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Research Article

Stable and fast model-free walk with
arms movement for humanoid robots

Marcos ROA Maximo1, Esther L Colombini2 and Carlos HC Ribeiro1

Abstract
Controlling a humanoid robot with its typical many degrees of freedom is a complex task, and many methods have been
proposed to solve the problem of humanoid locomotion. In this work, we generate a gait for a Hitec Robonova-I robot
using a model-free approach, where fairly simple parameterized models, based on truncated Fourier series, are applied to
generate joint angular trajectories. To find a parameter set that generates a fast and stable walk, optimization algorithms
were used, specifically a genetic algorithm and particle swarm optimization. The optimization process was done in
simulation first, and the learned walk was then adapted to the real robot. The simulated model of the Robonova-I was
made using the USARSim simulator, and tests made to evaluate the resulting walks verified that the best walk obtained is
faster than the ones publicly available for the Robonova-I. Later, to provide an additional validation, the same process was
carried out for the simulated Nao from the RoboCup 3D Soccer Simulation League. Again, the resulting walk was fast and
stable, overcoming the speed of the publicly available magma-AF base team.
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Introduction

Humanoid robots are claimed to be more adequate than

wheeled ones for locomotion in unstructured human envir-

onments that include floor discontinuities, ladders, rocks,

debris, and so on. However, walk control for humanoid

robots (biped locomotion) is a particularly challenging

problem, because it encompasses many characteristics

acknowledged for making a control problem hard: nonli-

nearities, underactuation, many degrees of freedom

(DOFs), and so forth. As a result, classical control methods

fail when applied to biped locomotion. Still, many alterna-

tive approaches have been proposed, but so far there is no

robot that can walk as well as a human does.

Biped locomotion methods can be grouped into two main

approaches: model-based and model-free. Model-based

methods depend on analytical models of the dynamics of

the robot. Since modeling a high DOF humanoid robot is

currently unfeasible, approximate models are used, for

example, “3D Linear Inverted Pendulum.”1 Then, a control-

ler is developed for the model assuming that the dynamics of

the robot follows the model. Despite producing incredible

results, as the walking performance achieved by the Honda

ASIMO robot,2 the best model-based walks still operate in a

very conservative way and produces very energy inefficient

motion.3
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On the other hand, model-free methods try to create a

controller directly, without a mathematical model for the

dynamics of the robot. Two known model-free methods are

the central pattern generator (CPG)4 and the ballistic walk-

ing.5 CPG is inspired by nature, where evidence shows that

human locomotion is generated by neural networks that

produce rhythmic patterns. Ballistic walking also got its

inspiration in nature: it is based on the observation that

human muscles of the swing leg are activated only at the

beginning and at the end of the swing phase.

Moreover, there are model-free methods that assume very

simple parameterized equations for the robots joints and use

optimization or machine learning techniques to learn suitable

parameters. Following this idea, Shafii et al. use a truncated

Fourier series (TFS) formulation to describe parameterized

joints angular trajectories and then suitable parameters are

found by optimization.6–8 Using this approach, they were able

to develop a fast and stable walk for the simulated Nao robot

of the RoboCup 3D Soccer Simulation domain.

In this article, our main goal is to derive fast and stable

walking patterns for humanoid robots using optimization

algorithms. To this end, the work reported herein was

divided into two phases: (a) simulation, with the develop-

ment of algorithms based on computational intelligence for

learning stable locomotion in controlled, simulated envir-

onments and (b) implementation on real robots, which con-

sisted in transferring and adapting the algorithms tested in

simulation to a real setting. The main contribution of this

article is showing successful transferring and adaptation of

walking parameters learnt in simulation to a real robot. We

used a Robonova-I,9 developed by the Japanese company

Hitec Robotics, as our robot hardware and USARSim as the

simulation environment. Furthermore, to provide further

validation of the walk development approach used in this

work, we implemented the same process in the RoboCup

3D Soccer Simulation domain.

Computational walk model
for a biped robot

The biped robot model

The Hitec Robonova-I9 has 16 DOFs, as shown in Figure 1.

Each joint is powered by a Hitec HSR-8498HB servomotor

which has a position feedback loop. Thus, the control pro-

gram needs only to compute desired angles for joints. The

controller is an MR-C3024 board installed on the back of

the robot and programming is made using a Hitec’s propri-

etary language called RoboBASIC.

Humanoid locomotion based on periodic functions

Given that humanoid locomotion is an approximately per-

iodic movement, it is intuitive that angular trajectories of a

humanoid locomotion might be described as periodic func-

tions. Indeed,10 proved that TFS may be used to generate

angular trajectories that yield a stable biped locomotion

based on the zero moment point (ZMP) criterion.

Therefore, our walk algorithm uses periodic functions to

generate stable and fast walking in a model-free approach.

Our walking model is similar to the one shown in the

studies by Shafii et al.6–8 However, based on intuition and

observation of human locomotion, we considered an addi-

tional DOF for the shoulder movement to allow different

amplitudes between forward and backward movements of

the arms. Furthermore, our coronal movement pattern

maintains the torso upright.

We now explain how periodic functions are used to

compute angular trajectories for the joints. First, consider

only the three pitch joints on each leg. We used periodic

functions to generate angular trajectories for hip-pitch

and knee joints. Moreover, foot-pitch joints were posi-

tioned to maintain the feet parallel to the ground at all

times. It was assumed that the equivalent joints of each

leg follow the same trajectories, except for a phase differ-

ence of π. So, it is necessary to develop only the trajec-

tories for the left leg and use them with a phase difference

of π for the right leg. By analyzing angular trajectories

extracted from human locomotion, one may assume that

the trajectories for the left leg might be described by the

following equations

yhðtÞ ¼

Oh þ A sin
2πt

T

0
@

1
A; t 2 I1

Oh þ B sin
2πt

T

0
@

1
A; t 2 I2

8>>>>>>><
>>>>>>>:

(1)

ykðtÞ ¼
Ok þ C sin

2πðt � t2Þ
T

0
@

1
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Ok ; t 2 I2

8>><
>>:

(2)

Figure 1. Hitec Robonova-I robot.
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where Oh, Ok , A, B, C, t2, and T are constants. Therefore,

the problem of finding a stable biped locomotion at first is

reduced to determining these seven constants. This may be

done using an optimization algorithm. The joint trajectories

resulting from these equations resemble the ones obtained

from human locomotion data, as shown in the study by

Shafii et al.8

The model may be extended to include arms movement

by adding the shoulder-pitch joint. The equation we used to

describe the trajectory of the left shoulder was

ysðtÞ ¼

�D� sin
2πt

T

0
@

1
A; t 2 I1

�Dþ sin
2πt

T

0
@

1
A; t 2 I2

0
BBBBBBB@

(5)

where D� and Dþ are new constants. Again, it is assumed

that the right shoulder follows the same trajectory of the left

one, except for a phase difference of π. Note that the

shoulder joint is in phase opposition related to the leg joints

of the same side, as a human does. In this case, we need to

find nine constants.

A further extension may introduce joint movement in

coronal plane (lateral direction) with the objective of

trying to help the robot to take its foot off the ground.

This idea is illustrated in Figure 2, and equation (6) is

used to move the hip-roll joint. Differently from Shafii

et al.,8 we maintain the torso allows upright. Note that

our coronal movement pattern is qualitatively similar to

the lateral torso sway that naturally arises in pendulum-

based walking.1 This kind of lateral torso sway motion

helps maintaining the ZMP inside the support polygon

during single support.2

ylðtÞ ¼
E sin

2πt

T

0
@

1
A; t 2 I1

0; t 2 I2

8>><
>>:

(6)

where E is a new constant. Using this last model, we need

to find 10 constants.

Three walking models were implemented herein following

the ideas presented above. We call them

� Simple model (SM): walking model that uses only

the pitch joints of the legs.

� Model with arms movement (AM): add arms move-

ment to the simple model.

� Complex model (CM): complete model considering

movements from AM plus legs movement in coronal

plane.

Note that our robot hardware has the required DOFs to

implement all three walking models.

Optimization algorithms

To reduce the search space and make the optimization

algorithms more efficient, it is convenient to limit the

domains of optimization variables. In our specific problem,

we are not interested in testing walking parameters and we

certainly know that will make the robot fall. Accordingly,

some tests were done to establish limits to the walking

parameters, as shown in Table 1.

We considered two approaches for walk optimization:

one is based on particle swarm optimization (PSO) and the

other one is based on genetic algorithms (GAs). For further

details about the fundamentals of these approaches, please

refer, respectively, to the studies by Shi and Eberhart11 and

Holland.12

PSO setup

The natural choice is to consider that each particle is in a

D-dimensional space, where D is the number of constants

to be determined. The search space is given by the limits

shown in Table 1. The performance function is task-

dependent and is presented in “Simulation setup for

experimental analysis” section.

In the basic implementation of PSO, particles can reach

high unrealistic speeds and get out of the search space

boundaries. To avoid these problems, we made modifica-

tions to the basic PSO algorithm. First, we update a particle

velocity using the following usual rule11

viðdÞ  oviðdÞ þ ’prpπ
�
piðdÞ � xiðdÞ

�

þ’grg

�
giðdÞ � xiðdÞ

�
; d ¼ 1; . . . ;D (7)

where D is the dimension of the search space; o, ’p, and ’g

are PSO parameters usually called inertia weight, cognitive

parameter, and social parameter, respectively; rp and rg are

random numbers distributed uniformly in ½0; 1�; and xi and

vi are the position and the velocity of particle i, respec-

tively. Then, after updating a particle velocity, we saturate

its velocity by applying equation (8)

Figure 2. Proposed sequence of movements in coronal plane.
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viðdÞ  min
�
uðdÞ � lðdÞ; max

�
lðdÞ � uðdÞ; viðdÞ

��
;

d ¼ 1; . . . ;D (8)

where u and l are the upper and lower bounds of the search

space, respectively. The second modification keeps the par-

ticles inside the search space boundaries. We consider that

when the particles cross search boundaries, an “inelastic

collision” happens. With this mechanical inspiration, we

developed a subroutine that is executed after we apply the

velocity saturation through equation (8). The pseudocode

for this subroutine is presented in algorithm 1, where P is

the number of particles. Note that it introduces a new para-

meter ", which we named “restitution coefficient,” follow-

ing a mechanic analogy.

Finally, Table 2 presents the values used to configure

the PSO.

GA setup

To allow us to use GA, the operations of this algorithm

were implemented as follows:

� Chromosome: an array containing the D walking

parameters. Each gene is a real number representing

a parameter.

� Fitness function: we used the equation shown in

“Simulation setup for experimental analysis” sec-

tion. Since this equation can yield a negative num-

ber, we just normalized every chromosome fitness

by adding the smallest score of the current

generation.

� Mutation: with probability pm for each gene, substi-

tute the gene by a real value inside the respective

limits presented in Table 1.

� Selection: a standard roulette wheel selection was

used.

� Crossover: a standard one-point crossover mechan-

ism was used.

� Survival of the fittest: only the Sm fittest chromo-

somes are passed to the next generation, where Sm is

the maximum allowed population size.

� Finally, to configure GA, we used the parameter

values presented in Table 3.

Experimental setup

The USARSim simulator

USARSim is a high-fidelity robot simulator.13 Its current

version is based on the Unreal Development Kit from Epic

Games.14 Unreal uses NVIDIA PhysX15 as its physics

engine, which is able model mechanics interactions (colli-

sion, friction, etc.) with high accuracy. Therefore, huma-

noid robots with high DOFs may be modeled using

USARSim, as shown in the study by van Noort and Vis-

ser,16 with the Aldebaran Nao robot.17

The simulator comes with many robots, sensors and

actuators, and model off-the-shelf. Implementation of new

Table 2. Parameters values used for PSO.

Parameter Value

Number of particles (P) 20
Inertia weight (o) 0.9
Cognitive parameter (�p) 0.6
Social parameter (�g) 0.8
Restitution coefficient (") 0.7

PSO: particle swarm optimization.

Table 3. Parameters values for GA.

Parameter Value

Initial number of individuals (Si) 20
Maximum population size (Sm) 20
Number of individuals selected for reproduction (R) 10
Mutation probability (pm) 0.05

GA: genetic algorithm.

Algorithm 1. Subroutine that simulates collisions of the particles
against search space boundaries.

begin
for i ← 1, . . . , P do

for d ← 1, . . . , D do
if xi (d) > u(d) then

δ ← xi (d) − u(d);

xi (d) ← ε(u(d) − δ);
vi (d) ← − εvi (d);

end
if xi (d) < l(d) then

δ ← l(d) − xi (d);

xi (d) ← ε(l(d) + δ);
vi (d) ← − εvi (d);

end
end

end
end

Table 1. Limits for the domains of the walking models
parameters.

Constant Minimum Maximum

Oh �1.5 0
A 0.01 1.0
B 0.01 1.0
Ok 0 2.0
C 0 1.0
t ¼ t2=T 0.1 0.9
T 0.1 0.7
Dþ 0 0.6
D� 0 0.6
E 0 0.5
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models is done using the tools provided by UDK. The most

relevant tools used in this work were the UDK Editor—a

3-D model edition tool—and UnrealScrip—a proprietary

high-level programming language.

Implementing the Robonova-I model. To implement a new

robot model inside USARSim, the following basic steps

are needed:

1. Develop CAD models of the robot;

2. Generate physical models based on the CAD

models;

3. Program the robot model using UnrealScript;

4. Define extra parts, as sensors and actuators.

The implementation of the Robonova-I followed these

steps, as explained in the next subsections.

Robonova-I simulation model. The CAD models used in this

work were developed in a previous work using AutoCAD

software from Autodesk, based on measurements taken on

the real robot.18 Next, the pieces were imported in Auto-

desk 3D Studio Max, where graphic materials with simple

colors patterns were assigned matching the real robot

colors. Then, the models were exported to FBX format.

FBX files were imported in UDK Editor, where the

26-DOF simplified collision algorithm was used to generate

physical models based on the CAD ones. After configuring

each piece, the set was exported as a UPK (Unreal Package).

The next step involved creating an UnrealScript class to

represent the robot, which was done based on an imple-

mentation made for the Aldebaran Nao robot.16 Each joints

was implemented as a RevoluteJoint (a physical entity that

connects two rigid bodies, allowing them to rotate with

respect to each other around an axis), and collision between

adjacent parts was disabled to avoid collision problems.

Finally, some sensors were added. Also, a USARSim

special sensor called GroundTruth was attached to the torso

of the robot. This sensor provides noiseless global position

and orientation. Despite hard to obtain in the real world,

these informations are very convenient for the learning

process.

Figure 3 shows Robonova-I inside USARSim: physical

models are presented as pink wireframe lines. On the left

upper corner, there is a visualization of a camera attached

to the robot head.

Simulation setup for experimental analysis

To evaluate the robotic walking, we developed an experi-

mental setup inside USARSim. The idea was to run experi-

ments where the robot could walk for some time and a

metric would be used to evaluate the observed walk

performance.

The map “ExampleMap” (shown in Figure 4) was cho-

sen for this experimental setup, as it provides a large area

with flat ground and without obstacles. Considering the

orientation that the robot is initialized inside this map, the

X-coordinate axis points forward and the Y-axis to the

right. Then, each experiment consisted of the following

process:

1. Start the simulated Robonova-I in a known position;

2. Wait 1.5 s so the robot can get in position for walk-

ing (e.g. bending its knees);

3. Let it walk for 20 s. The experiment is stopped if the

robot falls;

Assess the walking performance using the following

equation

D ¼ ðx� xoÞ � jy� yoj þ 0:1� Dt �
X

Pi (9)

where ðx0; y0Þ and ðx; yÞ are initial and final positions of the

robot, respectively. Dt is the time interval (in seconds) that

the robot managed to move without falling, and
P

Pi rep-

resents the sum of possible punishments (shown in Table 4).

Figure 3. Simulated Robonova-I inside USARSim. Figure 4. ExampleMap.

Table 4. Punishment values.

Punishment Meaning Value

P1 Fall 50
P2 Initial position unstable 80
P3 Robot stayed in place 60

Maximo et al. 5



The idea of using punishments is to notify the optimization

algorithm that an undesirable event occurred.

After some experimentation, we noted two problems:

� The robot was frequently falling down when trying

to make the first step, even with walks that were very

stable when the walking was in steady state.

� Due to the fact that walking is a very noisy pro-

cess, it was often happening that a walking para-

meter set was misevaluated. The worst case was

when a very fast but unstable walk made the robot

upright for 20 s, thus receiving a very good

evaluation. This was especially bad for PSO,

because this algorithm is strongly guided by the

best global solution.

To minimize these problems, two heuristics were

implemented:

� Instead of beginning the movement with nominal

amplitudes, the robot linearly increases all ampli-

tudes from zero to the nominal values during the

first steps (after experimentation, we decided that

this should be done during the first three steps).

� Instead of using one experiment run to evaluate a

walking parameters set, we decided to take an aver-

age of three experiment runs.

Optimization results

Table 5 shows the results from the optimization experi-

ments, once the heuristics aforementioned were adopted.

Each line in Table 5 refers to a single optimization instance.

Table 5. Experiments results.

Optimization algorithm
Walking
model

Walk
performance

Number of
evaluations

GA SM 6.16 1500
GA AM 8.3 1500
GA CM 5.77 1500
PSO SM 5.58 860
PSO AM 7.2 1449
PSO CM 7.99 1493

GA: genetic algorithm; PSO: particle swarm optimization; SM: simple
model; AM: arms movement; CM: complex model.
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Figure 5. Performance evolution (best individual) against number of evaluations for optimizations using GA. (a) Simple model.
(b) Model with arms movement. (c) Complex model. GA: genetic algorithm.
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Figure 6. Performance evolution (best individual) against number of evaluations for optimizations using PSO. (a) Simple model.
(b) Model with arms movement. (c) Complex model. PSO: particle swarm optimization.
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The following qualitative conclusions can be drawn from

the results:

� Adding arms movement improves the walking qual-

ity (if walking parameters are correctly adjusted).

� Adding movement in coronal plane improves even

more the walking quality (again, if walking para-

meters are correctly adjusted).

� Adding more parameters makes optimization con-

vergence harder, as expected.

Figures 5 and 6 show how the performance of the best

individual in the population evolves with the number of

evaluations for different executions of the optimization

algorithms considered. SM, AM, and CM are the walking

models defined in “Humanoid locomotion based on peri-

odic functions” section. Table 6 shows the best walking

parameters for each optimization case.

Transferring to other domains

Transferring to a real robot

There are several factors that do not contribute to match

simulation to a real robot setting, namely:

� Physical models are approximations of CAD

models.

� Despite originating from the same model, real same

type servomotors have small differences in torque

and speed.

� In the real robot, there are many mechanical

phenomena that are usually not modeled in simu-

lation due to computational complexity constraints:

servomotor backlash, structural flexibility, and

so forth.

In fact, humanoid locomotion is a complex problem and

model imperfection may lead to very different walking

behaviors. We thus expect that the parameters learned in

simulation do not perform so well in the real robot.

To measure the walking speed in the real robot, we

prepared the experiment setup shown in Figure 7. Ten

experiments were ran for each walking, and we let the

robot walk for 5 s and then measured the forward dis-

tance it moved.

As a first solution, we considered the simple model with

parameters optimized in simulation. A walking pattern did

occur, but the performance was poor, with the robot

Table 6. Best walking parameters for each optimization case.

Constant SM þ GA AM þ GA CM þ GA SM þ PSO AM þ PSO CM þ PSO

Oh �0.69 �1.2 �0.96 �0.64 �0.66 �0.87
A 0.23 0.33 0.37 0.27 0.5 0.51
B 0.43 0.37 0.68 0.35 0.56 0.7
Ok 0.98 1.6 0.99 0.85 0.83 1.23
C 0.4 0.51 0.76 0.3 0.6 0.46
t ¼ t2=T 0.38 0.25 0.22 0.39 0.38 0.34
T 0.1 0.4 0.44 0.44 0.39 0.38
Dþ — 0.58 0.58 — 0.17 0.54
D� — 0.14 0.55 — 0.57 0.39
E — — 0.04 — — 0.05

GA: genetic algorithm; PSO: particle swarm optimization; SM: simple model; AM: arms movement; CM: complex model.

Figure 7. Experiment setup to measure the real robot speed.

Table 7. Comparison among different Robonova-I walks.

Walking
Mean speed

(cm/s)
Standard deviation

of speed (cm/s)
Number of

falls (10 tests)

SM 18.08 1.05 0
AM 21.49 0.9 0
Forward walk1 2.7 0.25 0
Fast walk1 6.35 3.12 5
New fast walk2 19.2 1.3 0

SM: simple model; AM: arms movement.

Maximo et al. 7



frequently falling and the trajectory making a turn to the

right. After manually tweaking the walking period, we

arrived at a stable walking despite a trajectory still with

side turn. We noted that the robot was slipping because the

movement amplitude was very high, so the foot movement

was probably exceeding the maximum static friction pro-

vided by the floor. We then reduced the movement ampli-

tudes until arriving at 60% of the original values. The

walking obtained in this way had a forward speed of

approximately 18.1 cm/s.

Then, we added arms movement and the forward speed

improved to 21.5 cm/s. Moreover, the trajectory of the

robot became more straight. Table 7 shows the obtained

speeds for different walking models. We also show the

original walks from the robot manufacturer (Hitec) and

an improved version available at Hitec Robotics.19 Note

that the final walking we developed outperforms all other

tested. Figure 8 also shows a sequence of images to illus-

trate the real robot executing the walking with arms

movement.

Transferring to a 3D soccer simulation domain

To provide further validation, we also implemented the

walks in the RoboCup 3D Soccer Simulation League

domain.20 In this domain, twenty-two robots (11 in each

team) play soccer in a simulation environment. The

robotics simulator used is SimSpark,21 which uses open

dynamics engine22 as its physics engine. The robot simula-

tion model was inspired on the Aldebaran Nao robot.23 To

reduce our development effort, we used the base code

magma-AF.24

We executed the optimization process only for the sim-

ple and complex models using PSO, configured with the

parameters presented in Table 8 and the search space limits

shown in Table 9. The experiment setup used to evaluate

Figure 8. Image sequence showing the final walk on the real
Robonova-I. The frame rate is 30 fps.

Table 8. Parameters used to configure PSO for the 3D Soccer
domain.

Parameter Value

P 200
o 0.7
’p 1.5
’g 1.5
" 0.8

PSO: particle swarm optimization.

Table 9. Search space limits for the 3D Soccer domain.

Constant Minimum Maximum

Oc �1.0 0
A 0.01 1.0
B 0.01 1.0
Oj 0 1.5
C 0 1.5
t ¼ t2=T 0.1 0.9
T 0.1 2.0
Dþ 0 1
D� 0 1
E 0 0.5

Table 10. Best walking parameters learnt in the 3D Soccer
domain using PSO.

Model Oh A B Ok C t T Dþ D� E

SM �0.032 0.13 0.55 0.60 0.91 0.35 0.14 — — —
CM �0.10 0.11 0.57 0.66 0.97 0.35 0.18 0.19 0.24 0.06

PSO: particle swarm optimization.
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Figure 9. X–Y view of the 50 trajectories executed by the
robot’s torso for each walk model.
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the walking performance was very similar to the one we

used in USARSim. The parameters learnt in this domain

are shown in Table 10.

To evaluate the performance of the learned walk, we

compared it with the walk provided by the magma-AF

base team. Fifty simulated experiments were performed

for each walk model, where the robot was allowed to

walk for 20 s. The experiment is interrupted if a fall is

detected. Figure 9 shows an X-Y view of the 50 trajec-

tories executed by the robot’s torso for each walk

model. These trajectories show that the walks developed

in this work far exceed the magma’s walk. Furthermore,

the complex walk deviates much less than the simple

one. In fact, the results show that the simple walk learnt

is biased to the left, while we do not see a clear bias in

the complex walk learnt.

Table 11. Results of the experiments done to evaluate the walks learnt in 3D Soccer domain.a

X-distance (m) Y-deviation (m) Experiment time (s)

Walk Mean Standard deviation Mean Standard deviation Mean Standard deviation Number of falls (50 tests)

Simple model 11.86 2.52 3.77 2.86 19.67 2.41 1
Complex model 13.08 1.81 2.18 1.67 19.70 2.26 1
magma-AF 2.87 2.52 1.19 1.31 12.06 8.52 26

aFifty experiments were executed for each walk model. In each experiment, the robot was allowed to walk during 20 s.

Figure 10. Image sequence showing the complex walk learnt in the 3D Soccer domain.
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Figure 11. Joint trajectories of the walks learnt in the 3D Soccer domain.
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Moreover, Table 11 shows some statistics regarding the

results. “X distance” and “Y deviation” refer to the distance

the robot has covered in the direction it is initially pointing

and the distance it has deviated in the perpendicular direc-

tion at the end of the 20 s(or when it falls), respectively.

Since the experiment is stopped when the robot falls, the

experiment time gives a measure of the robot stability.

These results are consistent with the trajectories shown in

Figure 9. The best walk learnt covers about 355% more

distance than the base team’s walk. Additionally, the gain

in X distance was small (about 10%) by activating arms and

coronal plane movements when compared with the simple

walk learnt; however, the reduction in Y deviation (more

than 40%) clearly shows that adding these features yields a

better walking performance.

Figure 10 presents an image sequence showing the CM

walk learnt in the 3D Soccer domain. To provide a better

understanding between the effects of the arms and coronal

movements on the learnt joint trajectories, Figure 11 shows

the joint trajectories for the walks learnt in the 3D Soccer

domain. Observe that the trajectories learnt for the leg

joints legs are very similar between simple and complex

models in this case.

Conclusions

In this work, stable and fast walks for the Hitec Robonova-I

robot were developed and presented. The approach used

considered parameterized walking models, with TFS used

to generate angular trajectories for joints. Adequate para-

meter values were determined using optimization algo-

rithms, namely, GA and PSO.

Since optimizing directly on the real robot would prob-

ably result in hardware damage, we decided to follow an

approach where a walk was learned in simulation and then

adapted to the real robot. After manually tweaking the walk

learned in simulation, we arrived at a walking that outper-

forms the original Robonova-I walking in the real robot. To

provide further validation of the approach used, we exe-

cuted the same process in the RoboCup 3D Soccer Simula-

tion domain, where a simulated robot was also able to learn

a fast and stable walk.

The approach presented here may be extended in

future work. The model used allows only forward walk-

ing, but it is often convenient to be able to walk side-

ways and to change the direction the robot is facing.

Other interesting research direction is to improve the

walking model by adding more features. Also, the

resulting gait is a pattern that is played over time with-

out taking into account the robot state. Even using this

open loop pattern, the real robot was able to walk stably

and accommodate some perturbation and model error.

However, the use of sensory feedback is expected to

greatly improve the walk robustness. We are currently

working on these improvements.

Author Note

Author Carlos H. C. Ribeiro is now affiliated to Aeronautics

Institute of Technology, São José dos Campos, São Paulo, Brazil.
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