mohaisen, “Xmss: Extended
hash-based signatures,” 2016, work in progress, Crypto Forum Research
Group, Internet Draft, draft-xmss-06.

[17] A. Hülsing, “W-ots+-shorter signatures for hash-based signature
schemes.” Africacrypt, vol. 7918, pp. 173–188, 2013.

[18] J. Buchmann, E. Dahmen, and M. Schneider, “Merkle tree traversal
revisited,” in International Workshop on Post-Quantum Cryptography.
Springer, 2008, pp. 63–78.

[19] J. Katz, “Analysis of a proposed hash-
based signature standard,” 2015. [Online]. Available:
http://www.cs.umd.edu/ jkatz/papers/HashBasedSigs.pdf

[20] A. Hülsing, J. Rijneveld, and F. Song, “Mitigating multi-target attacks
in hash-based signatures,” in Public-Key Cryptography–PKC 2016.
Springer, 2016, pp. 387–416.

[21] INTEL. (2016) Intel 64 and ia-32 architectures
optimization reference manual. [Online]. Available:
www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-optimization-manual.pdf.

[22] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. C-21, no. 9, pp. 948–960, 1972.

[23] S. Gulley and V. Gopal, “Haswell cryptographic performance,” 2013.

www.ijacsa.thesai.org 431 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

[24] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus,” Copen-
hagen University College of Engineering, 2016.

[25] A. Faz-Hernández, R. Cabral, D. F. Aranha, and J. López,
“Implementação Eficiente e Segura de Algoritmos Criptográficos,”
in Simpósio Brasileiro em Segurança da Informação e de Sistemas
Computacionais - Minicursos, vol. XV. Sociedade Brasileira de
Computação, 2015, pp. 93–140.

[26] National Institute of Standards and Technology, FIPS PUB
202 SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. Gaithersburg, MD, USA: National Institute
for Standards and Technology, Aug. 2015. [Online]. Available:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[27] R. Cabral. (2017) Implementation of the sha-3 family using avx/avx2
instructions. [Online]. Available: https://github.com/rbCabral/SHA-3

[28] A. Hülsing and J. Rijneveld. (2016) Implementation of xmss and
xmssmt as specified in draft-huelsing-cfrg-hash-sig-xmss-06. [Online].
Available: https://huelsing.wordpress.com/code

www.ijacsa.thesai.org 432 | P a g e

