
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://dl.acm.org/doi/10.1145/2858788.2688504

DOI: 10.1145/2688500.2688504

Direitos autorais / Publisher's copyright statement:

©2015 by Association for Computing Machinery . All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/

Performance Implications of Dynamic Memory
Allocators on Transactional Memory Systems

Alexandro Baldassin
UNESP – Univ Estadual Paulista, Brazil

alex@rc.unesp.br

Edson Borin Guido Araujo
UNICAMP – Institute of Computing, Brazil

{edson,guido}@ic.unicamp.br

Abstract
Although dynamic memory management accounts for a significant
part of the execution time on many modern software systems,
its impact on the performance of transactional memory systems
has been mostly overlooked. In order to shed some light into this
subject, this paper conducts a thorough investigation of the interplay
between memory allocators and software transactional memory
(STM) systems. We show that allocators can interfere with the
way memory addresses are mapped to versioned locks on state-of-
the-art software transactional memory implementations. Moreover,
we observed that key aspects of allocators such as false sharing
avoidance, scalability, and locality have a drastic impact on the
final performance. For instance, we have detected performance
differences of up to 171% in the STAMP applications when using
distinct allocators. Moreover, we show that optimizations at the
STM-level (such as caching transactional objects) are not effective
when a modern allocator is already in use. All in all, our study
highlights the importance of reporting the allocator utilized in the
performance evaluation of transactional memory systems.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel Programming

General Terms Algorithms, Design, Performance

Keywords Transactional memory, dynamic memory allocation,
performance evaluation

1. Introduction
The emergence of multicore processors have revitalized the interest
in all aspects of parallel computing. One promising approach for
shared memory parallel programming proposes using transactions
as the unit of concurrency, a strategy more commonly known as
Transactional Memory (TM) [14]. A transaction is a sequence of
instructions that operates on an all-or-nothing fashion: either the en-
tire block of code is executed atomically or none of the instructions
appear to take effect. The implementation of the transactional mech-
anism can be done entirely in software (STM), in hardware (HTM),
or using a combination of both (HyTM). Despite recent announce-
ments of hardware support for TM in current processors [17, 18, 31],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.

software implementations are still very appealing since they can
run on top of the majority of mainstream processors (with no HTM
support) and provide an efficient testbed for new ideas. Moreover,
existent processors that do provide transactional support implement
a best-effort HTM, relying on software to guarantee system progress.
As a consequence, software support will play a key role in the future.

Performance has always been the Achilles’ heel of software
transactional memory. Early reports on STM performance revealed
execution time worse than sequential code, deeming STM a research
toy [2]. Later experiments showed that STM could indeed provide
good speedups over sequential execution time by using a more
diverse set of benchmarks, a state-of-the-art implementation, and
more powerful hardware [8]. Nonetheless, the development of
more efficient STM algorithms, implementations and optimizations
remains a very active field of research. Recent works have looked
into how platform specificities, such as thread mapping strategy and
compiler instrumentation, affect the overall runtime performance
and scalability of the system [3, 26]. Following on the same
direction, we investigate in this paper the impact of dynamic memory
management on the performance of blocking STM implementations
and applications. Although we only discuss the impact of allocators
on STM systems in this paper, we expect that most of the conclusions
are valid for HyTMs since they also rely on STMs.

1.1 Motivation
Dynamic memory allocation is among the most expensive and per-
vasive operations in C/C++ applications. Recent studies conducted
with a group of heap intensive applications have shown that, on av-
erage, 30% of the total execution time is spent on dynamic memory
management [30]. The advent of multicore processors has intensi-
fied the importance of the allocator in deploying high performance
systems. As transactional memory becomes mainstream, it should
also satisfactorily interact with the memory allocator.

Although the importance of memory management in current
software development is clear, surprisingly its impact on the per-
formance of transactional applications has been mostly overlooked.
Very few papers have investigated memory management issues in
the context of STMs [13, 16]. Unfortunately, most papers do not
even mention which allocator is used for performance evaluation.
To illustrate the influence of memory allocators, consider Figure 1
(see Section 4 for details on the experimental setup). The execution
times of two transactional applications (Intruder and Yada), and
two allocators (Glibc and Hoard), are shown for a configuration
with 8 cores. While the Glibc allocator performs better for Intruder
(left), Hoard exhibits a better execution time for Yada (right). The
applications binary files have not even been modified: by dynami-
cally changing the allocator at loading time we obtained remarkably
different results.

It is important to notice that the performance of memory manage-
ment in a transactional setting is not only affected by the allocator

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3205-7/15/02...$15.00
http://dx.doi.org/10.1145/2688500.2688504

87

4

6

8

10

12

14

16

18

20

Intruder Yada

T
im

e
 (

s
)

Glibc
Hoard

Figure 1. Influence of memory allocators on Intruder (left) and
Yada (right) with 8 cores. The best-performing allocator changes
from one application to the other.

itself (how objects are layed out in the address space and the allo-
cation algorithms), but it also depends on the specificities of the
transactional algorithm: most lock-based implementations require
mapping memory addresses to locks for conflict detection. The way
an allocator handles the available memory may interfere with this
mapping and cause false conflicts, harming the performance. In
short, the main research questions we address in this paper are: (a)
what is the impact of memory allocators in the overall performance
of STM systems? (b) should researchers report which memory allo-
cator they have used in their experiments?

1.2 Contributions and Organization
To the best of our knowledge this is the first paper to conduct a
detailed analysis of the impact of dynamic memory management
on the performance of transactional applications. We make the
following 2 main contributions:

• A detailed performance analysis of the interaction of different
memory allocators and a blocking, word-based STM system,
conducted with a synthetic benchmark (Section 5). More specifi-
cally, we investigate the influence of allocators on the locking
granularity exposed by the STM system, which has a direct im-
pact on the number of false aborts. Although earlier works have
explored this issue [7, 10], they have not taken into account the
effect of memory allocators;

• A performance characterization of the STAMP applications [24]
with respect to a number of different allocators, which reveals
that they do interfere in the performance and may lead to wrong
conclusions (Section 6). Our results indicate that it is important
to report the memory allocator used in the experiments when
evaluating STM systems. For instance, we have observed per-
formance differences of up to 171% in the STAMP applications.
Furthermore, we show that optimizations at the STM-level (i.e.,
caching transactional objects) are not effective when a modern
allocator is already in use.

The rest of this paper is organized as follows. Section 2 presents
the context in which this work is inserted, along with a brief
description of related works. The memory allocators considered in
the analysis are described in Section 3, followed by the experimental
setup in Section 4. An analysis of the allocators’ impact on the
synthetic and realistic benchmarks is done in Sections 5 and 6,
respectively. Finally, our conclusions are stated in Section 7.

2. Background and Related Work
At a higher level there are two main broad categories in which soft-
ware transactional memory designs can be organized: blocking and
non-blocking. For this work we focus on blocking implementations.

In particular, our interest is on time-based STMs that operate on the
word granularity and are implemented in languages such as C/C++,
in which memory management is explicit. Representative designs
of such category are among the fastest known implementations,
including TL2 [6], TinySTM [10], and SwissTM [7].

In order to correctly track conflicts, the lock-based STMs em-
ployed in this work rely on a big lock table commonly known as
Ownership Record Table, or ORT. We refer to an entry in this table
as a versioned lock. Memory accessed by an application is divided
into stripes, with each stripe being mapped to a versioned lock by
means of a mapping function. A lock bit included in each versioned
lock signals whether some transaction is currently modifying the
memory stripe protected by the referred versioned lock. An attempt
by some other transaction to modify the same memory region is
blocked, leading the transaction to either wait or abort. When the
lock bit is unset, the versioned lock maintains a timestamp repre-
senting the last time that the corresponding memory region was
modified. Notice that it might occur for two distinct memory stripes
to be mapped to the same versioned lock, resulting in false aborts.
The mapping function can be tuned in order to avoid this behav-
ior. Although larger memory stripes increase the likelihood of false
aborts, the validation and locking costs are reduced. On the other
hand, a small memory stripe will prevent spurious aborts from hap-
pening at the cost of larger read/write sets and higher cache pressure.
Despite the many investigations about the performance implications
of the mapping function [7, 10, 21, 22, 33], the impact of memory
allocators has not been considered.

For the class of STMs considered in this work, dynamic mem-
ory management is not a part of the core design. Instead, it is built
around an external allocator interface that provides at least malloc
and free function calls. An allocator wrapper must annotate all
transactional allocations (because they must be undone in case of
aborts) and defer deallocations to commit time. Hudson et al. [16]
investigated the integration of the memory allocator with the trans-
actional algorithm, but we have not heard any further progress
of this approach other than it has resulted in the design of the
current TBBMalloc allocator [19] (in a non-transactional setting).
Gottschlich and Connors [13] discuss memory management issues
in the context of DracoSTM, observing a 20% performance improve-
ment while using a builtin user-configurable memory manager. The
use of hardware transactional memory for simplifying the imple-
mentation of common data structures related to dynamic memory
management is investigated by Dragojevic et al. [9].

3. Dynamic Memory Management
The design of dynamic memory allocators is an old topic, dating
back to 1961 [32]. A good allocator must provide at least: (i) fast
(de)allocation (low latency), and (ii) efficient use of memory space
(low fragmentation). With the introduction of multicore processors,
allocators are further required to provide good scalability and
avoid cache false sharing, a scenario wherein multiple threads
accidentally share the same cache line. It is important to notice
that the development of a multithreaded allocator requires a new
design. For instance, extending an excellent serial allocator with
a single global lock to protect each (de)allocation is certainly not
a good choice, since it will inevitably serialize all allocations and
badly hurt scalability.

New multithreaded allocator designs have been proposed re-
cently aimed at providing good scalability [1, 5, 19, 23, 28]. The
performance analysis conducted using these allocators show that the
choice of the allocator has a big impact on the overall performance.
Even then, performance evaluations of transactional systems have
mostly omitted the allocator employed in the experiments. In the
following subsections we describe the basic behavior of the four
memory allocators studied in this work: Glibc [12], Hoard [1],

88

TBBMalloc [19], and TCMalloc [11]. We believe these allocators
cover a wide spectrum of allocation strategies and, in addition, are
publicly available.

3.1 Glibc
The GNU C library (Glibc) memory allocator uses a modified
version of Doug Lea malloc (dlmalloc) [20], adapted to support
multicore processors by Wolfram Gloger (ptmalloc3) [12]. It is the
default allocator distributed with typical Linux systems.

The allocator keeps memory blocks in bins, grouped by size (a
technique referred to as binning). For small blocks (usually 128
bytes or less), the allocator uses a caching mechanism wherein freed
memory are stored in a very fast type of bin, implemented as a
single linked list with no coalescing. Therefore, requests for small
blocks are usually resolved very quickly. For larger requests the
system memory mapping facility is used. Each memory block has
metadata (commonly known as boundary tags) holding size and
status information. The minimum allocated block size is 32 bytes
on current 64-bit systems.

The multithreading support added by Wolfram Gloger makes
use of per-thread arenas. An arena is a contiguous block of memory
obtained from the kernel (heap area) and managed by the allocator.
When a malloc is requested by a thread for the first time, the
allocator creates a new arena for that thread. To improve locality,
subsequent requests by the same thread attempt to use the same
arena, but it might not be available, as the allocator does not use
private arenas. Therefore, locks are used to avoid having two threads
accessing the same arena at the same time.

In order to reduce lock contention, the allocator does not block
if a lock is already taken. Instead, a mutex try lock primitive is
firstly used in the hope of acquiring the lock. If it fails, the allocator
repeats the procedure for the next arena (they are kept in a circular
list). If none of the arenas can be used, a brand new one is created to
fulfill the thread request. When a thread frees a block, the allocator
returns the block to the arena from which it was originally allocated.

3.2 Hoard
The Hoard allocator was proposed by Berger et al. in 2000 [1] and
it is still being developed. The allocator is designed to be scalable,
avoid false sharing, and exhibit bounded fragmentation.

Hoard maintains per-thread heaps along with a global heap. Each
heap is assigned to a thread by means of a hash function that maps
the thread ID to its heap. When a block of memory is requested,
Hoard first checks the corresponding thread heap for available
memory. If no blocks of the desired size class are found, the allocator
retrieves a big chunk of memory from the global heap, called a
superblock in Hoard terminology. A superblock keeps a free list of
available blocks, all of the same size class. Size classes are apart
from each other by a power of b, bounding internal fragmentation
to a factor of b. External fragmentation is reduced by returning
superblocks below a given emptiness threshold to the global heap.
When a free operation is invoked, the block is returned to the
superblock from which it was allocated in order to reduce false
sharing.

Regarding synchronization, Hoard algorithm requires a lock per
heap and per superblock. A heap is locked during allocation and
deallocation. The deallocation procedure further needs to acquire the
lock for the specific superblock. The authors argue that Hoard incurs
very low contention costs for memory operations in the common
case, claiming that the contention for the per-thread heap locks is
not a scalability concern and contention for the global heap lock
is rare. Recent versions of Hoard make use of thread-private local
heaps for small blocks (usually 256 bytes or less). These local heaps
substantially improve performance since they avoid most of the

atomic operations required for locking the per-thread heaps in the
original algorithm. Small chunks are also freed locally.

3.3 TBBMalloc
The Intel TBBMalloc allocator is part of Intel Threading Building
Blocks [19]. The basic design of the allocator was carried out during
the McRT research program at Intel [27] and is based on a non-
blocking memory management algorithm, which was also integrated
with a software transactional memory system [16].

The TBBMalloc allocator uses thread-private heaps, eliminating
the need for costly synchronization if allocation requests can be
serviced by the local heap. Like Hoard, each heap maintains
different superblocks for different size classes. If the allocator cannot
find any available block in the local superblock for a given size class,
a global heap is accessed and a superblock is transferred to the local
heap. If there is no available memory in the global heap, a block of
1MB is allocated using the operating system memory support. This
big block is further split into superblocks of 16KB each. To avoid a
large memory footprint, empty superblocks are returned back to the
global heap.

Freed blocks are returned to the superblocks they were allocated
from. This has the advantage of reducing false sharing and may also
increase cache locality but, on the other hand, requires some form
of synchronization, as a superblock in another thread heap must be
accessed. In order to reduce the synchronization cost TBBMalloc
maintains two separate free lists for each superblock: a public and
a private. A malloc operation first attempts to grab a block from
the private list, which does not require any synchronization. The
public list is only inspected when no available blocks are found in
the private list. Contrary to the version of the allocator developed
by the McRT team, TBBMalloc does not employ non-blocking
synchronization, using fine-grained locks instead.

3.4 TCMalloc
The Thread-Caching Malloc (TCMalloc) [11] is a high-performance
multithreaded memory allocator distributed with Google Perfor-
mance Tools (gperftools). TCMalloc is also used by Google
Chrome web browser.

The design of the allocator is very close to TBBMalloc. Each
thread is assigned a local heap (a thread cache in TCMalloc
nomenclature) from which small blocks (usually 256KB or less) are
allocated without any synchronization overhead. Available blocks
are internally stored in separate free lists according to their size.
When a malloc is requested, the allocator first locates the free
list that matches the required allocation size in the thread cache
and returns an available block if the list is not empty. Otherwise,
the allocator consults a central heap (also called central cache)
that works as a back store. Inside the central heap, blocks are
also segregated by their size and kept in different free lists. Since
all threads share the central heap, spinlocks are used to provide
consistent access.

In case the requested block is still not found in the central heap,
TCMalloc uses another sort of allocator called the central page
heap. This component allocates pages directly from the operating
system and serves two main functions: (1) as a back store for the
central heap; (2) as an allocator for large chunks. When small blocks
are deallocated, TCMalloc insert them into the appropriate free
list in the current thread’s thread cache. Recall that this behavior
differs from both Hoard and TBBMalloc, since they would return
the block to the thread cache it was originally allocated from. To
avoid external fragmentation, TCMalloc runs a garbage collector
when a thread cache size exceeds a given threshold, moving unused
blocks back to the central heap.

89

Table 1. Summary of the main attributes of the studied allocators.
Allocator Version Metadata (tag) Min Size Fast Path Granularity Synchronization
Glibc 2.11.1 Per block 32 bytes <= 128 bytes 132KB-64MB

per arena
A lock per arena. If a thread fails to grab the lock for any
of the active arenas, a new one is created.

Hoard 3.10 Per superblock 16 bytes <= 256 bytes 64KB per su-
perblock

Each heap is protected by a lock as is the global heap. A
cache is maintained for small block sizes and is accessed
without synchronization.

TBBMalloc 4.1 Per size class 8 bytes < 8KB 16KB per size
class

The public free lists of a private heap are each protected by
a distinct spinlock. Each free list in the global heap is also
protected by a separate spinlock. Accessing the private free
lists is synchronization-free.

TCMalloc 2.1 Per size class 8 bytes <= 256KB incremental Each free list in the central cache is protected by a spinlock.
A spinlock is also used to protect the central page heap.

3.5 Discussion
In the description of the allocators presented earlier we focused
on how memory (de)allocation is performed, the data layout, and
the synchronization aspects. Other important features such as heap
corruption protection are out of the scope of this paper.

Table 1 highlights the main attributes of the allocators employed
in this work. As can be seen, only Glibc maintains metadata
information on a per block basis. This choice considerably increases
the minimum allocated size (Min Size column) on 64-bit machines.
Even a malloc(0) would cause the Glibc allocator to return a
pointer to a 32-byte block. Apart from the memory utilization
overhead, this choice reduces cache locality and may have a direct
impact on the performance of the system. Notice that only 2 memory
blocks would fit a cache line on typical L1 caches (considering a
standard 64-byte line size), whereas for TBBMalloc and TCMalloc
8 memory blocks could potentially be placed on the same line.

The Fast Path column indicates the block sizes for which
the respective allocator provides a fast path (de)allocation. With
the exception of Glibc, which still requires locking an arena,
all remaining allocators implement some sort of local cache that
effectively provides synchronization-free (de)allocations. In the fast
path, synchronization is required only when a block is not found in
the local cache and the allocator must access a global back store.
Even then the blocks are segregated by size, allowing the use of
fine-grained locks. The Synchronization column describes the
basic synchronization strategies for each allocator.

Finally, the Granularity column shows the size of the mem-
ory block made available to a thread when the first allocation is
requested. For Glibc, the minimum arena size is 132KB and is
internally split into bins for different size classes. All threads can
share the same arena as long as there is no contention. An arena
can be further enlarged to a maximum of 64MB on demand. Hoard
assigns a superblock of 64KB for each requested size class, whereas
16KB blocks are used by TBBMalloc. The larger the size the less
frequently the allocator has to access the global heap and, conse-
quently, the less the synchronization overhead. On the other hand,
larger sizes increase fragmentation. TCMalloc employs an incre-
mental approach, wherein all free lists are initially empty and their
sizes are incrementally increased on each successive allocation re-
quiring access to the central cache. This behavior can possibly give
rise to false sharing scenarios as discussed next.

In Figure 2 we picture a central cache with a free list of 16-byte
blocks, showing the respective available addresses inside each block.
Notice that the blocks represent consecutive addresses, since a big
chunk has been previously allocated from the operating system. We
consider only 2 threads for simplicity, also assuming that each local
cache is initially empty. When thread 1 requests a memory block, it
will not find it in the local cache and therefore the allocator transfers
one block from the central cache Ê. After that, thread 2 also requests
a memory block and, since its local cache is also empty, the next

!"#$$$$$$!

!"#$$$$$%!

!"#$$$!!!!

!"#$$$!!#!

!"#$$$!!&!

!"#$%&'(!&)*"(+,%(-./01$"(0',)23

�'!"#$%&'($)*+,-

!"#$$$!!(!

!"#$$$!!)!

*
**

.'.*/%(011/'--

"'+',-../01#23''

!"#$$$!!4!

4,)&'(!&)*"

�

5*%"&6(-

!"#$$$!!!!

!"#$$$!!&!

!"#$$$!!(!

�

�

5'+',-../01#23''

6'+',-../01#23''

4,)&'(!&)*"

5*%"&6(7

!"#$$$!!#!

!"#$$$!!)!

!"#$$$!!4!

7'+',-../01#23''

�

!''

"''

"''

!''

Figure 2. An illustration of false sharing induced by TCMalloc.

available block from the central cache is fetched Ë. At this point the
two threads will have the variables x and v pointing to consecutive
memory locations, 16 bytes apart from each other, possibly causing
false sharing. When another block is requested by thread 1, the
allocator needs to go to the central cache again but now it transfers
2 blocks Ì (the third time it will transfer 3 blocks, the fourth time
4 blocks, and so on). Thread 2 also performs another allocation,
forcing the allocator to bring the next two memory blocks from the
central cache Í.

To conclude this section we conduct a performance analysis
of the allocators described previously. It is difficult to measure
the overall performance of a memory allocator since it depends
on a host of factors. In this particular analysis we are interested
on how fast a pair of malloc/free operations are processed. Our
microbenchmark is the same used by Hoard [1], called threadtest. In
this experiment 8 threads repeatedly do nothing but allocations and
deallocations. A memory block is deallocated right after allocation
by the same thread. Figure 3 shows the throughput of each allocator
for several block sizes.

It is interesting to notice that TCMalloc does not perform well
for 16-byte blocks due to cache false sharing, as discussed earlier
and illustrated by Figure 2. Apart from this behavior, it presented
the best overall throughput for this particular experiment. Hoard
also performs quite well for blocks less than or equal to 256 bytes,
as predicted by Table 1 (Fast Path column). Afterwards, the
local cache is not used anymore and a thread must access its lock-
protected heap, decreasing its throughput to a level very close to
Glibc. Recall that in Glibc a thread always needs to go through
a per-arena lock in every allocation and deallocation. TBBMalloc
throughput is kept roughly constant until blocks slightly less than

90

0
20
40
60
80

100
120
140
160
180
200

16 64 128 256 512 2048 8192

T
h

ro
u

g
h

p
u

t
(x

 1
0

6
 o

p
/s

)

Block size (bytes)

Glibc

Hoard

TBBMalloc

TCMalloc

Figure 3. Throughput of the studied allocators for different block
sizes (8 threads).

Table 2. Machine configuration used in the experiments.
Processor Model Intel(R) Xeon(R) E5405 @ 2.00GHz
Total cores 8 (2 sockets, 4 per socket)
L1 data cache 32KB, 8-way set associative, 64-byte lines
L2 cache 2x6MB, unified, 24-way set associative
Main memory 4GB

8KB are requested, in which case the allocator invokes the operating
system memory management directly.

4. Experimental Setup
In this section we describe our evaluation methodology, tools
configuration, and the benchmarks analyzed in this paper. The goal
of our analysis is to assess the impact of the different memory
allocators on the performance of the STM library and transactional
applications.

Our experiments have been carried out on an Intel Xeon machine,
whose detailed configuration is given in Table 2. The operating
system is a typical 64-bit Linux distribution (Ubuntu server 10.04.3
LTS), with kernel 2.6.32, and Glibc version 2.11.1. The STM library
and the applications employed in the analysis were compiled for
64-bit mode using GCC version 4.4.3 with optimization flag -O3.
For fairness we also avoided GCC specific optimizations targeted at
the Glibc allocator by using the -fno-builtin flags for malloc,
calloc, realloc, and free. Since the allocators are provided as
dynamic libraries, we did not produce different application binaries
for each of them. Instead, each allocator is dynamically loaded
by setting the LD PRELOAD environment variable accordingly
at runtime. The versions of the allocators are given in the second
column of Table 1.

The main STM library chosen for this work is TinySTM [10]
version 1.0.4. For most of the experiments we did not change
any library configuration, using the default ETL (Encounter-Time
Locking) design and the SUICIDE contention management strategy
(the transaction that causes the conflict is aborted and immediately
restarted). We did turn on the flag for statistics (number of commits
and aborts, mostly) but did not notice any significant overhead. The
default size for the ownership record table (ORT) is 220 elements.
A given address is mapped to an entry in this table by shifting its 5
less significant bits to the right and taking the rest modulo the size
of the ORT. This configuration forces 32 consecutive bytes to be
mapped to the same versioned lock in the ORT.

We use both synthetic and realistic benchmarks in our exper-
iments. The synthetic one has a configurable number of threads
updating (inserting or deleting) or searching for elements in a given
data structure. Three different data structures were used: a sorted
linked-list, a hashset, and a red-black tree. The number of elements

Table 3. Best and worst allocators for each data structure, perfor-
mance difference, and respective thread number (write-dominated
configuration).

Application Best Worst Perf. Diff. Threads
Linked-list Glibc TBBMalloc 13.12% 8
HashSet Hoard TCMalloc 18.52% 6
RBTree TBBMalloc Glibc 14.76% 8

is kept nearly constant by forcing insertions and deletions to take
turns: the next element to be removed is the last one inserted. This
sort of benchmark has been extensively used in previous works
(see for instance [15] and [10]) and provided us an excellent and
simplified workload to understand the behavior of the allocators.
The configuration exploited in the experiments uses a set with 4096
elements, random numbers in the range of [0, 8192), and three dif-
ferent update rates: read-only, read-dominated (20% of updates), and
write-dominated (60% of updates). Due to space constraints, we only
discuss the write-dominated configuration because its performance
is more sensitive to the allocators.

We also use the STAMP benchmark suite [24] in our evaluation.
STAMP is comprised of 8 different applications, each with different
behavior concerning time in transaction, level of contention, size of
read/write sets, and transaction length. The configurations used in
the experiments are the ones suggested in the original paper with
large data sets. For two of the applications, Kmeans and Vacation,
there are two recommended configurations, but we only use one of
them in this paper (the one with the highest contention level and
working set size) due to space constraints.

Finally, our results are presented as a mean of 50 (synthetic
benchmark) or 30 executions (STAMP). In order to provide statisti-
cally significant values, our figures also show error bars representing
a 95% confidence interval. Besides throughput and execution time,
some of the experiments required more detailed information about
cache events (such as number of accesses and miss ratio). In order to
collect those events we utilized the PAPI interface [29] version 5.2,
an abstraction layer for accessing hardware performance counters.

5. Synthetic Benchmark Analysis
We start off our performance analysis considering the synthetic
benchmark described previously. Figure 4 presents throughput re-
sults for the different data structures and the write-dominated work-
load. It is surprising to notice that the performance of the different
allocators vary considerably among the three data structures, as re-
vealed by Table 3. This table also shows the performance difference
between the best and worst allocators, as well as the thread config-
uration that produced the maximum throughput. In the following
subsections we investigate what is behind this behavior and how the
allocators and the STM library affect the overall performance.

5.1 Sorted Linked List
In this microbenchmark each node of the list is composed of a 64-bit
value field and a pointer to the next node, amounting to 16 bytes.
A transaction allocates a node through malloc when inserting a
new element, and deallocates the node via free when deleting it.
Finding an element in the linked list may require scanning a lot of
nodes. Since insertions and deletions in a sorted list first need to
locate the previous element, many memory locations are touched
during the traversal, resulting in large transactional read sets.

One important difference among the allocators is that Glibc will
allocate 32 bytes for each node (minimum block size), whereas all
other allocators will reserve the exact amount (16 bytes). Despite the
worse cache locality introduced by Glibc, it is intriguing to observe
that it displayed the best overall results. To further investigate this
issue we measured the fraction of the total transactions that have

91

20

25

30

35

40

45

50

55

1 2 4 6 8

T
h

ro
u
g
h
p

u
t
(x

 1
0

3
 t
x
/s

)

Number of cores

Linked List (60% updates)

5

6

7

8

9

10

11

12

1 2 4 6 8

T
h

ro
u
g
h
p

u
t
(x

 1
0

6
 t
x
/s

)

Number of cores

HashSet (60% updates)

Glibc
Hoard
TBBMalloc
TCMalloc

1

2

3

4

5

6

7

1 2 4 6 8

T
h

ro
u
g
h
p

u
t
(x

 1
0

6
 t
x
/s

)

Number of cores

Red-black Tree (60% updates)

Figure 4. Throughput of the different data structures: Sorted LinkedList (left), HashSet (middle), and Red-black Tree (right). The results are
for the write-dominated workload (60% updates).

Table 4. Percentage of aborted transactions and L1 data cache
misses for the write-dominated configuration (sorted linked list).

#P Glibc Hoard TBBMalloc TCMalloc
aborts L1miss aborts L1miss aborts L1miss aborts L1miss

1 00.0% 4.6% 00.0% 3.2% 00.0% 3.2% 00.0% 3.2%
2 10.4% 5.0% 17.4% 3.4% 17.3% 3.3% 17.4% 3.3%
4 30.9% 5.2% 45.4% 3.6% 45.0% 3.5% 45.1% 3.5%
6 44.1% 5.2% 61.2% 3.6% 60.8% 3.5% 61.0% 3.5%
8 55.7% 5.3% 70.6% 3.6% 70.2% 3.5% 69.7% 3.5%

!"#$%&'()*+$,-%.*/012$

!"#$%&'(

3%0#&0,3(-#*4

3%0#&0,3(-#*5

!"#$!!!!%!

!"#$!!!!&!

)*+,'"-*.%!"#$

//%0%1%23456789

!

#

%

'

&

(

%
%!
)%

%
%!
)#

//%0%1%23456789

607*82(1,

617*9-0%.:/;;<022-,:/=<022-,*

#

!

*
*
*

#-.$*>

#-.$*?

!"#$%&'()*+$,-%.*/012$

3%0#&0,3(-#*4

3%0#&0,3(-#*5

!"#$!!!!%!

!"#$!!!!'!

//%0%1%23456789

!

#

%

'

&

(

%
%!
)%

%
%!
)#

//%0%1%23456789

#

*
*
*

#-.$*>

#-.$*?

!"#$%&'()!*'+

Figure 5. The interaction between the allocator and the STM library
may cause false aborts. While nodes are 32-byte apart when Glibc
is used and the system advances naturally (a), the combined effect of
16-byte blocks and the STM mapping function causes false aborts
for Hoard, TBBMalloc, and TCMalloc (b).

been aborted and also the L1 data miss rate. The values are displayed
in Table 4. As expected, the cache locality is worse for Glibc but, on
the other hand, many more transactions are being aborted with the
other allocators. Our findings reveal that the good results achieved
by Glibc are due to the 32-byte aligned addresses and the way the
STM library maps addresses to versioned locks in the ORT. We use
Figure 5 to illustrate the problem in detail.

Before spawning the threads to perform the operations on the
linked list, the main thread allocates all the nodes and inserts them in
the list. Pick two nodes allocated in sequence, say x and y. When the
Glibc allocator is used, these nodes are 32 bytes apart (minimum

allocation size). Assume these addresses are 0x18000020 and
0x18000040, respectively. Now assume transaction 1 is performing
a write operation on node x (e.g., changing its next pointer to insert
a new node) and transaction 2 is traversing the list and reads node
y (Figure 5a). Transaction 1 sets the lock bit for x in the ORT and,
since the address of y is mapped to a different entry in this table,
there is no conflict and both transactions proceed (recall that the
mapping function simply right-shifts the address by 5 and takes the
rest modulo the ORT size). Now consider the same scenario for the
other allocators (Figure 5b). Since in this case addresses are 16 bytes
apart (0x18000020 and 0x18000030 in the example), transaction
2 will mistakenly be aborted.

5.2 HashSet
Differently from the linked list microbenchmark, operations on the
HashSet are very fast as a hash function is used to directly calculate
the target addresses. Therefore, transactions are short and have
relatively small read/write sets. When there is a collision in the
hashtable the nodes are linked linearly. However, the likelihood of
a collision is very low since the hash table has 128K entries and
the set is 4K long. The size of a node is also 16 bytes, but since
the transactions do not have to traverse them in a linear fashion, the
issue depicted previously for the linked list is not a concern here.
Nevertheless, one can see that some allocators did not perform very
well, in particular TCMalloc.

Looking at the fraction of aborted transactions we noticed that
both Glibc and TCMalloc exhibited much larger numbers when
compared to Hoard and TBBMalloc. On closer inspection we
realized that when transactions were about to perform an insertion
and requested memory for a node, TCMalloc was returning adjacent
memory addresses (16-byte apart) due to the behavior described
previously (see Figure 2). The impact on throughput is twofold:
first, there is false sharing due to distinct nodes in different threads
sharing the same cache line; second, the STM library will map
two contiguous nodes to the same versioned lock in the ORT. The
combined effect is the increased number of aborted transactions and
consequent reduced throughput as observed in Figure 4.

The problem that caused a subpar performance with the Glibc
allocator is a bit different but also stems from allocator-induced
false aborts. Each transaction will most likely allocate memory
from a different arena and, since arenas have a 64MB alignment,
the mapping function will discard the higher bits of the addresses
and map the result to the same versioned locked. As an example,
consider that the nodes allocated by any two transactions are at
locations 0x18000000 and 0x1c000000. There is no false sharing
at the cache level here, but both addresses will be mapped to
entry 0 in the ORT. This problem does not occur with Hoard and
TBBMalloc because their superblocks are aligned at 64KB and

92

16KB boundaries, respectively. The issue with block alignment has
been reported before by Torvald Riegel [25], who also investigated
the effectiveness of different hash functions.

5.3 Red-black Tree
The red-black tree benchmark has some key differences compared
to the previous two. First, each node of the tree is 48 bytes long.
Both Glibc and Hoard do not provide a class with the exact same
size, thus using the 64-byte class. It is curious to notice that a
48-byte block might cause false conflicts with the default shift
value (5), as its last 16 bytes will be mapped to the same versioned
lock of the first 16 bytes of the next contiguous node. Because
a 64-byte block is used in the case of Glibc and Hoard, this
would not be possible. We did not observe this trend directly in
the results, although Hoard did exhibit the lowest percentage of
aborted transactions among all allocators. For Glibc we actually
found a relatively larger fraction of aborted transactions, probably
due to arena-induced conflicts. Also, recall that the access to the
arenas requires an atomic instruction for grabbing its lock, which
also contributes to the inferior overall throughput of this allocator.

Another important difference is that in this benchmark a transac-
tion can deallocate a block of memory allocated by other transactions
(this is due to the nature of tree deletions that might rearrange the
disposition of the nodes and copy the values around). Also, the size
of the write set tends to be larger for insertions and deletions (the
other microbenchmarks only perform a single write).

5.4 Discussion
The experiments with the synthetic microbenchmarks revealed
that allocators may interfere with the way that word-based STM
libraries map addresses to versioned locks in the ORT, changing the
likelihood of false aborts. In the experiments performed previously
we use a shift amount of 5 bits, forcing a region of 32 bytes to be
mapped to the same versioned lock. We repeated the experiment
for the linked list with a shift amount of 4 in order to examine
the behavior of the allocators. The relative speedup is showed in
Figure 6 for the write-dominated workload. In general, we observed
that reducing the shift amount increased the L1 data cache misses
(more entries in the ORT need to be accessed) and, as a result, all
allocators showed a performance loss with only 1 core (there are
no conflicts in this case). As more cores are added, the question is
whether the gain obtained with the reduced number of false aborts
will overcome the extra overhead. Notice that for Glibc there is
no conflict to be avoided (the allocator returns 32-byte blocks) and
hence its performance falls off. On the other hand, the remaining
allocators display some improvements since the issue illustrated in
Figure 5 does not happen anymore.

The tuning of the shift amount parameter has been studied in
earlier works [7, 10, 21, 22, 33]. Although the optimal value for this
parameter is application specific, a value of 5 is usually accepted (4
bit on 32-bit machines) as this configuration provides the best overall
results. However, these earlier works did not consider allocator-
specific interferences. As our results have showed, for the linked list
microbenchmark a value of 5 is optimal for Glibc, but 4 presents
the best results for Hoard, TBBMalloc, and TCMalloc. Therefore,
the results indicate that the best shift amount value also depends on
the chosen allocator.

6. STAMP Analysis
We start the analysis of the STAMP benchmark by characterizing
how memory is requested/released for each application. Whereas the
microbenchmarks usually perform a simple malloc/free operation
per action (insert/delete), STAMP applications present more realistic
and complex scenarios.

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1 2 4 6 8

S
p
e
e
d
u
p
 -

 1

Number of cores

Glibc
Hoard
TBBMalloc
TCMalloc

Figure 6. Relative speedup (-1) of the sorted linked list with a shift
amount of 4 bits for the write-dominated workload (with regard to a
shift amount of 5).

Table 5 shows the number of allocations for common size classes,
the total number of mallocs and frees, and the total amount of
memory requested. The numbers are for the sequential execution
of the applications and were collected by instrumenting the calls to
the memory-related functions (e.g., malloc, free, calloc). We also
distinguish among 3 different code regions: seq, for allocations
performed during the sequential phase of the application (i.e.,
initialization); par, for allocations in the parallel region (but outside
transactions); and tx, for allocations inside transactions. Since data
acquisition was performed using the sequential execution, we relied
on the annotations provided by STAMP to differentiate the phases.

Some interesting observations can be made based on Table 5.
First, notice that Kmeans and, to a certain extent, SSCA2, only
(de)allocate memory during initialization (sequential region). In
particular, these applications never (de)allocate memory inside
transactions and we do not expect much allocator interference.
Nevertheless, it is important to notice that the way data is layed
out during the initial allocation can still have an influence on
the performance due to the mapping from memory addresses
to versioned locks. However, our performance results indicate
little influence (less than 5%) and, henceforth, we omit those two
applications from our discussion. Table 5 also reveals that not much
happens inside transactions for Labyrinth, although (de)allocations
are performed in the parallel region.

Second, the total number of allocations is greater than dealloca-
tions for some applications, namely Vacation, Yada and, to a lesser
extent, Genome. This seems to indicate some kind of memory leak
but we did not investigate this issue any further since it is out of the
scope of this work. It is also possible to see a privatization pattern
in some applications (most notably Intruder), wherein memory is
allocated inside transactions but deallocated outside them (in the
parallel region). The third aspect revealed by Table 5 is that the ma-
jority of the memory requests are for small block sizes. For instance,
96,9% of all requested memory are for blocks of 64 bytes or less,
and 99,9% for blocks of 256 bytes or less.

Although Table 5 gives us some indications about the pressure
on the allocator in terms of number of (de)allocations and memory
size, it does not show details of the multithreaded behavior and
the corresponding runtime performance. For instance, transactions
that keep aborting and perform (de)allocations might increase the
pressure on allocators. Also, the impact of data layout is not captured
by the table. In order to expose the allocator influence we executed
the applications with the different allocators and collected execution
time with the number of threads varying from 1 to 8. The average
runtime and the 95% confidence interval are shown in Figure 7.

As can be seen in Figure 7, execution times fluctuate consider-
ably among allocators and, in general, TBBMalloc and TCMalloc
seem to provide the best results. Table 6 presents the best and worst

93

Table 5. Characterization of memory allocations of the STAMP benchmark: number of allocations for the most common size classes, total
number of mallocs and frees, and total memory requested size. Three code regions are distinguished: seq for sequential, par for parallel, and
tx for transactional.

App Region Number of allocations per size class Total
16 32 48 64 96 128 256 > 256 #mallocs #frees size (bytes)

seq 18,424,629 63,211,522 230,496 3,193,555 53,264 746,845 18,278 21 85,878,610 85,878,882 2,442,988,501
Bayes par 995,833 57,000,840 21,615,886 15,999,415 2,145,548 5 1 2 97,757,530 97,757,534 3,486,228,952

tx 1,307 0 0 0 0 0 0 0 1,307 1,031 20,912
seq 66 1,064,966 1 1 0 0 0 75 1,065,109 2,125,971 1,402,884,425

Genome par 0 0 0 0 0 0 0 1 1 4 16,385
tx 1,077,186 0 0 0 0 0 0 0 1,077,186 0 17,234,976
seq 54,643 58,552 7,801,959 128,018 144,542 118,690 4,238 42 8,310,684 8,310,680 568,175,309

Intruder par 2 2 0 0 0 0 0 1 5 262,153 640
tx 8,108,082 274,440 274,874 29,458 59,313 58,987 1,872 0 8,807,026 8,544,882 164,097,927
seq 34 1 0 0 0 3 0 12 50 46 19,099,544

Kmeans par 0 0 0 0 0 0 0 0 0 4 0
tx 0 0 0 0 0 0 0 0 0 0 0
seq 1,031 1,034 3 2 0 2 2 13 2,087 2,598 29,427,288

Labyrinth par 1,027 1,028 1 514 0 514 514 1945 5,541 5,031 19,089,544
tx 1 0 0 0 0 0 0 0 1 0 16
seq 2 2 1 0 0 1 0 88 94 95 2,578,408,484

SSCA2 par 0 0 0 0 0 0 0 11 11 10 1,117,537,272
tx 0 0 0 0 0 0 0 0 0 0 0
seq 1,048,583 1,048,578 7,340,032 1 0 0 0 5 9,437,199 4,130,109 385,891,768

Vacation par 0 4 0 0 0 0 0 0 4 4 128
tx 6,891,629 6,891,631 174,033 0 0 0 0 0 13,957,293 2,677,804 285,332,048
seq 11,999,822 7,999,913 43 2 0 2 2,000,000 34 21,999,816 8,999,905 992,780,272

Yada par 15,575,266 11,360,922 1 2 0 1 1 0 26,936,193 21,469,051 609,334,240
tx 10,932,524 2,744,030 14,532 0 0 0 2,744,030 0 16,435,116 4,220,068 965,898,560

2
4
6
8

10
12
14
16
18
20
22

T
im

e
 (

s
)

Bayes

Glibc

Hoard

TBBMalloc

TCMalloc

0

2

4

6

8

10

12

14

16

Genome

10
15
20
25
30
35
40
45
50
55

T
im

e
 (

s
)

Intruder

0

15

30

45

60

75

90

105

Labyrinth

5

15

25

35

45

55

65

1 2 4 8

T
im

e
 (

s
)

Number of cores

Vacation

0

5

10

15

20

1 2 4 8

Number of cores

Yada

Figure 7. Execution time with different allocators for the STAMP
applications.

performing allocators for each application, the corresponding per-
formance difference, and the number of threads that displayed the
best performance. Differences ranging from 9.6% (Labyrinth) to
alarming 170.9% (Yada) have been observed, illustrating the impor-
tance of specifying which allocator is used as part of the evaluation
of a TM system.

As others have observed [4], Bayes presents high variability
(see Figure 7), complicating its analysis. Nonetheless, we decided

Table 6. Best and worst allocators for each STAMP application,
performance difference, and respective thread number.

Application Best Worst Perf. Diff. Threads
Bayes Hoard Glibc 47.6% 4
Genome TBBMalloc Glibc 14.4% 8
Intruder TBBMalloc Hoard 24.2% 8
Labyrinth TCMalloc Hoard 9.6% 8
Vacation TCMalloc Hoard 24.1% 8
Yada TCMalloc Glibc 170.9% 8

to include it for completeness. The performance of Genome with
Glibc is worse than with other allocators at low thread counts. We
observed a very high number of cache misses in the last level cache
for this application when Glibc is employed. For instance, a miss
ratio of 15.7% was observed with Glibc and 1 thread, against 3.32%
for Hoard with the same thread number. As Table 5 shows, Genome
only allocates 16-byte blocks in the transactional region and, since
the minimum block size for Glibc is 32 bytes, it suffers from bad
memory locality. When more threads are used, the working set can
fit into each core’s cache and the effect of cache misses is amortized.

TBBMalloc and TCMalloc displayed the best results for Intruder.
All allocators present some scalability with this application, although
a relative performance loss is noticeable with Hoard and 8 threads,
as evidenced by Figure 7. After profiling the application with Hoard,
we discovered that a large fraction of the execution time (around
20%) was spent in the allocator’s code responsible to acquire the
lock for the superblocks and heaps (Hoard uses a custom spinlock
implementation based on compare-and-swap instructions). There-
fore, Hoard suffered from lock contention. Hoard also displays
an anomalous behavior for Labyrinth. While the performance for
the other allocators are very similar, Hoard presents worse execu-
tion times starting at a thread count of 2. We again profiled the
application and found out that the performance loss is due to cache
false sharing. After padding the corresponding data structures to the
cache line size the problem was solved, confirming the false shar-
ing scenario. The best performance for Vacation was achieved with
TCMalloc. TBBMalloc and Glibc displayed similar performance,

94

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8

S
p
e
e
d
u
p

Number of cores

Genome

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 8

Number of cores

Yada

Glibc Hoard TBBMalloc TCMalloc

Figure 8. Speedup curves for Genome (left) and Yada (right) with
different allocators.

followed by Hoard. As shown in Figure 7, the execution time for
Vacation scales well with all allocators.

Finally, Yada presented the most interesting results. Firstly,
notice that there is an issue with Hoard and 2 threads. Although it
looks similar to the problem detected in Labyrinth, here we did
not find a false sharing scenario. Profiling data indicate a lock
contention problem. However, it is not clear to us at this time why it
is only happening with 2 threads. Secondly, the execution time with
Glibc shows some scalability problem, particularly when moving
from 4 to 8 threads. It is important to notice that the number of
transactional (de)allocations in Yada is very high (see Table 5).
Given that Yada is known to have a high abort rate, and that at every
transaction rollback malloc() requires a corresponding free(),
one can expect an increase in the pressure on the allocator for this
application. The synchronization mechanism employed by Glibc
(a lock per arena) seems not to scale as nicely as the one employed
by the other allocators.

6.1 Discussion
In contrast to the microbenchmark results, we did not observe a
significant influence of the allocators on the mapping function
for STAMP. As confirmed by others [21, 22], the shift amount
that provides the best performance does vary from application to
application, but we did not perceive any performance influence
resulting from the different allocators such as in the case of the
linked list (Figure 6). The most important properties of the allocators
that affected the performance of STAMP are locality, false sharing
avoidance and, most importantly, synchronization overhead. We
found that, despite being designed to avoid false sharing, Hoard was
not able to avoid it in Labyrinth. Glibc bad locality resulted in low
performance for low thread counts in Genome, although the problem
is attenuated as more threads are used. Yada is the application with
the most pressure on the allocators and, in this scenario, Glibc
did not scale well. The local private heaps maintained by the other
allocators were crucial for the scalability. Our findings also indicate
that TBBMalloc and TCMalloc presented the best overall results
(Table 6).

6.2 Importance of Allocators and Optimizations
Figure 8 shows the speedup curves for the Genome and Yada
applications with the 4 studied allocators. Consider the Genome
application initially. If only the speed number is reported, different
research groups may arrive at different conclusions: those using
Glibc will report a 6x speedup, whereas those using any of the
remaining allocators will report a 5x speedup, even if the machine
and the operating system are exactly the same. Moreover, notice
that a 6x speedup is misleading, since it is an artifact caused by
the allocator (Glibc bad locality) rather than the result of the STM
library design. Likewise, the speedup curve for Yada reveals that it
does not scale when using the Glibc allocator. Is it the STM fault?
If all we had was this single speedup curve we could conclude that

Table 7. Performance gains with optimizations (8 threads).

App Allocator
Glibc Hoard TBBMalloc TCMalloc

Genome -1.90% -0.55% 0.00% 0.00%
Intruder 6.56% 14.39% 2.88% 0.92%
Vacation 2.77% 0.32% 3.95% 0.71%
Yada 38.15% -0.91% 4.73% 2.23%

that was the case. However, Yada does scale (and performs better)
with the other allocators. These examples emphasize the importance
of reporting the allocators employed in the evaluation of an STM
system, since their behavior can influence the application/STM
performance.

We also investigated STM-specific dynamic memory manage-
ment optimizations. Recall that when memory is allocated inside
transactions, the STM system must keep track of all allocated objects
because they must be freed in case of aborts. Likewise, dealloca-
tions are deferred till commit time. Two main optimizations can be
performed in such cases. Firstly, instead of freeing objects upon an
abort, it is possible for the STM system to cache them locally for fu-
ture reuse, thus avoiding a call to the system allocator (which could
further require synchronization). Because objects in the cache are
thread-local, synchronization overhead is avoided upon future allo-
cations. Secondly, when a transactional free operation is commited,
the STM system could again store the freed objects locally. This type
of optimization has been reported in the literature before [13, 21].
However, none of the works considered the impact of the system
allocator on the optimizations.

The performance gains with the aforementioned optimizations
are reported in Table 7. The applications with the most transactional
(de)allocations were selected and executed with 8 threads. As Table 7
reveals, Genome and Vacation benefits little from the optimizations.
In fact, a performance degradation is sometimes observed due to the
caching overhead. For Intruder, Hoard achieved a 14% improvement
since it suffered from lock contention previously (Figure 7). In this
case, locally caching the (de)alloactions helped to attenuate the
pressure on the allocator. A huge improvement was observed for
Yada with Glibc (38%). Recall that Yada displays a high abort
rate and, in this scenario, transactional (de)allocations are more
likely to happen and caching the allocations locally proved to be
a valuable optimization. However, it had little impact on the other
allocators. The reason is that Hoard, TBBMalloc, and TCMalloc
already perform some kind of buffering. In particular, TCMalloc
relies aggressively on caching and, as can be noticed, does not
benefit a lot from the optimizations. Our results indicate that the
optimizations previously reported in the literature are only effective
for some allocators, but show little improvement for those that
already perform thread-private memory caching.

7. Conclusions
As transactional memory is becoming mainstream it is important
to understand how it works alongside other system components.
In this paper we have conducted a thorough investigation of the
interplay between memory allocators and software transactional
memory systems. By using synthetic microbenchmarks we per-
formed a detailed analysis of the interference of allocators with
the mapping function of blocking software transactional memory
systems, showing that a function that works well for one allocator
might not for others. We also presented a comprehensive study of
dynamic memory performance on the STAMP benchmark, detect-
ing differences ranging from 9.6% to 171% when using distinct
allocators. Furthermore, we showed that common transaction-aware
memory allocation optimizations are only effective for allocators
which do not use thread-private caching mechanisms. Our results

95

highlight the importance of reporting the allocator employed in the
evaluation of transactional systems. For future work we intend to
investigate the impact of memory allocation on other classes of
software transactional systems, as well as recent hybrid approaches
based on best-effort hardware transactional memory.

Acknowledgments
We would like to thank the reviewers for their valuable feedback,
Tim Harris for early discussions, and Rafael Auler for helping us
with the artifact packaging and testing. This work is supported by
FAPESP under grant number 2011/19373-6.

References
[1] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard:

A scalable memory allocator for multithreaded applications. ACM
SIGPLAN Notices, 35(11):117–128, Nov. 2000.

[2] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: Why is it only a
research toy? Communications of the ACM, 51(11):40–46, Nov. 2008.

[3] M. Castro, L. F. W. Goes, C. P. Ribeiro, M. Cole, M. Cintra, and J.-
F. Mehaut. A machine learning-based approach for thread mapping
on transactional memory applications. In Proceedings of the 2011
18th International Conference on High Performance Computing, pages
1–10, Dec. 2011.

[4] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere.
Evaluation of AMD’s advanced synchronization facility within a
complete transactional memory stack. In Proceedings of the 5th
European Conference on Computer Systems, pages 27–40, Apr. 2010.

[5] D. Dice and A. Garthwaite. Mostly lock-free malloc. In Proceedings
of the 3rd International Symposium on Memory Management, pages
163–174, June 2002.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In 20th
International Symposium on Distributed Computing, pages 194–208,
Sept. 2006.

[7] A. Dragojevic, R. Guerraoui, and M. Kapalka. Stretching transactional
memory. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 155–165,
June 2009.

[8] A. Dragojevic, P. Felber, V. Gramoli, and R. Guerraoui. Why STM
can be more than a research toy. Communications of the ACM, 54(4):
70–77, Apr. 2011.

[9] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On the power of
hardware transactional memory to simplify memory management. In
Proceedings of the 30th Annual Symposium on Principles of Distributed
Computing, pages 99–108, June 2011.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In Proceedings of the 13th
Symposium on Principles and Practice of Parallel Programming, pages
237–246, Feb. 2008.

[11] S. Ghemawat and P. Menage. TCMalloc : Thread-caching malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html. [Last accessed
November, 2013].

[12] W. Gloger. Dynamic memory allocator implementations in Linux
system libraries. In Internationaler Linux Kongreß’ in Würzburg, May
1997.

[13] J. E. Gottschlich and D. A. Connors. DracoSTM: A practical C++
approach to software transactional memory. In Proceedings of the 2007
Symposium on Library-Centric Software Design, pages 52–66, Oct.
2007.

[14] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2 edition, June 2010.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. Software
transactional memory for dynamic-sized data structures. In Proceedings
of the 22nd Annual Symposium on Principles of Distributed Computing,
pages 92–101, July 2003.

[16] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg.
McRT-malloc: A scalable transactional memory allocator. In Proceed-
ings of the 2006 International Symposium on Memory Management,
pages 74–83, June 2006.

[17] Intel R© Architecture Instruction Set Extensions Programming Refer-
ence. Intel Corporation, Feb. 2012.

[18] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture
and implementation for IBM system z. In Proceedings of the 45th
ACM/IEEE International Symposium on Microarchitecture, pages 25–
36, Dec. 2012.

[19] A. Kukanov and M. J. Voss. The foundations for scalable multi-core
software in Intel R© threading building blocks. Intel Tecnology Journal,
11(4):309–322, Nov. 2007.

[20] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[21] S. Mannarswamy and R. Govindarajan. Making STMs cache friendly
with compiler transformations. In Proceedings of the 20th International
Conference on Parallel Architectures and Compilation Techniques,
pages 232–242, Oct. 2011.

[22] S. S. Mannarswamy and R. Govindarajan. Variable granularity access
tracking scheme for improving the performance of software transac-
tional memory. In Proceedings of the International Symposium on
Parallel and Distributed Processing, pages 455–466, May 2011.

[23] M. M. Michael. Scalable lock-free dynamic memory allocation.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 35–46, June 2004.

[24] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford Transactional Applications for Multi-Processing. In Proceedings
of the IEEE International Symposium on Workload Characterization,
pages 35–46, Sept. 2008.

[25] T. Riegel. Software Transactional Memory Building Blocks. PhD thesis,
Technischen Universitat Dresden, May 2013.

[26] W. Ruan, Y. Liu, C. Wang, and M. Spear. On the platform specificity of
STM instrumentation mechanisms. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 1–10, Feb.
2013.

[27] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R. L.
Hudson, L. Petersen, V. Menon, B. Murphy, T. Shpeisman, E. Sprangle,
A. Rohillah, D. Carmean, and J. Fang. Enabling scalability and
performance in a large scale CMP environment. In Proceedings of
the 2nd European Conference on Computer Systems, pages 73–86, Mar.
2007.

[28] S. Seo, J. Kim, and J. Lee. SFMalloc: A lock-free and mostly
synchronization-free dynamic memory allocator for manycores. In
Proceedings of the 20th International Conference on Parallel Architec-
tures and Compilation Techniques, pages 253–263, Oct. 2011.

[29] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting perfor-
mance data with PAPI-C. In M. S. Müller, M. M. Resch, A. Schulz,
and W. E. Nagel, editors, Tools for High Performance Computing 2009,
pages 157–173. Springer Berlin Heidelberg, 2010.

[30] D. Tiwari, S. Lee, J. Tuck, and D. Solihin. MMT:exploiting fine-grained
parallelism in dynamic memory management. In Proceedings of the
International Symposium on Parallel and Distributed Processing, pages
1–12, Apr. 2010.

[31] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael. Evaluation of Blue Gene/Q hardware
support for transactional memories. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, pages 127–136, Sept. 2012.

[32] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In Proceedings of the
International Workshop on Memory Management, pages 1–116, 1995.

[33] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S.
Lee. Kicking the tires of software transactional memory: Why the
going gets tough. In Proceedings of the 20th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 265–274, June 2008.

96

