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A Multirepresentational Fusion of Time Series for
Pixelwise Classification

Danielle Dias , Allan Pinto , Member, IEEE, Ulisses Dias , Rubens Lamparelli , Guerric Le Maire ,
and Ricardo da S. Torres , Member, IEEE

Abstract—This article addresses the pixelwise classification
problem based on temporal profiles, which are encoded in 2-D
representations based on recurrence plots, Gramian angular/ dif-
ference fields, and Markov transition field. We propose a multirep-
resentational fusion scheme that exploits the complementary view
provided by those time series representations and different data-
driven feature extractors and classifiers. We validate our ensemble
scheme in the problem related to the classification of eucalyptus
plantations in remote sensing images. Achieved results demonstrate
that our proposal overcomes recently proposed baselines, and now
represents the new state-of-the-art classification solution for the
target dataset.

Index Terms—Classifier fusion, eucalyptus, pixelwise
classification, time series representation.

I. INTRODUCTION

P IXELWISE remote sensing image classification has been
established as an active research area. Proposed solutions

have been validated in relevant applications, including, among
others, ecological studies [1], [2], phenology analysis [3]–[7],
land-cover change monitoring [8], and crop identification [9].
A promising research venue relies on the development of clas-
sification systems based on time series associated with pixels
[e.g., time series associated with vegetation indices, such as
normalized difference vegetation index (NDVI) or enhanced
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Fig. 1. Example of the NDVI time profile for a coordinate selected as a region
of interest in satellite images.

vegetation index]. Often, such methods assume that pixels can be
categorized into different classes based on time series patterns,
also refereed to as temporal profiles.

Fig. 1 shows an example of the temporal profile of the NDVI
of a region in Botucatu, São Paulo, Brazil.1 The figure indicates
a region of interest where a pixel is selected to compute the
NDVI values in relation to time. The time series in the bottom
is obtained from NDVI values.

The construction of pixelwise classification systems usually
demands the definition of suitable extractors to encode temporal
profiles into feature vectors, and effective classifiers, which learn
from extracted features how to assign samples (pixels) to the
correct category. Several approaches have been proposed to
address both problems separately and altogether.

One promising approach recently employed in the literature
refers to the use of intermediary representations to encode time
series properties [10], [11]. In particular, a promising family of
methods relies on the use of 2-D representations [7], [12], [13],
which can be transformed into images. The goal of such ap-
proaches is to benefit from successful computer vision methods
proposed for image classification, to more effectively classify
time series [4], [7], [14]–[16].

Examples of successful 2-D representations include re-
currence plot (RP) [13], Gramian summation angular fields/
Gramian difference angular fields (GASF/GADF) [12], and
Markov transition field (MTF) [12]. RP has been exten-
sively used to represent nonlinear patterns of dynamic systems

1Source: SATVeg system, Embrapa, Brazil—https://www.satveg.cnptia.
embrapa.br/satveg/login.html (As of March 2020).
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through the computation of the autocorrelation for different time
scales [13]. GASF/GADF [12] representations encode in polar
coordinates time series properties preserving temporal relations,
while the MTF [12] captures the transition probabilities among
different time series states.

RP, GASF/GADF, and MTF have been successfully validated
in pixelwise classification and search tasks through the charac-
terization of pixel-related time series (e.g., vegetation indices)
associated with sequences of images [14]–[17]. In part, the
success of those initiatives is due to the use of effective state-of-
the-art data-driven feature extractors [18]–[24]. In [14] and [15],
for example, ten different deep-learning feature extractors were
investigated in combination with RP, GASF/GADF, and MTF
representations. Remarkable results were achieved in pixelwise
classification problems.

Would the combination of multiple representations, data-
driven feature extractors, and classifiers lead to even better pix-
elwise classification results? This is the question that guides the
research described in this article. We introduce a multirepresen-
tational fusion approach for exploiting the complementary view
of multiple classification systems constructed using different
representations and feature extractors.

In our fusion scheme, the importance of different classifiers is
assessed based on the Gini index [25], a metric computed on the
training of a random forest classifier, and on the balanced accu-
racy scores [26] of different predictors. Classifiers are ranked,
and the top-k ones are used to define lists with complementary
classifiers, defined in terms of the Kappa’s coefficient [27].
Classifiers found in multiple lists are used to train a support
vector machine (SVM) based metaclassifier, producing the final
prediction model. To the best of our knowledge, this is the first
work dedicated to the investigation of the fusion of classifiers
based on multiple time series representations.

We validate the proposed approach in the problem related to
the identification of eucalyptus plantations in remote sensing
images. Achieved results are consistently better than recently
proposed approaches validated on the same dataset, as well as
traditional ensemble approaches proposed in the literature.

The rest of this article is organized as follows. Section II
introduces background concepts related to the employed time
series representations. Section III provides an overview of re-
lated work. Section IV describes the proposed fusion scheme.
The adopted experimental protocol is presented in Section V.
Achieved results are presented and discussed in Section VI.
Finally, Section VII summarizes our findings, as well as points
out some possible research directions for future work.

II. BACKGROUND CONCEPTS ON IMAGE REPRESENTATIONS

In this work, we encode the temporal profile of pixels ex-
tracted from remote sensing images representing the temporal
characteristics as 2-D images. The values of the vegetation
indices of the pixels are grouped together as time series and
undergo transformations in such a way that the 1-D series is
represented as a 2-D matrix. That being said, we can use this
matrix as an input image for feature extractors. This is the

Fig. 2. Example illustrating the creation of recurrence plot matrices for
distance functions DIF, DIV, and MULT.

rationale of our work. To achieve this goal, we investigate three
approaches that encode time series as image representation.

1) Recurrence Plot: RP [13] is a tool for visualizing the
recurrent behavior of a trajectory in the phase space in dynamic
systems. Let T = (t1, t2, . . . , tn) be a time series with n obser-
vations; the RP representation encodes every time the trajectory
of T visits approximately the same area in the phase space. A
graphical representation of RP is an image formed by a matrix of
dimensionn× n. The generated image is a direct representation
of the distance matrix, that is, the information contained in the
RP is the proximity value of each pair of subsequences in the
trajectory of the time series [28].

The 2-D representation of T is the matrix M , where each
cell Mi,j is computed by the distance function f(Ti, Tj)|∀i, j ∈
{1, 2, . . . , n}. The function f encodes how recurring are the time
series states. In this article, the construction of the RPs is based
on three implementations of the function f [14], [16]: Difference
(DIF), division (DIV), and multiplication (MULT)

f(Ti, Tj)DIF = |Ti − Tj | (1)

f(Ti, Tj)DIV =
Ti

Tj
(2)

f(Ti, Tj)MULT = Ti × Tj . (3)

Fig. 2 is an example of RPs. In this example, two NDVI time
series are provided. The dark green time series is associated
with a pixel from an eucalyptus region, while the orange time



DIAS et al.: MULTIREPRESENTATIONAL FUSION OF TIME SERIES FOR PIXELWISE CLASSIFICATION 4401

series is from a noneucalyptus region. First, the n time series
observations are used to construct the matrices DIF, DIV, and
MULT, following (1)–(3), respectively. Then, a normalization
step is performed so that the resulting values range from 0 to
255, which enables the creation of images in gray level.

We also create an additional representation using the three
grayscale images as channels of an RGB image. In this repre-
sentation, the MULT, DIV, and DIF matrices, in this order, are
used to form the channels of the red, green, and blue bands,
respectively. In the end, the representations are the RPs, DIF,
DIV, MULT, and RGB, for each time series provided.

2) Representations GAF: Gramian angular field (GAF) is
another approach to encode time series as images. It was pro-
posed by Wang and Oats [12], and it is inspired by the notion of
Gramian matrices from the linear algebra field.

Let us assume that we have a real vector space of finite
dimension with inner product. The Grammar matrix of a set
of vectors is computed by the inner product of pairs of vectors.
The inner product between two vectors can be calculated by
the norm of the vectors (also called modulus, magnitude, or
intensity) and the angle between them. From a geometric point
of view, the module corresponds to the length of the vector. Let
u and v be two vectors, and the internal product between them
is given by

〈u, v〉 = ‖u‖ · ‖v‖ · cos(φ). (4)

If u and v have norms equal to 1, then the equation can be
simplified

〈u, v〉 = cos(φ). (5)

Let {v1, v2, . . . , vn} be a set of n vectors, and the Gramian
matrix G is a square n× n matrix such that every cell gi,j =
〈vi, vj〉

G =

⎛
⎜⎜⎜⎜⎝

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉

⎞
⎟⎟⎟⎟⎠

. (6)

Considering that all n vectors have norm 1, then the inner
product is given by the cosines of the angle between the vectors
[see (5)]. Therefore, the Gramian matrix is formed by

G =

⎛
⎜⎜⎜⎜⎝

cos(φ1,1) cos(φ1,2) . . . cos(φ1,n)

cos(φ2,1) cos(φ2,2) . . . cos(φ2,n)
...

...
. . .

...

cos(φn,1) cos(φn,2) . . . cos(φn,n)

⎞
⎟⎟⎟⎟⎠

(7)

where θi,j is the angle between vectors i and j.
GAF uses ideas of Gramian matrices to represent a series of

observations into a matrix that contains temporal correlation
between observations at different time intervals. Wang and
Oats [12] created two GAF representations: GADF and GASF.
GADF is a Gramian matrix in which each element is the trigono-
metric difference between each pair of time intervals, while the
elements of the GASF matrix are formed by the trigonometric
sum.

Fig. 3. Example illustrating the creation of the GADF and GASF representa-
tions.

Let T = (t1, t2, . . . , tn) be a time series. We need to per-
form trigonometric operations, that is, the n observations need
to be transformed into angles. To achieve this, first the time
series T is normalized in the interval [−1, 1], resulting in T̃ =
(t̃1, t̃2, . . . , t̃n). After that, the time series coordinate system
(Cartesian coordinates) is transformed into polar coordinates
system computing the angular cosine of each T̃ value

φi = arccos(t̃i), t̃i ∈ T̃ . (8)

After obtaining the angles and inspired by the idea of Gramian
matrices, the trigonometric difference and the trigonometric sum
between each point is considered for the creation of the GADF
and GASF matrices, respectively

GADFi,j = sin (φi − φj) (9)

GASFi,j = cos (φi + φj). (10)

Fig. 3 illustrates the creation of the GADF and GASF rep-
resentations. In this example, we consider a time series with
NDVI values associated with a pixel from an eucalyptus region.
First, the n observations from the time series are normalized
and the time series is transformed into a polar coordinate system
[see (8)]. After that, we created the GADF and GASF matrices,
according to (9) and (10), respectively. Then, we normalized the
values between 0 and 255 to allow the creation of gray-level
images.

GADF and GASF representations preserve temporal depen-
dencies. An observation in the time period i is compared with
an observation in the time period j and the time increases when
traversing the matrix from the upper left corner to the lower right
corner. This creates patterns in the matrix, which also reflects in
the image representation created.

3) Representation MTF: MTF is another representation pro-
posed by Wang and Oats [12] to encode time series as images.
MTF captures state transition statistics and encodes these statis-
tics as an image.
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Fig. 4. Example of creating the MTF representation.

Let T = (t1, t2, . . . , tn) be a time series with n observations.
First, the set of all possible values of the time series is divided into
a fixed number of states. This is accomplished by compartmen-
talizing the time series inQ quantile bins and assuming that each
compartment is a state. Thus, we create T̂ = (t̂1, t̂2, . . . , t̂n), that
is, t̂i is the quantile to which ti is associated.

We create the intermediate matrix WQ×Q, where wi,j is the
number of times that transitions from the state i to the state j
occur. Then, we perform a normalization so that each row of the
W matrix has sum equal to 1. Thus, W stores the probabilities
of state transitions and it is considered the first-order Markov
transition matrix, in which the lines indicate the probability
of state transitions, the columns indicate the time dependency,
and the main diagonal captures the probability of staying in a
given state.

Finally, we created the MTF matrix (Markov transition field)
considering the time position of T , with dimensions n× n,
where each cell in the MTF matrix indicates the probability
of undergoing transition from the state associated with Ti to
the state associated with Tj . The MTF matrix is constructed as
follows:

MTF =

⎛
⎜⎜⎜⎜⎜⎜⎝

Wt̂1,t̂1
Wt̂1,t̂2

. . . Wt̂1,t̂n

Wt̂2,t̂1
Wt̂2,t̂2

. . . Wt̂2,t̂n

...
...

. . .
...

Wt̂n,t̂1
Wt̂n,t̂2

. . . Wt̂n,t̂n

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11)

Fig. 4 shows an example of creating the MTF representation.
In this example, we receive a time series with NDVI values
associated with a pixel from an eucalyptus region. First, the n
observations in the time series are divided into quantiles or states.
In this example, we defineQ = 5 to create five states represented
by colors in the time series. Then, we count how many transitions
occur between states and create the preliminary W matrix. We
then normalize W to make it the first-order Markov transition
matrix.

We build the MTF matrix according to (11), then we normalize
the values between 0 and 255 and finally convert the MTF matrix
into an image.

An important characteristic of MTF matrices is that the transi-
tion probabilities are coded in several stages in a single represen-
tation. For example, MTFi,j such that |i− j| = 1 represents the
transition process along the time axis with a unit of difference. If
we make |i− j| = 2, then we have the transition process within
two units of time, and so on. The main diagonal represents the
probability of staying in a given state.

III. RELATED WORK

Existing literature in the area of remote sensing image clas-
sification is vast. Most of those initiatives include the the in-
vestigation of machine learning algorithms in problems related
to the classification and recognition of objects. For an in-depth
overview of recent initiatives, the reader may refer to [29]. In
this section, we focus on describing studies related to the use of
time series in classification problems.

Almeida and Torres [2] used NDVI time series obtained
from MODIS sensors. The authors proposed a genetic pro-
gramming (GP) approach for discovering near-optimum com-
binations of time series similarity functions. Those functions
were then used for classifying eucalyptus plantations. Menini
et al. [16] also addressed the same problem. Again, a GP
approach was used, now for combining similarity scores defined
in terms of texture descriptors extracted from RP representa-
tions. The methods proposed in [2] and [16] are considered as
baselines, which do not take into account data-driven features
in the time series classification task, in our work.

Hu et al. [30] utilized data from MODIS sensors and time
series associated with five different vegetation indices. Their
work proposed a method to select automatically spatiotemporal
features named phenology-based spectral and temporal feature
selection (PSTFS). PSTFS features are then submitted to a
multiclass SVM classifier, used to determine to which crop a
particular sample belongs. Different from our approach, that
work did not exploit time series representations.

Liu et al. [31] exploited Landsat-8 images and the universal
normalized vegetation index (UNVI) [32], an index that encodes
information from all observed bands. In their study, UNVI is
compared with other vegetation indices and effective results are
reported. The use of UNVI time series in combination with a
random forest classifier was effective in a five-class classification
problem. No time series representation was employed as well.

Another research venue concerns the proposal of approaches
for combining patterns found in time series associated with veg-
etation indices with spectral information, as in [33]. In that study,
classifiers, such as random forest and SVM, were explored in
problems related to the classification of multiple crops. Special
time series representations were not investigated in that work.

Several studies have been proposed aiming at comparing
pixelwise and object-based classification methods. One rele-
vant representative is the work of Belgiu et al. [34]. In their
work, NDVI time series were categorized based on the use of a
random forest classifier and the Time-Weighted Dynamic Time
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Warping (TWDTW) [8]. In their work, NDVI time series were
categorized based on the use of a random forest classifier and the
time-weighted dynamic time warping [8]. Even the combination
of pixelwise- and object-based approaches has already been
investigated, as in the work of Rahimizadeh et al. [35]. In
their work, the forest classification problem was addressed by
the combination of a time series classifier—using SVM and
vegetation indices—and an object-based classification approach
based on forest structural patterns. These studies suggest that the
investigation of pixelwise classification approaches are an active
research area, which can even be exploited in combination of
object-based approaches. We plan to address that, in the context
of the use of time series representations, in future work.

Another family of methods has focused on the classification
of time series associated with vegetation indices extracted from
images obtained from near-surface sensors [36], [37]. The work
of Almeida et al. [5], for example, investigated the use of a
multiscale classifier based on Adaptive Boosting (AdaBoost).
In that work, time series were used as input feature vectors of
the considered classifiers. In [38], the authors also addressed a
fusion problem, in that case based on the combination of time
series associated with multiple vegetation indices. A GP-based
approach was exploited and the focus was on the retrieval of time
series, instead of their classification. In another work [3], time
series associated with pixels were classified though the use of an
SVM metaclassifier [39]. Almeida et al. [6] also investigated the
use of unsupervised fusion schemes but in the context of retrieval
tasks. Time series representations were explored in none of those
works.

2-D representations were investigated in time series classifica-
tion and retrieval problems in [4] and [7]. In [7], the phenological
visual rhythm was introduced to encode vegetation phenology
changes into images. Traditional color descriptors are employed
in the characterization of such images. In [4], both RP and
visual rhythm representations were explored in the context of
a pixelwise classification fusion problem. Different from our
approach, however, no data-driven features were used.

IV. PROPOSED APPROACH

A. Predictors

Before discussing our fusion scheme, we describe in this
section the strategy used to construct multiple representations
from data. This involves some steps: 1) Transformation of time
series into representations of images; 2) use of automatic feature
extraction techniques; and 3) creation of predictors.

First, the time series are encoded in representations of RP,
GADF, GASF and MTF, as described in Section II. We work
with individual representations and we also combine matrices in
RGB channels. Therefore, we create two RGB representations:
1) An RGB representation composed of MULT, DIF, and DIV;
2) an RGB representation composed of GADF, GASF, and
MTF. These are the orders of the red, green, and blue channels,
respectively.

Next, we extract features from these image repre-
sentations using ten deep convolutional neural networks:

DenseNet121 [18], DenseNet169 [18], DenseNet201 [18], In-
ceptionResNetV2 [19], InceptionV3 [20], MobileNetV1 [21],
ResNet50 [22], VGG16 [23], VGG19 [23], and e Xcep-
tionV1 [24]. We use the well-known transfer learning mecha-
nism, in which the last layer of the neural network is removed and
the result obtained corresponds to the feature vectors produced
by the previous layers.

In addition to the feature vectors extracted from the im-
ages, and from the two RGB representations, we also analyze
some vector concatenations, such as: DIF_DIV, DIF_MULT,
DIV_MULT, DIF_DIV_MULT (called 3RP), GADF_GASF
(called COMB2), and GADF_GASF_MTF (called COMB3).

Finally, we trained four classifiers with the feature vectors:
Logistic regression, multilayer perceptron (MLP), Naïve Bayes,
and SVM. In this way, we create predictors in multirepresenta-
tional way, where each predictor comes from three elements: The
image representation, the deep neural network, and the classifier
where it was trained on.

B. Fusion Approach

This section describes our methodology for pixelwise remote
sensing image classification. Our methodology takes advantage
of complementary information among image representations
described in Section II, which were extracted from time series
and designed for the remote sensing image classification pur-
pose [14], [15].

To achieve our goal, we adopted the use of a fusion method
able to find complementary information among the classifiers
investigated in this work. We believe that a fusion approach
can lead to gains in terms of balanced accuracy since we have
several representations of time series which explore different
temporal characteristics of NDVI extracted from eucalyptus
pixels. Taking into account that 1) the representations of RP
encode the recurrence in the time series, 2) the GADF and
GASF representations encode static information [12], and 3)
the MTF representation encodes dynamic information [12], we
assessed that the classifiers that used these representations can
be potentially complementary. Therefore, we hypothesize that
the use of representations that explore different characteristics
of time series induces a complementarity at the level of classifi-
cation. The investigation of this hypothesis was conducted using
a meta-fusion method, as described in Fig. 5.

In our methodology, we adopted the use of a meta-fusion ap-
proach originally proposed for the presentation attack detection
problem in biometric systems [40]. Although this method was
proposed to fuse classifiers built for a different problem, we
believe that the main idea of this approach fits with our problem
since we also have multiple views, or representations, from the
input images. In the context of this article, the fusion method
aims at building a model from classifiers built using multiple
representations. These multiple representations, in turn, are de-
vised from representations of intermediate images that encode
different properties of the time series, such as 1) recurrence
information, 2) trigonometric difference between each pair of
time intervals, and 3) probability of state transition. Finally,
these intermediate representations are used to build classification
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Fig. 5. Overview of the fusion method.

methods based on extractors of deep-learning characteristics,
which are used in the fusion process.

In summary, the proposed methodology investigated in this
work fuses the results of trained classifiers with different image
representations, which encode different properties of the time
series, consolidating the classification into a single prediction.
Fig. 5 presents a general scheme of the multirepresentational
meta-fusion. In Fig. 5(a), the method uses the training data
of the four predictors (logistic regression, MLP, Naïve Bayes,
and SVM), with the views of all the image representations
investigated in this work, whose extraction of characteristics
were carried out with ten different deep convolutional neural
networks. We consider all predictors since while some may
provide complementary views, others can be highly correlated.

To find the most important classifiers, in Fig. 5(b), we used
two indices as criteria to estimate the importance of the clas-
sifiers: 1) The Gini [25] index, which describes the average
reduction in forest impurity and is directly related to decision
that random forest uses to select the best available split and 2)
balanced accuracy of predictors. The Gini index is a measure
used by the Random Forest algorithm to infer the importance
of variables or nodes (in our case, the classifier). During the
training of a Random Forest classifier, the decision trees that
compose the Random Forest try to form nodes with a high
proportion of data points form a single class, which is achieved
by finding the variables that cleanly divide the training data into
classes. For this, the Random Forest can use the Gini index

as metric to evaluate the level of impurity for a given node.
This value is then used to decide if a node should be split
or not.

In the selection with the Gini index, the training predictors are
sent to the random forest algorithm, which randomly generates
multiple decision trees from different subsets of the provided
predictors. At the end of the random forest training process, the
method sorts the classifiers according to their respective impor-
tance in the construction of the metaclassification model. At the
end of the most relevant selection phase, the metaclassification
model is discarded and an ordered list with the top-k classifiers
is used in the next step.

To find the most complementary classifiers, in Fig. 5(c), the
top-k most relevant classifiers are compared with the other
predicted classifiers using Kappa’s concordance coefficient as
suggested by Cohen [27]. Cohen’s Kappa is a statistical tool
to measure the inter-rate agreement between two raters. This
method has been applied in several works with the goal of
inferring a confident measure of concordance between two
raters. In the context of this work, the Cohen’s Kappa is used to
measure the concordance between pairs of classifiers, which can
be determined following the reliability reference values: 0.2 <
k ≤ 0.4 as fair; 0.4 < k ≤ 0.6 as moderate; 0.6 < k ≤ 0.8 as
substantial; and k > 0.8 as almost perfect [41]. Thus, we have k
lists containing the classifiers most complementary to the most
relevant k classifiers. Finally, classifiers that appear on two or
more lists are selected as candidate classifiers, which are used
to build a metaclassifier.

To carry out the training of the metaclassification, in Fig. 5(d),
we use the SVM algorithm. With the result of the meta-fusion,
we make the inference with the test set. All parameters of the
fusion method are estimated during training with grid search.

V. EXPERIMENTAL SETUP

This section describes the evaluation protocol adopted.

A. Dataset of Areas With Eucalyptus

The eucalyptus dataset has the MODIS sensor as its source
of information, with a combination of the Aqua and Terra
satellites in order to reduce the temporal gap and achieve
high temporal resolution. We obtained 385 images from Terra
(MOD13Q1.005) and 330 images from Aqua (MYD13Q1.005),
from February 2000 to November 2016. Both products already
provide the computation of the NDVI. MODIS products have
250-m spatial resolution, and are produced with 16 d of com-
position. MODIS have daily records, but only products with
a best quality are selected to represent the composition period.
Another filtering is performed to select only pixels with the same
classification label.

We used a modified subset of the collection used in [9].
The selected pixels belong to the eucalyptus and noneucalyptus
classes. This dataset is composed of 250 eucalyptus pixels and
1000 noneucalyptus pixels randomly selected. To investigate the
impact of noneucalyptus sample unbalancing, we divided the
dataset into three sample sizes: 250, 500, and 1000. These values
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correspond to the number of pixels labeled as noneucalyptus. In
each sample, we add the 250 eucalyptus pixels.

B. Baselines

This section presents a brief description of the baseline algo-
rithms for fusing classifiers.

1) Majority Vote: The majority vote is the simplest strategy
for fusing information from different sources. This approach
assumes that all classifiers have equal importance, and the final
decision is determined by the most frequent class (or label
output) taking into consideration the classifiers’ output. Given a
(n× c) binary matrix L, as follows:

L =

⎛
⎜⎜⎜⎜⎝

d(1,1) d(1,2) . . . d(1,c)

d(2,1) d(2,2) . . . d(2,c)
...

...
. . .

...

d(n,1) d(n,2) . . . d(n,c)

⎞
⎟⎟⎟⎟⎠

∈ {0, 1} (12)

where n is the number of inputs, c is the number of classifiers,
and d(n,c) is the label output of the cth classifier for thenth input.
Thus, the ensemble decision Ψ = [ω1, . . . , ωn] for the n input
samples are determined as follows:

Ψ = max
j∈{0,1}

c∑
k=1

δ(d(n,k), j) (13)

where δ(i, j) is defined as 1 if i = j and 0 if i �= j.
2) AdaBoost: AdaBoost [42] aims to combine multiple

“base” classifiers to produce an ensemble decision with a per-
formance better than any of the bases classifiers. Boosting
approaches perform the training phase of base classifiers in
sequence and using a weighted scheme of the data whose weight-
ing coefficient of each data point depends on the performance
of the previous classifiers [43]. In particular, the AdaBoost
algorithm initially sets an equal weight for the data point as
1/n, where n is the size of the data, and at each stage of the
algorithm the weighting coefficients are increased for those data
points that was misclassified by the previously trained classifier.
After the base classifiers have been trained, they are combined
to produce an ensemble decision using coefficients that give
different weights to different base classifiers.

3) Gradient Boosting: Gradient Boosting is an extension of
AdaBoost to regression problem [44]. Different from AdaBoost
algorithm, the Gradient Boosting learns via residual errors,
instead of using the weighting coefficients computed for each
data point. While the AdaBoost algorithm mines the hard data
samples by updating the weighting coefficients according to
bases classifiers’ response, the Gradient Boosting algorithm
does the same thing by using gradients computed upon the loss
function. Thus, the loss function is used to infer how good
the model’s coefficients are at fitting the data. In this work,
we adopted the use of negative binomial log-likelihood loss
function, which provides probability estimates and decision
trees as base classifiers.

4) Random Forest: Random Forest is a machine learning
algorithm composed of multiple decision trees built on differ-
ent random subsets of the training data. The training strategy
adopted by this algorithm is known as boost strapping (or

bagging) which aims to reduce the variance of the bagged model
and to help avoiding overfitting. Given a set of decision tree clas-
sifiers (base classifiers), the bagging strategy splits the data ran-
domly, with replacement, which are used to fit the base classifiers
in an independent manner. After training, the bagged model is
computed by taking the majority vote of base classifiers. To esti-
mate the performance of the individual trees, a subset of the train-
ing data, called out-of-bag (OOB) samples, is separated from the
training data and used to estimate the generalization error of the
bagged model. The OOB samples are also used to compute the
error rate of all variables that infer the feature importance.

5) Fusion of Classifiers via Support Vector Machine: SVM
algorithm has been successfully employed for fusing infor-
mation for the different classification problems due to strong
generalization capability when its parameter values were chosen
accordingly. The training stage of an SVM classifier in the
context of fusion of classifiers is given as follows. Given a
(n× c) binary matrix L that gathers the label outputs of c
classifiers for the n input samples from the training set, the
ensemble decision of a set of classifiers c is performed by
feeding an SVM algorithm with L matrices to fit a classification
model or ensemble model. During the training stage, we applied
a grid search and k-fold cross-validation protocol to estimate
the parameters C and γ since we use the radial basis function
as a kernel. After estimating an SVM-based ensemble model,
the testing phase is performed by running c classifiers on the
p testing samples, whose label outputs are gathered to build a
(n× p) binary matrix H . Next, the H matrix is used to feed the
SVM-based ensemble model that produces the final label output
for each testing sample p.

C. Evaluation Protocol

We conducted the experiments and evaluation of the proposed
method using the MODIS sensor images with eucalyptus pixel
samples (see Section V-A). We adopted the same evaluation
protocol as Menini et al. [16] to have a fair comparison with our
baseline methods. Thus, we divided the dataset into two sets,
training set (80%) to train and validate the classification models
and the testing set (20%) used only to report the final results of
our proposed methods and baselines.

We validate classification models by using the k-fold cross-
validation protocol, with k = 5, and ten replications. The repli-
cations are necessary to avoid a biased result since we split
the original dataset in a 80%–20% ratio. Finally, the evaluation
metric used to measure the performance results of the classifiers
was the average of balanced accuracy of ten replications.

VI. EXPERIMENTAL RESULTS

This section presents and discusses obtained results.

A. Evaluation of Individual Classifiers Trained Using Deep
Representations

This section presents the preliminary results of the predic-
tors. Our approach to build predictors considers 4 classification
algorithms trained using several representations, which were
built by using 10 pretrained deep-learning methods as feature
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TABLE I
COMPARISON OF PERFORMANCE RESULTS, IN TERMS OF MEAN AND STANDARD DEVIATION OF BALANCED ACCURACY, BETWEEN THE BEST CLASSIFIER, FOR

EACH NUMBER OF NONEUCALYPTUS EXAMPLES, TRAINED WITH DEEP REPRESENTATIONS (FIRST THREE ROWS) AND BASELINE METHODS FOR DETECTING

EUCALYPTUS AREA (LAST TWO ROWS)

TABLE II
COMPARISON OF PERFORMANCE RESULTS, IN TERMS OF MEAN AND STANDARD DEVIATION OF BALANCED ACCURACY, BETWEEN THE BASELINE METHODS (FIRST

FOUR ROWS) AND OUR PROPOSED METHOD (LAST THREE ROWS)

RP
RP GAF, MTF

GAF, MTFRP

extractors upon 14 2-D representations used to encode the time
series (see Section IV). Thus, we came up with 560 classifiers
(4 classifiers × 10 feature extractors × 14 2-D representations).
Since we are considering the fivefold cross-validation evaluation
protocol, the total number of models produced during training
phase reaches 28 000 classifiers (560 × 5 models × 10 runs).
Due to the volume of results, we show in Table I only the best
ones for the noneucalyptus samples with sizes 250, 500, and
1000, considering all the predictors.

With the motivation that these predictors potentially provide
different views about the classified instances, we have extended
previous work [14], [15] investigating a fusion method for the
28 000 predictors.

B. Are the RP, GAF, and MTF Representations
Complementary to Each Other?

This section presents the performance results of the method
used to ensemble multirepresentational learning classifiers de-
signed to detect eucalyptus and noneucalyptus areas. Table II
shows the obtained results considering the fusion of classifiers
described in Section IV-A. Furthermore, the values correspond
to average and standard deviation of balanced accuracy, com-
puted for ten rounds of experiments.

The first two rows in Table II present the performance results
of the baseline methods that do not rely on the use of deep neural
networks for feature extraction. In turn, the third and fourth rows
present the baseline methods whose approaches take advantage
of deep-learning methods for extracting deep representations.
Finally, the last three rows show the performance results of the
meta-fusion approach investigated in this study, which consider:
1) RP representation only; 2) all representations of RP, GAF,
and MTF, using the Gini index as a criterion to estimate the

importance of classifiers; 3) all representations of RP, GAF, and
MTF, using the accuracy values to estimate the importance of
the classifiers.

From these experiments, we could observe that the fusion ap-
proach improved the classification results, in terms of balanced
accuracy, in comparison to the baseline methods. These results
suggest that learned classifiers using the RP, GAF, and MTF
representations encode complementary features useful to our
problem. This was evidenced when we fuse the classifiers using
only the RP representations. In this case, the fusion approach
could not bring significant improvements, in comparison to
method presented in [14] that also uses RP representations. We
believe that this modest results could be explained by the fusion
of a set of classifiers that did not share too much complementary
information. On the other hand, the fusion of classifiers built
with RP, GAF, and MTF methods presented better results than
all baseline methods. These results suggest that multirepresen-
tational learning classifiers built with the 2-D representations of
time series investigated in this work complement each other.

C. Comparison With Other Fusion Approaches

This section presents a comparison of performance results
among different methods for fusing classifiers. In this work, we
evaluated different approaches for fusion information available
in the literature such as bagging, boosting, and meta-fusion
approaches: AdaBoost and Gradient Boosting are two fusion
strategies that can be classified as boosting approaches, while
the Random Forest is a bagging approach by itself since several
decision tree classifiers are training using the bagging approach.
On the other, the Random Forest alongside with SVM algorithm
can also be considered as a meta-fusion approach when they are
used to have a second decision layer upon base classifiers.
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TABLE III
COMPARISON OF PERFORMANCE RESULTS, IN TERMS OF MEAN AND STANDARD DEVIATION OF BALANCED ACCURACY, AMONG THE BASELINE METHODS FOR

FUSING CLASSIFIERS (FIRST FOUR ROWS), THE TOP-1 CLASSIFIER THAT PRESENTED THE BEST RESULTS (PENULTIMATE ROW), AND THE FUSION APPROACH

ADOPTED FOR FUSING CLASSIFIERS (LAST ROW)

RP GAF, MTF

Table III shows the performance results for the fusion meth-
ods investigated in this work. We could observe that baseline
methods for fusion could not surpass the best result considering
the individual performance of classifiers built in this work. On
the other hand, the meta-fusion approach adopted in this work
(see Section IV) achieved the best results, in terms of balanced
accuracy, in comparison with the baseline methods for fusing
classifiers.

Finally, it is important to note that although our fusion ap-
proach needs to handle a high number of classification models
in the training phase, the testing phase uses only the 60 clas-
sifiers selected during the training phase to produce the final
decision. Of course, this number could be limited depending
on the efficiency aspects required by a target application. Re-
mote sensing image classification is an active research field,
and several real-time remote sensing applications have been
addressed recently (e.g., applications that aim to predict natural
disasters [45]). We believe that the investigation of the tradeoff
between effectiveness and efficiency of fusion approaches that
handle a high number of pixelwise classification systems is an
interesting research venue and could benefit applications that
require fast decision-making with minimum latency.

VII. CONCLUSION

This article addressed the pixelwise remote sensing image
classification problem based on patterns found in time series
associated with pixels. In particular, we investigated the com-
plementary view provided by different classification systems
created based on the combination of time series representations,
data-driven feature extractors, and classifiers. Experiments were
conducted aiming at addressing the problem of classifying eu-
calyptus plantations in remote sensing images, based on vege-
tation index time series. Achieved results demonstrated that the
proposed ensemble exploits properly the complementarity of
different classification systems. In fact, state-of-the-art results
were observed for the target dataset.

Future work focuses on improving our ensemble by exploiting
the effectiveness of end-to-end classifiers based on data-driven
learning approaches. We also plan to investigate the use of
the proposed ensemble in spatiotemporal classification prob-
lems, and efficiency and yet effective strategies for building
multirepresentational learning approaches that require fast
decision-making with minimum latency.
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