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User-Centric Coordinates for Applications
Leveraging 3-Axis Accelerometer Data

Alexandre Ferreira, Member, IEEE, Geise Santos, Anderson Rocha, Senior Member, IEEE,
and Siome Goldenstein, Senior Member, IEEE

Abstract— Mobile devices are becoming ubiquitous and, some-
times, even extensions of ourselves. These devices are growing
fast in terms of delivered computational power, storage capacity,
battery duration, and built-in sensors. Time and again, we see
headlines advertising new unforeseen applications leveraging
this power, especially the sensors, for solving diverse problems,
including fall detection, user’s activity recognition, location
identification, or even user authentication based on the way
of walking (gait). In this paper, we focus on motion sensors
and discuss how the provided data can be interpreted and
transformed to better serve different purposes. We propose a
method to process the data from such sensors that reduces
the acquisition noise and possible artifacts, and turns the data
invariant to the device’s position and the user’s movement
direction. We introduce a new coordinate system referred to as
user-centric, as opposed to the two most common coordinate
systems used—the device and world-coordinate systems. For
testing, we design and develop a user recognition system based
on gait, in which the three coordinates systems are compared
and discussed considering a one-versus-rest authentication setup.
The results show the importance of properly pre-processing the
acquired data to enable more reliable applications underpinned
by mobile sensors.

Index Terms— Accelerometers, mobile applications, gait recog-
nition, data preprocessing, digital filters, signal analysis.

I. INTRODUCTION

MOBILE devices are rapidly reshaping the very notion
of computation, the perception of connectivity and

social networking as well as the concepts of online pri-
vacy. Nowadays we see an unprecedented number of mobile
devices available on the market with unrivaled processing
capabilities [1]. It is not only the processor that is becom-
ing better, but also the device as a whole, which involves
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cameras, motion sensors, the display, the battery, internal
storage, among other items. With such powerful devices in
our hands, it is only natural to think of its many possible
applications that could go far beyond calling, e-mailing and
chatting.

As a matter of fact, this is already happening with the
development of ubiquitous solutions, in which the device
becomes part of ourselves instead of just close to ourselves.
Allied with groundbreaking advances in machine learning and
cloud computing, such small pieces of hardware are far more
powerful than one could imagine. Given this potential, several
players in the academy and in the industry are constantly
seeking to design and deploy tools that make the maximum
use of such devices, in terms of generated data and available
computation power. The ultimate objective is to empower such
devices with reasoning capabilities upon existing/collected
data, allow the design of powerful inference models for dealing
with unseen situations, and to facilitating decision making.
With these devices becoming parts of our beings, they are
swiftly turning themselves into our “confidants” and storing
virtually all information associated with our daily activities.
By consequence, such devices need to be fully protected and
understood.

In this vein, in this article, we focus our attention on motion
sensors, which comprehend the mobile device’s accelerometer,
gyroscope, and compasses. While at first glance one could
deem such sensors as less important than their more expensive
cousins (processors, mobile GPUs or even the displays), they
are responsible for a series of essential small tasks and, more
importantly, they have potential to improving several of our
daily activities and way of life.

Each of the aforementioned sensors captures some specific
information about motion. The accelerometer, for example,
measures the device linear acceleration in m/s2 in all three
physical axes (x, y and z) by gauging the forces applied to
the sensor itself (including gravity). The simplest use of this
sensor is to infer the device’s orientation (portrait or land-
scape), which can change according to how the user holds the
device (e.g., a smartphone).

The accelerometer and other motion sensors from mobile
devices have been used in many situations, in particular,
when combined with machine-learning techniques including:
(i) action recognition, which involves the recognition of human
movements and the classification of the different activities
such as walking, jogging, climbing stairs, going down stairs,
sitting, and standing [2]–[4]; (ii) fall detection, which focuses
on the risks involved with elderly people [5]–[7]; (iii) gait

1558-1748 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on August 31,2020 at 03:38:00 UTC from IEEE Xplore.  Restrictions apply. 



5232 IEEE SENSORS JOURNAL, VOL. 17, NO. 16, AUGUST 15, 2017

recognition, in which the user’s gait (way of walking) char-
acteristics are used to improve the device’s authentication
mechanism in a user-friendly fashion [8]–[14]; and (iv) loca-
tion identification and strengthening, in which we can improve
location services indoors and in dense urban areas for more
reliable mapping and direction services [15]–[17].

To properly use the raw sensors data in such applications,
it is highly important to convert such data into a resilient
and unbiased device- and environment-independent coordinate
system. The most common way of accomplishing this conver-
sion involves adopting the so-called world-coordinate system.
This coordinate system, although effective in some situations,
might lead to a strong bias in which unwanted characteristics
are not properly decoupled from the problem. An example of
such bias can be the environment itself, in which the user’s
direction impacts the raw data. As such biases can impair
data inference later on (for different applications), in this
paper, we set forth the objective of discussing the problems
associated with the device coordinate system (in which the
data is captured) and the commonly-used world coordinate
system. In doing so, we also design a robust user coordinate
system aimed at eliminating possible biases associated with the
device and its environment. The new coordinate system can
be invaluable for the aforementioned applications allowing the
design of more effective machine-learning solutions using less
training data and device’s resources when deploying embedded
solutions.

We hereinafter refer to the proposed coordinate system as
User-centric Coordinates, which defines a set of unique
coordinates for each user at different time quanta, being
resilient to different acquisition and environmental conditions.
When presenting this technique, we adopt a didactic approach,
describing all the details associated with the new coordinate
system and discussing its different benefits from different
vantage points. Moreover, we present in a Supplementary
Material the necessary steps and source-code to implement
the discussed methods. In summary, the main contributions
are:

• A formal discussion of the pros and cons of adopting a
more resilient and unbiased coordinate system indepen-
dent of the sensor-related application envisioned;

• The introduction of a new user-centric coordinate system
to better separate the environment and user characteris-
tics, isolating possible biases associated with the collected
raw sensor data;

• A step-by-step description of the proposed method
implemented through spherical interpolation and quater-
nions, reducing the likelihood of numerical problems and
making the calculation more efficient;

• The implementation of the new proposed coordinate
system with a gait recognition application, in which one
user is confronted against possible impostors seeking to
gain unauthorized access to a mobile device.

We organize the rest of paper into five sections. Sec. II
presents previous work in the literature, which rely upon
multiple sensor data for different applications. Sec. III details
the mobile accelerometer sensor and the three-axial data repre-

sentation. Sec. IV shows how we can transform accelerometer
data into different coordinate systems and introduces a robust
user-centric coordinate system underpinned by quaternion
rotations and a suitable interpolation method called spheri-
cal linear interpolation. Sec. V presents a case-study of the
proposed coordinate system for gait authentication, showing
its robustness to noise and different acquisition conditions
through a series of experiments. Finally, Sec. VI concludes
the paper and sheds light on some future investigations.

II. RELATED WORK

In this section, we discuss some recent publications describ-
ing methods leveraging mobile devices’ sensor data for
different applications, with particular interest in accelerometer
data. We are not disputing their adopted methodology nor their
achieved results. Rather, we focus on bringing to bear some
aspects related to the data acquisition process itself and the
data representations used in the proposed solutions.

An example of the accelerometer sensor wide adoption is
in the health and wellness research areas, in which the data
serve as input to more specific analytic models responsible
for several tasks from fall detection to activity recognition.
Alsheikh et al. [18] collected data using a mobile device’s
accelerometer sensor to recognize user activities. The authors
argue that the classification step is the most important in their
solution (in this case, they rely upon data-driven models).
However, in their work, there are no details of the data
collection process, pre-processing or even coordinate system
transformations to deal with possible biases and acquisition
artifacts. This is an example for which the input data were
considered clean enough, without supporting evidence, for
further processing.

Matthews et al. [19] used a specific type of accelerometer
sensor (AM-7164; ActiGraph) in order to analyze the rela-
tionship among mortality, sedentary time and physical activity
factors. In the experimental description, different subjects were
evaluated during a seven-day period. The authors performed
a series of statistical analysis to cope with the posed research
goals, however, there is almost no mention about any pre-
processing step and how the collected data were manipulated
in terms of filters, rotations and interpolations to eliminate
acquisition biases and artifacts. Sanchez et al. [20] proposed a
model capable of describing activities and emotional aspects
of a person based on smartphone accelerometer data. Upon
a close inspection of their work, we could not find details
regarding the data acquisition process nor any coordinate
system transformation. Instead, the authors opted to calcu-
late the acceleration module and standard deviation within a
20s-moving window to make it independent from the device’s
orientation and position. The main issue of this approach,
however, is that important information is lost due to the
adoption of the motion vector’s magnitude for representing the
data instead of the 3-axis traditional representation. The same
problem also happens in [21], where the authors calculate the
signal vector magnitude of a smartphone accelerometer data
and use them into a fall predict system.

Thiemjarus [22] aimed at making the accelerometer data,
from a specific sensor device, independent to the device
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orientation. For that, a k-NN classifier is trained considering
four classes, i.e., four different positions. Based on the identi-
fied position, the accelerometer data are rotated accordingly
through a rotation matrix. Although the solution has kept
all original data, which is important to properly identify one
activity, the solution has the following differences with our
work: firstly, in the referenced work, the used sensor is very
specific and placed in the subject’s body without any free
movement, which leads to a very controlled experiment. In our
case, we use a smartphone sensor and the device is freely
placed in the subject’s pocket. Secondly, the three-axis rotation
in that work is performed directly with the rotation matrix,
however, as we show in this work, the use of quaternions to
perform such rotation seems to be more advantageous: the
representation is more compact (only 4 numbers instead of 9
from the traditional rotation matrix), it avoids the Gimbal
Lock situation, it allows a proper interpolation in 3-D data
through Slerp and it reduces the numerical error after
iterated rotations. Finally, the proposed solution in that work is
device independent only, which is suitable and sufficient for
their setup involving user activity recognition, for instance.
However, their method is still dependent on the subject’s
direction with respect to the Earth’s magnetic field.

Another research field in which the utilization of smart-
phone sensors have been increasing is digital forensics and
biometrics. Seeking to protect the device data from prying
and unauthorized eyes, many authentication mechanisms now
focus on providing the user with more than one way of
authentication (the so-called 2-way or n-way authentication
factors). This strategy may lead to higher security levels, but
also impacts directly on usability. One way of having the
best of both worlds is to keep verifying the user without
requiring its immediate attention [23]–[26]. These mechanisms
normally rely upon different device sensors, including motion
and touch-screen sensors, to capture behavioral traits. Referred
to as continuous behavioral authentication methods [25], these
systems use a set of behavioral traits to calculate a score
between the observed and the expected behavior of a user
enrolled in a mobile device. Examples of such traits are
the users’ gait [12], [13], [27]–[29] and gestures [30]–[32].
The main problem with the aforementioned methods is that
most of them do not have a special treatment for cleaning
and sanitizing the acquired data and eliminating possible
acquisition biases and artifacts. Sometimes, a simple low-pass
filter is used when, for instance, the authors are dealing with
gait tracking scenarios [33], [34].

Table I summarizes the main aspects of some of these
approaches, which adopt accelerometer data to identify some
user characteristic or activity. The first column denotes
the work reference, the second shows the sensor type
used (mobile or wearable), the third column brings the adopted
coordinate system (it also states whether the magnitudes are
considered with Euclidean norm) and, ultimately, the fourth
column shows the interpolation technique employed, if any.

To the extent of our knowledge, the user-centric coordinate
system we propose in this paper is completely new in the
literature and could be used in several of the mentioned appli-
cations, providing the users with more reliable acquired sensor

TABLE I

COMPARISON OF RELATED WORK CONSIDERING THE SENSOR TYPE,
ADOPTED COORDINATE SYSTEM, AND THE USED ROTATION

METHOD TO OBTAIN A GIVEN COORDINATE SYSTEM

data. This coordinate system is independent of the device’s
orientation/position and also considers all three-axial values in
an independent fashion, which leads to more accurate raw data
than a traditional representation based on acceleration vector
magnitudes. Moreover, the described calculation process that
involves interpolation and rotation is more efficient than the
traditional vector-magnitude representation, as the adopted
methods are more robust to numerical errors.

Aiming at providing a clear overview of the increasing
number of research works that rely upon accelerometer data
in physical-related activities, Montoye et al. [38] surveys the
literature with about three hundred papers discussed. The
evaluation divides the papers into three key areas: accelerom-
eter information, data processing and interpretation and proto-
col non-compliance. The results indicate an urgent need for
improvement on how future publications should deal with
accelerometer data and the acquisition processes. The goal
of this work is completely aligned with the aforementioned
demand, not only with physical-related activities but also all
research fields relying upon wearable accelerometer sensor
data and, in particular, Android smartphone accelerometer
data.

III. MOBILE SENSORS

Most of the smartphones available on the market com-
prise sensors capable of operating in the background without
blocking user activities on the devices. Examples of popular
sensors include the accelerometer, which measures the device
acceleration; the magnetometer, to estimate the North pole;
and the gyroscope, which gives the device’s rotation rate.

A. Accelerometer

The accelerometer sensor measures the acceleration of an
object (in meters per second squared – m/s2), i.e., the rate
of change in velocity. The forces applied to the object that
can change its acceleration can be either static (e.g., gravity),
or dynamic (e.g., motion). These forces are measured on a
3-physical axes (x , y and z), in which each axis points to a
different direction of the physical world.

With the accelerometer becoming a commodity in virtually
all smartphones, its applications are endless. Its primary func-
tion, however, has been to detect the device’s rotation and the
user motion-associated gestures, such as shaking and tilting.
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Its simplest application use is to determine the screen auto-
orientation changing between portrait and landscape. More
sophisticated developments are present in gaming or music
playing [39]–[41].

Due to the wide range of uses of this sensor, in particular,
when built-in on smartphones, it is important to understand the
sensor’s delivered data. First of all, the accelerometer adopts
the standard coordinate system, which is referred to as device
coordinate and it is explained in Section IV-A. The generic
model is presented as:

f̂ = M f + ba + na

where f̂ is the delivered data, M represents the cross-axis
sensitivity matrix, usually called Misalignment Matrix, ba is
the accelerometer bias, and na is a random noise vector that
is assumed to be close to zero. Besides the variables in this
model, we also have to consider the sampling rate of the
sensor, which in smartphone-related setups is affected by other
existing sensors and the involved applications. According to
the Android documentation [42], it is possible to determine
the minimum time interval (in milliseconds) the data can be
sensed; however, there is no guarantee that all data will come
at the same rate. To solve this problem, most applications need
to rely upon an interpolation process.

The typical interpolation method used to cope with unsteady
sampling is the linear interpolation. It considers a straight line
between two known points, which is represented by a linear
function. This function can be written as f (p) = mp + b,
where m (slope) and b (ordinate intercept) are calculated
using two known points in order to find a new one, p.
The main advantage of this method is its low-computational
requirements, a key aspect for mobile devices’ setups.

B. Device’s Orientation

The device’s orientation can be obtained directly from some
existing sensors or even from the combination of these sensors.
The magnetometer, for instance, returns the magnetic North
Pole, while the gyroscope returns the rotation rate in rad/s
around the device’s axes. We can obtain and represent the
device’s orientation relative to the Earth’s frame of reference
orientation by the following ways:

• Rotation matrix, which is obtained either with gyro-
scope sensor (estimating the rotation around each
axis) or accelerometer data joint with magnetic field
sensor (estimating the device positioning regarding to
North and East orientations);

• Euler rotation angles, which represent rotation angles
upon the three axes calculated using the gyroscope.
Although Euler angles represent the easiest way to rotate
a three-axial coordinate system, it has limitations such
as: (a) the interpolation of two orientations may be diffi-
cult or unreliable; (b) the estimation becomes imprecise
after a given number of rotations; (c) it is unprotected
from the Gimbal-Lock problem [43], in which there is
a degenerate rotation of two dimensions when two axes
of the triaxial rotate over the same vector; (d) intrinsic
inconsistency, as some angles with the same values but

Fig. 1. Sensor data collection over time.

with different signals (e.g., positive and negative values)
may produce the same rotation; and, finally, (e) the
rotation over only one axis can be complicated as it is
necessary to determine a simple steady rotation between
two independent orientations [44].

• Unit quaternions, which can be associated directly to the
rotation vector data provided by the Android API. The
rotation vector is the aggregation of different information
coming from the magnetometer, accelerometer and/or
gyroscopy sensors. The unit quaternions describe the
rotation by an axis �e = [ ex ey ez ]T and an angle α.
A quaternion is represented by �q = [ qr qi q j qk ]T ,
where:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qr = cos(α
2 )

qi = ex sin(α
2 )

q j = ey sin(α
2 )

qk = ez sin(α
2 )

The adoption of unit quaternions has some advantages, from
which we highlight: (i) the representation is more concise
with respect to the rotation matrix; (ii) it is more numerically
stable as less computation is required; and (iii) it avoids the
Gimbal-Lock problem. Considering these advantages, the unit
quaternions is the method we have chosen to transform the
data from the accelerometer (device coordinates) into world
coordinates.

C. Alignment and Interpolation

The Android API does not guarantee the same acquisition
time interval between two sensor samples [42] or even a
certain start and final time of the sensors data collection.
Fig. 1 depicts an example, based on real data, showing how
accelerometer, magnetometer and rotation vector samples are
not aligned nor are they within the same time interval.

Usually, to obtain a more accurate device’s orientation
calculation, it is necessary to combine data coming from
different sensors and, for this purpose, the data of such sensors
must be aligned. It is important to use reliable alignment
methods such as, for instance, adaptive filters [45], to predict
the missing samples. The main advantages of these methods
are that they can estimate an underlying model for the available
data, leading to an improved prediction and final independent
samples over time. In this work, we have used the rotation
vector data provided by the Android API and, therefore,
we do not perform this type of alignment. However, for
the alignment between the rotation vector and accelerometer
data, we have applied a linear interpolation method due its
simplicity, as previously discussed.
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Fig. 2. Slerp and linear interpolation comparison.

After the linear interpolation of the accelerometer data,
the beginning and ending samples are defined for both
accelerometer and rotation vector sensors. The next step is to
interpolate the rotation vector samples, represented as quater-
nion units to guarantee that the accelerometer and rotation
vector data are aligned. Given that the rotation vector data are
hyperspherical coordinates, the linear quaternion interpolation
will produce a secant between both quaternions, which is not
reliable as these coordinates are not independent with one
another. The solution is to interpolate the quaternion units with
Spherical linear interpolation (Slerp), which is suitable for
rotations in the three-dimensional space [46].

The Slerp algorithm [47], when applied to unit quater-
nions, creates an interpolated great arc on the four dimensional
quaternion sphere S3 (Lie group structure) connecting two
quaternion units �q1 e �q2.

Taking an interpolation fraction t between two points,
in which 0 ≤ t ≤ 1, we have:

Slerp(�q1, �q2, t) = �q1((�q1)
−1 �q2)

t , (1)

where (�q1)
−1 is the inverse of the quaternion �q1.

Given a quaternion �q, the inverse of �q is obtained by
(�q)−1 = [ qr −qi −q j −qk ]T . In Fig. 2, we have a tangent
plane of a sphere S3 to compare the Slerp and linear
interpolation in the case of hyperspherical coordinates. Given
two points, p1 and p2 in the sphere, the linear interpolation
draws a straight line between them and creates a point in the
middle of this line, pL. The Slerp, however, draws an arc
on the sphere and picks the arc’s midpoint, pS.

In the Supplementary Material, we show the Java imple-
mentation of the techniques presented in this section for all
device’s orientation transformations.

IV. PROPOSED COORDINATE SYSTEM

In this section, we start with a description of the two
most common coordinate systems (device and world) in the
literature. Most of related work using accelerometer sensor
data, for different applications, rely upon such coordinate
systems [5], [35], [36]. These two coordinate systems are
not very robust to possible acquisition biases and artifacts
such as those involving the device position and the movement
direction. Therefore, we propose a new coordinate system
referred to as user-centric coordinates with the very objective
of providing the users and different applications with a more
robust representation of the acquired accelerometer data. Fig. 3
depicts these three different coordinate systems.

The device coordinate system is the one obtained directly
from raw acceleration and it is totally dependent on the

Fig. 3. Different coordinate systems for representing data acquired with the
mobile devices’ accelerometers.

device orientation. The world coordinate system, in turn,
is obtained from a linear transformation of the accelerations
represented in the device coordinate system. It solves the
orientation variation of the accelerometer data but, with this
representation, the data become dependent on the user’s move-
ment direction given that there is a projection of the raw data
onto a new coordinate system according to the North Pole
direction.

Compared to the previous coordinate systems, the one we
propose herein is independent of both the device’s orientation/
position and from the movement direction of the user. These
are key advantages, reducing possible external interference
on the data (acquisition telltales), providing applications with
more accurate data with respect to what is happening with the
device (bias minimization) and constant change of directions
on the movement (direction independence).

A. Device Coordinate System

In this coordinate system, the three axial data provided
by the smartphone accelerometer are collected relative to
the device’s front and thus, called device coordinate system.
Looking at the device’s screen, the x axis points to the right,
the y axis points up, and the z axis points directly to the
observer. Fig. 3 (left) shows this device coordinate system.

This representation is dependent on the device positioning,
thus it becomes mandatory that it remains in the same position
during its utilization depending on the application. In order to
deal with this limitation, it is common, in different applica-
tions, to transform (rotate) these coordinates into a more stable
coordinate system. The most common way of doing this is to
consider the world coordinate system [42], in which the x axis
points to East, the y axis points to the North pole, and z points
toward the sky, as Fig. 3 (center) depicts.

B. World Coordinate System

The adoption of the world coordinate system, which is also
referred to as real-world coordinate system, is the easiest way
of turning the signals from the accelerometer independent
of the device positioning while preserving the three-axial
information. It represents a coordinate system in which one
direction (in the accelerometer setup, the y axis) points toward
the Earth’s North Pole. This is essential when the user (or the
device itself) is the focus of the collected data such as, for
instance, in activity recognition related applications. Obtaining
the world coordinate system is relatively simple as we know
where the North Pole is located (this task can be supported
by other sensors such as the magnetic field). Nonetheless,
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it captures information about the environment as the Earth is
the reference point, turning the data dependent on the user’s
movement direction.

The process of transforming the device coordinates into
world coordinates starts with the association between each
accelerometer sample with a quaternion unit based on a
certain timestamp. In this way, it is possible to rotate the
accelerometer data from the device’s coordinate system to
the world’s coordinate one such that x becomes tangent to
the Earth and points to East; y also becomes tangent to the
Earth but points to the Earth’s North Pole; and z becomes
perpendicular to the Earth and points toward the sky. Fig. 3
(center) depicts an example of this coordinate system. Given
the accelerometer sample �a = [ x y z ]T , it can be rotated
using the corresponding quaternion �q of �a w by:

�a w = (�q)−1�v �q, (2)

where �v = [ 0 �a ]T and the vector multiplications are unit
quaternion operations [46], [47].

Whenever the coordinate system data are needed for an
outside-app purpose, such as user activity recognition, for
instance, it is highly important to make these signals indepen-
dent from the device’s positioning. As previously mentioned,
there is related work that have assumed a fixed position
for the device, which surely is unrealistic. Another fairly
common approach consists of computing the magnitude of
the acceleration vector through the Euclidian formula. In this
case, important information about individual axes are lost and
the whole application might be in peril. At this point, it is
worth stressing again that we are not discussing the signal
pre-processing issues nor their implications in the specific
applications, but rather the importance of having the richest
and most accurate input data possible from the accelerometer
sensor ready to be used in the application level.

Although the world coordinates system represents a remark-
able improvement over the device coordinate system, the idea
of fixing the axis directions toward the Earth’s North Pole
may represent a drawback onto itself if we are trying to
analyze specific signal nuances. For instance, this might be
the case when we are not only aiming at recognizing an
activity but also who is performing it through behavioral
biometrics. The signal input data, from the accelerometer,
have to be independent from the device positioning and also
from the movement direction. Moreover, some applications
might require the input data to be also robust/independent
from right/left- and up/down-turns as in gait authentication,
activity recognition, steps counter, among others. This is why
we now turn our attention to the introduction of a user-centric
coordinate system aimed at addressing such problems.

C. User-Centric Coordinate System

In this section, we introduce the user-centric coordinate
system, which might be more appropriate to several appli-
cations, mainly when the used data refer to some action
performed by the user. Such applications may include, but
are not limited to, activity recognition [18], identification of
emotional aspects [20], gait authentication [11], [48], [49], fall

detection [5], and others. The underlying idea is to capture
the coordinates according to the user orientation, making it
independent from device positions and movement directions
relative to the Earth.

To project the data onto the user-centric coordinate sys-
tem, the first step consists of obtaining the user direction.
This can be done by calculating the instantaneous velocity,
which is the integral of the acceleration data projected onto
the world coordinate system. However, the main issue here
is that the acceleration might be noisy and biased, as we
explained in Sec. III-A and Eq. 1, leading to unreliable velocity
data. To minimize these problems, we propose two digital
filters:

• A low-pass filter to remove additional movements that
can impair the calculation of the directions; and

• A band stop filter, whose objective is to remove random
low-frequency components from the accelerometer data
that can also interfere with the estimation of the correct
directions, according to the velocity analyses.

1) The Low-Pass Filter: The first digital filter is contingent
on the application, as the cutoff frequency and the desirable
filter features depends on the type of movements to which
the accelerometer data refer. In spite of that, this filter must
have linear phase so it does not compromise the directions.
Considering the setup in which we want to analyze actions
related to step change / walking movements of the user,
we designed a low-pass finite impulse response (FIR) filter
using a windowing method because it is simpler, more popular
and easier to adopt when compared with another FIR meth-
ods. We evaluated two possible windows, both with cutoff
frequency set to 2 Hz as it is usually on the upper frequency
of a normal walking activity:

• Hamming window: it has desirable features such as low
frequency response on secondary lobes, which have low
energy.

• Gaussian window: we verified that the collected data
have Gaussian distribution, which contributes to noise
reduction without corrupting the preserved data.

2) The Band-Stop Filter: Digital filters can also be devel-
oped using a technique called the z-transform [50], in which
we have the z-plane, an unit circle, and the z-domain that
uses a polar notation. The transfer function is expressed as
poles and zeros placed on the z-plane. In this case, we aim at
designing a band reject (notch) filter that removes 0 Hz (bias)
with a small gap to eliminate very low frequencies. We start
locating the poles and zeros in the z-plane:

z = reiω

where ω is the cutoff frequency in rad/s and r is the radius.
We have used only two coefficients to design this filter,

placing one zero on z0 = 1+0 j and one pole on z p = 0.9+0 j .
Considering the frequency response of the Notch filter,
the band-rejection width allows us to remove components
on 0 Hz and on the very low frequencies (below 1 Hz).

3) Instantaneous Velocity Calculation: After the filtering
process, the instantaneous velocity can be obtained from the
integration of the accelerations in world coordinates. For that,
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we apply the trapezoidal rule, Eq. 3.

v[n]=
{

0, for n =0

�v[n − 1] + �t
2 .(�a w[n] + �a w[n − 1]), for n �= 0

(3)

where �a w[n] is the nth triaxial accelerometer sample,
�v[n] is the nth obtained velocity vector, which represents
the direction, and �t is the period between each two
samples.

Once we have the user directions, we need to create the
rotation matrix to project data onto the user-centric coordinate
system using the direction obtained from the instantaneous
velocity calculation. This can be done by the following
vectors:

• �ex [n], which takes the three axial vector, divides by its
norm and multiplies by the previous one:

�v[n] = �v[n − 1], if ‖�v[n]‖ ≤ ε

�ex [n] = �v[n]
‖�v[n]‖

• �ey[n], which calculates the cross product between �ex [n]
and the gravity vector and normalizes it:

�ey[n] =
⎡

⎣
0
0
1

⎤

⎦ × �ex [n]

�ey[n] = �ey[n]
||�ey[n]||

• and �ez[n], which is an orthogonal vector to �ex [n]
and �ey[n]:

�ez[n] = �ex [n] × �ey[n]
Thus, the rotation matrix u

R[n]w is given as:

u
R[n]w = [ �ex [n] �ey[n] �ez[n] ]

The next stage consists of rotating each acceleration
sample in the world coordinate system �a w[n] according to
the obtained rotation matrix and thus, obtaining the user’s
coordinates. First, the acceleration sample is smoothed to
reduce noises from the collection process and sensor. In this
filter, we use a triangular Weighted Moving Average (WMA),
keeping the bandwidth until the Nyquist frequency. Each
filtered acceleration sample �a w[n] is rotated as:

�a u[n] =u
R[n]w . �a w[n],

where �a u[n] is the nth obtained acceleration in the user-centric
coordinate system.

In the Supplementary Material along with this submission,
we present the Java implementation of all methods discussed
in this paper.

V. CASE-STUDY ON GAIT AUTHENTICATION,
EXPERIMENTS AND VALIDATION

In this section, we show the advantages of adopting the
user-centric coordinate system with a case-study on gait
authentication. We start describing an Android App developed
for collecting input data. Then we explain the acquired dataset

and its characteristics analyzing the differences of collected
samples represented with world and user-centric coordinate
systems. In particular, we discuss a case-study for user authen-
tication based on the gait behavioral trait. In this setup, a user
seeks authentication for further use of the mobile device
through its specific way of walking.

A. Experimental Protocol

To motivate the difference and advantages of adopting
the proposed user-centric coordinate system representation,
we have defined a gait authentication setup, in which
accelerometer and rotation vector data are obtained from
an LG Nexus 5 smartphone. Having the proper institu-
tional review board authorization in our university1 to collect
biometric data from volunteers, each one had to walk with the
smartphone in a front pocket jeans for about five minutes.
For data collection, we developed an Android App, which
samples the accelerometer and rotation vector from the
device. The accelerometer is a physic sensor and the rotation
vector is a fusion sensor, provided by the Android API,
including accelerometer, magnetometer and, in some cases,
gyroscope.2

After collecting the data, an interpolation and alignment
process takes place. This ensures the sampling rate at 40 Hz
and guarantees the data from both sensors have the same
beginning and ending timestamps and, consequently, the same
number of examples. As described in Sec. III, we used
linear interpolation for the accelerometer and Slerp for the
rotation vector. Therefore, the data can be combined to project
the accelerometer data onto the world’s coordinate system,
according to the process described in Sec. IV-B.

The next step consists of guaranteeing the invariance with
respect to the movement direction. This is achieved by trans-
forming the acceleration, represented in world coordinates,
to the user-centric coordinates. This process was described
in Sec. IV-C, which involves applying a low-pass filter and
a notch filter on the accelerations (in world coordinates) to
remove the low-frequency components and the ones from other
movements besides walking. Afterwards, the velocities can be
calculated by integrating the acceleration. The obtained veloc-
ities are important to provide the movement direction and,
therefore, to obtain the rotation matrix. The obtained rotation
matrix is used to project the accelerometer data (in world
coordinates) onto the chosen user-centric coordinate system.
Fig. 4 shows the complete data transformation process.3

The collected gait dataset, referred to as RecodGait, com-
prises data from 50 volunteers. For each volunteer, we collect
their accelerometer data over two sessions of five minutes each
under different acquisition conditions and in different days.

1Authorization number 1.459.131 and CAAE 53035216.6.0000.5404 from
March, 2016.

2The Rotation Vector was introduced in the Android API level 9. Currently,
the Android API provides the Game Rotation Vector and the Geomagnetic
Rotation Vector. The former does not use the geomagnetic field, thus Y
does not point to north but to some other reference, and the latter uses a
magnetometer instead of a gyroscope.

3The complete code in Java and a walk-through associated documentation
is available on https://github.com/amellof/user-centric-coordinates
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Fig. 4. The data transformation step-by-step.

We further slice the acquired data into frames of 256 samples
each. Considering we acquire 40 samples per second, each
considered frame comprises 6.4 seconds. Each frame is sam-
pled with a 75%-overlap with the previous one in such a way
we can collect more training data for each user.

For the authentication application, we assume a single-
user setup for the device as this is a fairly typical scenario
in real-world — most mobile devices have just one core
authorized owner/user. We train the classifier for an user
considering a One-vs-Rest class binarization approach [51],
which consists of training a classifier for each positive class of
interest (user) against a sample of existing available negative
classes (other users). As an example, consider a validation
setup with three users Alice, Bob and Charlie in the dataset.
With this validation policy, for user Alice, we train a One-vs-
Rest classifier with Alice’s samples as the positive class and a
sampling of the available negative users (Bob’s and Charlie’s).
When focusing on Bob, we would train a classifier taking his
samples as the positive class and a sample of the remaining
classes (Alice’s and Charlie’s) as the negative class.

Although it is possible to consider all the training samples
from the remaining classes/users available, it often leads to an
unbalanced training as we usually have more negative samples
than positive samples for a given user. In our setup, the positive
class comprises 150 training samples while the negative one
consists of 150 samples. Other proportions are possible but
following an initial set of experiments, we found out that
having balanced sets lead to more accurate results.

Taking advantage of available temporal data from the
accelerometer, we have adopted some methods for temporal
fusion in order to improve the user authentication process
(continuous authentication). We combine the classification
results of the last nine frames, which contain 768 samples
in total, with majority voting and max probability [52].

Finally, we perform the experiments considering a 2-fold
cross-validation protocol [53]. For finding the best classifier
parameters for each user, we deploy an additional 5-fold cross-
validation protocol within the training data.

B. Results

We divided the experiments into two parts. In the first
part, we show the the proposed approach is independent from
the device position and the environment. The environment is
represented by the user left-turns during the data collection
process. In the second part, we show the effectiveness of
the proposed user-centric coordinate system through a gait
authentication setup.

1) Qualitative Analysis of the Method’s Steps: To check
the coordinate system’s position invariance, we show a simple

Fig. 5. Device coordinates obtained with the device in different positions:
(a) device’s default position and (b) device’s lying down position.

Fig. 6. Accelerations in world coordinates obtained with the device in
default (a) and lying down (b) positions.

Fig. 7. Walking path of the experiment (red-dashed line).

example of a person walking in a straight line and holding the
smartphone in her front pocket. The experiment has two parts:
first, the device is placed in the default position (see Fig. 3).
Then the the device is placed in the lying down position
(rotating 90 degrees to the right of the default position). Fig. 5
depicts the accelerometer data in the device coordinate system,
in both positions. For reference, the blue line denotes the
x coordinate, the grayish-green line the y coordinate and the
red line shows the z coordinate, for all the plots presented
in this paper. Figs. 5a and 5b show the results of these two
experiments, respectively.

Comparing Figs. 5a and 5b, from the x and y point of
view, we notice the acceleration, which corresponds to the g
acceleration (around 10 m/s2), has been shifted from y in 5a
to x in 5b. This shifting is caused by the device positioning
change, in which the acceleration is more evident in the axis
parallel to the Earth due to the walking movement.

After transforming the data from the device coordinate
system to world coordinates (see Fig. 6), the shifting does
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Fig. 8. Accelerations from axis x , y and z obtained from the experiment of Fig. 7 and represented in both coordinate systems: world coordinate system (left)
and user-centric coordinate system (right). In this example, we clearly demonstrate that the user’s left turns are captured inside axis x and y in the world
coordinate system, what do not happen in the user-centric coordinate system.

not appear anymore because the g acceleration is rotated to
the axis z, which is the vector perpendicular to the ground
plane. Figs. 6a and 6b show the results of applying the
transformations to the world coordinate system considering
the device in the default and lying positions, respectively.

Nevertheless, when the person walks taking some left/right
turns, the accelerations in the world coordinate system suffer
variations. To address this problem, the user-centric coordinate
comes into play. Thus, if the user is walking through a straight
line or has to take some left/right turns, the provided data
should not suffer from noise or any other factor that represents
this environmental changing. Based on that, we performed
another small experiment with the purpose of showing the
importance of the user-centric coordinate system. A volunteer
was asked to walk for about five minutes around a building.
The complete path is highlighted with a red-dashed line
in Fig. 7, from which it is important to note the two corners
in the path, representing two left-turns.

Fig. 8 depicts acceleration values obtained following the
path depicted in Fig. 7. The figure shows the acceleration data
represented in the world-coordinate system (left side) and in
the user-centric coordinate system (right side). The samples
are divided into three straight lines, represented by A, B,
and C slots, and two left turns. In the world-coordinate system,
after the first user’s left turn, we can notice the acceleration
data from axis x in slot A moving to axis y in slot B,
as blue box shows. This phenomenon happens again after
the second user’s left turn, from slot B to slot C. It indicates
that the direction the user is following is somehow represented
in the acceleration data. Because we aim at being as much
independent as possible from external factors — such as the

Fig. 9. Velocities calculated from accelerations in world coordinates, in which
we have the data: (a) without notch filter and (b) with notch filter.

user’s path — the coordinate systems shall not capture such
variations. This is exactly what happens in the proposed user-
centric coordinate system, in which the acceleration samples
are kept in the same axis even after the user’s left turns.

In Sec. IV-C, we mentioned it is necessary to remove very
low-frequency components from accelerations represented in
the world’s coordinate system because they can disturb the
calculation of the velocity vectors. Figs. 9a and 9b illustrate
the impact of this noise, where the velocity values are changed
if the low-frequency components are not removed using the
proposed Notch filter.

If the velocities are not correctly obtained, it is not possible
to properly project the data onto the user-centric’s coordi-
nate system as the movement directions would be incorrect.
We have calculated the walking path for both cases, with and
without the filter (see Figs. 9a and 9b). This is achieved by
calculating the integral of the velocities to obtain the positions.
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Fig. 10. Summarized results for gait authentication.

This idea is based on the same logic presented in Eq. 3,
in which the first user’s position is given.

2) Continuous Gait Authentication: In the second part of
the experiments, we show the user-centric coordinates pro-
vide better input data for feature extraction and classifica-
tion considering the continuous gait authentication scenario.
In this experiment, the data were collected using the protocol
described in Sec. V-A, for which 50 volunteers were free to
select their own paths, in an arbitrary number of left/right turns
during 5-minute acquisition sessions. The only constraint was
regarding to stairs and high-slope planes, which could not be
part of the walking path at this collection. Fig. 10 shows the
obtained results for the authentication considering the device,
world and user-centric coordinate systems. We evaluated two
classifiers: Support Vector Machines (SVMs) and Random
Forests. Each classifier contains the best result considering
both majority voting and max probability as the late fusion
methods. The results shown in Fig. 10 were obtained using
major voting for SVM and max probability for Random Forest.
This work does not focus on finding the best possible features
that could be extracted/calculated on top of the collected
transformed signals. Rather, we opt to train the authentication
signals directly with the transformed input signals to show the
very impact of each of the coordinate systems.

We present experimental results in terms of average classi-
fication accuracy and standard deviation among the 50 users
in the dataset. The user-centric coordinate system not only
leads to a more accurate classification rate but also reduces the
classification variation among different users, which shows a
more reliable data description. This is critical in real-world
setups when a user collects data in two or more different
days, making it difficult to guarantee the device is placed
exactly the same way. We also note the results obtained
with world coordinates outperform the ones obtained with
device coordinates, once they are not invariant to the device’s
placement. However, the world coordinates fail when the
users change directions during the collection process. Again,
it is not possible to guarantee the same path in different
data collection moments. This problem is solved by the user-
centric coordinates, which provide the best results in terms of
classification accuracy for both classifiers.

Fig. 11. Analysis with the device on different positions.

Fig. 12. Analysis with users using different shoes.

To complement these results, we investigated some case
studies to show the importance of the user-centric coordinates.
These cases take into consideration the device position
and shoes changing. The first set of experiments analyzes
the influence of different positions the device can take
(default/upright or lying down) inside the user’s pocket during
different data collection processes. The assumption for this
scenario relies on the fact that we cannot guarantee that
the device’s position is the same during the training and
testing phases. To check the impact of the device positioning,
we asked five subjects to perform two different walking
collections in the same day: the first one with the device in
the default position and the second one with the device in
the lying position. The goal is to evaluate how the device
position influences the different coordinate systems in the
user’s recognition effectiveness. We used only the Random
Forest classifier for this experiment as it has shown better
results in all previous experiments. Fig. 11 depicts the results
obtained with this case-study in terms of normalized accuracy
and standard deviation.

Fig. 11 shows the device position has substantial effect on
the device coordinates, which renders the gait authentication
process more difficult. The results obtained with the proposed
user-centric method have shown higher normalized accuracy
and the smallest standard deviation, which indicates our coor-
dinate system is more robust against the device direction
changes like the device changing position. Best results are
obtained using the user-centric coordinates, as expected.

Another important factor that can influence the success
of the authentication process is related to the user’s clothes
and shoes. More specifically, the next experiment aims at
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evaluating the user’s shoes changes. The idea behind this
evaluation relies on the assumption that the user may change
some pieces of clothes or the set of shoes during the training
and testing collection process. Thus, we carried an additional
case-study with five subjects walking during two sessions in
the same day, but using different shoes in each session. Fig. 12
depicts the obtained results from this experiment regarding
normalized accuracy and standard deviation. In this case, the
user-centric coordinates also outperform its counterparts due to
the advantages of the invariance to the device’s positioning and
walking direction. It is important to point out that the standard
deviation was considerably reduced, an important indicator of
the results variability reduction.

VI. CONCLUDING REMARKS

The obtained results with the three different coordinates
systems indicate the user-centric coordinate system contains
richer and more accurate information about what is happening
with the data across the x , y and z axes. The device’s coordi-
nate system is sensitive to the smartphone’s positioning during
the collection process, which renders its use applicable to only
a reduced set of controlled setups. The world coordinates,
in turn, solves many of the problems presented by the device
coordinates. In this work, we detailed how to calculate these
coordinates using unit quaternion rotation — more accurate
and easier to calculate than traditional methods. Nonetheless,
data represented in world coordinates might still contain
significant noise from the environment, such as right/left-
turns. Other environmental factors could also contribute to
degrade the data, such as atmospheric pressure, slopes, steps
and so on. The proposed user-centric coordinates come into
play to remove this interference and provide the application
with cleaner (and more reliable acquired data).

The experiments we carried out with a gait authentication
setup show that a deeper analysis of the input signal along with
a comprehensive understanding of the device motion sensor
data, such as the accelerometer, are key aspects to obtaining
reliable results in the posterior steps of an application, such as
the feature extraction stage. This is particularly newsworthy
when real-case scenarios are taken into consideration with
many variables that can not be controlled, such as the device’s
position or the user’s path. Such uncontrolled environment
is also present in the introduced RecodGait dataset, which
provides accelerometer data from 50 volunteers under several
different acquisition circumstances. This dataset is an impor-
tant contribution to the community as there is no available
dataset that simulates gait real-case setups with data from
several associated sensors.

Considering the results of this research, we can conclude it
advances the state of the art of mobile sensors applications
in the following aspects: (i) it raises and discusses a key
issue of existing device- and world-coordinate systems: their
weaknesses when we move to a more realistic scenario encom-
passing uncontrolled variables; (ii) it introduces a detailed
solution through a new coordinate system, referred to as user-
centric coordinates, that has shown to be more robust to such
conditions by applying a set of filters, data transformation and

numerical efficient calculations (Slerp) on the accelerometer
and rotation vector data considering a gait authentication
scenario; and (iii) it is easy to reproduce and to apply in
different setups through a step-by-step supplementary material,
with code and data fully and freely available to the research
community.

Future explorations of this work could include modifications
of the sensors fusion stage. Instead of using the Android API
rotation vector, one could consider all source sensors directly,
such as the magnetic field, and create her own sensor fusion
technique to improve some desired features, such as a more
accurate North Pole estimation. Another possible improvement
is the adoption of predictive models as a replacement technique
for the interpolation. Nonetheless, all of these paths come
with a price and need to be carefully considered as they may
add extra compute time, may slow down the entire proposed
pipeline or may require more powerful devices.

In addition, the adopted filters are also an important step that
can be changed according to different setups and applications.
To the purpose of this work, we have used a windowing low-
pass filter to remove frequency components above 2 Hz as we
focused on the action of walking. However, it can be replaced
by other filters that are more suitable for other applications,
according to the kind of movement important to keep/discard.

Finally, we plan to validate the proposed methodology
in different applications using smartphone sensors, including
fall detection, identification of diseases affecting the way of
walking and emotion analyses. We also envision this work
to contribute with future research when dealing with mobile
sensors, regardless of their applications.
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