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Abstract. Remote sensing technology has applications in various knowledge domains, such as
agriculture, meteorology, land use, environmental monitoring, military surveillance, and mineral
exploration. The increasing advances in image acquisition techniques have allowed the gener-
ation of large volumes of data at high spectral resolution with several spectral bands representing
images collected simultaneously. We propose and evaluate a supervised classification method
composed of three stages. Initially, hyperspectral values and entropy information are employed
by support vector machines to produce an initial classification. Then, the K-nearest neighbor
technique searches for pixels with high probability of being correctly classified. Finally, mini-
mum spanning forests are applied to these pixels to reclassify the image taking spatial restrictions
into consideration. Experiments on several hyperspectral images are conducted to show the
effectiveness of the proposed method. © 2016 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.10.025007]
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1 Introduction

The technology of remote sensing1–4 has applications in several fields, including agriculture,
forestry, hydrology, meteorology, mapping, environmental monitoring, land use, mineral explo-
ration, and military surveillance.

Airborne and satellite sensors are typically used to measure the electromagnetic radiation
reflected from the Earth’s surface. Different types of surface materials, such as soil, water,
vegetation, and minerals, can be distinguished from spectral reflectance signatures.

Advances in image acquisition techniques have allowed the extraction of large volumes of
data with high spectral resolution. Such data, called hyperspectral, refer to the collection of
information consisting of various spectral bands, which are defined in a wavelength range.

Hyperspectral image analysis5–11 is a challenging task and has received increasing interest in
the community. Some inherent difficulties in the analysis of such data include its high dimen-
sionality and noise contamination.

Although the spectral bands provide valuable information with high discriminative power
that allows the identification of distinct classes of objects, some initiatives for combination
of spatial and spectral information have been also presented in the literature.12–15

This work investigates the use of spectral and spatial information to classify hyperspectral
data. A three-stage supervised classifier is employed to determine the class for each pixel. An
initial classification is performed by support vector machines (SVMs), whose result is used as
input to K-nearest neighbor (K-NN) that searches for correctly classified pixels. Such pixels are
used as seeds for a minimum spanning forests (MSF) algorithm to generate a final spatial-based
classification. The proposed method is applied to a set of hyperspectral images, and its
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performance is compared to other classification approaches, including two which are also based
on MSF.13,15

The remainder of the paper is organized as follows. Section 2 briefly describes concepts
related to the topic under investigation. The proposed method for hyperspectral data is presented
in Sec. 3. Experimental results are described and discussed in Sec. 4. Section 5 presents the
conclusions and directions for future work.

2 Background

The remote sensing area1–3,16 has employed aircraft and satellites to acquire information about
the Earth’s surface. In addition to traditional aerial photographs operating in the visible portion
of the electromagnetic spectrum, continuous technological development has allowed the acquis-
ition of information in other portions, such as microwave and thermal infrared.

Hyperspectral sensors, also known as imaging spectrometers, are instruments that capture
images at several contiguous bands of spectral radiance with wavelengths typically varying
between 0.4 and 2.5 μm. Therefore, each pixel in the image contains a continuous spectrum
that can be used to characterize objects in the scene.

Several hyperspectral sensors have been used to acquire data for a number of different appli-
cations, such as thematic mapping, geology, hydrology, agricultural assessment, mineral explora-
tion, and study of global environmental and climate changes. Some important sensors include the
hyperspectral digital imagery collection experiment,17 airborne visible/infrared imaging spectrom-
eter,18 reflective optics system imaging spectrometer,19 compact airborne spectrographic imager,20

airborne imaging spectrometer,21 airborne imaging spectrometer for different applications,22 geo-
physical and environmental research imaging spectrometer,23 hyperspectral mapper,24 aerosol mass
spectrometer,25 airborne prism experiment,26 compact high-resolution imaging spectrometer,27 dig-
ital airborne imaging spectrometer,28 and thermal infrared multispectral scanner.29

The analysis of hyperspectral data has received growing interest from the community, since
they have spectral attributes with high discriminative power. Several classification methods
have been proposed in the literature for labeling the image pixels according to specific classes,
including Bayesian networks,30 SVM,31 neural networks,32 nearest neighbors,33 clustering algo-
rithms,34 and decision trees,35 among others.

The process of classification consists in categorizing pixels or regions of the images into
a set of different classes, such that pixels with similar attributes belong to the same class.
Hyperspectral image classification methods can be generally divided into unsupervised and
supervised techniques. Unsupervised techniques identify groups of pixels without prior knowl-
edge of the data, whereas supervised techniques employ known labeled samples to assign pixels
to one of the classes.

Many pixelwise classification approaches36,37 consider only spectral information of the pix-
els. Other methods take spatial information present in the image into account.12,38–40 Some strat-
egies for including spatial information in the classification are watershed,41 minimum spanning
forests,13 graph cuts,42 shortest paths,43 random walks,44 and Markov random fields.45

The image analysis process typically uses a more succinct representation of the data or its
components (objects) called the feature vector, which stores the most representative attributes of
the regions of the image. The main features extracted from images to assist the analysis process
are the color, texture, and shape of objects. The number of attributes or characteristics determines
the dimension of the feature vector and usually depends on the application area and the proper-
ties that need to be discriminated.

Due to the high dimensionality46 of the feature vector that represents the spectral information
contained in hyperspectral images, feature selection techniques47 are usually applied as prepro-
cessing to the data classification. Awidely used technique for data compression and dimension-
ality reduction is the principal component analysis (PCA).48

3 Methodology

A general scheme for the proposed classification method is shown in Fig. 1. Given a set of
hyperspectral bands and a set of classified samples (training data), the classification process
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of the hyperspectral image is initially obtained by using SVM. In a second step, a K-NN search is
performed in order to choose the pixels that are most likely to be correctly classified by
SVM. Such pixels are chosen as seeds for the MSF algorithm to produce a spatial-based
classification. The details on each step are described as follows.

The hyperspectral image is a matrix of size m × n × l, so that each pixel is a vector
pðx; yÞ ¼ ½pðx; y; 1Þ; pðx; y; 2Þ; : : : ; pðx; y; lÞ�. The set Su of samples to be classified is
the set of m × n pixels. For simplicity, a general pixel will be referred to as p ¼
ðp1; p2; : : : ; plÞ, dropping the two-dimensional indices. The classified samples form a set Sc
of pairs si ¼ ðxi; yiÞ and i ¼ f1;2; : : : ; jg, such that the i’th pair has feature vector xi ∈ Rp

and belongs to class yi.
Two measures are investigated as descriptors for the elements of both Su and Sc. The first

corresponds to the hyperspectral values. In such a case, the descriptor of a pixel p is the pixel
itself, the vector p ¼ ðp1; p2; : : : ; plÞ. The second measure is the local entropy, which measures
the intensity variation around a pixel. This information can be useful in distinguishing
homogeneous regions (smaller values) from heterogeneous regions (larger values). The feature
vector for a pixel p is a vector e ¼ ½eðp1Þ; eðp2Þ; : : : ; eðplÞ�, such that eðpiÞ is the entropy of
pi computed over a 9 × 9 neighborhood centered at pi.

The hyperspectral and entropy descriptors for a sample si ∈ Sc are given beforehand, so that
the pair ðpi; yiÞ denotes si with hyperspectral descriptor and ðei; yiÞ denotes si with entropy
descriptor.

3.1 Support Vector Machines Classification

An SVM classifier receives as input the sets Su and Sc. The PCA technique is applied to the
entropy vectors e in order to obtain reduced vectors e 0. This dimensionality reduction process is
important to remove redundant or highly correlated features, which improves the performance of
the classifier.

The SVM classifier is trained by using the pairs ðe 0i ; yiÞ of Sc. Given the trained model, SVM
classifies the samples p of Su such that L1ðpÞ is the assigned class. The assignment of all pixels
produces an image L1 of size m × n.

3.2 Seed Identification

The SVM classification is checked against a K-NN search in order to identify pixels that have
high probability of being correctly classified. The pixels identified in this step are called seeds.
These pixels are considered in the next step as starting points for an MSF method which intro-
duces spatial restrictions in the classification. All pixels that are not seeds will be reclassified
by expanding the classification from the seeds. Algorithm 1 summarizes the process of seed
identification.

Fig. 1 Overview of the proposed classification method. The first step produces an initial classi-
fication through SVM. The second step compares, for each pixel, the classification assigned by
SVM and the classes of K-NN. If the classes agree, the pixel is selected as a seed. The final step
uses the seeds in an MSF algorithm to produce a spatial classification.
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For each pixel p ∈ Su, a K-NN search is performed in the feature space to retrieve its k
nearest neighbors among the set Sc. The entropy descriptors are also used in this step.
Therefore, given the descriptor e 0 of p, the pairs of closest samples fðe 0c1 ; yc1Þ;
ðe 0c2 ; yc2Þ; : : : ; ðe 0ck ; yckÞg from Sc are retrieved.

If the class of p assigned by SVM is the same class of the pairs found with the K-NN search,
L1ðpÞ ¼ yc1 ¼ yc2 ¼ : : : ¼ yck , then p is included as a seed pixel in the set L2, such that its class
is the same as the one from SVM, L2ðpÞ ¼ L1ðpÞ. In addition to the class labeling, a cost of zero
is also assigned to a seed, that is, CðpÞ ¼ 0. L2 and C are images of size m × n. These two
images are further used in the MSF classification, such that L2ðpÞ will store the classification
of p given by an MSF, whereas C will store the cost of such assignment.

All the pixels p for which the class assigned by SVM differs from any of the K-NN will be
considered in the next step of the classification. These pixels are assigned an invalid class
L2ðpÞ ¼ −1 and a high cost, CðpÞ ¼ ∞.

3.3 Minimum Spanning Forests Classification

The final step of the classification uses an MSF approach so that the classification takes spatial
restrictions into account. This step performs its computations over the hyperspectral feature
space; that is, the similarity of pixels is computed using the pixel vectors of values
p ¼ ðp1; p2; : : : ; plÞ.

The classification is stored in the image L2. The cost image C and a minimum priority queue
Q are used as auxiliary data structures. The seeds found in the previous step are initially inserted
into the priority queue Q. The priority queue Q is maintained according to the costs of C. The
MSF computation is performed as shown in Algorithm 2.

A minimum cost pixel p is retrieved from Q, and its four-neighborhood is analyzed. Suppose
q is a neighbor pixel of p and dðp; qÞ is the Euclidean distance of their feature vectors

Algorithm 1 Seed Identification.

Input:

Su set of pixels

Sc set of classified samples

L1 image of classes assigned by SVM

Output:

L2 image of seeds

C image of costs

1 for p ∈ Su do

2 Find the pairs fðe 0
c1 ; yc1 Þ; ðe 0

c2 ; yc2 Þ; : : : ; ðe 0
ck ; yck Þg from Sc which are the k nearest neighbors to

the descriptor e 0 of p

3 if L1ðpÞ ¼ yc1 ¼ yc2 ¼ : : : ¼ yck then

4 Make L2ðpÞ equal to L1ðpÞ

5 Make CðpÞ equal to 0

6 else

7 Make L2ðpÞ equal to −1

8 Make CðpÞ equal to ∞

9 end

10 end
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p ¼ ðp1; p2; : : : ; plÞ and q ¼ ðq1; q2; : : : ; qlÞ. If the cost CðqÞ is greater than dðp; qÞ, then q is
assigned to the class of p (L2ðqÞ ¼ L2ðpÞ) and its cost is updated to the distance between the
descriptors, CðqÞ ¼ dðp; qÞ. In case q is already in Q, the priority queue is updated; otherwise q
is inserted into Q.

The process just described is the basic iteration of the MSF algorithm. At each iteration,
a pixel of minimum cost is retrieved from Q. Since the seeds are elements with cost zero,
the classification will expand from them. The process is repeated until the priority queue is
empty, such that all pixels have been classified.

4 Experimental Results

In this section, the proposed method is compared to four others: (i) SVM, (ii) SVM with PCA,
(iii) the approach based on stochastic minimum spanning forest by Bernard et al.,13 referred here
to as SMSF, and (iv) the approach based on probabilistic minimum spanning forest by Tarabalka
et al.,15 referred here to as PMSF.

The SMSF and PMSF approaches are closely related to our proposed method, which are also
based on the SVM classifier to obtain an initial classification and based on MSF for improving
the results. On the other hand, the SMSF uses a stochastic scheme for the second step. A set of n
maps is created and, for each one of these maps, a percentage of the pixels classified by SVM is
randomly chosen to form the seeds for the MSF method. Then, MSF is applied to each map and
the final classification is given by a voting scheme considering the results for all these maps.

Algorithm 2 Minimum spanning forests.

Input:

Su set of pixels

L2 image of classes

C image of costs

Q auxiliary minimum priority queue

Output:

L2 classified image

1 Insert into Q all p ∈ Su such that CðpÞ ¼ 0

2 while Q is not empty do

3 Remove p from Q

4 for q ∈ Su in the 4-neighborhood of p do

5 if CðqÞ > dðp;qÞ then

6 Make L2ðqÞ equal to L2ðpÞ

7 Make CðqÞ equal to dðp;qÞ

8 if q ∈ Q then

9 Update priority queue Q

10 else

11 Insert q into Q

12 end

13 end

14 end
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The PMSF also differs in the second step, where the most reliable pixels classified by SVM are
chosen as seeds for the MSF method.

Experiments are conducted on seven benchmark datasets.18,19,49 Themain characteristics of each
dataset (image dimensions, number of bands, and number of classes) are summarized in Table 1.

The algorithms were implemented in MATLAB®.50 The LIBSVM,51 with default parameters,
was used to perform the classification based on SVM. The methods were evaluated through
the overall and class accuracy rates.

Figure 2 shows an overview of the proposed classification method. Figures 2(a) and 2(b)
depict one band of the Indian Pines dataset and its ground truth. The SVM classification is
given in Fig. 2(c). The resulting seeds are shown in Fig. 2(d), whereas the final classification
is shown in Fig. 2(e).

In the following sections, we initially tuned the parameters for SVM, our method, SMSF, and
PMSF. Hyperspectral and entropy descriptors were compared. Entropy improved the results
obtained with SVM when compared to the results through hyperspectral values. The same
was not true for MSF classification, where the hyperspectral values tend to perform better
than entropy. We presented some comparisons for SVM. For the MSF step, we used hyperspectral

Table 1 Summary of the main dataset characteristics.

Dataset Rows Columns Bands Classes

Indian Pines 145 145 200 16

Pavia University 610 340 103 9

Pavia Centre 1096 715 102 9

Salinas-A 83 86 204 6

Salinas 512 217 204 16

Kennedy Space Center 512 614 176 13

Botswana 1476 256 145 14

(a) Indian Pines band (b) Groundtruth

(c) SVM-PCA (d) Seeds (e) MSF

Fig. 2 Example illustrating an overview of the proposed classification method.
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descriptors. The parameter k for the k-nearest neighbors used in our method was evaluated, as well
as the parameters for SMSF and PMSF. After the tuning steps, we compared the methods.

4.1 Support Vector Machines and Descriptors

Figure 3 shows the behavior of the SVM classification according to the used descriptor, hyper-
spectral values, or entropy, as well as the use of PCA. Entropy provides a significant improve-
ment on the classification results when compared to hyperspectral values, whereas the use of
PCA helped to achieve better classification results relative to each descriptor.

4.2 K-Nearest Neighbor Setup

Figure 4 shows the impact on the classification according to the choice of the k value (of K-NN)
for selecting the seeds in our method. The best results were obtained with the hyperspectral

Fig. 3 Comparison of parameters for SVM classification. The lines are labeled as a pair defining
which descriptor was used and whether PCA has been performed.

Fig. 4 Impact of k -nearest neighbors for the selection of seed pixels. The lines are labeled as a
pair defining which descriptor was used and whether PCA has been performed. The SVM result is
depicted as a baseline for comparison.
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descriptor. PCA did not provide any improvement. All the experiments were performed with
10% of samples for training the SVM. The SVM result is depicted as a baseline for comparison.
The best result is achieved with k ¼ 3.

4.3 SMSF Setup

The impact of the choice in terms of the number of maps and marks for the SMSF method is
summarized in Fig. 5. All experiments used 10% of the pixels for the SVM classification. Even
though the original paper13 does not use entropy and PCA for SVM, we have used these settings
for a fair comparison of the MSF step; otherwise the results for SMSF would be degraded.
Similarly to what occurred with our method, PCA and entropy do not improve the results of
the MSF step. We suppress the results for such parameters and show the best results using

Fig. 5 Results obtained with the SMSF using different numbers of maps and percentages of pixels
randomly selected as seeds. Each line reports the results for a certain percentage of seeds as
the number of maps varies. The SVM result is depicted as a baseline for comparison.

Fig. 6 Results obtained with the PMSF using different percentages of pixels selected as seeds
and different reliability thresholds. Each line reports the results for a certain reliability threshold.
The SVM result is depicted as a baseline for comparison.
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a feature descriptor based on hyperspectral values and no PCA step. This is also the setting used
in the original paper. The best results were obtained with 20 maps (as in the original paper) and
10% of seeds randomly selected. In the original paper, the value is 3% for some datasets and 11%
for other datasets. However, some of the datasets used here were not considered in the paper.
Therefore, we choose 10% random samples for seed selection since this value achieves the best
results for the datasets evaluated in our experiments.

Table 2 Comparison for the Indian Pines dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

Alfalfa 0.521 0.312 0.708 0.854 0.854

Corn-notill 0.798 0.827 0.869 0.891 0.850

Corn-min 0.781 0.817 0.884 0.893 0.905

Corn 0.657 0.738 0.752 0.786 0.862

Grass/pasture 0.792 0.828 0.846 0.906 0.937

Grass/trees 0.805 0.798 0.878 0.906 0.964

Pasture-mowed 0.739 0.000 0.000 0.000 0.000

Hay-windrowed 0.952 0.968 1.000 0.998 0.989

Oats 0.000 0.000 0.000 0.000 0.000

Soybeans-notill 0.889 0.907 0.946 0.929 0.938

Soybeans-min 0.943 0.954 0.977 0.965 0.978

Soybeans-clean 0.830 0.857 0.904 0.906 0.861

Wheat 0.753 0.858 1.000 0.926 0.984

Woods 0.932 0.930 0.967 0.942 0.972

Building-trees 0.711 0.737 0.851 0.713 0.661

Stone-steel 0.871 0.906 1.000 1.000 0.953

Overall 0.856 0.873 0.919 0.915 0.921

Table 3 Comparison for the Pavia University dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

Asphalt 0.942 0.962 0.966 0.959 0.973

Meadows 0.971 0.978 0.984 0.973 0.989

Gravel 0.723 0.787 0.843 0.776 0.850

Trees 0.885 0.890 0.915 0.894 0.884

Painted metal sheets 0.973 0.988 0.999 0.999 0.995

Bare Soil 0.832 0.870 0.893 0.903 0.921

Bitumen 0.870 0.866 0.939 0.880 0.907

Self-blocking bricks 0.915 0.931 0.959 0.958 0.938

Shadows 0.842 0.864 0.836 0.845 0.887

Overall 0.921 0.938 0.953 0.941 0.955
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Table 5 Comparison for the Salinas-A dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

Brocoli 1.000 0.986 0.997 0.929 1.000

Corn 1.000 1.000 1.000 1.000 0.997

Lettuce1 1.000 1.000 1.000 1.000 1.000

Lettuce2 1.000 1.000 1.000 1.000 1.000

Lettuce3 1.000 1.000 0.959 0.969 1.000

Lettuce4 1.000 1.000 0.996 0.983 0.999

Overall 1.000 0.999 0.994 0.988 0.999

Table 6 Comparison for the Salinas dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

Brocoli1 0.999 0.999 1.000 0.999 0.998

Brocoli2 0.983 0.987 0.992 0.971 0.993

Fallow 0.998 0.999 0.997 0.995 0.999

Fallow rough 0.942 0.940 0.986 0.971 0.967

Fallow smooth 0.998 0.999 0.988 0.989 0.997

Stubble 0.999 0.997 0.995 0.991 1.000

Celery 0.999 0.998 1.000 0.998 0.999

Grapes 0.959 0.969 0.981 0.993 0.983

Soil 0.999 0.999 0.998 0.997 0.999

Corn 0.983 0.994 0.980 0.986 0.993

Lettuce1 0.985 0.976 0.968 0.958 0.978

Lettuce2 1.000 0.999 0.999 0.992 1.000

Lettuce3 0.987 0.971 0.922 0.916 0.990

Lettuce4 0.993 0.996 0.975 0.977 0.988

Vinyard1 0.925 0.944 0.952 0.991 0.962

Vinyard2 0.990 0.988 0.994 0.966 0.995

Overall 0.976 0.981 0.983 0.988 0.988

Table 4 Comparison for the Pavia Centre dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

Water 0.999 0.999 0.999 0.999 0.999

Trees 0.970 0.971 0.972 0.954 0.974

Asphalt 0.886 0.898 0.898 0.930 0.923

Self-blocking bricks 0.832 0.873 0.887 0.835 0.914

Bitumen 0.884 0.910 0.938 0.906 0.912

Tiles 0.961 0.964 0.963 0.952 0.965

Shadows 0.940 0.951 0.970 0.954 0.957

Meadows 0.990 0.992 0.991 0.995 0.995

Bare soil 0.611 0.626 0.677 0.589 0.694

Overall 0.971 0.975 0.979 0.974 0.979
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4.4 PMSF Setup

These experiments were also conducted with 10% of the pixels for the SVM training. As in
SMSF, the use of entropy and PCA for SVM was kept for a fair comparison of the MSF
step. We only show the results for hyperspectral descriptors for the MSF step, once PCA
and entropy did not result in any improvement.

Table 7 Comparison for the Kennedy Space Center dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

1 0.994 0.996 1.000 0.990 1.000

2 0.954 0.963 0.927 0.972 0.950

3 0.978 0.991 0.991 0.987 1.000

4 0.991 0.996 0.991 1.000 0.929

5 0.931 0.944 0.993 0.986 1.000

6 0.995 0.995 0.956 0.995 0.995

7 0.979 0.989 1.000 1.000 1.000

8 0.956 0.956 1.000 0.953 0.977

9 0.953 0.955 0.964 0.962 0.983

10 0.997 0.994 0.975 0.978 0.986

11 0.989 0.989 0.987 0.966 0.984

12 0.965 1.000 0.991 0.998 0.973

13 1.000 1.000 1.000 1.000 1.000

Overall 0.980 0.985 0.986 0.984 0.985

Table 8 Comparison for the Botswana dataset.

Class SVM SVM-PCA SMSF PMSF SVM-MSF

1 0.885 0.897 0.934 0.877 0.963

2 0.544 0.567 0.522 0.522 0.533

3 1.000 1.000 0.996 1.000 0.996

4 0.808 0.860 0.927 0.850 0.689

5 0.860 0.839 0.884 0.860 0.860

6 0.554 0.603 0.616 0.653 0.678

7 0.948 0.961 0.948 0.940 0.991

8 1.000 1.000 1.000 0.978 0.995

9 0.879 0.865 0.968 0.936 0.979

10 0.951 0.951 0.915 0.942 0.978

11 0.869 0.872 0.887 0.909 0.909

12 0.988 0.963 1.000 1.000 1.000

13 0.917 0.888 0.876 0.846 1.000

14 0.000 0.024 0.012 0.024 0.071

Overall 0.846 0.851 0.870 0.858 0.883
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After the SVM step, PMSF computes the connected components on the resulting classifi-
cation and the probability (reliability) of each classification being correct (for more details, refer
to Ref. 15). These components and the following three parameters are used to select the seeds of
the method:

Fig. 7 Post-hoc analysis of Friedman test for the different evaluated methods.

Fig. 8 Visual comparison of the classification results given by SVM, SMSF, and SVM-MSF.
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• the way of selecting the seeds depends on whether a connected component is larger or
smaller than a threshold M;

• if the connected component is larger than M, then a percentage P of its most reliable
classifications is kept as seeds;

• otherwise, the pixels with reliability greater than a threshold S are kept as seeds.

The parameter S is the smaller probability value of the T% most reliable SVM classified
pixels for the whole image. We will discuss the choice of T, as in the original paper. The param-
eter M was chosen to be 20, since it produced good results in our experiments, reflecting the
choice in the original paper. The parameters P and T were set to ∼5% as in the original paper;
however, we did not obtain good results with such a choice. The differences may be due to the
probability computations, even though we used LIBSVM,51 as in the original paper. The choice
of these parameters for the PMSF method is summarized in Fig. 6. The overall accuracy sta-
bilizes with P ¼ 50% and T ¼ 5%. The results get worse for T greater than 25%. The best
results are obtained with T in the range (5%, 25%) (overlaid curves in Fig. 6).

4.5 Comparison

Tables 2–8 show the gradual improvement on the classification achieved by the proposed method
when using SVM with PCA and then by adding the MSF step. The method also achieves

Fig. 9 Visual comparison of the classification results given by SVM, SMSF, and SVM-MSF.
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competing values of class accuracy and superior overall accuracy when compared to SMSF and
PMSF. The experiments for these images were performed by using 10% of the pixels as training
samples. The remaining pixels were used as test samples.

We performed the Friedman test and obtained a p-value of 0.0002, which suggests there is
a significant difference between at least two methods. A post-hoc analysis based on the
Tukey–Kramer test is shown in Fig. 7. The analysis shows that our method performs better
than three methods (SVM, SVM-PCA, and PMSF) and has statistically equal results when
compared against SMSF.

An interesting aspect of the proposed classification method is that, besides correcting
erroneous classifications, the seed identification step also confirms many of the correct

Fig. 10 Visual comparison of the classification results given by SVM, SMSF, and SVM-MSF.
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classifications produced by the SVM classifier. The method preserves as many as possible of
these correct classifications and works on the weak classified pixels, such as the ones close to
spatial boundaries between classes.

Figures 8–10 show a visual comparison of the classification results produced by SVM,
SMSF, and SVM-MSF. The images depict only the classes; that is, the respective background
is removed and shown in black.

5 Conclusions

In this work, we described a method for hyperspectral data classification through the combina-
tion of spectral and spatial information. An SVM was employed to produce an initial classifi-
cation, which was then refined by applying K-NN and MSF approaches, incorporating spatial
information into the spectral classification process.

Experiments were conducted on several datasets, and the proposed approach was demon-
strated to be very effective, providing results with high accuracy. Intermediate results also
show that the entropy measure and PCA technique can be used to improve the classification
obtained by the SVM classifier.

As directions for future work, we intend to investigate the combination of other complemen-
tary features, as well as the impact of using different parameters in the classification process.
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