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Abstract Image phylogeny is the problem of reconstruct-

ing the structure that represents the history of generation of

semantically similar images (e.g., near-duplicate images).

Typical image phylogeny approaches break the problem

into two steps: (1) estimating the dissimilarity between

each pair of images and (2) reconstructing the phylogeny

structure. Given that the dissimilarity calculation directly

impacts the phylogeny reconstruction, in this paper, we

propose new approaches to the standard formulation of the

dissimilarity measure employed in image phylogeny,

aiming at improving the reconstruction of the tree structure

that represents the generational relationships between

semantically similar images. These new formulations

exploit a different method of color adjustment, local gra-

dients to estimate pixel differences and mutual information

as a similarity measure. The results obtained with the

proposed formulation remarkably outperform the existing

counterparts in the literature, allowing a much better

analysis of the kinship relationships in a set of images,

allowing for more accurate deployment of phylogeny

solutions to tackle traitor tracing, copyright enforcement

and digital forensics problems.

Keywords Digital forensics � Image phylogeny

reconstruction � Mutual information � Dissimilarity

calculation

1 Introduction

Undoubtedly, images are powerful communication tools

living up to the classical adage comparing them to a

thousand words when conveying any information. Their

communication power has raised significantly with the

advent of social media. Within this new reality, images are

published, shared, modified and often republished effort-

lessly. Frequently, reposting and sharing will happen after

myriad small modifications, such as cropping, resampling,

affine warping and color adjustments, resulting in what is

called a near duplicate of the original image. Sometimes

content sharing might be illegal, however, such as in cases

of copyright infringement or public defamation. On other

occasions, simply possessing the content (e.g., images

depicting child pornography) already constitutes a crime.

Considering the aforementioned scenarios, it is often

important to develop appropriate solutions to track and

monitor how images are shared and evolve on the Internet

over time.

In this vein, Image Phylogeny [8, 14, 16] has been

developed recently in an attempt to find the relationship

structure among near-duplicate images. According to [23],

an image is a near duplicate of another if it shares similar

content differing up to some editing transformations. In

other words, the two images contain a kinship relationship.

For the case of image phylogeny, we model the kinship

relationships as a tree, whereby the root is the patient zero

(the original image), the edges represent ‘‘father–child’’

relationships, and the leaves of the tree represent
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‘‘terminal’’ images that have more modifications than their

ancestors. In some cases, the near-duplicate set does not

come from a single original document, but rather from

images with the same semantic content generated either

from different sources (cameras) or from the same source

but in distinct moments in time. Both cases represent a

generalization of the near-duplicate concept, referred to by

Dias et al. [13] as Semantically Similar Images. In this

case, the set of semantically similar images can be repre-

sented by a forest comprising different trees, each one

correlating the near duplicates which originated from the

same source image [8, 13]. Figure 1 depicts an example of

the image phylogeny problem.

Once we trace back the past history of the near dupli-

cates, image phylogeny can be useful for aiding (allied

with additional side information) in the discovery, for

instance, of who was the first user that published an image

containing illegal or abusive content (e.g., fake and

defamatory image of celebrities or politicians, and child

pornography), which in turn was redistributed after being

modified by different users. Image phylogeny solutions can

also be useful for detecting image restaging and repur-

posing as well as propaganda effects in the Internet.

Dias et al. [14, 16] formally defined the problem of

Image Phylogeny in two steps: (1) the calculation of the

dissimilarity between each pair of near-duplicate images

and (2) the reconstruction of the phylogeny tree. Let T be a

family of image transformations, T a transformation such

that T
b
! 2 T is parameterized by b. Considering two near-

duplicate images I src (source) and I tgt (target), the dis-

similarity function d(. , .) between them is defined as the

lowest value of dðI src; I tgtÞ, such that

dðI src; I tgtÞ

¼ min
T

b
!2T

I tgt � T
b
! I srcð Þ

�
�
�
�

�
�
�
�
point � wisecomparison L:

ð1Þ

Equation 1 calculates the dissimilarity between the best

transformation mapping I src onto I tgt parameterized by b
!
,

according to the family of transformations T . After the

proper mapping, the comparison between the images can

be performed by any pointwise comparison method L (e.g.,

minimum squared error).

Since the first work in image phylogeny [14], several

branches to this research field have been developed.

Extensions to the original image phylogeny algorithm were

also proposed for reconstructing the tree of evolution of a

set of near-duplicate videos (video phylogeny)

[6, 15, 26, 31]. In addition, the phylogeny of audio clips

were also investigated by [33]. The study of multiple

parent–child relationships (images obtained through the

modifications of more than one image) was also explored

[35, 36]. Moreover, improvements on the image phylogeny

original framework have been proposed for dealing with

Fig. 1 Image phylogeny problem. Given a set of semantically similar

images, our objective is to reconstruct a structure that represents the

historical relationships among the images. In this example, we have a

forest with two trees, which means that the group of semantically

similar images has two original images (b, c) with similar content,

each of which spurring its own near duplicates (descendants). After a

transformation applied on image b, we generate the near duplicate

d. The near duplicate e is the result of a different transformation over

b. The near duplicates h, i are created considering different

transformations applied over the near duplicate d). The near

duplicates f, g and j are the result of transformations applied over

the original image c. Finally, the near duplicate a is the result of a

transformation over f
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large-scale setups [12] and semantically similar images

[13]. Recently, new improvements on the construction of

the parent–child relationships have also been studied and

proposed such as the using of multiple dissimilarity

matrices for the phylogeny reconstruction [30] and opti-

mum branching solutions [11]. In addition to our pioneer

work in this field, there are other important works in the

literature following a similar trend in the literature, aiming

at finding the structure of the evolution of images on the

Internet [18, 24, 25, 29, 38].

As discussed in those works, phylogeny solutions have

several important applications in security (for finding the

modification’s graph of a set of documents hinting at

information about suspects’ behavior and the directions of

content distribution), forensics (enabling the forensic ana-

lyst to focus on original versions of documents instead of

their descendants), copyright enforcement (strengthening

new passive traitor tracing techniques) and news tracking

services (feeding news tracking services with key elements

for mining opinion forming processes along time).

Although the field has been developing significantly

over the past few years, thus far researchers mainly focused

on proposing different phylogeny reconstruction approa-

ches [8, 11, 13, 14] often using a standard methodology for

dissimilarity calculation as originally proposed by [16].

This dissimilarity calculation involves the estimation of the

transformations that map a source image onto a target

image, followed by their comparison in a pointwise fash-

ion. As the transformation estimation is not exact, the

pointwise comparison method L is strongly affected by

artifacts generated in such processes. Given that the dis-

similarity calculation directly affects the result of the final

phylogeny reconstruction [16], the definition of a reliable

dissimilarity measure is paramount for the image phy-

logeny research field.

Aiming at solving those problems and increasing the

quality of the phylogeny reconstruction, in this paper, we

introduce new methods to perform the dissimilarity cal-

culation between images, with the intent of improving the

phylogeny reconstruction as a whole. First, we employ a

histogram-based method to match color histograms

between two near-duplicate images better capturing pos-

sible color differences between them. Then, we develop a

new comparison metric working on images gradients,

rather than directly on the pixels domain. Finally, we use

the mutual information technique to compare them. The

new comparison metrics aim at better tackling possible

image misalignments during the mapping process of one

image onto another’s domain.

We organized this paper into four more sections. Sec-

tion 2 presents details about the novel methods proposed

herein for dissimilarity calculation. Section 3 presents the

methodology that we use for carrying out the experiments

and the used datasets. Section 4 presents the performed

experiments and obtained results. Finally, Sect. 5 con-

cludes the paper and shows some possible future work

worth pursuing.

2 New dissimilarity calculation techniques

As proposed in [16], the estimation of the transformation T,

parameterized by b
!

used to map an image I src onto an

image I tgt’s domain follows a three-step method, which

results in the generation of I0
s ¼ T

b
!ðI srcÞ:

1. Geometric matching also known as Image Registra-

tion. Among several different approaches known in the

literature [47], the image registration is computed by

finding keypoints in each pair of images using SURF

(Speeded-Up Robust Features) [2], which are in turn

used to estimate warping and cropping parameters

robustly using RANSAC [19];

2. Color matching performed to adjust the color of the

source image I src according to the color of the target

image I tgt. It is done through normalization of each

channel of I src by the mean and standard deviation of

the respective channel in I tgt[37];

3. Compression matching the image I src is compressed

with I tgt’s JPEG compression parameters. Considering

that near duplicates may be recompressed, this process

might result in the generation of artifacts over the

target image. This step is important for simulating this

aspect, aiming at inserting the same compression

artifacts present in I tgt into I src, which may improve

the quality of the estimation of T
b
!ðI srcÞ.

Then, a comparison between the estimated I0
src ¼

T
b
!ðI srcÞ and I tgt is performed using a pointwise image

comparison measure. There are many different approaches

for calculating the pointwise dissimilarity between two

images [21], though the authors opted to estimate it using

the mean squared error (MSE). Figure 2 depicts the dis-

similarity calculation process.

In this work, we propose several improvements over the

individual steps of the aforementioned general pipeline for

dissimilarity calculation such as the replacement of the

color matching step, which was not very accurate, and also

the method used for performing the pointwise comparison

between two images. We now turn our attention to these

new approaches for improving the dissimilarity calculation.

The main goal of this paper is to show that it is indeed

possible to consider alternative and promising options for

obtaining better results in terms of phylogeny graph
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reconstruction and in finding the actual kinship relation-

ships among semantically similar images. MSE compar-

ison is considered the state of the art as can be seen in

several recent publications such as [3, 6, 7, 15, 30, 32, 38].

2.1 Histogram color matching

The second step of the transformation estimation T (after

geometric matching) consists of mapping the color space of

the source image I src onto the target’s image I tgt color

space. Previous work on image phylogeny

[8, 11, 13, 14, 30] performed the color matching between

two images by normalizing each color channel of I src by

the mean and standard deviation of the I tgt’s corresponding

channel [37]. This method, although simplistic, works

reasonably well when the color changes are minor. How-

ever, it leads to some problems when the transformations

applied to the image when generating a descendent are

stronger, especially in the case of contrast changes, gamma

correction or nonlinear color mappings, which affect the

distribution of pixel intensities throughout the image.

For a better color matching step, we propose to use a

histogram matching technique [20]. This technique trans-

forms the source image colors in such a way that their

distribution acquires a form closer to the color distribution

of the target image, by using the target image’s color dis-

tribution information. Figure 3 shows two examples of

color matching algorithms.

To match the histograms of two images I src and I tgt, we

compute their histograms, Hsrc and Htgt and compute their

Cumulative Distribution Function (CDF) [27]. For a

grayscale image I , with L gray levels, the gray level i has

the probability of

pI ðiÞ ¼ ni

n
; 0� i\L ð2Þ

where n is the number of pixels in the image and ni is the

number of pixels of gray value i in the histogram of the

image. The CDF of an image I is

CI ðiÞ ¼
Xi

k¼0

pI ðkÞ: ð3Þ

With CI src and CI tgt , the CDFs for I src and I tgt, respec-

tively, we find a transformation M that maps CI src onto

CI tgt . For each gray level i of I src, we find the gray level j of

I tgt whose CI tgtðjÞ is the closest in CI tgt to CI srcðiÞ. Once the
mapping is found, each pixel with gray level i in I src has its

value replaced by j. We treat each color channel of these

images independently, matching their histograms

individually.

Geometric matchingGeometric matching

Isrc Itgt

Pointwise comparison

L
ItgtI src

d(Isrc, Itgt)

Color and compression matching

Fig. 2 Dissimilarity calculation process. The mapping of image I src onto I tgt’s domain involves a three-step process: geometric, color and

compression matching. Afterward, it is possible to directly compare the images using any pointwise comparison algorithm

Isrc Itgt

Color 
Matching

Result: Mean/STD maching Result: Histogram maching

Fig. 3 Matching the colors of the source image according to the color

distribution of the target image. The result of the color matching

algorithm based on mean and standard deviation normalization [37]

presents undesired artifacts that cannot be simply neglected, as can be

noted in the marked regions of the picture. This problem is lessened

when we perform a better color matching through histogram analysis
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2.2 Gradient comparison

Image gradients describe the value and direction of pixel

intensity variation. They can be used to extract different

information about the image, such as texture and location

of edges. Here we filter an image by using a convolution

with a Sobel [41] kernel for gradient estimation [20]. It is

worth mentioning that other filters could be used as well

but we opted to work with Sobel because it is separable in

the vertical and horizontal directions and it is reasonably

efficient. The convolution of an image Iðx; yÞ with an m �
n kernel K(x, y) is given by:

Kðx; yÞ � Iðx; yÞ ¼
Xm=2b c

i¼ �m=2b c

Xn=2b c

j¼ �n=2b c
Kði; jÞIðx � i; y � jÞ

ð4Þ

where ‘�’ denotes the convolution operator. This equation

is evaluated for all values of displacement variables x and

y [20].

As contrast enhancement and color transformations are

often used when creating near duplicates, directly affecting

the gradients of an image, this becomes an important

information to add to the dissimilarity calculation. By

comparing the gradients of a transformed image I0
src and

I tgt, it is possible to compare the intensity values (encoded

in the gradient) and their variation throughout the image.

While the image comparison metric L stays the same

(i.e., minimum square error), we first compute the gradients

in the horizontal and vertical directions, by convolving the

images to be compared with the 3� 3 Sobel kernels Sh

(horizontal direction) and Sv (vertical direction)
1. The R, G

and B channels of I0
src and I tgt are treated separately

resulting in a total of six gradient images (two directions

per color channel). The image comparison metric L is

applied to each respective pair of gradient images of I0
src

and I tgt, and the mean of the six values obtained in each

position is taken as the final dissimilarity value.

2.3 Mutual information comparison

In information theory, mutual information (MI) is a mea-

sure of statistical dependency of two random variables,

which represents the amount of information that one ran-

dom variable contains about the other [40]. The mutual

information between two random variables X and Y is

given by:

MIðX; YÞ ¼ HðYÞ � HðYjXÞ ¼ HðXÞ � HðXjYÞ; ð5Þ

where HðXÞ ¼ �Ex½logðPðXÞÞ� is the entropy (i.e., the

expected value of the information associated with a random

variable) of X and P(X) is the probability distribution of X.

In the case of discrete random variables, MI is defined as:

MIðX; YÞ ¼
X

x2X

X

y2Y

pðx; yÞ log pðx; yÞ
pðxÞðpðyÞ

� �

; ð6Þ

where p(x, y) is the joint probability distribution function

(PDF) [27] of X and Y, and both p(x) and p(y) are the

marginal PDFs of X and Y, defined, respectively, as:

pðxÞ ¼
X

y

pðx; yÞ; ð7Þ

pðyÞ ¼
X

x

pðx; yÞ: ð8Þ

MI has been widely employed in several image applica-

tions such as gender identification [42], multi-modal data

fusion [4], feature selection [1], and in image registration

problems [28, 43] as a similarity measure (or cost function)

to maximize when aligning two images (or volumes).

Applying MI to images means that the two random

variables are the image X ¼ I0
src and the image Y ¼ I tgt

and x and y are the values of two pixels belonging to I0
src

and I tgt, respectively. Thus, p(x, y) is the joint PDF of the

images I0
src and I tgt, evaluated for the values (x, y), where

x; y 2 ½0. . .255�.
Clearly, the previous definitions involve the knowledge

of the PDFs of pixels and, in particular, the joint PDF

p(x, y), from which it is easy to obtain p(x) and p(y) by

marginalization (Eqs. 7 and 8). In general, such joint PDF

is not known a priori and needs to be estimated. Several

methods [5] have been conceived to estimate the PDF of

one or more random variables from a finite set of obser-

vations, such as the approximation of the joint PDF by the

joint histogram

p̂ðx; yÞ ¼ hðx; yÞ
P

x;y hðx; yÞ ; ð9Þ

where h(x, y) is the joint histogram of the images X and Y,

namely the number of occurrences for each couple of gray

level values (x, y), evaluated on the same (i, j) position on

both images.

MI has the following property: Given two images I0
src

and I tgt, MIðI 0
src; I tgtÞ is bounded as

0�MI I0
src; I tgt

� �

� min H I0
srcð Þ;H I tgt

� �� �

: ð10Þ

It can be demonstrated that MI is maximum when the

two images are completely aligned (in terms of geometri-

cal, color and compression transformation). Figure 4a

shows a perfectly aligned case. If we assume a perfect

transformation T
b
! that maps an image I src onto an image

1 In our experiments, we have used the 3� 3 Sobel kernel. We

performed some exploratory tests with other kernel sizes (e.g., 3� 3,

5� 5 and 7� 7) but their performance was similar for the problem

herein.
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I tgt’s domain, the mutual information MIðT
b
!ðI srcÞ; I tgtÞ

is maximum. However, since each transformation is not

completely reversible, if we apply the inverse transforma-

tion T�1

b
! to I tgt to obtain I src, their joint histogram is

similar to Fig. 4b.

2.4 Gradient estimation and mutual information

combined

The Gradient and Mutual Information comparison, pre-

sented in Sects. 2.2 and 2.3, respectively, can be further

combined into a single form of computing the dissimilarity

value between two images. First, we calculate the gradient

of the images I0
src and I tgt as we described in Sect. 2.2.

Afterward, we compare each correspondent gradient of

both images with mutual information, instead of using the

image comparison metric L based on the standard mini-

mum square error. The final dissimilarity is the average of

mutual information values for each gradient image.

With this approach, we aim at better capturing the

information about variation in certain directions of the

image (gradient information), as well as at seeking to avoid

effects caused by slight misalignments during the mapping

(mutual information estimation). This method also takes

into consideration the amount of texture information pre-

served between two near duplicates for calculating the

dissimilarity.

Unfortunately, the combined method slightly increases

the computational cost of the dissimilarity calculation, given

that we need to estimate the mutual information six times

after the gradient calculation. However, this method leads to

better reconstruction results as we discuss in Sect. 4.

Moreover, the additional computational time can be easily

compensated by parallel implementation as the different

calculations are independent and can take advantage of

modern GPUs and multi-core technologies. Finally, these

two methods can also be combined with a better color

matching approach (c.f., Sect. 2.1) further improving the

dissimilarity calculation between pairs of images.

3 Experimental setup

In this section, we discuss the evaluation setup, including

the used datasets and validation metrics for the methods

discussed in this work.

3.1 Dataset

For validation, we the two datasets introduced by Costa

et al. [8], which are freely available:

– Training Dataset it represents a small exploratory set

containing images in two setups: One Camera and

Multiple Cameras. The images were taken from three

different cameras, three different scenes, three images

per camera, four forest sizes jFj ¼ f2::5g, one topol-

ogy2 and 10 random variations of parameters for

creating the near-duplicate images, totaling 2� 33 �
4� 1� 10 ¼ 2; 160 forests.

– Test Dataset it also comprises cases for two different

setups, One Camera and Multiple Cameras, consider-

ing forests with size jF j ¼ 1. . .10. More specifically,

this set comprises semantically similar images ran-

domly selected from a set of 20 different scenes

generated by 10 different acquisition cameras, 10

images per camera, 10 different tree topologies (i.e.,

the form of the trees in a forest) and 10 random

variations of parameters for creating the near-duplicate

images.

We considered 2000 forests of images generated by a

single camera (Scenario One Camera—OC) and 2000

forests generated by multiple cameras (Scenario Multi

Camera—MC). The forests vary in the number of trees

(size) jF j ¼ f1. . .10g. Therefore the dataset has 2�
2000� 10 ¼ 40; 000 test cases in total. As we evaluate

each dissimilarity measure and each color matching

approach, in this dataset, the final number of test cases

is 320,000.

The image transformations used to create the near dupli-

cates present in the used datasets and described in [16] are:

geometric transformations, brightness and contrast adjust-

ment, and lossy compression using the standard lossy JPEG

algorithm. Table 1 details the transformations and their

operational ranges for creating the controlled dataset. The

near-duplicate generation process uses the algorithms

implemented in the ImageMagick Library3. Figure 5

depicts some examples of scenes we considered in this

work.

3.2 Evaluation metrics

For a better assessment of the proposed methods, we

consider scenarios in which the ground truth is available.

We used the metrics introduced by Dias et al. [13] to

evaluate the proposed approach: Roots, Edges, Leaves and

Ancestry. For instance, when considering the Edges metric,

we calculate the intersection of the set of reconstructed

edges with the set of edges in the ground truth normalized

by all edges present in the union of the groups. The Roots

2 A topology refers to the form of the trees in a forest. For instance,

Fig. 1 depicts two different topologies for the set of images present on

its left side.
3 http://www.imagemagick.org/script/index.php.
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metric measures whether or not the reconstructed forest

contains exactly the same roots as the ground-truth forest,

i.e., the algorithm was able to find the very original images

used to start the near-duplicate generation processes. The

metrics Edges and Ancestry, in turn, measure how well the

algorithm finds the kinship relationships along time. While

the Edges metric assesses this information only locally and

independently, the Ancestry one assesses the entire evo-

lutionary process of a given image (a full branch in the

tree). Finally, the Leaves metric compares the leaves (most

modified images in a given branch of the tree) found by an

algorithm with the original ones in the ground-truth forest.
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Fig. 4 Bi-dimensional

representation of two joint

histograms. White pixels mean

zero values, while the other

pixels represent values greater

than zero (the images were

inverted for viewing purposes).

a Joint histogram of two

(grayscale) images perfectly

aligned. b Joint histogram of

two slightly misaligned images

Table 1 Transformations and their operational ranges for creating

controlled dataset

Resampling (up/down) ½90%; 110%�
Rotation ½�5�; 5��
Scaling by axis ½90%; 110%�
Off-diagonal correction [0.95, 1.05]

Cropping ½0%; 5%�
Brightness adjustment ½�10%; 10%�
Contrast adjustment ½�10%; 10%�
Gamma correction [0.9, 1.1]

Recompression ½50%; 100%�

Fig. 5 Examples of pictures present in the datasets described in this work
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Figure 6 illustrates the calculation of these evaluation

metrics.

The evaluation metrics are formally defined as:

Root RðIPF1; IPF2Þ ¼ R1\R2

R1[R2
;

Edges EðIPF1; IPF2Þ ¼ jE1\E2j
jE2j ;

Leaves LðIPF1; IPF2Þ ¼ jL1\L2j
jL1[L2j;

Ancestry AðIPF1; IPF2Þ ¼ jA1\A2j
jA1[A2j.

In all cases, N is the number of nodes in a tree, IPF1 is the

reconstructed image phylogeny forest (IPF) with elements

represented by R1 (roots), E1 (edges), L1 (leaves) and A1

(ancestry) and IPF2 is the forest ground truth with elements

R2, E2, L2 and A2. The roots, leaves and ancestry metrics

calculate the intersection of the results returned by IPF1
with respect to the reference forest IPF2 and normalizes it

by the union of both sets, while the edges metric calculates

the score of correct edges by normalizing the intersection

of the result returned by IPF1 with respect to the reference

forest IPF2 by the ground-truth set. For instance, in the

example of Fig. 6, the Root metric yields

RðIPF1; IPF2Þ ¼ 2=2 ¼ 100%, the Edges metric yields

EðIPF1; IPF2Þ ¼ 6=8 ¼ 75%, the Leaves metric yields

LðIPF1; IPF2Þ ¼ 4=6 ¼ 66:6% and the Ancestry metric

yields AðIPF1; IPF2Þ ¼ 10=14 ¼ 71:4%.

3.3 Phylogeny reconstruction

As the actual phylogeny reconstruction process is not a focus

of this paper, after estimating the dissimilarity matrix, we

apply an already proposed algorithm to reconstruct the

phylogeny forest. Our choice was the Extended Automatic

Optimum Branching (E-AOB) algorithm proposed by Costa

et al. [8], which is currently the state-of-the-art for phylogeny

reconstruction. This method is based on an optimum

branching algorithm [17]. In short, the E-AOB algorithm

works as follows. Consider a dissimilarity matrix Mn�n

representing the pairwise relationships of n images. After

calculating an optimum branching and sorting its n � 1

edges into non-decreasing order according to their weight w,

the algorithm selects the edges for the final forest one by one,

from the lowest to the highest cost. After selecting i � 1

edges, for i ¼ 1. . .n � 1, if wðeiÞ � wðei�1Þ, i.e., the differ-
ence of costs between the next edge to be selected and the last

selected edge is higher than c� r (where r is the standard

deviation of all selected edges up to that point), the algorithm

stops and returns the branching with i � 1 edges. Afterward,

we find the optimum local branching in each group of nodes

(further refining each tree).

The parameter cE�AOB was found considering a training

dataset and each one of the proposed dissimilarity mea-

sures. From these experiments, we also defined

sAOB ¼ lAOB þ ð2:0� rAOBÞ, and as a consequence,

cE�AOB ¼ 2:0, following the best parameter reported by the

authors in [8].

3.4 Real cases

In addition to the experiments previously outlined, we also

performed experiments and qualitative analysis considering

two real datasets available in the literature.

– The Situation Room [13]: It comprises an image taken on

May 1st, 2011, by the White House photographer Pete

Souza and its variants, collected from the Internet. We

performed the dissimilarity matrix calculation and the

phylogeny reconstruction considering 98 near-duplicate

images collected through Google Images and manually

classified them in different groups considering (a) cases

of inserting the Italian soccer player Mario Balotelli,

(b) text overlay, (c) watermarking, (d) face swapping,

(e) insertion of a joystick, (g) hats and (n) changes in the

image size without splicing operations.

– The Ellen DeGeneres’ selfie [34] this dataset comprises

near-duplicate images related to the selfie taken by the

host Ellen DeGeneres and some famous actors on

March 2, 2014, during the 86th Academy Awards. The

original image became viral after it was published on

her Twitter account. Since then, it has been copied,

modified and republished several times, with cases of

text overlay, insertion of other people and animals in

the picture and face swap. The dataset has 44 pictures

from the Internet, and it is divided into five groups:

(a) Edited versions of the original image posted at

DeGeneres Twitter account (@TheEllenShow4;

(b) The moment that the picture has been taken but

from a different point of view (another camera);

(c) Group similar to group (b), but with slight differ-

ences on the posture of the people in the picture;

(d) Similar to groups (b) and (c), but with slight

differences on the facial expression and posture

of the people;

(e) The moment before the acquisition of the selfie

when the artists were gathering for taking the

picture.

4 Results and discussion

In this section, we show the performed experiments to

compare the proposed methods for analyzing image dis-

similarities in a phylogeny setup with the state-of-the-art

4 http://migre.me/vTYN7 (secure shortened link).
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MSE method, which has been the ‘‘de facto’’ dissimilarity

calculation method thus far for image phylogeny

[8, 11, 13–16]. We analyze the impacts of calculating the

dissimilarities using image gradients instead of image

intensities, the replacement of the standard pointwise

comparison metric minimum squared error with a mutual

information dissimilarity calculation and the incorporation

of color matching for better representing the mapping of a

source image onto a target image before actually calcu-

lating the dissimilarity.

4.1 Quantitative experiments

Figures 7 and 8 show the results for the different approa-

ches considered herein for calculating the dissimilarities

for OC (images taken with a single camera) and MC (im-

ages taken with multiple cameras) scenarios, respectively.

In all cases, the geometrical mapping of one source image

onto a target image is performed following the procedure

discussed in the beginning of Sect. 2. The phylogeny

reconstruction part uses the E-AOB algorithm for all

methods, regarded as the state of the art in the literature for

the reconstruction part [8, 11].

The baseline dissimilarity calculation considered is the

MSE, the state of the art, which compares two images

pointwise using the pixel intensities after the proper map-

ping (transformation) of one image onto the other’s target

domain. The proposed modifications are:

1. gradient estimation (GRAD), which still compares the

images pointwise but using image gradients instead of

pixel intensities;

2. mutual information (MINF), which replaces the point-

wise comparison using pixel intensities with the

mutual information calculation of pixel intensities;

3. gradient estimation plus comparison with mutual

information (GRMI), incorporating the calculus of

dissimilarities using mutual information of image

gradients; and, finally,

4. histogram color matching plus gradient estimation with

mutual information (HGMI), extending upon GRMI to

incorporate a better color matching before comparison.

First of all, the dissimilarity calculation does not benefit

directly from the replacement of pointwise pixel intensity

comparison by a pointwise comparison of image gradients

as the results show MSE outperforming GRAD for OC and

MC scenarios. The gradient itself only captures directional

variations; small misalignments when comparing two gra-

dient images affect the results more than when comparing

the images through pixel intensities.

If we change the pointwise comparison method to mutual

information but still use the pixel intensities, we have MINF

outperforming MSE for the MC case. With MINF, small

misalignments are not as important as for theGRADcase. One

interesting behavior, however, is the improved performance

for theOCcase (Root andAncestrymetrics). In theOCcase, as

all of the images come from the same camera, the color

matching for such images should be more refined than just the

mapping using themeanand standard deviation to differentiate

an image and its descendants. A pointwise comparison, in this

case, is more effective for small differences (MSE method).

The results improve when combining the gradient cal-

culation with mutual information (GRMI). The first reason

is that, by not comparing the intensities directly, the color

information artifacts are not as strong. Second, the com-

parison in this case is no longer done in a pointwise fashion

but rather, in a probability distribution-like form, better

capturing the different variations in the gradient images as

well as accounting for possible small misalignments after

the image mapping (registration). Finally, combining his-

togram color matching, gradient estimation and mutual

information leads to the final method HGMI, which solves

the former color matching problem when using MINF. As

1
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Roots={1, 7}
Edges={(1 → 3), (1 → 4), (3 → 5), (4 → 2), (7 → 8),

(7 → 9), (7 → 10), (9 → 6)}
Leaves={2, 5, 6, 8, 10}
Ancestry={(1, 2), (1, 3), (1, 4), (1, 5), (3, 5), (4, 2), (7, 6)

(7, 8), (7, 9), (7, 10), (9, 6)
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Reconstructed forestFig. 6 Evaluation metrics:

roots, edges, leaves and

ancestry. We represent the IPF

as a vector, where IPF½v� ¼ u

means that there exists the edge

ðu ! vÞ in the forest. In

addition, a given node v is a root

only if IPF½v� ¼ v. The

differences between the

reconstructed forest and the

ground-truth forest are

highlighted in red
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we can see, HGMI outperforms the MSE baseline for all

cases. With HGMI, we can reduce the dissimilarity errors

by better matching the color transformations involved in

the process of near-duplicate generation, by comparing the

images using gradients instead of pixel intensities and in a

distribution-like form instead of a pointwise one. Although

GRMI outperforms HGMI when we have few trees, HGMI

excels at this task when the size of the forest increases.

Furthermore, considering the cases that GRMI is better, the

difference is not significant, according to the Wilcoxon

signed-rank test. For more results, please refer to the sup-

plemental material.

4.2 Error reduction

To directly compare the approaches, we also calculate the

error variation Derror with respect to each metric (roots,

edges, leaves and ancestry), using the same equation

introduced in [11]:

DerrormetricðM1;M2Þ ¼ 1� M1metric

1� M2metric

� �

� 1 ð11Þ

where M1 represents the method being evaluated in com-

parison to method M2. Table 2 shows the average error

reduction for HGMI when compared to the baseline MSE.

In this case, there is an error reduction of about 45% in the

OC scenario and more than 50% for the MC scenario, for

all evaluation metrics, clearly showing that the proposed

HGMI dissimilarity measure is remarkably superior to the

standard MSE procedure.

A Wilcoxon signed-rank test [44] shows that the best-

proposed approach, HGMI, is statistically better than the

state-of-the-art MSE method for all cases and metrics, with

95% of confidence and a p-value of 0.002. Other possible

combinations of the methods discussed herein are pre-

sented in the supplemental material along with this paper

but none of them is more effective than the ones presented

and discussed here.
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Fig. 7 Forest reconstruction results for the one camera (OC) scenario, considering the metrics Roots, Edges, Leaves and Ancestry
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4.3 Run-time efficiency

To compare a pair of typical images (each of which with

about one megapixel), including the time to register both

images, MSE takes about 0.6 s, GRAD takes 0.8 s, and

MINF takes 0.7 s. The best-performing methods GRMI

and HGMI take both about 1.5 s. However, all methods can

be optimized to compensate for their additional computa-

tional requirement using GPUs and parallel computing.

The experiments were performed in a machine with an

Intel Xeon E5645 processor, 2.40 GHz, 16 GB of memory,

and running Ubuntu 12.04.5 LTS.

4.3.1 Registration efficiency

Although the efficiency of the dissimilarity calculation is

not the primary focus of this work, someone could argue

what would happen if we also optimize the dissimilarity

calculation process by selecting, for instance, a faster

keypoint detector and descriptor for the registration step.

Taking this into account, we performed a performance test

comparing two descriptor extractors: SURF (that was used

in this work and has been the standard in image phylogeny

solutions thus far) and ORB (Oriented Fast and Rotated

Binary Robust Independent Elementary Features), a binary

descriptor extractor based on the Harris corner detector

[39].

For the performance test, we considered 50 examples,

comprising trees with 10 nodes each. We evaluate, for

these examples, the time (in seconds) of each step of the

dissimilarity calculation process. Table 3 shows the time

spent by each step of the dissimilarity calculation, com-

paring the descriptor extraction using SURF and the
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Fig. 8 Forest reconstruction results for the multiple cameras (MC) scenario, considering the metrics Roots, Edges, Leaves and Ancestry

Table 2 Error reduction (%): HGMI versus MSE

Roots Edges Leaves Ancestry

One camera 46.6 54.7 49.4 58.2

Multiple cameras 53.6 56.9 50.9 60.0
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descriptor extraction made using ORB. For this test, we

considered the HGMI dissimilarity calculation, which was

the best approach presented in Sect. 4.1.

Table 3 shows that the ORB descriptor extractor is more

efficient than SURF for finding the keypoints and for

describing them. However, its efficiency does not influence

the other steps.

Moreover, to analyze the effectiveness of the phylogeny

reconstruction, we used 1000 samples of test cases (500 for

the OC scenario and 500 for the MC scenario), considering

the HGMI method for dissimilarity calculation and forests

with 10 trees. Figure 9 depicts the difference in the quality

of reconstruction for roots and ancestry, considering dif-

ferent cE�AOB parameters for the phylogeny forest recon-

struction. The results for edges and leaves are similar.

Figure 9 shows that the registration step using SURF as

the descriptor extractor is more appropriate than ORB.

While SURF is invariant to rotation, scale and color

changing, ORB is only invariant to rotation and Gaussian

noise. Considering the family of transformations presented

in the datasets, it is only natural to expect SURF to out-

perform ORB in the registration step and, consequently, in

the phylogeny forest reconstruction process as a whole.

4.4 Effects of dissimilarity errors

on the reconstruction

The dissimilarity errors directly affect the selection of the

edges by the E-AOB reconstruction algorithm, as this

process is done by comparing the difference of edge

weights and the standard deviation of edges already

selected. Considering that the forest needs to have 90

edges5. However, this event does not happen (on average)

for GRAD-MC, GRAD-OC and MINF-OC, showing that

the wrong number of trees is found in these cases, as

Fig. 10 shows. Note that, for GRMI and HGMI cases, in

most of the cases, the correct number of trees is selected.

Specifically for the HGMI case, the correct size of the

forests outperforms the baseline (MSE) in approximately

10 percentage points in MC scenario and 20 percentage

points in the OC scenario.

4.5 Exploring other gradients

As previously mentioned, in this paper, we considered the

3� 3 Sobel filter for extracting the gradient of the near

duplicates when exploring gradient-based dissimilarity

calculations. However, as one would expect, other methods

can be considered as well. For the sake of comparison, we

performed an exploratory experiment considering the gra-

dient estimation using Histogram of Oriented Gradients

(HoG) [9] instead of Sobel filters. For these experiments,

we considered 500 dissimilarity matrices for the MC setup

and 500 cases for OC setup, each of which comprising 10

trees for each forest. Table 4 presents the results for the

HoG estimation for dissimilarity calculation, compared to

the GRAD method.

Table 4 shows that HoG is not as effective as GRAD at

the task of finding the original images (roots) of the forests,

which also affects negatively the ancestry measure. In this

case, we believe the main problem is due to the nature of

the E-AOB reconstruction algorithm which reconstructs

only one tree instead a forest when using the HoG-based

dissimilarity. Nevertheless, HoG-based dissimilarity leads

to good trees in general, correctly finding the relationship

between direct ancestors (edges).

Considering this positive aspect of HoG, we went on and

performed another exploratory experiment to check what

would happen when using a Sobel-based gradient method

for finding the roots and a HoG-based method for calcu-

lating the remaining relationships in the tree (edges). In this

case, for each dissimilarity tree, we reconstruct a forest

with one of the proposed methods and, then, we reconstruct

another forest considering the HoG-based dissimilarity

matrix, but removing any edge that points to the node

which was already selected as root in the first reconstruc-

tion. With this experiment, we seek to maintain the best of

both worlds, the performance for roots and ancestry of

Table 3 Time analysis (in

seconds) of each step of HGMI

dissimilarity calculation,

considering SURF and ORB for

the descriptor matching in the

registration step

SURF ORB

Keypoints and descriptors extraction (for each image) 0.831 0.030

Descriptors cross-check matching (for each pair of images) 0.077 0.101

Image registration (I src ! I tgt) 0.138 0.166

Color and compression matching (I src ! I tgt) 0.100 0.102

Dissimilarity calculation (I src ! I tgt) 0.911 0.965

Total execution time (full 10� 10 matrix) 112.790 105.410

The reported execution times refer to the full-time required to compare the 10 input images pairwise in both

directions

5 For cases with n ¼ 100 images, the initial branching has n � 1 ¼ 99

edges. For creating a forestF where jF j ¼ 10 trees, the number of total

edges is n � jFj ¼ 100� 10 ¼ 90.
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GRAD and, at the same time, to improve the results for

edges and leaves when using HoG in the dissimilarity.

Table 5 presents the results of this fusion approach, con-

sidering the combined GRAD & HoG methods for gradient

estimation, the HGMI ? HoG combination and the best-

proposed combination HGMI, from previous sections.

The results of Tables 4 and 5 show that using HoG is

not strictly better than using Sobel for gradient estimation.

However, this experiment shows that exploring other gra-

dient estimation methods for dissimilarity measures is an

endeavor worth pursuing and it holds potential to push the

results even further. At this point, the choice of Sobel for

extracting the gradient of the images is mainly motivated

by its efficiency when compared to other filters or gradient-

based methods such as HoG, especially when we consider

that Sobel can be implemented with two separable filters.

4.6 Qualitative experiments with real cases

We now turn our attention to assessing the behavior of the

best-performing method (HGMI) considering two real

cases from the Internet: The Situation Room [13] and The

Ellen DeGeneres’ selfie [34] (c.f., Sect. 3.4.)

For real cases, the feedback of a forensic expert for

evaluating the quality of an algorithm is essential as there

is no ground-truth available. In this case, we empirically

define the c parameter of the E-AOB algorithm for each
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Fig. 9 Phylogeny reconstruction test considering ORB and SURF for the registration step
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Fig. 10 Average result (%) of

correct number of trees

calculated by E-AOB algorithm,

for 2000 test cases, considering

forests with 10 trees

Table 4 Comparison of GRAD versus HoG for gradient-based dis-

similarity calculation

Method Roots Edges Leaves Ancestry

OC GRAD 0.693 0.835 0.836 0.708

HoG 0.130 0.974 0.970 0.559

MC GRAD 0.666 0.819 0.816 0.672

HoG 0.139 0.974 0.964 0.579

Best results are highlighted in bold
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case (c ¼ 2:0 for the case in The Situation Room and c ¼
0:5 for the case of The Ellen DeGeneres’ selfie). Figures 11

and 12 show the reconstructed forests for these cases.

For The Situation Room case, the algorithm correctly

identified image with ID 0000 (the White House version)

as the root of the tree. Furthermore, as we expected, the

result was that all images were grouped under the same tree

(with image 0000 as the root). Although there are some

images in wrong groups (sub-trees) in the reconstructed

phylogeny, it is important to note that this dataset is mostly

composed by images generated by splicing operations,

which is in fact a special case of IPFs (multiple parenting

phylogeny [10, 35]). However, the E-AOB could separate

these groups in different sub-trees with good effectiveness.

Considering the Ellen DeGeneres selfie case, we have a

forest with five trees. The near duplicates are correctly

organized according to their groups. The node a00 is the

picture originally posted at DeGeneres’ Twitter account,

and it was not selected here as the root of the group.

However, the node is only two edges of distance to the

root. The tree with images a09, a10, a11 and a12 should

also be placed as a child of node a00, but it has a splicing

of a cat in the picture, and the algorithm ended up classi-

fying a09 and a10 as ancestors of a00 and the nodes a11

and a12 as nodes not related to a00.

The nodes a09, a10, a11 and a12 are correctly grouped,

since image a09 is actually a montage also extracted from a

Twitter’s official account (@RealGrumpyCat6). The ima-

ges a10, a11, and a12 are all variants of this image. The

image a03 also should be classified as a child of a00, but it

was separated in a single tree. This image was generated by

splicing, in which all the faces in the picture were replaced

by DeGeneres’ face. Groups b, c and d are the hardest to

analyze, since there is a subtle difference among them. As

we can see, group d was correctly separated in a different

tree. Although the groups b and c are placed on the same

tree, it is possible to note that most of the images that

belong to the same group are together (with the exception

of image c01, which is in a single tree). This structure

Table 5 Results for the

reconstruction considering

different gradient methods and

their combination with the other

methods proposed in this paper

Method Roots Edges Leaves Ancestry

One camera HGMI 0.953 0.970 0.963 0.949

GRAD ? HoG 0.675 0.956 0.948 0.828

HGMI ? HoG 0.953 0.974 0.965 0.955

Multiple cameras HGMI 0.905 0.970 0.964 0.929

GRAD ? HoG 0.713 0.956 0.956 0.849

HGMI ? HoG 0.905 0.974 0.969 0.933
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Fig. 11 Reconstructed phylogeny for The Situation Room scenario

6 http://migre.me/vTYLt (secure shortened link).
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certainly would help the work of a forensics expert. The

group e was also correctly classified in a different tree.

5 Conclusion and future work

In this paper, we presented novel approaches to computing

the dissimilarity between two images, applied to the

problem of image phylogeny forest reconstruction. The

proposed methods rely on the incorporation of a different

color matching approach for better estimating the color

transformations applied during the generation of near

duplicates, as well as the comparison between two images

using gradient calculation and mutual information

estimation.

This paper shows that comparing distributions is more

appropriate to this problem than direct pointwise compar-

isons (with mutual information outperforming MSE as the

comparison approach), gradient distributions are more also

more adequate than direct color distributions (with GRAD

outperforming pixel-based comparisons when combined

with mutual information), and it also shows that a more

powerful family of color transformations enables a better

tree reconstruction at the end of the dissimilarity calcula-

tion pipeline (with the incorporation of the histogram

matching approach).

As discussed earlier, in the supplemental material, we

provide direct comparisons, using the Wilcoxon signed-

rank test, between the GRMI/HGMI and all combinations

of these methods. These improvements are not marginal

and certainly will significantly boost the current existing

image phylogeny solutions as the dissimilarity calculation

step, although overlooked thus far, is as important to the

whole process as is the actual tree reconstruction step. The

HGMI method also presented good results in real-case

setups, with good separation of different groups of near-

duplicate images showing good potential for real-world

deployment when analyzing the relationship among ima-

ges. Furthermore, a series of experiments shows that the

choice of Sobel for the gradient calculation is just one

option out of many other alternatives. For instance, HoG

has shown to be equivalent, although more computationally

expensive. The positive result of HoG shows that exploit-

ing other alternatives might be a worthwhile effort.

For future work, we intend to investigate the use of

mutual information for estimating the step of image reg-

istration [28] and also evaluate the impacts of new dis-

similarity calculations to phylogeny estimation for

different multimedia content such as videos and texts. We

also want to investigate other measures for dissimilarity

calculation and forest reconstruction, as multi-view fea-

tures [22, 45] and deep multi-modal features [46]. Fur-

thermore, we intent to investigate new temporal features

for video phylogeny reconstruction.
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