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Abstract

Cloud computing is a ubiquitous paradigm responsible for a fundamental change in the way distributed computing
is performed. The possibility to outsource the installation, maintenance and scalability of servers, added to competitive
prices, makes this platform highly attractive to the computing industry. Despite this, privacy guarantees are still
insufficient for data processed in the cloud, since the data owner has no real control over the processing hardware.
This work proposes a framework for database encryption that preserves data secrecy on an untrusted environment
and retains searching and updating capabilities. It employs order-revealing encryption to perform selection with time
complexity in �(log n), and homomorphic encryption to enable computation over ciphertexts. When compared to
the current state of the art, our approach provides higher security and flexibility. A proof-of-concept implementation
on top of the MongoDB system is offered and applied in the implementation of some of the main predicates required
by the winning solution to Netflix Grand Prize.

Keywords: Cryptography, Functional encryption, Homomorphic encryption, Order revealing encryption, Searchable
encryption, Databases

1 Introduction
The massive adoption of cloud computing is respon-
sible for a fundamental change in the way distributed
computing is performed. The possibility to outsource
the installation, maintenance and scalability of servers,
added to competitive prices, makes this service highly
attractive [1, 2]. From mobile to scientific computing, the
industry increasingly embraces cloud services and takes
advantage of their potential to improve availability and
reduce operational costs [3, 4]. However, the cloud can-
not be blindly trusted. Malicious parties may acquire full
access to the servers and consequently to data. Among
the threats there are external entities exploiting vulner-
abilities, intrusive governments requesting information,
competitors seeking unfair advantages, and even possibly
malicious system administrators. The data owner has no
real control over the processing hardware and therefore
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cannot guarantee the secrecy of data [5]. The risk of confi-
dentiality breaches caused by inadequate and insecure use
of cloud computing is real and tangible.
The importance of privacy preservation is frequently

underestimated, as well as the damage its failure rep-
resents to society, as the unfolding of a privacy breach
may be completely unpredictable. A report from Javelin
Advisory Services found a distressing correlation between
individuals who were victims of data breaches and later
victims of financial fraud. About 75% of total fraud losses
in 2016 had this characteristic, corresponding to U$ 12
billion [6]. This could be avoided with the use of strong
encryption at the user side, never revealing data even to
the application or the cloud.
The problem of using standard encryption in an entire

database is that it eliminates the capability of select-
ing records or evaluating arbitrary functions without
the cryptographic keys, reducing the cloud to a com-
plex and huge storage service. For this reason, alterna-
tives have been proposed to solve this problem, starting
from anonymization and heuristic operational measures
which do not provide formal privacy guarantees. Encryp-
tion schemes tailored for databases such as searchable
encryption are a promising solution with perhaps more
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clear benefits [7–10]. Searchable encryption enables the
cloud to manipulate encrypted data on behalf of a
client without learning information. Hence, it solves both
of aforementioned problems, keeping confidentiality in
regard to the cloud but retaining some of its interesting
features.

1.1 The frustration of data anonymization
In 2006, Netflix shared their interest in improving the
recommendation system offered to their users with the
academic community. This synergy was directed to an
open competition during 3 rounds which offered finan-
cial prizes for the best recommendation algorithms. An
important feature of Netflix’s commercial model is to effi-
ciently and assertively guide subscribers in finding content
compatible to their interests. Doing this correctly may
reinforce the importance of the product for leisure activi-
ties, consolidate Netflix’s commercial position, and ensure
clients’ loyalty [11].
The participants of the contest received a training set

with anonymized movie ratings collected from Netflix
subscribers between 1999 and 2005. There are approx-
imately half million customers and about 17 thousands
movies classified in the set, totalling over 100 million rat-
ings. This dataset is composed by movie titles, the times-
tamp when the rating was created, the rating itself, and an
identification number for relating same-user records. No
other information about customers was shared, such as
name, address or gender. The objective of the participants
was to predict with good accuracy how much someone
would enjoy a movie based on their previously observed
behavior in the platform.
In the same year, America Online (AOL) took a simi-

lar approach and released millions of search queries made
by 658,000 of its users with the goal of contributing
to the scientific community by enabling statistical work
over real data [12]. As Netflix, AOL applied efforts on
anonymizing the data before publishing. All the obvi-
ously sensitive data, such as usernames and IP addresses,
were suppressed, being replaced by unique identification
numbers.
The ability to understand user’s interests and pre-

dict their behavior based on collected data is desir-
able in several commercial models and consequently a
hot topic in the scientific literature [13–15]. However,
the importance of privacy-preserving practices is still
underestimated, a challenge to overcome. For instance,
despite the anonymization efforts of Netflix, Narayanan
and Shmatikov brilliantly demonstrated how to break
anonymity of the Netflix’s dataset by cross-referencing
information with public knowledge bases, as those pro-
vided by the Internet Movie Database (IMDB) [16]. Using
a similar approach, New York Times’ reporters were capa-
ble of relating a subset of queries to a particular person

by joining apparently innocent queries to non-anonymous
real state public databases [17].

1.2 “Unexpected” leaks
These events raised a still unsolved discussion about how
to safely collect and use data without undermining user
privacy. As remarked by Narayanan and Felten, “data pri-
vacy is a hard problem” [18]. Even when data holders
choose the most conservative practice and never share
data, system breaches may happen.
In 2013, a large-scale surveillance program of the USA

government was revealed by Edward Snowden, a former
NSA employee. Named PRISM, it was structured as a
massive data interception effort to collect information for
posterior analysis. Their techniques arguably had support
of the US legal system and were frequently applicable even
without knowledge of the data-owner companies [19, 20].
Two years later, in 2015, stolen personal data of mil-

lions of users of the website AshleyMadison was leaked by
malicious parties exploiting security vulnerabilities [21].
As consequence, several reports of extortion and even
a suicide, illustrating how increasingly sensitive data
breaches are becoming.
In the same year, the Sweden’s Transport Agency

decided to outsource its IT operations to IBM. To fulfill
the contract, the latter chose sites in Eastern Europe to
place these operations. This resulted in Swedish confiden-
tial data being stored in foreign data centers, in particular
Czech Republic, Serbia and Romania. As expected, this
decision led to amassive data leak, containing information
about all vehicles throughout Sweden, including police
and military vehicles. Thus, names, photos and home
addresses of millions of Swedish citizens, military per-
sonal, people under the witness relocation program, were
exposed [22].
In 2016, Yahoo confirmed that a massive data breach,

possibly the largest known, affected about 500 million
accounts and revealed to the world a dataset full of names,
addresses, and telephone numbers [23].
These occurrences take us to the disturbing feeling

that, despise all efforts, the risk of data deanonymization
increases in worrying ways following how much of it is
made available [24, 25]. Hence, a seemingly obvious strat-
egy to avoid such issue is to simply stop any kind of dataset
collection.

1.3 Privacy by renouncing knowledge
History has proven that the task of collecting and stor-
ing data from third parties should be treated as risky.
The chance of compromising user privacy by accident
is too big and possibly with extreme consequences. This
way, the concept of security by renouncing knowledge has
attracted adepts, as the search engine DuckDuckGo that
states in a blog post that “the only truly anonymised data
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is no data”, and because of that claims to forego the right
to store their users’ data [26, 27].
A more financial-realistic approach for dealing with this

issue is not to give up completely of knowledge but reduce
the entities with access by keeping it encrypted during
all its lifespan: transportation, storage, and processing,
staying secret to the application and the cloud. Thus, a
new security fence is set, tying data secrecy to formal
guarantees.

1.4 Our contributions
This work follows the state of the art and proposes
directives to the modeling of a searchable encrypted
database [28]. We detect the main primitives of a rela-
tional algebra necessary to keep the database functional,
while adding enhanced privacy-preserving properties.
A set of cryptographic tools is used to construct each
of these primitives. It is composed by order-revealing
encryption to enable data selection, homomorphic
encryption for evaluation of arbitrary functions, and a
standard symmetric scheme to protect and add flexibility
to the handling of general data. In particular, our pro-
posed selection primitive achieves time complexity of
�(log n) on the dataset size. Moreover, we provide a secu-
rity analysis and performance evaluation to estimate the
impact on execution time and space consumption, and a
conceptual implementation that validates the framework.
It works on top of MongoDB, a popular document-based
database, and is implemented as a wrapper over its
Python driver. The source code was made available to the
community under a GNU GPLv3 license [29].
When compared to CryptDB [7], our proposal provides

stronger security since it is able to keep confidentiality
even in the case of a compromise of the database and
application servers. Since CryptDB delegates to the appli-
cation server the capability to derive users’ cryptographic
keys, it is not able to provide such security guarantees.
Furthermore, our work is database-agnostic, it is not lim-
ited to SQL but can be applied on different key-value
databases.
This work is structured as follows. Section 2 describes

the cryptographic building blocks required for building
our proposed solution. Sections 3 and 4 define search-
able encryption, discuss related threats, and present exist-
ing implementations. Section 5 proposes our framework,
while Section 6 discusses its suitability in a recommen-
dation system for Netflix. Our experimental validation
results are presented in Sections 7 and 8 concludes
the paper.

2 Building blocks
The two main classes of cryptosystems are known as
symmetric and asymmetric (or public-key) and defined
by how users exchange cryptographic keys. Symmetric

schemes use the same secret key for encryption and
decryption, or equivalently can efficiently compute one
from the other, while asymmetric schemes generate a pair
of keys composed by public and private keys. The former
is distributed openly and is the sole information needed to
encrypt amessage to the key owner, while the latter should
be kept secret and used for decryption.
Besides this, cryptosystems that produce always the

same ciphertext for the same message-key input pair are
known as deterministic. The opposite, when randomness
is used during encryption, are known as probabilistic. We
next recall basic security notions and special properties
that make a cryptosystem suitable to a certain application.
Later, we shall make use of these concepts to analyze the
security of our proposal.

2.1 Security notions
Ciphertext indistinguishability is a useful property to ana-
lyze the security of a cryptosystem. Two scenarios are
considered, when an adversary has and does not have
access to an oracle that provides decryption capabilities.
Usually these are evaluated through a game in which an
adversary tries to acquire information from ciphertexts
generated by a challenger [30].

Indistinguishability under chosen plaintext attack –
IND-CPA In the IND-CPA game the challenger gener-
ates a pair (PK , SK) of cryptographic keys, makes PK
public and keeps SK secret. An adversary has as objective
to recognize a ciphertext created from a randomly cho-
sen message from a known two-element message set. A
polynomially bounded number of operations is allowed,
including encryption (but not decryption), over PK and
the ciphertexts. A cryptosystem is indistinguishable under
chosen plaintext attack if no adversary is able to achieve
the objective with non-negligible probability.

Indistinguishability under chosen ciphertext attack
and adaptive chosen ciphertext attack – IND-CCA1
and IND-CCA2 This type of indistinguishability differs
from IND-CPA due to the adversary having access to a
decryption oracle. In this game the challenge is again
to recognize a ciphertext as described before, but now
the adversary is able to use decryption results. This new
game has two versions, non-adaptive and adaptive. In
the non-adaptive version, IND-CCA1, the adversary may
use the decryption oracle until it receives the challenge
ciphertext. On the other hand, in the adaptive version
he is allowed to use the decryption oracle even after
that event. For obvious reasons, the adversary cannot
send the challenge ciphertext to the decryption oracle. A
cryptosystem is indistinguishable under chosen ciphertext
attack/adaptive chosen ciphertext attack if no adversary is
able to achieve the objective with non-negligible probability.
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Indistinguishability under chosen keyword attack and
adaptative chosen keyword attack – IND-CKA and
IND-CKA2 This security notion is specific to the con-
text of keyword-based searchable encryption [31]. It con-
siders a scenario in which a challenger builds an index
with keyword sets from some documents. This index
enables someone to use a value Tw, called trapdoor, to
verify if a document contains the word w. This game
imposes that no information should be leaked from
the remotely stored files or index beyond the outcome
and the search pattern of the queries. The adversary
has access to an oracle that provides the related trap-
door for any word. His objective is to use this oracle
as training to apply the acquired knowledge and break
the secrecy of unknown encrypted keywords. As well as
in the IND-CCA1/IND-CCA2 game, the non-adaptative
version, IND-CKA, of this game forbids the adversary to
use the trapdoor oracle once the challenge trapdoor is
sent by the challenger. On the other hand, the adaptative
version allows the use of the trapdoor oracle even after
this event.
A cryptosystem is indistinguishable under chosen key-

word attack if every adversary has only a negligible advan-
tage over random guessing.

Indistinguishability under an ordered chosen plain-
text attack – IND-OCPA Introduced by Boldyreva et al.,
this notion supposes that an adversary is capable of
retrieving two sequences of ciphertexts resulting of the
encryption of any two sequences of messages [32]. Fur-
thermore, he knows that both sequences have identical
ordering. The objective of this adversary is to distinguish
between these ciphertexts. A cryptosystem is indistin-
guishable under an ordered chosen plaintext attack if
no adversary is able to achieve the objective with non-
negligible probability.

2.2 Functional encryption
Cryptographic schemes deemed “functional” receive such
name because they support one or more operations over
the produced ciphertexts, hence becoming useful not only
for secure storage.

Order-revealing encryption (ORE) Order-revealing
encryption schemes are characterized by having, in addi-
tion to the usual set of cryptographic functions like keygen
and encrypt, a function capable of comparing ciphertexts
and returning the order of the original plaintexts, as
shown by Definition 1.

Definition 1 (ORE) Let E be an encryption function, C
be a comparison function, and m1 and m2 be plaintexts
from the message space. The pair (E,C) is defined as an
encryption scheme with the order-revealing property if:

C(E (m1) ,E (m2)) =
⎧
⎨

⎩

LOWER, if m1 < m2,
EQUAL, if m1 = m2,
GREATER, otherwise.

This is a generalization of order-preserving encryption
(OPE), that fixesC to a simple numerical comparison [33].

Security As argued by Lewi and Wu, the “best-possible”
notion of security for ORE is IND-OCPA, which means
that it is possible to achieve indistinguishability of cipher-
texts and with a much stronger security guarantee than
OPE schemes can have [34]. Furthermore, differently from
OPE, ORE is not inherently deterministic [35]. For exam-
ple, Chenette et al. propose an ORE scheme that applies a
pseudo-random function over anOPE scheme, while Lewi
and Wu propose an ORE scheme completely built upon
symmetric primitives, capable of limiting the use of the
comparison function and reducing the leakage inherent
to this routine [34, 36]. Their solution works by defin-
ing ciphertexts composed by pairs (ctL, ctR). To compare
ciphertexts ctA and ctB, it requires ctAL and ctBR . This way,
the data owner is capable of storing only one side of those
pairs in a remote database being certain that no one will
be able to make comparisons between those elements.
Nevertheless, any scheme that reveals numerical order
of plaintexts through ciphertexts is vulnerable to infer-
ence attacks and frequency analysis, as those described
by Naveed et al. over relational databases encrypted using
deterministic and OPE schemes [37]. Although ORE does
not completely discard the possibility of such attacks, it
offers stronger defenses.

Homomorphic encryption (HE) Homomorphic encryp-
tion schemes have the property of conserving some plain-
text structure during the encryption process, allowing
the evaluation of certain functions over ciphertexts and
obtaining, after decryption, a result equivalent to the same
computation applied over plaintexts. Definition 2 presents
this property in a more formal way.

Definition 2 (HE) Let E and D be a pair of encryption
and decryption functions, and m1 and m2 be plaintexts.
The pair (E,D) forms an encryption schemewith the homo-
morphic property for some operator � if and only if the
following holds:

E (m1) ◦ E (m2) ≡ E (m1 � m2) .

The operation ◦ in the ciphertext domain is equivalent to
� in the plaintext domain.

Homomorphic cryptosystems are classified accord-
ing to the supported operations and their limitations.
Partially homomorphic encryption schemes (PHE) hold
on Definition 2 for either addition or multiplication
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operations, while fully homomorphic encryption schemes
(FHE) support both addition and multiplication operations.
PHE cryptosystems have been known for decades

[38, 39]. However, the most common data processing
applications, as those arising from statistics, machine
learning or genomics processing, frequently require sup-
port for both addition and multiplication operations
simultaneously. This way, such schemes are not suitable
for general computation.
Nowadays, FHE performance is prohibitive, so weaker

variants, such as SHE1 and LHE2, have the stage for
solving computational problems of moderate complexity
[40, 41].

Security In terms of security, homomorphic encryption
schemes achieve at most IND-CCA1, which means that
the scheme is not secure against an attacker with arbi-
trary access to a decryption oracle [30]. This is a natu-
ral consequence of the design requirements, since these
cryptosystems allow any entity to manipulate ciphertexts.
Most of current proposals, however, reach at most IND-
CPA and stay secure against attackers without access to a
decryption oracle [42].

3 Searchable encryption
We now formally define the problem of searching
over encrypted data. We present three state-of-the-
art implementations of solutions to this problem,
namely the CryptDB, Arx, and Seabed database
systems.

3.1 The problem
Suppose a scenario where Alice keeps a set of documents
in untrusted storage maintained by an also untrusted
entity Bob. She would like to keep this data encrypted
because, as defined, Bob cannot be trusted. Alice also
would like to occasionally retrieve a subset of documents
accordingly to a predicate without revealing any sensitive
information to Bob. Thus, sharing the decryption key is
not an option. The problem lies in the fact that commu-
nication between Alice and Bob may (and probably will)
be constrained. Hence, a naive solution consisting of Bob
sending all documents to Alice and letting her decrypt
and select whatever she wants may not be feasible. Alice
must then implement some mechanism to protect her
encrypted data so that Bob will be able to identify the
desired documents without knowing their contents or the
selection criteria [43].
An approach that Alice can take is to create an

encrypted index as in Definition 3.

Definition 3 (Encrypted indexing) Suppose a dataset
DB = (m1, . . . ,mn) and a list W = (W1, . . . ,Wn) of sets
of keywords such that Wi contains keywords for mi. The

following routines are required to build and search on an
encrypted index:

BUILDINDEXK (DB,W): The list W is encrypted using a
searchable scheme under a key K and results in a
searchable encrypted index I . This process may not
be reversible (e.g., if a hash function is used). The
routine outputs I .

TRAPDOORK (F): This function receives a predicate F
and outputs a trapdoor T . The latter is defined as the
information needed to search I and find records that
satisfy F .

SEARCHI(T ): It iterates through I applying the trapdoor
T and outputs every record that returns TRUE for the
input trapdoor.

This way, if the searchable cryptosystem used is IND-
CKA then Alice is able to keep her data with Bob and
remain capable of selecting subsets of it without revealing
information [28].

3.2 Threat modeling
The development of efficient and secure solutions for
management of datasets depends on the awareness of the
threats we intent to mitigate. For such, this work follows
Grubbs’ definitions of adversaries for a database [44].

Active attacker The worst case scenario is when the
attacker acquires full control over the server, being capa-
ble of performing arbitrary operations. Thus, he is not
committed to follow any protocol.

Snapshot attacker The adversary obtains a snapshot of
the dataset containing the primary data and indexes but
no information about issued queries and how they access
the encrypted data.

Persistent passive attacker Another possibility is a sce-
nario in which the attack cannot interfere with the server
functionality but can observe all of its operations. We do
not consider only attackers that inspect issued queries in
real-time, but also those that are able to recover them
later. As demonstrated by Grubbs, the data contained in a
real-world database goes far beyond the primary dataset
(names, addresses, . . . ). It also includes logs, caches, and
auxiliary tables (as MySQL’s diagnostic tables) used, for
instance, to guarantee ACID3 and enable the server to
undo incomplete queries after a power-break. It is very
likely that an attacker competent to subjugate the secu-
rity protocols of the system will be capable to also recover
these secondary datasets.
The idea of a snapshot attacker is very popular among

solutions and researchers intended to develop encrypted
databases. Nevertheless, it underestimates the attacker
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and the many side-attacks a motivated adversary can exe-
cute. As Rogaway remarks, we cannot make the mistake
to reduce the adversary to the lazy and abstract Bob, but
we must remember that it can go far beyond that and
take the form of a military-industrial-surveillance pro-
gram with a billionaire budget and capability to surpass
the obvious [45].

4 Related work
The management of a dataset is made by a database man-
agement system (DBMS). It is composed by several layers
responsible for coordinating read and write operations,
guarantee data consistency and integrity, and user access.
The engineering of such a system is a complex task and
requires smart optimizations to be able to store data,
process queries and return the outcome with minimum
latency and good scalability.
This way, searchable encryption solutions usually are

implemented not inside but on top of these systems as a
middleware to translate encrypted queries to the DBMS
without revealing plaintext data and decrypt the outcome,
as shown in Fig. 1. This strategy enables the use of decades
of optimizations incorporated in nowadays DBMSs and
portable to encrypted data. It is important to state that,
ideally, security features should be designed in conjunc-
tion with the underlying database. Long-term solutions
are expected to assimilate those strategies internally in the
DBMS core.

4.1 CryptDB
CryptDB is a software layer that provides capabilities to
store data in a remote SQL database and query over it

without revealing sensitive information to the DBMS. It
introduces a proxy layer responsible to encrypt and adjust
queries to the database and decrypt the outcome [7].
The context in which CryptDB stands is a typical

structure of database-backed applications, consisting of a
DBMS server and a separate application server. To query
a database, a predicate is generated by the application
and processed by the proxy before it is sent to the DBMS
server. The user interacts exclusively with the application
server and is responsible for keeping his password secret.
This is provided on login to the proxy (via application)
that derives all the cryptographic keys required to interact
with the database. When the user logs out, it is expected
that the proxy deletes its keys.
Data encryption is done through the concept of “onions”,

which consist of layers of encryption that are combined to
provide different functionalities, as shown in Fig. 2. Such
layers are revealed as necessary to process the queries
being performed. Modeling a database involves evaluating
the meaning of each attribute and predicting the opera-
tions it must support. In particular, keyword-searching as
described in Definition 3 is implemented as proposed in
Song’s work [43]. The performance overhead overMySQL
measured by the authors is up to 30%.
Two types of threats are treated in CryptDB: curious

database administrators who try to snoop and acquire
information about client’s data but respect the estab-
lished protocols (a persistent passive attacker); and an
adversary that gains complete control of application and
DBMS servers (an active attacker). The authors state
that the first threat is mitigated through the encryp-
tion of stored data and the ability to query it without

Fig. 1 Sequence diagram representing the process of generating and processing an encrypted query. The proxy is positioned between the user and
the DBMS in a trusted environment. Its responsibility is to receive a plaintext query, apply an encryption protocol, submit the encrypted query to the
DBMS, and decrypt the outcome
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Fig. 2 Representation of the data format used by CryptDB. The current
value to be protected lies in the center, and a new encryption layer is
overlapped to it according to the need of a particular functionality

any decryption or knowledge about its content; while
the second applies only to logged-in clients. In the con-
sidered scenario, the cryptographic keys relative to data
in the database are handled by the application server.
Thus, if the application server is compromised, all the
keys it possesses at that moment (that are expected to
be only from logged-in users) are leaked to the attacker.
Such arguments were revisited after works by Naveed
and Grubbs et al. demonstrated how to explore several
weaknesses of the construction, such as the application of
OPE [46, 47].

4.2 Arx
Arx is a database system implemented on top of Mon-
goDB [8]. It targets much stronger security properties and
claims to protect the database with the same level of regu-
lar AES-based encryption4, achieving IND-CPA security.
This is a direct consequence of the almost exclusively use
of AES to construct selection operators, even on range
queries, and not only brings strong security but also good
performance due to efficiency of symmetric primitives,
sometimes even benefiting from hardware implementa-
tions. The authors report a performance overhead of
approximately 10% when used to replace the database of
ShareLatex. The building blocks used for searching fol-
low those described in Definition 3. Furthermore, they
apply a different AES key for each keyword when generat-
ing the trapdoor, requiring the client to store counters, as
explained in the next paragraph.

At its core, Arx introduces two database indexes, ARX-
RANGE for range and order-by-limit queries and ARX-EQ
for equality queries, both built on top of AES and using
chained garbled circuits. The former uses an obfusca-
tion strategy to protect data, while enabling searches in
logarithmic time. The latter embeds a counter into each
repeating value. This ensures that the encryption of both
are different, protecting them against frequency analysis.
Using a token provided by the client, the database is able
to expand it in many search tokens and return all the
occurrences desired, allowing an index to be built over
encrypted data.
The context in which Arx stands is similar to CryptDB.

However, the authors consider the data owner as the appli-
cation itself. This way, it simplifies the security measures
and considers the responsibility to keep the application
server secure outside of its scope.

4.3 Seabed
Seabed was developed by Papadimitriou et al. and aims at
Business Intelligence (BI) applications interested in keep-
ing data secure on the cloud [48]. As well as CryptDB
and Arx, Seabed was built consisting of a client-side query
translator (to SQL), a query planner, and a proxy that con-
nects to a Apache Spark instance [49]. Its main founda-
tions are two new cryptographic constructions, additively
symmetric homomorphic encryption (ASHE) and Splayed
ASHE (SPLASHE). The former is used to replace Pail-
lier as the additively homomorphic encryption scheme,
stating that their construction is up to three orders of
magnitude faster. The latter is used to protect the database
against inference attacks [37].
SPLASHE works by splitting sensitive data into multi-

ple attributes, obscuring the low-entropy of deterministic
encryption. Formally, let C be a sensitive attribute of a
dataset that can be filled with d possible discrete val-
ues. The approach taken by SPLASHE is to replace this
attribute in the encrypted database by {C1, C2, · · · , Cd}
such that Cv = 1 and Ct = 0 for t �= v if C = v. When
encrypted by ASHE the ciphertexts will look random to
the adversary.
Seabed’s authors argue that SPLASHE is strong enough

to mitigate frequency analysis, enabling the use of
deterministic encryption whenever it is required in the
database model. However, Grubbs states that SPLASHE’s
protection may be deflected through the auxiliary data
stored by the database [44]. Their work demonstrates
how state-of-the-art databases store metadata that can be
used to reconstruct issued queries and, this way, recognize
access patterns on the attributes. Such patterns leak the
information that SPLASHE intended to hide. Considering
this, the only threat really mitigated by SPLASHE against
the deterministic encryption of Seabed is from a snapshot
attacker.
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5 Proposed framework
The goal of the proposed framework is to develop a
database model capable of storing encrypted records and
applying relational algebra primitives on it without the
knowledge of any cryptographic keys or the need for
decryption. A trade-off between performance and secu-
rity is desirable, however we completely discard determin-
istic encryption whenever possible for security reasons.
The only exception are contexts with unique records,
which avoid by definition weaknesses intrinsic to deter-
ministic encryption. The applicability of this framework
goes beyond SQL databases. Besides the relational algebra
hereby used to describe the framework, it can be extended
to key-value, document-oriented, full text and several
other databases classes that keep the same attribute
structure.
The three main operations needed to build a use-

ful database are insertion, selection and update. Once
data is loaded, being able to select only those pieces
that correspond to an arbitrary predicate is the basic
block to construct more complex operations, such as
grouping and equality joins. This functionality is funda-
mental when there is a physical separation between the
database and the data owner, otherwise high demand
for bandwidth is incurred to transmit large fractions of
the database records. Furthermore, real data is frequently
mutable and thus the database must support updates to
remain useful.
We define as secure a systemmodel that guarantees that

the data owner is the only entity capable of revealing data,
which can be achieved by his exclusive possession of the
cryptographic keys. Thus, a fundamental aspect of our
proposal is the scenario in which the database and the
application server handle data with minimum knowledge.
Lastly, the framework does not ensure integrity, fresh-

ness or completeness of results returned to the applica-
tion or the user, since an adversary that compromises
the database in some way can delete or alter records.
We consider this threat to be outside the scope of this
framework.

5.1 Classes of attributes
Records in an encrypted database are composed by
attributes. These consist of a name and a value, that can
be an integer, float, string or even a binary blob. Values of
attributes are classified according to their purpose:

static An immutable value only used for storage. It is not
expected to be evaluated with any function, so
there is no special requirement for its encryption.

index Used for building a single or multivalued
searchable index. It should enable one to verify if
an arbitrary term is contained in a set without the
need to acquire knowledge of its content.

computable A mutable value. It supports the evaluation
with arithmetic circuits and ensures
obtaining, after decryption, a result
equivalent to the same circuit applied over
plaintexts.

The implementation of each attribute must satisfy
the requirements without leaking any vital information
beyond those related directly with the attribute objective
(e.g.: order for index attributes). Since the name of an
attribute reveals information, it may need to be protected
as well. However, the acknowledgement of an attribute is
done using its name, so even anonymous attributes must
be traceable in a query. An option for anonymizing the
attribute name is to treat it as an index.
The aforementioned cryptosystems are natural sugges-

tions to be applied within these classes. Since static is a
class for storage only, which has no other requirements,
any scheme with appropriate security level and perfor-
mance may be used, as AES. On the other hand, index and
computable attributes are immediate applications of ORE
and HE schemes. Particularly, the latter defines the HE
scheme according to the required operations. Attributes
that require only one operation can be implemented with
a PHE scheme, which provides good performance; while
those that require arbitrary additions and multiplications
must use FHE and deal with the performance issues.

Definition 4 (Secure ORE) Let E and C be, respec-
tively, an encryption and a comparison function. The
pair (E,C) forms an encryption scheme with the order-
revealing property defined as “secure” if and only if it
satisfies Definition 1; the encryption of a message m can
be written as E(m) = (cL, cR) = (EL(m),ER(m)), where
EL and ER are complementary encryption functions; and
the comparison between two ciphertexts c1 and c2 is done
by C (cL1, cR2). This way, C may be applied without the
complete knowledge of the ciphertexts.

In order to build a secure and efficient index, an ORE
scheme that corresponds to Definition 4 should be used.
We define the search framework as in Definition 5.

Definition 5 (Encrypted search framework) Let S be a
set of words, sk a secret key, and an ORE scheme (ENC,
CMP) that satisfies Definition 4. The operations required
for an encrypted search over S are defined as follows:

BUILDINDEXsk(S): Outputs the set

S∗ = {cR | (cL, cR) = ENCsk(w),∀w ∈ S} .
TRAPDOORsk(w): Outputs the trapdoor

Tw = (cL | (cL, cR) = ENCsk(w)) .
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SEARCHS∗,r(Tw): To select all records in S∗ with the rela-
tion r ∈ {LOWER, EQUAL, GREATER} to word w, one
computes the trapdoor Tw and iterates through S∗
looking for the records w∗ ∈ S∗ that satisfy

CMP
(
Tw,w∗) = r.

The set Ŝ with all the elements in S∗ that satisfy this
equation is returned.

5.2 Database operations
Let us consider a model composed by an encrypted
dataset stored in a remote server and a user that pos-
sesses the secret cryptographic keys. The latter would like
to perform queries on data without revealing sensitive
information to the server, as defined in Section 3.1.
In 1970, Codd proposed the use of a relational algebra as

a model for SQL [50]. This consists of a small set of oper-
ators that can be combined to execute complex queries
over the data.
Through the functions defined in Definition 5, a rela-

tional algebra for encrypted database operations can be
built. The basic operators for such algebra are defined as
follows.

1. Projection (πA): Returns a subset A of attributes
from selected records. This subset may be defined by
attribute names that may or may not be encrypted.

(a) encrypted : If encrypted, a deterministic
scheme is used or they are treated as index
values.
deterministic scheme: The user computes
A∗ = {EncDet(a)|a ∈ A}. A∗ is sent to the
server, which picks the projected attributes
using a standard algorithm.
index attributes: The user computes
A∗ = {

Trapdoorsk(a)|a ∈ A
}
. A∗ is sent to

the server, which picks the projected
attributes using SEARCH.

(b) unencrypted : Unencrypted selectors are sent
to and selected by the server using a standard
algorithm.

2. Selection (σϕ): Given a predicate ϕ, returns only the
records satisfying it.

• Handles exclusively index, hence ϕ must be
equivalent to a combination of comparative
operators supported by SEARCH.

• Let w � x ← ϕ, where � is a compatible
comparative operator, w an index attribute, and
x the operand to be compared (e.g.: σage>30
signals for records which the attribute named
“age” value is greater than 30). The trapdoor

Tϕ = Trapdoorsk(ϕ) is sent to the server that
executes SEARCH.

3. Cartesian product (×): The Cartesian product of
two datasets is executed using a standard algorithm.

4. Difference (−): The difference between two datasets
A and B encrypted with the same keys is defined as
A − B = {x | x ∈ A and x �∈ B}.

5. Union (∪): The union of two datasets A and B
encrypted with the same keys is defined as
A ∪ B = {x | x ∈ A or x ∈ B}.

Union and difference are defined over datasets with the
same set of attributes. The opposite is expected for Carte-
sian product, so that no attribute may be shared between
operands.
Ramakrishnan calls these “basic operators” in the sense

that they are essential and sufficient to execute relational
operations [51]. Additional useful operators can be built
over those. For instance: rename, join-like, and division.
The same observation applies in the encrypted domain,
and complex operators can be constructed given basic
operators defined over the encrypted domain.

6. Rename (ρa,b): Renames attributes. Their names
may or may not be encrypted.

(a) encrypted : Encryption shall be executed using
a deterministic cryptosystem or names
treated as index values.

deterministic scheme: Let a be an attribute
name to be replaced by b. The user computes
a∗ ← EncDet(a) and b∗ ← EncDet(b), and
sends the output to the server, which applies a
standard replacement algorithm.

index attributes: Let a be an attribute name
to be replaced by b. The user computes
a∗ ← Trapdoor(a) and b∗ ← cR | (cL, cR) =
Encindex(b) and sends the output to to the
server, which selects attributes related to a∗ as
EQUAL through the operation SEARCH and
renames the result to b∗.

(b) unencrypted : Unencrypted attribute names
may be renamed by the server using a
standard algorithm.

7. Natural join (��): Let A and B be datasets with a
common subset of attributes. The natural join
between A and B is defined as the selection of all
elements that lies in A and B and match all the values
in those attributes. More formally, let c1, c2, . . . , cn be
attributes common to A and B; x1, x2, . . . , xn
attributes not contained in A or in B; a1, a2, . . . , am
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be attributes unique to A; b1, b2, . . . , bk be attributes
unique to B; and K = N

∗
n+1. We have that,

A �� B ≡ σci=xi
(
ρ(ci,xi)(A) × B

)
,∀i ∈ K.

8. Equi-join (��θ ): Let A and B be datasets. The
equi-join between A and B is defined as the selection
of all elements that lie in A and B and satisfy a
condition θ . More formally, A �� B = σθ (A × B).

9. Division (/): Let A and B be datasets and C the
subset of attributes unique to A. The division
operator joins the operands by common attributes
but projects only those unique to the dividend.
Hence, A/B = πC (A �� B).

Finally, it is important to define data insertion and
update despite these cannot be properly defined as rela-
tional operators.

• Insert: Encrypted data is provided and inserted into
the database using a standard algorithm.

• Update: An update operation is defined as a selection
followed by the evaluation of a computable attribute
by a supported homomorphic operation.

This set of operators enables operating over an
encrypted database without the knowledge of crypto-
graphic keys or acquiring sensitive information from user
queries.

5.3 Security analysis
We assume the scenario in which the data owner has
exclusive possession of cryptographic keys. This way,
insertions to the database must be locally encrypted
before being sent to the server. The database or the appli-
cation never deal with plaintext data. Our framework
thus has the advantage over CryptDB of preserving pri-
vacy even in the outcome of a compromised database or
application server.
Despite being conceptually similar to OPE, ORE is able

to address several of its security limitations. ORE does not
necessarily generate ciphertexts that reveal their order by
design, but allows someone to protect this information by
only revealing it through specific functions. ORE is able to
achieve the IND-OCPA security notion and adds random-
ization to ciphertexts. Those characteristics make it much
safer against inference attacks [37]. The proposal of Lewi
and Wu goes even beyond that and is capable of limit-
ing the use of the comparison function [34]. Their scheme
generates a ciphertext that can be decomposed into left
and right components such that a comparison between
two ciphertexts requires only a left component of one
ciphertext and the right component of the other. This way,
the authors argue that robustness against such attacks is
ensured since the database dump may only contain the

right component, that is encrypted using semantically-
secure encryption. Their scheme satisfies our notion of
a Secure ORE and, therefore, provides strong defenses
against Snapshot attackers.
An eavesdropper (Active or Persistent passive attacker)

is not capable of executing comparisons by himself in a
Secure ORE. However he may learn the result of these
and recognize repeated queries by observing the outcome
of a selection. This weakness may still be used for infer-
ence attacks, that can breach confidentiality from related
attributes. This issue can get worse if the trapdoor is
deterministic, when there is no other solution than imple-
menting a key refreshment algorithm. Besides that, the
knowledge of the numerical order between every pair of
elements in a sequence may leak information depend-
ing on the application. This problem manifests itself in
our proposal on the σ primitive if it uses a weak index
structure, like a naive sequential index. A balanced-tree-
based structure, on the other hand, obscures the numer-
ical order of elements in different branches. This way,
an attacker is capable of recovering the order of up to
O(log n) database elements and infer about the others, in
a database with n elements.
Schemes used with computable attributes are limited

to IND-CCA1, and typically reach only IND-CPA. More-
over, homomorphic ciphertexts are malleable by design.
Thus, an attacker that acquires knowledge about a cipher-
text can use it to predictably manipulate others.
Finally, BUILDINDEX is not able to hide the quantity

of records that share the same index. This way, one
is able to make inferences about those by the num-
ber of records. There is also no built-in protection for
the number of entries in the database. A workaround is
to fix the size of each static attribute value and round
the quantity of records in the database using padding.
This approach increases secrecy but also the storage
overhead.

5.4 Performance analysis
The application of ORE as the main approach to build
a database index provides an extremely important con-
tribution to selection queries. SEARCH does not require
walking through all the records testing a trapdoor, but
only a logarithmic subset of it when implemented over an
optimal index structure, such as an AVL tree or B-tree
based structure [52]. This characteristic is highlighted on
union, intersection and difference operations, which work
by comparing and selecting elements in different groups.
Moreover, current proposals in the state of the art of ORE
enjoy good performance provided by symmetric primi-
tives and does not require more expensive approaches
such as public-key cryptography [33, 34, 36]. In particu-
lar, although fully homomorphic cryptosystems promise
to fulfill this task and progress has been made with new
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cryptographic constructions [53], it is still prohibitively
expensive for real-world deployments [54].
Space consumption is also affected. Ciphertexts are

computed as a combination of the plaintext with random
data. This way, a non-trivial expansion rate is expected.
Differently from speed overheads which are affected by a
single attribute type, all attributes suffer with the expan-
sion rate of encryption.

5.5 Capabilities and limitations
Our framework is capable of providing an always-
encrypted database that preserves secrecy as long as the
data owner keeps the cryptographic keys secure. One is
able to select records through index and apply arbitrary
operations on attributes defined as computable. Further-
more, it increases the security of data but maintaining
the computational complexity of standard relational prim-
itives, achieving a fair trade-off between security and
performance.
Although the framework has no constraints about

attributes classified as both index and computable, there
is no known encryption scheme in the literature capable
of satisfying all the requirements. This way, the relational
model of the database must be as precise as possible when
assigning attributes to each class, specially because the
costs of a model refactor can be prohibitive.
Some scenarios appear to be more compatible with an

encrypted database as described than others. An e-mail
service, for example, can be trivially adapted. The e-mails
received by a user are stored in encrypted form as static
and some heuristic is applied on its content to generate a
set of keywords to be used on BUILDINDEX. This heuris-
tic may use all unique words in the e-mail, for example.
The sender address may be an important value for query-
ing as well, so it may be stored as an index. To optimize
common queries, a secondary collection of records may
be instantiated with, for example, counters. The quantity
of e-mails received from a particular sender, how often a
term appears or howmanymessages are received in a time

frame. Storing this metadata information in a secondary
data collection avoids some of the high costs of searching
in the main dataset.
However, our proposal fails when the user wants to

search for something that was not previously expected.
For example, regular expressions. Suppose a query that
searches for all the sentences that start with “Attack”
and end with “dawn”, or all the e-mails on the domain
“mail.com”. If these patterns were not foreseen when the
keyword index was built, then no one will be able to cor-
rectly execute this selection without the decryption of
the entire database. Since the format of the strings is lost
on encryption, this kind of search is impossible in our
proposal.
Lastly, relational integrity is a desired property for a

relational database. It connects two or more sets using
same-value attributes in both sets (e.g.: every value of a
column in a table A exists in a column in table B), and
establishes a primary-foreign key relationship. This way,
the existence of a record in an attribute classified as foreign
key depends on the existence of the related record on the
other set, in which the primary key is equal to that foreign
key. To implement such feature one must provide to the
DBMS capabilities to reinforce relational integrity rules.
In other words, the server must be able to recognize such
a relationship to guarantee it will be respected by issued
queries.
An example of the applicability of this concept is an e-

commerce database. Best practices dictate that user data
should be stored separately from products and orders.
Thus, one may model it as in Fig. 3. When a new
order arrives, it is clear that a user chose some prod-
uct and informed the store about his intent to buy it.
Users and products are concrete elements. However, a
sale is an abstract object and cannot happen without a
buyer and a product. This way, to maintain the consis-
tency of the database the DBMS must assure that no
sale record will exist without relating user and product.
This can be achieved by constructing the sales table such

Fig. 3 Simple diagram describing the interaction between users and products composing the information regarding an order. Notice that the
existence of users and products is independent, but there is a dependence for orders
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that records contain foreign keys for the user and product
tables (implying that these contain attributes classified as
primary keys). By definition this feature imposes an inher-
ent requirement that the DBMS has knowledge about
this relationship between records on different tables. Any
approach to protect the attributes against third parties
will affect the DBMS itself and will never really achieve
the needed protection. Thus, any effort on implement-
ing secure relational integrity is at best security through
obscurity5.

6 The winner solution of Netflix’s prize
The winner of Netflix Grand Prize was BellKor’s Prag-
matic Chaos team, who built a solution over the progress
achieved in the 2007 and 2008 Progress Prizes [55]. Sev-
eral machine learning predictors were combined in the
final solution with the objective of anticipating the suit-
ability of Netflix content for some user considering previ-
ous behavior in the platform. The foundation used for this
considered diverse factors, such as:

• What is the general behavior of users when rating?
What is the average rating?

• How critic is a user and how this changes over time?
• Does the user demonstrate preference for a specific

movie or gender?
• Does the user demonstrate preference for

blockbusters or non-mainstream content?
• What property of a movie affects the rating? Is there

a correlation between the rating of a user and the
presence of a particular actor in a particular gender?

The strategy used to combine these factors (and many
others) escapes the scope of this work. We should attend
only to the necessity of extracting data from the dataset to
feed the learning model.

6.1 Searching the encrypted Netflix’s database
An interesting application of our framework is enabling
an entity to maintain an encrypted database on third party
hardware with a similar structure of Netflix’s dataset and
being able to implement a prediction algorithm with min-
imum data leakage to the DBMS. The database should be
capable of answering the requested predicates regarding
user behavior.
Two scenarios must be considered: the recommenda-

tion system running on Netflix’s infrastructure, and the
dataset becoming public. The former offers an execution
environment apparently honest (no one would share data
with an openly malicious party) but that can be com-
promised at some point. To mitigate the damage, the
data owner can implement different strategies to reduce
the usefulness of any leakage that might happen. Thus,
data being handled exclusively in encrypted form on

the server is a natural option, since security breaches
would reveal nothing but incomprehensible ciphertexts.
This is the best case scenario since the data owner has
as much control of the execution machine as possible,
so our framework proposal can be applied in its full
capacity.
As an example of the latter, an important feature

required for running the Netflix’s prize is the capability
of in-dataset comparisons. This time any security solution
should find the balance between protecting data secrecy
and offering conditions for experimentation. Moreover,
we must consider that the execution environment cannot
be considered honest anymore. This way, the suitability of
our framework depends on the relaxation of the indexing
method. index values must be published to enable com-
parisons. For instance, both sides of Lewi-Wu’s cipher-
texts should be published, or even an OPE scheme may
be used on the encryption of the index. From the per-
spective of the secrecy of ciphertexts, if a IND-OCPA
scheme is used then there will be no security reduction
beyond what the corresponding threat model expects, as
discussed in Section 2.1. The adversary learns the cipher-
text order but has restricted ability to make inferences
using information acquired from public databases. The
only strategy that can be applied uses the data distri-
bution in the dataset (that can be retrieved by enabling
comparisons), which puts an attacker in this scenario
in a very similar position than the persistent passive
attacker.
Given the boundary conditions for privacy preservation,

we cannot precisely state the robustness of our frame-
work in the context of the Netflix prize. It clearly increases
the hardness against an inference attack, since the adver-
sary is unable to observe the plaintext, but the distribution
leaked will give him hints about its content. For instance,
the correlation of age groups and most watched (or bet-
ter rated) movies. It is a fact that all these are expressed
as ciphertexts, but as previously stated, a motivated adver-
sary may be able to combine such hints and defeat our
security barriers.
Our framework performs much better in the more con-

servative scenario, where a production server provides
recommendations to users with comparisons controlled
by the data owner through the two-sided index attributes.
The impossibility for arbitrary comparisons makes snap-
shot attacks completely infeasible.
As previously discussed, a motivated adversary with

access to the database may be able to also retrieve logs
and auxiliary collections. Consequently, previous queries
may leak the second side of index ciphertexts and recall
the danger of persistent passive attacks. So, an impor-
tant feature for future work is the development of a key
refreshment algorithm to nullify the usefulness of such
information.
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6.2 Data structure
The dataset shared by Netflix is composed by more than
100 million real movie ratings from 480,000 users about
17,000 movies, made between 1999 and 2005, and format-
ted as a training test set [11, 55]. It contains a subset of 4.2
million of those ratings, with up to 9 ratings per user. It
consists of:

• CustomerID: A unique identification number per
user,

• MovieID: A unique identification number per movie,
• Title: The English title of the movie,
• YearOfRelease: The year the movie was released,
• Rating: The rating itself,
• Date: The timestamp informing when the rating

happened.

6.3 Constructing queries of interest over encrypted data
Following we rewrite some of the main predicates
required for BellKor’s solution using the relational alge-
bra of Section 5.2, thus enabling their execution over an
encrypted dataset.
Let

• DB be a dataset as described in Section 6.2,
• AID be the CustomerID related to a particular user

(that we shall call Alice),
• BID be the CustomerID related to a particular user

different to Alice (that we shall call Bob),
• MID be the MovieID related to an arbitrary movie in

the dataset (that we should refer asM),
• T = (Tstart, Tend) be a time interval of interest,
• Tfirst-alice be the timestamp of the first rating Alice

ever made,
• C() be a function that receives a set and returns the

quantity of items contained,
• rH and rL be thresholds for extreme ratings

characterizing users that hated or loved a movie,
• σDate∈T (DB) ≡ σDate ≥ Tstart(DB)+σDate < Tend(DB),
• f (X) =

∑
x∈X πRating (x)

C(X)
.

Then, some of the required predicates for BellKor’s
solution are:

• Movies rated by Alice: Returns all movies that
received some rating from Alice. For

U(X) = σCustomerID=X(DB),

we have the query

πMovieID(U(AID)). (1)

• Users who rated M: Returns all users that sent some
rating for MID. For

M(X) = σMovieID=MID(DB),

we have the query

πCustomerID(M(MID)). (2)
• Average of Alice’s ratings over time: Computes the

average of all rates sent by Alice during a particular
time interval T . For

AAID,T = σDate∈T (U(AID)),

we have that

avg(AID, T ) =
{
f (AAID,T ) if C(AAID,T ) > 0,
0, otherwise.

(3)
• Average of ratings for a particular movie M in a

timeset: Computes the average of all rates sent by all
users during a particular time interval T for a movie
M. For

MMID,T = σDate∈T (M(MID))

we have that

avg(MID,T ) =
{
f (MMID,T ) if C(MMID,T ) > 0,
0, otherwise.

(4)
• Number of days since Alice’s first rating:

Computes how many days have been since the Alice
submitted the first rating of movie, relative to a
moment I .

dsf(AID,I) = I−πDate(σmin(Date)(U(AID))). (5)
• Quantity of users who hatedM: Counts the

quantity of very bad ratingsM received since its
release.

CH(M) = C
(
σMovieID=MID(σRating≤rH(DB))

)
.
(6)

• Quantity of users who lovedM: Counts the
quantity of very good ratingsM received since its
release.

CL(M) = C
(
σMovieID=MID(σRating≥rL(DB))

)
. (7)

• Users that are similar to Alice: The similarity
assessment between users require the derivation of a
specific metric according to the boundary-conditions.
The winning solution developed a sophisticated
strategy, building a graph of neighborhoods
considering similar movies and users and computing
a weighted mean of the ratings. For simplicity, we
shall condense two factors that can be used for this
objective: the set of common rated movies, and how
close the ratings are. To query the movies rated both
by Alice and Bob, let

αAID = πMovieID,RatingA(ρRating,RatingA(U(AID)))
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and

βBID = πMovieID,RatingB(ρRating,RatingB(U(BID))).

Then

SIMILARITYSET (AID,BID) = αAID �� βBID (8)

returns a sequence of tuples of ratings made by Alice
and Bob. A simple approach for evaluating proximity
is to compute the average of the difference of ratings
for each movie returned by Eq. 8, as shown in Eq. 9.

∑
SIMILARITYSET(AID,BID) |RatingA − RatingB|

C (SIMILARITYSET (AID,BID))
(9)

7 Implementation
A proof-of-concept implementation of the proposed
framework was developed and made available to the com-
munity under a GNU GPLv3 license [29]. It runs upon
the popular document-based database MongoDB and
was designed as a wrapper over its Python driver [56].
Hence, we are able to evaluate its competence as a search
framework as well as the compatibility with a state-of-
the-art DBMS. Moreover, running as a wrapper makes
it database-agnostic and restricts the server to dealing
with encrypted data. We choose to implement our wrap-
per over a NoSQL database so we could avoid dealing
with the SQL interpreter and thus reduce the implemen-
tation complexity. However, our solution should be easily
portable to any SQL database because of its strong roots
in relational algebra. Table 1 provides the schemes used
for each attribute class, the parameter size and its security
level.
Lewi-Wu’s ORE scheme relies on symmetric primitives

and achieves IND-OCPA. The authors claim that this
is more secure than all existing OPE and ORE schemes
which are practical [34]. Finally, Paillier and ElGamal are
well-known public-key schemes. Both achieve IND-CPA
and are based on the hardness of solving integer factoriza-
tion and discrete logarithm problems, respectively. Paillier
supports homomorphic addition, while ElGamal provides
homomorphic multiplication. Both are classified as PHE
schemes [38, 39]. The implementation of AES was pro-
vided by the pycrypto toolkit [57]; we wrote a Python bind-
ing over the implementation of Lewi-Wu provided by the
authors [58]; and we implemented Paillier and ElGamal

Table 1 Chosen cryptosystems for each attribute presented in
Section 5

Attribute Cryptosystem Parameters Sec. level

static AES 128 bits 128 bits

index Lewi-Wu 128 bits 128 bits

computable (+) Paillier 3072 bits 128 bits

computable (×) ElGamal 3072 bits 128 bits

schemes. An AVL tree was used as the index structure. It
is important to notice that performance was not the main
focus in this proof-of-concept implementation.
The machines used to run our experiments are

described in Tables 2 and 3. The former specifies the
machine used to host the MongoDB server, and latter
describes the one used to run the client. Both machines
were connected by a Gigabit local network connection.
While it was trivial to index the plaintext dataset

natively, it was not so simple with the encrypted ver-
sion. MongoDB is not friendly to custom index struc-
tures or comparators, so we decided to construct the
structure with Python code and then insert it into the
database using pointers based on MongoDB’s native iden-
tity codes. Walking through the index tree depends on a
database-external operation at Python-side, calling Mon-
goDB’s FIND method to localize documents related to
left/right pointers starting from the tree root. Such limita-
tion brings a major performance overhead that especially
affects range queries.

7.1 Netflix’s prize dataset
We used the Netflix’s dataset to measure the computa-
tional costs of managing an encrypted database.
We consider the two threat scenarios discussed in

Section 6.1, a recommendation system running in pro-
duction, and the disclosure of a real ratings dataset. Both
require the ability of running all queries presented in
Section 6.3, differing only in the content that must be
inserted in the encrypted dataset (for instance, how much
of the index ciphertexts may be stored). Hence, to demon-
strate the suitability of our framework as a strategy to
fulfill the development and execution of a good predictor
in such contexts, and being capable of mitigating dam-
ages to user privacy, we implemented those queries in an
encrypted instance of the dataset.
As shown in Table 4, the four attributes chosen are

classified as static, which use the faster encryption and
decryption available. Rating is tagged computable for
addition and multiplication, thus being compatible with
Eqs. 3 and 4. We use CustomerID, MovieID, and Date for
indexing. Encrypting the document structure takes 540μs
per record.
There is no way to implement integer division over Pail-

lier ciphertexts. Thus, the predictor may be adapted to

Table 2 Specifications of the machine used for running the
MongoDB instance

CPU 2 x Intel Xeon E5-2670 v1 @ 2.60GH

OS CentOS 7.3

Memory 16 x DDR3 DIMM 8192MB @ 1600MHz

Disk 7200RPMWestern Digital HDD (SATA)
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Table 3 Specifications of the machine used for running the
queries described in this document

CPU 2 x Intel Xeon E5-2640 v2 @ 2.60GH

OS Ubuntu 16.04.2

Memory 4 x DDR3 DIMM 8192MB @ 1600MHz

Disk 7200RPMWestern Digital HDD (SATA)

use the non-divided result on Eqs. 3 and 4. Otherwise,
a division oracle must be provided, to which one could
submit their homomorphically added values and ask for a
ciphertext equivalent to its division by an arbitrary integer.
This approach does not reduce security for an IND-CPA
homomorphic scheme.
Handling such a large dataset was not an easy task.

The ciphertext expansion factor caused by AES, Paillier
and ElGamal cryptosystems was relatively small, but the
Lewi-Wu implementation is very inefficient in this regard,
having an expansion of about 400×. This directly affects
the index building and motivated us to explore different
strategies to encrypt and load the dataset to a MongoDB
instance in reasonable time.
Again, MongoDB is not friendly for custom indexing. A

contribution by Grim, Wiersma and Turkmen to our code
enables us to manage the AVL tree inside the database
through JavaScript code stored inside MongoDB’s engine
(the only way to execute arbitrary code inMongoDB) [59].
Thus, our primary approach to feed the DBMS with the
dataset was quite simple: encrypt each record in our wrap-
per, insert in the database, and update the index and
balance the tree inside the DBMS. The two first operations
suffered from an extremely high memory consumption
and by far surpassed our available RAM capacity. How-
ever, an even worse problem we faced was to build the
AVL tree. For the first thousand records we could do the
node insertion and tree balancing with a transfer rate of
about 600 documents per second, but it dropped quickly
as the tree height increases, reaching less than 1 document
per second before insertion of the 10,000th record.
We found out that the initial insertions required a novel

approach. We completely decoupled the index from the
static data encryption and chose to first feed the database
with the static ciphertexts, constructing the entire AVL
tree using the plaintext on client-sided memory, and then

Table 4 Attribute structure of elements in the Netflix’s prize
dataset

Name Value type Class

CustomerID integer index, static

MovieID integer index, static

Rating integer static, computable

Date integer index, static

inserting it in the database. Moreover, to speed up the
index construction we followed Algorithms 1 and 2 to
construct the AVL tree. It takes a sorted list of inputs and
builds the tree with time complexity of O(n) on the list
size. As a result of this approach we were able to build the
encrypted database and the index by 3000 documents per
second during the entire procedure.

Algorithm 1 Build an AVL tree using an array of docu-
ments
1: procedure BUILD_INDEX(docs)
2: docssort ← sort(docs);
3: docsgroup ← group(docssort); � Combine equal

elements
4: return build_aux(docsgroup, 0, lenght(docsgroup) − 1);
5: end procedure

Algorithm 2 Recursively builds an AVL tree with a sorted
array of documents without repeated elements. Receives
the array itself, and the indexes for the leftmost and
rightmost elements to be handled in each recursive call
1: procedure BUILD_AUX(docs, L, R)
2: if L = R then
3: return new_node(docs [L]);
4: else if L + 1 = R then
5: left_node ← new_node(docs [L]);
6: right_node ← new_node(docs [R]);
7: left_node.right = right_node;
8: left_node.height = 1;
9: return left_node;

10: else
11: M ← L + �(R − L)/2�;
12: middle_node ← new_node(docs [M]);
13: middle_node.left ← build_aux(docs, L,M−1);
14: middle_node.right ← build_aux(docs,M+1,R);
15: lh ← middle_node.left.height;
16: rh ← middle_node.right.height;
17: middle_node.height = 1 + max(lh, rh);
18: returnmiddle_node;
19: end if
20: end procedure

Table 5 shows the latency of each step we observed dur-
ing the construction of the AVL tree-based indexes. The
total time to build those 3 indexes was 40 min.
The queries we derived in Section 6.3 were ported to

our encrypted database, and the latency for each one can
be seen in Table 6. The parameters used for each Equation
were arbitrarily selected. The CustomerIDs for Alice and
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Table 5 Latency for each step in the construction of an AVL tree
following Algorithm 1 for each index attribute specified in 4

Attribute Sort (s) Group (s) Build_index (s)

CustomerID 329 459 129

MovieID 270 161 2

Date 187 197 5

Bob (AID and BID) were 1061110 and 2486445 respec-
tively, while MID was fixed as 6287. The time interval
used was 01/01/2003 to 01/01/2004. Lastly, we defined a
“loved” rating as those greater than 3, and “hated” rating as
those lower than 3. We applied some efforts in optimizing
the execution, however these results can still be improved.
As it can be seen, complex queries composed by range

selections, as well as those with numerous outcomes, suf-
fered from the slow communication between server and
the client. The latter influenced even the plaintext results.
The outcome of Eq. 1 is quite small, requiring much less
time to return than the outcome of Eq. 2 (the number of
movies rated by a user is much smaller than the number
of users that rated a movie).
The time interval selection in Eqs. 3 and 4 required

our implementation to visit many nodes in the index
tree for Date. Because each iteration requires a back and
forth between the server and the client, this dramatically
impacted the performance. The latencies for Eqs. 1 and 5
were only 1.4 times higher in the encrypted database,
however it reached 710 times for Eq. 3. Lastly, Eqs. 6 and 7
depend on Paillier’s homomorphic additions. This implied
in a factor-12 slowdown.
The implementation of queries based on Eqs. 3 and 4

took the previous suggestion and skipped the final divi-
sion. We believe this does not undermine any procedure
that eventually consumes this outcome.

Table 6 Execution times for implementations of the equations
presented in Section 6.3 on an encrypted MongoDB collection
and an equivalent plaintext version

Equation Encrypted Plaintext

1 16.6 ms 11.9 ms

2 2 s 850 ms

3 2.7 s 3.8 ms

4 2.7 s 1.0 s

5 16.8 ms 11.8 ms

6 and 7 12 ms 1.0 ms

9 603 ms 200 ms

Each row contains the latency for the entire circuit required by the respective
Equation and returning the outcome to the client. Times are computed as the
average for 100 independent executions. The machine and parameters used in each
cryptosystem follow those defined in Section 7

The optimal implementation of Eqs. 6 and 7 requires
indexing of MovieID and Rating attributes. However, due
to limitations in our implementation, rather than index-
ing the latter we use linear search over the outcome of the
movie selection on client-side. Our approach for building
indexes use the set data structure of MongoDB docu-
ments. Yet, in the most recent release such structure holds
up to 16MB of data, much smaller than the required for
indexing the entire dataset for Rating with our strategy.
Lastly, Eq. 8 was implemented aiming at the joining

of data regarding two users, Alice and Bob. We let the
evaluation of such information by a similarity-evaluation
function as future work.

8 Conclusion
We presented the problem of searching in encrypted data
and a proposal of a framework that guides the modeling
of a database with support to this functionality. This is
achieved by combining different cryptographic concepts
and using different cryptosystems to satisfy the require-
ments of each attribute, like order-revealing encryption
and homomorphic encryption. Over this approach, a
relational algebra was built to support encrypted data
composed by: projection, selection, Cartesian product,
difference, union, rename, and join-like operators.
An overview of the security provided is discussed, as

well as a performance analysis about the impact in a
realistic database. As a case study we explored the Net-
flix prize, which published an anonymized dataset with
real-world information about user behavior which was
later deanonymized through correlation attacks involving
public databases.
We offered a proof-of-concept implementation in

Python over the document-based database MongoDB. To
demonstrate its functionality, we selected and ran some
of the main predicates required by the winning solution
of the Netflix Grand Prize and measured the performance
impact of the execution in a encrypted version of the
dataset. We conclude that our proposal offers robust-
ness against a compromised server and we discuss how it
would help to avoid the deanonymization of the Netflix
dataset. In comparison with CryptDB, our proposal pro-
vides higher security, since it delegates exclusively to the
data owner the responsibility of encrypting and decrypt-
ing data. This way, privacy holds even in a scenario of
database or application compromise.
As future research objectives we can mention:

• Extend the scope to associative arrays: Despite being
powerful on SQL, Codd’s relational algebra is not
completely applicable for non-relational databases.
For instance, NoSQL and NewSQL databases lack the
concept of joining. A more convenient foundation for
such context is algebra of associative arrays [60].
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Hence, the formalization of our primitives in such
algebra would be an interesting work.

• Reduce the leakage of index construction in the
database: Our proposal leaks both sides of index
ciphertexts to enable the index construction. At this
moment, an eavesdropper monitoring queries would
learn all information required to freely compare the
exposed ciphertexts. As discussed in this document,
such capability must be restricted, under risk of
enabling an inference attack.

• Key refreshment algorithm: A persistent passive
attacker is capable of learning the required
information to perform comparisons through the
entire database, just by observing issued queries and
its outcome. Thus, the framework primitives must be
improved to support an algorithm capable of avoid
any damage caused by the knowledge of such
information.

• Hide repeated queries: Even with encrypted queries
and outcomes, the access pattern in a database may
indicate repeated queries and the associated records.
A technique such as ORAM could be useful to
protect such information [61].

• Explore different databases: As stated, MongoDB is a
very popular NoSQL database. However, it is not
friendly to custom indexing or third party code
running in its engine. Thus, to replace it by a more
appropriate database could provide a more
productive system.

• Improve performance of our implementation: Our
implementation had as objective to be a
proof-of-concept and demonstrate how the proposal
works. The development of a space and
speed-optimized versions is an important next step.

Endnotes
1 SHE stands for “Somewhat homomorphic encryption”.
2 LHE stands for “Leveled fully homomorphic encryption”.
3 Relative to a set of desirable properties for a database.

Acronym to “Atomicity, Consistency, Isolation, Durability”.
4 The Advanced Encryption Standard (AES) is a well-

established symmetric block cipher enabling high perfor-
mance implementation in hardware and software [62].

5When the security of a system relies only in the lack
of knowledge by adversaries about its implementation
details and flaws.
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