
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://link.springer.com/article/10.1007/s00165-015-0333-3

DOI: 10.1007/s00165-015-0333-3

Direitos autorais / Publisher's copyright statement:

©2015 by Springer. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/

DOI 10.1007/s00165-015-0333-3
BCS © 2015
Formal Aspects of Computing (2015) 27: 805–829

Formal Aspects
of Computing

Generating invariants for non-linear loops by
linear algebraic methods
Rachid Rebiha1, Arnaldo Vieira Moura1 and Nadir Matringe2
1 Institute of Computing, University of Campinas, Campinas, Brazil
2 LMA, University of Poitiers, Poitiers, France

Abstract. Wepresent new computational methods that can automate the discovery and the strengthening of non-
linear interrelationships among the variables of programs containing non-linear loops, that is, that give rise to
multivariate polynomial and fractional relationships.Ourmethods have complexities lower than themathematical
foundations of the previous approaches, which used Gröbner basis computations, quantifier eliminations or
cylindrical algebraic decompositions. We show that the preconditions for discrete transitions can be viewed as
morphisms over a vector space of degree bounded by polynomials. These morphisms can, thus, be suitably
represented by matrices. We also introduce fractional and polynomial consecution, as more general forms for
approximating consecution. The new relaxed consecution conditions are also encoded as morphisms represented
by matrices. By so doing, we can reduce the non-linear loop invariant generation problem to the computation
of eigenspaces of specific morphisms. Moreover, as one of the main results, we provide very general sufficient
conditions allowing for the existence and computation ofwhole loop invariant ideals. As far as it is our knowledge,
it is the first invariant generation methods that can handle multivariate fractional loops.

Keywords: Formal methods, Invariant generation, Linear algebra

1. Introduction

An invariant at a location of a program is an assertion true of any reachable program state associated to this
location.We present a newmethod for non-linear invariant generation that addresses various deficiencies of other
state-of-the-art methods. More generally, we provide mathematical techniques and design efficient algorithms
to automate the discovery and strengthening of non-linear interrelationships among the variables of programs
containing non-linear loops, which lead to multivariate polynomial and fractional relationships.

FAPESP BEPE grant 2013/04734-9, FAPESP grant 2011/08947-1.
Correspondence and offprint requests to: R. Rebiha, E-mail: rachid@ic.unicamp.br

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-015-0333-3&domain=pdf

806 R. Rebiha et al.

It is well-known that the automation and effectiveness of formal verification depend on the ease with which
invariants can be automatically generated. Actually, the verification problem of safety properties, such as no null
pointer deferenciation, buffer overflows, memory leak or outbounds, and array accesses, can be reduced to the
problem of invariant generation [MP95]. Invariants are also essential to prove and establish liveness properties
such as progress or termination [MP95]. Furthermore, the standard techniques [MP95] for program verification
use invariant assertions to directly prove program properties, or to provide supporting lemmas that can be used
to establish other safety and liveness properties. We look for invariants that strengthen what we wish to prove,
and so allow us to establish the desired property. Also, they can provide precise over-approximations to the set
of reachable states. Also, the weakest precondition method [Dij76, Flo67], the Floyd–Hoare inductive assertion
technique [Flo67, Hoa69], and the standard ranking functions technique [MP95], all require loop invariants in
order to establish correctness and so render the verification method completely automatic. Again, in order to
establish termination verification, the standard ranking functions technique requires the automatic generation
of invariants.

In order to generate loop invariants, one need to discover inductive assertions that hold at any step of the loop.
An inductive assertion alsoholds at the first time the loop location is reached—this is the initiation condition—and
it is also preserved under instructions that cycle back to the loop location—this being the consecution condition.
If we choose transition systems as the representationmodel and automata as the computationalmodel, we can say
that the invariant holds in the initial state of the system—the initial condition—and that every possible transition
preserves it—the consecution conditions. In other words, the invariant holds in any possible reachable state.

In the case of loops describing a linear system, Farka’s lemma [Sch86] can be used to encode the conditions for
linear invariants. On the other hand, for non-linear invariants, the difficulty of automatic generation remains very
challenging. By today known methods, they require a large number of Gröbner bases computations [SSM04b],
first-order quantifier eliminations [Wei97, Col75], or cylindrical algebraic decompositions [CXYZ07]. Invariants
can also be computed as fixed points on ideals, using fixed point techniques [RCK07a], abstract interpretation
frameworks [CC92,CC77], andGröbner bases constructions.Abstract interpretation introduces imprecision, and
widening operatorsmust be providedmanually by the user in order to assure termination.A too coarse abstraction
would limit these approaches to trivial invariants in the presence of non-linear loops. Other methods [KJ06,
Kov08] attempt to generate invariants from a restricted class of P-solvable loops. These methods use techniques
from algebra and combinatorics, like Gröbner bases [JKP06], variable elimination, algebraic dependencies and
symbolic summation, and so also incur in high computational complexities.

More recent approaches have been constraint-based [SSM04b, RCK07a, Kap04, RCK07b, SSM04a, GT08,
PJ04]. In these cases, a candidate invariantwith afixeddegree andunknownparametric coefficients, i.e., a template
form, is proposed as the target invariant to be generated. The conditions for invariance are then encoded, resulting
in constraints on the unknown coefficients whose solutions yield invariants. One of the main advantage of such
constraint-based approaches is that they are goal-oriented. The main challenge for these techniques remains
in the fact that they still require a high number of Gröbner bases [Buc96] computations, first-order quantifier
elimination [Wei97, Col75], cylindrical algebraic decomposition [CXYZ07], or abstraction operators. And known
algorithms for those problems are, at least, of double exponential complexity.

Despite tremendous progress over the years [SSM04b, BBGL00, RCK07a, BLS96, CXYZ07, Kov08, KJ06,
Cou05, MOS02, RCK07b, GT08, Tiw08, PC08], the problem of loop invariant generation remains very chal-
lenging for non-linear discrete systems. In this work we present new methods for the automatic generation of
loop invariants for non-linear systems. As will be seen, these methods give rise to more efficient algorithms, with
much lower complexity in space and time. We develop the new methods by first extending our previous work on
non-linear non-trivial invariant generation for discrete programs with nested loops and conditional statements,
[RMM08b, RMM10].

We can summarize our contributions as follows:

• We do not need to start with candidate invariants that generate intractable solving problems. Instead, we
show that the preconditions for discrete transitions can be viewed as morphisms over a vector space of degree
bounded by polynomials which can, thus, be suitably represented by matrices.

• We introducemore general forms for approximating consecution, called fraction and polynomial consecution.
The new relaxed consecution requirements are also encoded asmorphisms, represented bymatrices with terms
that are theunknowncoefficients used toapproximate the consecution conditions.As far as it is ourknowledge,
these are the first methods that can effectively handle multivariate fractional systems.

Generating invariants for non-linear loops 807

• We succeed in reducing the non-linear loop invariant generation problem to the computation of eigenspaces
or nullspaces of specific endomorphisms. We provide general sufficient conditions guaranteeing the existence
and allowing the computation of invariant ideals. The unknown coefficients appearing in the matrices used
to approximate the consecution conditions are assigned in order to insure that the nullspaces generated are
not trivial ones. Taking into consideration the specific type of matrices we are manipulating, we determine for
which values of the coefficients their ranks are minimal. Our decision procedure for those assignments is very
simple and efficient. At each step of the assignments, we echelon the matrices by making the highest term of
one column to vanish.

• Our approach does not generate an invariant at a time. Instead we generate an ideal of invariants—an infinite
structure—by computing the basis of a specific vector space giving rise to provable, inductive invariants. This
could also be used by existing approaches dealing with the generations of such vector spaces of inductive
invariants [Cou05, RCK07b, Kov08].

• Our technique comprises three computational steps, each of polynomial time complexity. In contrast, themost
recent and best performing constraint-based approaches can be summarized in three main steps, with each
of these steps inducing a number of computations that are of double exponential time complexity. Further,
as soon as the loop contains non-linear instructions, the constraints considered at the final step gives rise to
systems of non-linear equations, rendering unfeasible their resolution; see Sect. 4.3. We, by contrast, propose
a computational method of much lower time complexity than other present approaches based on fixed point
computation, or on constraint-based approaches.

• We present some preliminary experimental results. For that, we used Sage [SJ05] with interfaces written in
Python, in order to be able to access other mathematical packages.

• We incorporate a strategy that attains optimal degree bounds for candidate invariants. We also note that our
existence results and methods can be reused in other approaches in order to reduce their time complexity,
since they can reduce the number of Gröbner basis computations or quantifier eliminations, for example.

Example 1 (Motivational Example). Consider the following program loop:

...
while (...){
...

x := x*y + x;
...
y := y^2;

...
}

Present constraint-based static program analysis techniques are facing some difficulties in producing any con-
clusion that could be somehow related to the values of the variables x and y , given that the semantic of the
two instructions inside the loop relies on non-linear arithmetic. Such non-linearities are presently recognized by
industry and academia as a critical bottleneck for automatic program verification and static program analysis.

In present standard approaches for invariant generation for non-linear loops, the loop instructions are first
used in order to form varieties, to build associated algebraic assertions and an ideal I . Then, they compute a
GröbnerbasisG for I .Next, theypostulate a template polynomialQ , i.e., a polynomialwithunknowncoefficients,
as a candidate invariant, and proceed by performing a reduction ofQ byG in order to obtain its reduced normal
formNFG (Q).An important obstacle facedat this point is that all knownalgorithms for computingGröbner basis
and for constructing the normal form reduction NFG (Q) are of doubly exponential time complexity. Having the
normal formNFG (Q), they generate the set of candidate invariant constraints in the form of a system of equations
by letting NFG (Q) � 0, and then they attempt to solve it directly. But we show that as soon as the loop contains
a non-linear instruction, the constraints obtained in their final step lead to systems of non-linear equations in
unknown parameters, which remains untractable in practice (see Sect. 4.3). For more details on the limitations
of such techniques, illustrated on this same motivational example, see Example (6), in Sect. 4.3.

808 R. Rebiha et al.

In this article, we introduce new symbolic techniques with fast numerical approaches that can be used in these
situations. Our techniques have fewer computational steps. We first compute some specific matrix M obtained
directly from the loop instructions.We then generate amatrixL that we use to approximate the consecution condi-
tion.Matrix L contains some fixed parameters so as to guarantee that such nullspaces are not empty.We note that
the unknown coefficients do not play the role of templates. Rather, they are introduced to allow us to reduce the
rank of thematrixM −L, thus leading to a non-trivial nullspace. Based on our theoretical contributions, we know
that the nullspace ofM − L provides us with a non-trivial vector space of inductive invariants. In the example at
hand, our method directly computes {x 2, x ∗ y − x , y2 − 2y +1} as a basis for a vector space of invariants, and all
elements in this space provide non-trivial invariants.We thus obtain an ideal for non-trivial inductive invariants. In
other words, for allG1,G2,G3 ∈ R[x , y], we would getG1(x , y)(x 2)+G2(x , y)(xy−x)+G3(x , y)(y2−2y+1) � 0
as an inductive invariant. Take, for instance, the initial step (y � y0, x � 1). A possible invariant is, then,
y0(1 − y0)x 2 + xy − x + y2 − 2y + 1 � 0. By taking two elements of this basis, one could generates inductive
invariants holding for any type of initial conditions on the variables. Such invariants are beyond the reach of
other current invariant generation techniques. In Sect. 5.4, we make explicit all the computational steps of our
method. �

In Sect. 2 we present ideals of polynomials and their possible interactions with inductive assertions. In
Sect. 3 we introduce new consecution conditions, and extend them to fractional systems. In Sect. 4 we con-
sider linear loops, and present results for the existence of non-trivial invariants in these settings. We also
recast the problem in term of linear algebra, and present a complete decision procedure for the automatic
generation of non-trivial non-linear invariants. In Sect. 5 we extend our method to non-linear loops. In Sect.
6 we propose a strategy to obtain optimal degree bounds. In Sect. 7 we provide a complete generalization
by considering loops describing multivariate fractional systems, and in Sect. 8 we show how to handle con-
ditions and nested loops. Section 9 exposes some preliminary experimental results, and Sect. 10 contains a
discussion. We conclude in Sect. 11. The Appendix contains proofs for all theorems, lemmas and corollar-
ies stated in this article. Further examples can be found in companion technical reports and other articles
[RMM08a, RMM08b, RMM10, RM11a, RM11b].

2. Polynomial ideals and inductive assertions

We will use the following notations. Let K be a field. The ring of multivariate polynomials over the set of
variables {X1, ..,Xn } with coefficients in K will be indicated by K[X1, ..,Xn]. We will denote by Rd [X1, ..,Xn]
the vector space of multivariate polynomials of degree at most d over the set of real variables {X1, ..,Xn }. We
will write Vect(v1, . . . , vn) for the vector space generated by a basis (v1, . . . , vn). The dimension of a subspace
W ⊆ Vect(v1, . . . , vn) is written Dim(W). Clearly, Dim(Vect(v1, . . . , vn)) � n. The vector space of all matrices
over a filedK will be denoted byM(m,n,K). LetM ∈ M(m,n,K) be the matrix representation of a morphism
over a vector space. Its kernel, or nullspace, is the set Ker (M) � {v ∈ K

n | M · v � 0Km }. The kernel of M
is said to be trivial if it contains only the zero vector. The rank of M , denoted Rank (M), is the dimension of
the subspace {M · v ∈ K

m | v ∈ K
n}. Alternatively, it is the number of linearly independent columns or rows

of the matrix. We know that Rank (M) + Dim(Ker (M)) � n. An eigenvalue of M is a scalar λ ∈ K such that
M · v � λ v for some nonzero vector v . The set {v ∈ K

n | M · v � λ v} is the eigenspace associated to an
eigenvalue λ. To compute the basis of eigenspaces and nullspaces, we use well-known state-of-the-art algorithms,
such as those that Sage or Mathematica provide. To solve equations of degree less than 5 one could consider the
classical Lagrange resolvents [Lan02, AV97] method. A primed x ′ will refer to the next state value of a variable
x , after a transition is taken. If V is a set of variables, then V ′ is the set of all primed variables in V .

2.1. Polynomial ideals

Definition 1 An ideal is any set I ⊆ K[X1, ..,Xn] such that

• It is closed under addition. In other words, if P ,Q ∈ I then P +Q ∈ I ;
• It is closed under multiplication by any element in K[X1, ..,Xn], i.e., if P ∈ I and Q ∈ K [X1, ..,Xn] then
PQ ∈ I ;

• It includes the null polynomial, i.e. 0K[X1,..,Xn] ∈ I .

�

Generating invariants for non-linear loops 809

Let E ⊆ K[X1, ..,Xn] be a set of polynomials. The ideal generated by E is the set of finite sums

(E) �
{

k∑
i�1

PiQi | Pi ∈ K[X1, . . . ,Xn], Qi ∈ E , k ≥ 1

}
.

Definition 2 A set of polynomials E is said to be a basis of an ideal I if I � (E). �
By theHilbert Basis Theorem, we know that all ideals have a finite basis. Let I be an ideal andQ a polynomial.

The important question of knowing if Q belongs to I is known as the Ideal Membership Problem. In order to
decide membership, one first computes the normal form of Q by performing polynomial reductions according
to I . If the resulting normal form is the null polynomial we can conclude that Q ∈ I . A Gröbner basis of I
guarantees the confluence and termination of those polynomial reductions.

2.2. Inductive assertions and invariants

The contribution and novelty in our approach clearly set it apart from [SSM04b] as their constraint-based
techniques require several Gröbner basis computations and also require solving non-linear problems for each
location. Nevertheless, they introduce a useful formalism to treat programs loops, and we start from similar
definitions for transitions systems, inductive invariants and consecution conditions.We will use transition systems
as representation of imperative programs and automata as their computational models.

Definition 3 A transition system is given by 〈V ,L, T , l0,�〉, where
• V is a set of variables,
• L is a set of locations and l0 ∈ L is the initial location.
• A transition τ ∈ T is given by a tuple 〈lpre , lpost , ρτ 〉, where lpre and lpost name the pre- and post- locations
of τ , and the transition relation ρτ is a first-order assertion over V ∪ V ′.

• � is the initial condition, given as a first-order assertion over V .

The transition system is affine when ρτ is an affine form, and it is algebraic when ρτ is an algebraic form. �
Definition 4 Let W be a transition system. An invariant at location l ∈ L is an assertion over V which holds at
all states reaching location l . An invariant ofW is an assertion over V that holds at all locations. �

Given our representational and computational models, we want to say that an invariant holds in the initial
state of the system, a condition that will be guaranteed by an initial condition. We also want to say that every
possible transition preserves the invariant, when specific consecution conditions hold. In order to generate loop
invariants one needs to discover inductive assertions.

Definition 5 Let W � 〈V ,L, T , l0,�〉 be a transition system and let D be an assertion domain. An assertion
map forW is a map η : L → D. We say that η is inductive if and only if the following conditions hold:

• Initiation: � |� η(l0)
• Consecution: For all τ in T s.t. τ � 〈li , lj , ρτ 〉 we have η(li) ∧ ρτ |� η(lj)′.

�
We know that if η is an inductive assertion map then η(l) is an invariant at l forW [Flo67].

3. New continuous consecution conditions

In this section we treat discrete transitions by extending and adapting our previous work on loop invariant
generation for discrete programs [RMM08a, RMM08b, RMM10]. We also consider discrete transitions that are
part of connected components and circuits, thus generalizing the case of simple propagations.

First, we show how to encode continuous consecution conditions.

Definition 6 Consider a transition system W � 〈V ,L, T , l0,�〉. Let τ � 〈li , lj , ρτ 〉 be a transition in T and let
η be an algebraic inductive map with η(li) ≡ (Pη(X1, ..,Xn) � 0) and η(lj) ≡ (P ′

η(X1, ..,Xn) � 0) where Pη is a
multivariate polynomial in R[X1, ..,Xn] such that it has null values at li and at lj , i.e., before and after taking the

810 R. Rebiha et al.

transition. Note that this does not imply that Pη is the null polynomial. We identify the following notions when
encoding continuous consecution conditions:

• We say that η satisfies a Fractional-scale consecution for τ if and only if there exists a multivariate fractional
T
Q

such that ρτ |� (Pη(X ′
1, ..,X

′
n)− T

Q
Pη(X1, ..,Xn) � 0). We also say that Pη is a T

Q
-scale discrete invariant.

• We say that η satisfies a Polynomial-scale consecution for τ if and only if there exists a multivariate polynomial
T such that ρτ |� (Pη(X ′

1, ..,X
′
n) − TPη(X1, ..,Xn) � 0). We also say that Pη is a polynomial-scale and a

T -scale discrete invariant.
• We say that η satisfies a Constant-scale consecution for τ if and only if there exists a constant λ such that

ρτ |� (Pη(X ′
1, ..,X

′
n) − λPη(X1, ..,Xn) � 0). We also say that Pη is a constant-scale, or a λ-scale discrete

invariant. �

Constant-scale consecution encodes the fact that the numerical value of the polynomial Pη, associated with
assertion η(li), is given by λ times its numerical value throughout the transition τ . Polynomial-scale consecution
encodes the fact that the numerical value of the polynomialPη, associated with assertion η(li), is given byT times
its numerical value throughout the transition τ , where T is a polynomial in R[X1, . . . ,Xn]. Such T polynomials
can be understood as template multiplicative factors, that is, they are polynomials with unknown coefficients.
We are able to handle the general case when the loop describes a multivariate fractional system with Fractional-
scale consecution. Fractional-scale consecution encodes the fact that the numerical value of the polynomial Pη,
associated with assertion η(li), is given by T

Q
times its numerical value throughout the transition τ . The fractional

T
Q

can contain unknown coefficients. As can be seen, the consecution conditions are relaxed when going from
constant to fractional scaling.

4. Discrete transition and affine systems

In this section we treat constant-scale consecution encodings. Consider a transition systems corresponding to the
loop τ � 〈li , li , ρτ 〉 and its affine transition relation

ρτ ≡
⎡
⎢⎣
X ′

1 � L1(X1, . . . ,Xn)
...

X ′
n � Ln (X1, . . . , xn)

⎤
⎥⎦ . (1)

Here, the loop instructions are affine or linear forms Li (X1, . . . ,Xn) � ∑n
k�1 ci,k−1Xk + ci,k , 1 ≤ i ≤ n.

4.1. Generating λ-scale invariants

We have the following λ-scale invariant characterization.

Theorem 1 Consider a transition system corresponding to a loop τ as described in Eq. (1). A polynomial Q in
R[X1, ..,Xn] is a λ-scale invariant for constant-scale consecution with parametric constant λ ∈ R for τ if and only
if Q(L1(X1, ..,Xn), ..,Ln (X1, ..,Xn)) � λQ(X1, ..,Xn). �

Let the degree of Q ∈ R[X1, ..,Xn] be r . We show that for good choices of λ there always exists such a
λ-invariant that is also non-trivial. We note thatQ(L1(X1, ..,Xn), ..,Ln (X1, ..,Xn)) is also of degree r because all
Li ’s are of degree 1. Recasting the situation and ρτ into linear algebra, consider the morphism

M :
{
Rr [X1, . . . ,Xn] → Rr [X1, . . . ,Xn]
Q(X1, . . . ,Xn) �→ Q(L1(X1, ..,Xn), . . . ,Ln (X1, ..,Xn)).

This is indeed an endomorphism because all Li ’s are of degree 1. Let M be its matrix representation in the
canonical basis of Rr [X1, .,Xn]. First, we show how we can build matrixM .

Generating invariants for non-linear loops 811

Example 2 Consider the following loop ρτ �
[
x ′
1 � 2x1 + x2 + 1
x ′
2 � 3x2 + 4

]
. We have two polynomials of degree 1, in two

variables. They are L1(x1, x2) � 2x1 + x2 + 1, and L2(x1, x2) � 3x2 + 4. Consider the associated endomorphism
M from R2[x1, x2] to R2[x1, x2]. We want to obtain an associated matrix M for it. For that, we can use B1 �
(x 2

1 , x1x2, x 2
2 , x1, x2, 1) as a basis for R2[x1, x2] and computeM (P) for all elements P in B1, expressing the results

in the same basis. For the first column of M we consider P (x1, x2) � x 2
1 as the first element of B1, and compute

M (P) � P (L1(x1, x2),L2(x1, x2)), which is expressed in B1 as

M (x2
1) = 4 x2

1 + 4 x1x2 + 1 x2
2 + 4 x1 + 2 x2 + 1 × 1

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 0
4 6 0 0 0 0

1 3 9 0 0 0

4 8 0 2 0 0

2 7 24 1 3 0

1 4 16 1 4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This concludes the example. �

Now, let Q ∈ R[X1, ..,Xn] be a λ-scale invariant for constant-scale consecution with parametric constant
λ ∈ R for a given system defined by L1, ..,Ln ∈ R[X1, ..,Xn]. By Theorem 1, we have

Q(L1(X1, . . . ,Xn), ..,Ln (X1, . . . ,Xn)) � λQ(X1, . . . ,Xn).

Using the associated endomorphism M , we have:

Q(L1(X1, . . . ,Xn), ..,Ln (X1, . . . ,Xn)) � λQ(X1, . . . ,Xn) ⇔
M (Q) � λQ ⇔
M (Q) � λI (Q) ⇔

(M − λI)(Q) � 0R[X1,..,Xn] ⇔
Q ∈ Ker (M − λ I),

where I is the identity endomorphism and I is the associated identity matrix in Rr [X1, ..Xn]. Hence, λ must be
an eigenvalue ofM if we want to find a non null λ-invariant whose coefficients will be those of an eigenvector.

We can now state the following theorem.

Theorem 2 A polynomial Q of Rr [X1, ..,Xn] is λ-invariant for constant-scale consecution if and only if there exists
an eigenvalue λ of M such that Q belongs to the eigenspace corresponding to λ. �

We also notice that, by construction, the last column of M is always (0, . . . , 0, 1)�. Thus 1 is always an
eigenvalue ofM with a corresponding eigenvector which leads to the trivial λ-invariantQ(X1, ..,Xn) � a, where
a is the coefficient of the constant term. Eigenvalue 1 always gives the constant polynomial as a λ-invariant, but
it might give better invariants for other eigenvectors if dim(Ker (M − λ I)) ≥ 2, as we will see in the sequel.

Example 3 Looking at the eigenvalues of thematrixM in Example 2, if we fix λ to be 4we get that the correspond-
ing eigenspace is generated by the vector (1,−2, 1,−6, 6, 9)�. Interpreted in the canonical basis of R[x1, x2], the
associated 4-invariant is Q(x1, x2) � 1x12 − 2x1x2 + x22 − 6x1 + 6x2 + 9. �

Wefirst treat the general case where the transition system has only two variables.Wewill look for a λ-invariant
Q of degree two. Let

ρτ �
[
x ′
1 � c1,0x1 + c1,1x2 + c1,2
x ′
2 � c2,0x1 + c2,1x2 + c2,2

]
.

812 R. Rebiha et al.

Recall that we must solve the equation Q(c1,0X1 + c1,1X2 + c1,2, c2,0X1 + c2,1X2 + c2,2) � λQ(X1,X2). Thus, for
M we get the following matrix:

⎛
⎜⎜⎜⎜⎜⎝

c1,0
2 c1,0c2,0 c2,0

2 0 0 0
2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1 0 0 0
c1,1

2 c1,1c2,1 c2,1
2 0 0 0

2c1,0c1,2 c1,0c2,2 + c1,2c2,0 2c2,0c2,2 c1,0 c2,0 0
2c1,1c1,2 c1,1c2,2 + c1,2c2,1 2c2,1c2,2 c1,1 c2,1 0
c1,2

2 c1,2c2,2 c2,2
2 c1,2 c2,2 1

⎞
⎟⎟⎟⎟⎟⎠

.

We see that the last column is as predicted, plus the matrix is block diagonal. Thus its characteristic polynomial
is P (λ) � (1 − λ)P1(λ)P2(λ), with P1 being the characteristic polynomial of(

c1,0 c2,0
c1,1 c2,1

)
,

and P2 being the characteristic polynomial of⎛
⎝ c1,02 c1,0c2,0 c2,02
2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1
c1,12 c1,1c2,1 c2,12

⎞
⎠ .

HereP2 is of degree 3 and has at least one real root. This root can be computed by the Lagrange resolventmethod.
Choosing λ to be this root, the corresponding eigenvectors will give non-trivial λ-invariants of degree two, since
at least one of the coefficients of the monomials x 2

1 , x1x2 and x 2
2 must be non null for such an eigenvector.

Corollary 1 Let M be the matrix introduced in this section. The problem of finding a non-trivial λ-invariant is
decidable if one of the following assertions is true:

• M is block triangular (with 4 × 4 blocks or less),
• The eigenspace associated with eigenvalue 1 is of dimension greater than 1. �

4.2. Intersection with initial hyperplanes

Let Q ∈ Rr [X1, ..,Xn] be a λ-invariant for constant-scale consecution, that is,

Q(L1(X1, ..,Xn), ..,Ln (X1, ..,Xn)) � λQ(X1, ..,Xn).

Now let u1, . . . , un be the initial values of X1, . . . ,Xn . For the initial step we need Q(u1, . . . , un) � 0. We have
P �→ P (u1, . . . , un) as a linear form in Rr [X1, . . . ,Xn]. Hence initial values correspond to a hyperplane in
Rr [X1, . . . ,Xn], given by the kernel of P �→ P (u1, . . . , un). If we add the initiation step, Q(X1, . . . ,Xn) � 0 will
be an inductive invariant (see Definition 4) if and only if there exists an eigenvalue λ of M such that Q belongs
to the intersection of the eigenspace corresponding to λ and the hyperplane Q(u1, . . . , un) � 0.

Theorem 3 A polynomial Q in Rr [X1, ..,Xn] is an inductive invariant for the affine loop (see Definition 5) with
initial values (u1, . . . , un) if and only if there is an eigenvalue λ ofM such thatQ is in the intersection of the eigenspace
of λ and the hyperplane Q(u1, . . . , un) � 0. �

In the following corollary, we state an important result.

Corollary 2 There will be a non-null polynomial invariant for any given initial values if and only if there exists an
eigenspace of M with dimension at least 2. �
Example 4 We return to running Example 2. Matrix M has 6 distinct eigenvalues, and so the correspond-
ing eigenspaces are of dimension 1. We denote by Eλ the eigenspace corresponding to λ. Then E4 has a
basis (1,−2, 1,−6, 6, 9)�, E6 has a basis (0, 1,−1, 2,−5, 6)�, E9 has a basis (0, 0, 1, 0, 4, 4)�, E2 has a basis
(0, 0, 0, 1,−1,−3)�, E3 has a basis (0, 0, 0, 0, 1, 2)�, and E1 has a basis (0, 0, 0, 0, 0, 1)�. Also, suppose that
the initiation step is given by (x1 � 0, x2 � −2), i.e., (u1, u2) � (0, 2), which corresponds to the hyperplane
Q(0, 2) � 0 in R2[x1, x2].

Generating invariants for non-linear loops 813

We start with simple initial conditions and consider general conditions in the sequel. Theorem 3 applies, and
since it is clear that (0, 0, 1, 0, 4, 4)� belongs to the hyperplane, we get x22 + 4x2 + 4 � 0 is an inductive invariant
for that loop with these specific initial conditions. �

Example 5 We study the following transition system [SSM04b], corresponding to themultiplication of 2 numbers,
and where the transition is τ � 〈li , li , ρτ 〉, with

ρτ �
⎡
⎢⎣
s ′ � s + i
j ′ � j − 1
i ′ � i
j ′
0 � j0

⎤
⎥⎦ .

We need to find a λ such that Q(s + i , j + 1, i , j0) � λQ(s, j , i , j0).

• Step 1: We build the associated matrix M :
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 1 0 0 0
0 −1 0 0 0 −1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• Step 2: We compute the eigenvectors which will provide us with a basis for non-trivial λ-invariants. Here, an
evident eigenvalue is 1.

• Step 3: It is clear, in view of the matrix M , that dim(Ker (M − I)) ≥ 2. As the eigenspace associated to
eigenvalue 1 is of dimension 2, Corollary 2 applies. For example, the vector

(0, 0, 0, 0, 0, 1, 0, 0,−1, 0, 1, 0, 0, 0, 0)�

is the eigenvector corresponding to the λ-invariant s + ji − ij0.

Note that without computingGröbner bases or performing quantifier elimination, we found the invariant s+ ji−
ij0 � 0 obtained by Sankaranarayanan et al. in [SSM04b]. The consecution scale technique will give a non-null
invariant whatever the initial values are, and this explains why a non-trivial invariant was found in that work. �

4.3. Limits of constant-scale consecution

Here we consider an algebraic transition relation where the instructions are described by polynomials with degree
greater than 1.

Example 6 Consider the following loop: ρτ ≡
[
x ′ � x (y + 1)

y ′ � y2

]
. At step k of the iteration, this loop computes

the sum 1 + y + · · · + y2k−1. Let P (x , y) � a0x 2 + a1xy + a2y2 + a3x + a4y + a5 be a candidate λ-invariant.
With the Gröbner Bases {x ′ − x (y + 1), y ′ − y2}, and with the total-degree lexicographic ordering given by the
precedence x ′ > y ′ > x > y , we can get the loop ideal of K[x ′, y ′, x , y]. Modulo this loop ideal, we have
P (x ′, y ′) � P (x (y + 1), y2). Put P ′(x , y) � P (x (y + 1), y2). After expanding we get P ′(x , y) � a0x 2y2 + a1xy3 +
a2y4 + 2a0x 2y + a1xy2 + a0x 2 + a3xy + a4y2 + a3x + a5. If we try a constant-scale consecution with parameter λ
we obtain:

814 R. Rebiha et al.

a0 � 0 a1 � 0 a3 � λ a3
a1 � 0 a0 � λ a0 λ a4 � 0
a2 � 0 a3 � λ a1 a5 � λ a5

2a0 � 0 a4 � λ a2.

After simplifications, we get a0 � a1 � a2 � a3 � a4 � 0 and a5 � λ a5. If λ �� 1 then a5 � 0, which leads to a
null invariant. Otherwise, λ � 1 and we obtain the constant invariant a5. Also, the initial condition implies that
the constant invariant a5 is null. So, using a constraint-based approach with constant-scaling [SSM04b] we can
obtain only constant or null, i.e. trivial, invariants. �

In the following section, we show how we handle this problem.

5. Algebraic discrete transition systems

In this section, we approach non-linear discrete systems.

5.1. T -scale invariant generation

Consider an algebraic transition system: ρτ ≡
⎡
⎢⎣
X ′

1 � P1(X1, ..,Xn)
...

X ′
n � Pn (X1, ..,Xn)

⎤
⎥⎦, where the loop updates can be represented

usingpolynomials inR[X1, ..,Xn] of the formsPi (X1, ..,Xn) � ∑
i1,..,in

ai1,..,inX1
i1 . . .Xn

in , where the coefficients
ai1,...,in are in R. We have the following T -scale discrete invariant characterization.

Theorem 4 A polynomial Q in R[X1, ..,Xn] is a T -scale discrete invariant for polynomial-scale consecution with a
parametric polynomial T ∈ R[X1, . . . ,Xn] for τ if and only if

Q(P1(X1, ..,Xn), ..,Pn (X1, ..,Xn)) � T (X1, ..,Xn)Q(X1, ..,Xn).

�

Example 7 Reconsider Example 6. We now take (y � y0, x � 1) as initial values. We want to obtain a polynomial
scale consecution with a parametric polynomial T (x , y) � b0y2 + b1x + b2y + b3. We thus obtain P ′(s, x) �
(b0y2 + b1x + b2y + b3)P (x , y). In other words, we obtain the following multi-parametric linear system with
parameters b0, b1, b2, b3:

a0 � b0a0 0 � b2a5 + b3a4 a3 � b1a4 + b2a3 + b3a1
a1 � b0a1 0 � b0a4 + b2a2 a4 � b0a5 + b2a4 + b3a2
a2 � b0a2 a3 � b1a5 + b3a3 a1 � a3b0 + b1a2 + b2a1
a5 � b3a5 a0 � b1a3 + b3a0
0 � b1a0 2a0 � b1a1 + b2a0.

We now describe a decision procedure for choosing parameter values. Consider the first three equations and
choose b0 � 1. In this way we aim at a high degree invariant for, otherwise, the coefficients a0, a1, a2 of the highest
degree terms would be null. Then, we are lead to another system with b1a0 � 0. For the same reason, choose
b1 � 0. Then we have b2a0 � 2a0. As a direct consequence, b2 is set to 2. Since equation b3a0 � a0 is in the
resulting system, b3 is set to 1. Finally, we obtain the following system:

a3 + a1 � 0
a4 + 2a2 � 0
a2 − a5 � 0.

Generating invariants for non-linear loops 815

Having less equations than variables, we will have a non-trivial solution for generating of T -invariants. Now,
we consider the hyperplane corresponding to the initial values, that is, a2y02 + (a1 + a4)y0 + a0 + a1 + a5 � 0.
As there are six variables and four equations, we will have again a non-trivial solution. A possible solution is
the vector (y0(1 − y0), 1, 1,−1,−2, 1)�. So, y0(1 − y0)x 2 + xy + y2 − x − 2y + 1 � 0 is an invariant. Note that
T (x , y) � y2 + y + 1. �
Remark 1 That is a simple constraint-based procedure, which can fail in more complex cases. Shortly, we will
present a superior technique, from a more encompassing point of view. �

5.2. A general theory for discrete transitions and polynomial systems

If Q ∈ R[X1, ..,Xn] is of degree r and the maximal degree of the Pi ’s is d , then we are looking for a T of degree
e � dr − r . Write its ordered coefficients as λ0, . . . , λs , with s + 1 being the number of monomials of degree
inferior to e.

LetM be the matrix, in the canonical basis of Rr [X1, ..,X2] and Rdr [X1, ..,Xn], of the morphism

M :
{
Rr [X1, . . . ,Xn] → Rdr [X1, . . . ,Xn]
Q(X1, . . . ,Xn) �→ Q(P1(X1, ..,Xn), . . . ,Pn (X1, ..,Xn)).

Let L be the matrix, in the canonical basis of Rr and Rdr , of the morphism

L :
{
Rr [X1, . . . ,Xn] → Rdr [X1, . . . ,Xn]

P �→ TP .

Matrix L has a very simple form: its non zero coefficients are the λi ’s, and it has a natural block decomposition.
Now let Q ∈ R[X1, ..,Xn] be a T -scale discrete invariant for a transition relation defined by the Pi ’s. Then,

Q(P1(X1, ..,Xn), ..,Pn (X1, ..,Xn)) � T (X1, ..,Xn)Q(X1, ..,Xn) ⇔
M (Q) � L (Q) ⇔

(M − L)(Q) � 0R[X1,..,Xn] ⇔
Q ∈ Ker (M − L).

A T -scale discrete invariant is nothing else than a vector in the kernel of M − L. Our problem is equivalent
to finding a L such that M − L has a non-trivial kernel.

Theorem 5 ConsiderM as described above. Then, there will be aT -scale discrete invariant if and only if there exists
a matrix L, corresponding to P �→ TP , such that M − L has a nontrivial kernel. Further, any vector in the kernel
of M − L will give rise to a T -scale invariant. �

We denote by v (r) the dimension of Rr [X1, . . . ,Xn]. Again, the last column of M is (0, . . . , 0, 1)�. The
last column of L is (0, .., 0, λ0, .., λs)

�. Hence, choosing every λi to be zero, except for λs � 1, the last col-
umn of M − L will be null. With this choice of L (or T � 1), we get at least T -invariants corresponding to
constant polynomials. Now,M −L having a non-trivial kernel is equivalent to its rank being less than the dimen-
sion v (r) of Rr [X1, . . . ,Xn]. This is equivalent to the fact that each v (r) × v (r) sub-determinant of M − L is
equal to zero [Lan02]. Those determinants are polynomials in variables (λ0, λ1, . . . , λs), which we will denote by
V1(λ0, λ1, . . . , λs), . . . ,Vs (λ0, λ1, . . . , λs).

Theorem 6 There is a non-trivial T -scale invariant if and only if the polynomials (V1, ..,Vs) admit a common root,
other than the trivial one (0, . . . , 0, 1). �
Remark 2 This theorem provides us with important existence results. But there is a more practical way of com-
puting invariant ideals without computing common roots and sub-determinants.We will examine that in the next
section. �

816 R. Rebiha et al.

We first study the general case of degree two algebraic transition systems with two variables in the loop. Such

transition systems have the form: ρτ ≡
[
x ′ � c0x 2 + c1xy + c2y2 + c3x + c4y + c5
y ′ � d0x 2 + d1xy + d2y2 + d3x + d4y + d5

]
. In this case, matricesM and

L will be as follows:

M �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
2 c0d0 d0

2 0 0 0
2c0c1 c0d1 + c1d0 2d0d1 0 0 0

2c0c2 + c1
2 c0d2 + c1d1 + c2d0 2d0d2 + d1

2 0 0 0
2c1d1 c1d2 + c2d1 2d1d2 0 0 0
c2

2 c2d2 d2
2 0 0 0

2c0c3 c0d3 + c3d0 2d0d3 0 0 0
2(c0c4 + c1c3) c0d4 + c1d3 + c3d1 + c4d0 2(d0d4 + d1d3) 0 0 0
2(c1c4 + c2c3) c1d4 + c2d3 + c3d2 + c4d1 2(d1d4 + d2d3) 0 0 0

2c2c4 c2d4 + c4d2 2d2d4 0 0 0
2c0c5 + c3

2 c0d5 + c3d3 + c5d0 2d0d5 + d3
2 c0 d0 0

2(c1c5 + c3c4) c1d5 + c3d4 + c4d3 + c5d1 2(d1d5 + d3d4) c1 d1 0
2c2c5 + c4

2 c2d5 + c4d4 + c5d2 2d2d5 + d4
2 c2 d2 0

2c3c5 c3d5 + c5d3 2d3d5 c3 d3 0
2c4c5 c4d5 + c5d4 2d4d5 c4 d4 0
c5

2 c5d5 d5
2 c5 d5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0 0 0 0 0 0
λ1 λ0 0 0 0 0
λ2 λ1 λ0 0 0 0
0 λ2 λ1 0 0 0
0 0 λ2 0 0
λ3 0 0 λ0 0 0
λ4 λ3 0 λ1 λ0 0
0 λ4 λ3 λ2 λ1 0
0 0 λ4 0 λ2 0
λ5 0 0 λ3 0 λ0

0 λ5 0 λ4 λ3 λ1

0 0 λ5 0 λ4 λ2

0 0 0 λ5 0 λ3

0 0 0 0 λ5 λ4

0 0 0 0 0 λ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the rank ofM −L to be less than 6, one has to calculate each 6×6 sub-determinant obtained by canceling
9 lines ofM − L. They will be polynomials of degree less than 6 in the variables (λ0, . . . , λ5). In this wayM − L
will be of degree less than 6 if and only if (λ0, . . . , λ5) are roots of each of those polynomials. In many cases, it
is easy to find a matrix L such that M − L has a non-trivial kernel. We describe and deal with several decidable
classes (see Table 1b line 3 and the lines 13–20). The following important remarkmake clear the advances reached
when comparing this approach to related constraint-based methods.

Remark 3 The unknown coefficients (λ0, . . . , λs) appearing in the matrix L, used to approximate the consecution
conditions, are assigned in order to insure that the nullspaces generated are not trivial ones. In fact, these unknown
coefficients do not have the same roles as the templates used in constraint-based approaches. In ourmethod, these
parameters do not take part in a constraint solving problem. Instead, they allow us to obtain a sufficiently precise
approximation to the consecution condition in order to guarantee the existence and the computation of vector
spaces of T -invariants, that is, nullspaces. �

5.3. Generating invariant ideals with an initiation step

Consider initial values given by unknown parameters (X1 � u1, . . . ,Xn � un). The initial step defines,
on Rr [x1, . . . , xn], a linear form P �→ P (u1, . . . , un). Hence, initial values correspond to a hyperplane in
Rr [X1, ..,Xn], given by the kernel of P �→ P (u1, . . . , un), which is {Q ∈ Rr [X1, ..,Xn] | Q(u1, . . . , un) � 0}.
Theorem 7 Let Q be in Rr [X1, ..,Xn]. Then Q is an inductive invariant for the transition system with initial values
(u1, .., un) if and only if there exists a matrix L �� 0, i.e, one of P �→ TP , corresponding to T in Re [X1, ..,Xn],
such that Q is in the intersection of Ker (M − L) and the hyperplane given by the initial values Q(u1, . . . , un) � 0.
The invariants will correspond to vectors in the intersection. �
Now, if Dim(Ker (M − L)) ≥ 2 then Ker (M − L) will intersect any initial (semi-)hyperplane. We can state the
following corollary, important in practice.

Corollary 3 There are non-trivial invariants for any given initial values if and only if there exists a matrix L such
that Ker (M − L) has dimension at least 2. The basis of Ker (M − L) being a basis for non-trivial invariants. �
There are non-trivial invariants for any given initial values if and only if there exists a matrix L, corresponding
to multiplicative template in T , such that Ker (M − L) has dimension at least 2.

5.4. Example

Consider the following transition: τ �
〈
li , lj , ρτ ≡

[
x ′ � xy + x
y ′ � y2

]〉
.

Generating invariants for non-linear loops 817

• Step 1: We build the matrix M − L. The maximal degree of ρτ is d � 2, and so the T -scale invariant
will be of degree r � 2. Also, T is of degree e � dr − r � 2 and we write λ0, . . . , λ5 as its ordered
coefficients. Then its canonical form is T � λ0 x

2 + λ1 xy + λ2 y
2 + λ3 x + λ4 y + λ5. Consider the associated

morphismsM andL from R2[x , y] to R4[x , y]. Using the basis C1 � (x 2, xy, y2, x , y, 1) of R2[x , y] and the
basisC2 � (x 4, yx 3, y2x 2, y3x , y4, x 3, x 2y, xy2, y3, x 2, xy, y2, x , y, 1) ofR4[x , y], our algorithm compute the
matrixM − L as

M − L(λ0,...,λ5) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− λ0 0 0 0 0 0
− λ1 − λ0 0 0 0 0
1 − λ2 − λ1 − λ0 0 0 0

0 1 − λ2 − λ1 0 0 0
0 0 1 − λ2 0 0 0

− λ3 0 0 − λ0 0 0
2 − λ4 − λ3 0 − λ1 − λ0 0

0 1 − λ4 − λ3 − λ2 − λ1 0
0 0 − λ4 0 − λ2 0

1 − λ5 0 0 − λ3 0 − λ0
0 − λ5 0 1 − λ4 − λ3 − λ1
0 0 − λ5 0 1 − λ4 − λ2
0 0 0 1 − λ5 0 − λ3
0 0 0 0 − λ5 − λ4
0 0 0 0 0 1 − λ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• Step 2:We now reduce the rank ofM −L by assigning values to the λi ’s. Our procedure fixes λ0 � λ1 � λ3 � 0,
λ2 � λ5 � 1 and λ4 � 2, so that T (x , y) � y2 + 2y + 1. The first column of M − L becomes zero and the
second column is equal to the fourth. Hence, the rank ofM −L is less than 4 and its kernel has dimension at
least 2. Any vector in this kernel will be a T -invariant.
Before, proceeding to Step 3 we give more details on our rank reduction procedure which allows us to choose
the coefficients λ0, . . . , λ4 and λ5 such that the matrix M − L does not have a trivial kernel. Taking into
consideration the specific type of matrix we are manipulating, we are going to determine for which values of
λ0, . . . , λ4 and λ5, the rank of M − L is minimal. We proceed by an analysis over the top non-zero elements
of the columns ofM −L and the possible values that could be chosen for the parameters in order to decrease
the actual rank. At each step of the assignments, we will echelon the matrix by making the highest term of
one column to vanish. For that, we index the matrix M − L as M − L(λ0,...,λ5), in order to keep track of the
assignment and rank obtained during the procedure.
Looking at the top non-zero elements of M − L(λ0,...,λ5), consider first the parameter λ0. If λ0 is not zero, we
obtain an echelon form matrix of rank 6, which is maximal. Thus λ0 is fixed to 0. Now, considering the top
non-zero elements of the columns of M − L(0,λ1,...,λ5), the procedure fixes λ1 to 0 for the same reason. We
obtain the following matrix:

M − L(0,0,λ2,...,λ5) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0

1 − λ2 0 0 0 0 0
0 1 − λ2 0 0 0 0
0 0 1 − λ2 0 0 0

− λ3 0 0 0 0 0
2 − λ4 − λ3 0 0 0 0

0 1 − λ4 − λ3 − λ2 0 0
0 0 − λ4 0 − λ2 0

1 − λ5 0 0 − λ3 0 0
0 − λ5 0 1 − λ4 − λ3 0
0 0 − λ5 0 1 − λ4 − λ2
0 0 0 1 − λ5 0 − λ3
0 0 0 0 − λ5 − λ4
0 0 0 0 0 1 − λ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

818 R. Rebiha et al.

Again, we look at the non-zero top column elements with λ2. If λ2 is not in {1, 0}, we obtain an echelon form
matrix of rank 6, which is maximal. Thus we need to consider the case where λ2 is assigned a value in {1, 0}.
Hence λ2 is first assigned to 1. Then λ3 has to be 0, otherwise the rank will be maximal. The procedure is now
working with:

M − L(0,0,1,0,λ4,λ5) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2 − λ4 0 0 0 0 0
0 1 − λ4 0 −1 0 0
0 0 − λ4 0 −1 0

1 − λ5 0 0 0 0 0
0 − λ5 0 1 − λ4 0 0
0 0 − λ5 0 1 − λ4 −1
0 0 0 1 − λ5 0 0
0 0 0 0 − λ5 − λ4
0 0 0 0 0 1 − λ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order to reduce its rank by making the highest term of a column vanish, λ4 is assigned a value in
{2, 1, 0}. Then, λ4 is first fixed to 2 which implies that λ5 needs to be assigned to 1. We conclude that with
(λ0, . . . , λ4, λ5) � (0, 0, 1, 0, 2, 1) the matrix M − L does not have a trivial kernel and T (x , y) � y2 + 2y + 1
can be used to generate a vector space of T -invariants. The procedure does not stop here. It continues to
consider the other possibilities for λ2, λ4 and λ5, thus generating more polynomials for approximating scaling
consecution, leading to other vector spaces of polynomial scale and inductive invariants. With λ2 � 1 and
λ4 � 1 or λ4 � 0 one has to fix λ5 � 0 and generate the polynomials T2(x , y) � y2 + y and T3(x , y) � y2.
It remains to treat the case λ2 � 0 and the possibilities thereof. One needs to consider againM −L(0,0,λ2,...,λ5).
In this case, one needs again to fix λ3 to 0. We obtain the matrix:

M − L(0,0,0,0,λ4,λ5) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

2 − λ4 0 0 0 0 0
0 1 − λ4 0 0 0 0
0 0 − λ4 0 0 0

1 − λ5 0 0 0 0 0
0 − λ5 0 1 − λ4 0 0
0 0 − λ5 0 1 − λ4 0
0 0 0 1 − λ5 0 0
0 0 0 0 − λ5 − λ4
0 0 0 0 0 1 − λ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, looking at the top column elements of M − L(0,0,0,0,λ4,...,λ5), we only have now two possibilities for λ4:
it has to be assigned a value in {1, 0}. When λ4 � 1 we need to treat λ5 � 1 and λ5 � 0 leading to the
polynomials T4(x , y) � y + 1 and T5(x , y) � y . Now, treating the other case, with λ4 � 0, one has no choice
but to assign λ5 to 1 leading to the polynomial T6(x , y) � 1.
Conclusion of Step 2: The polynomials T ,T2, . . . ,T6 would guarantee a non-trivial Kernel for M − L. We
move to Step 3 considering T (x , y) � y2 + 2y + 1 because with (λ0, . . . , λ5), the rank of M − L is minimal
(i.e., null space of dimensions 3).

• Step 3: NowmatrixM −L satisfies the hypotheses of Theorem 5. So, there will always be invariants, whatever
the initial values. We compute a basis of Ker (M − L): [(1,0,0,0,0,0),(0,1,0,-1,0,0),(0,0,1,0,-2,1)]. The
vectors of the basis are interpreted in the canonical basis C1 of R2[x , y], giving: {{x 2, xy − x , y2 − 2y + 1}}

Generating invariants for non-linear loops 819

We have obtained an ideal for non-trivial inductive invariants. In other words, for all G1, G2, G3 ∈ R[x , y],
G1(x , y)(x 2) +G2(x , y)(xy − x) +G3(x , y)(y2 − 2y + 1) � 0 is an inductive invariant. For instance, consider the
initial step (y � y0, x � 1). A possible invariant is y0(1− y0)x 2 + xy − x + y2 − 2y + 1 � 0. We can also consider
T2(x , y) � y2 + y and T4(x , y) � y + 1 as they both provide kernels of dimension at least 2, leading to the two
other vector spaces of non-trivial inductive invariants.

6. Obtaining optimal degree bounds for discrete transition systems

Inorder to guarantee the existence of non-trivial invariants,we look for apolynomialT such thatKer (M−L) �� 0.
The pseudo code depicted in Algorithm 1 illustrates the strategy. Its contribution relies on very general sufficient
conditions for the existence and computation of invariants.

As input we have r , the candidate degree for the basis invariant elements, and P1, ..Pn , the n polynomi-
als given by the transition relation in the loop program. We first compute d , the maximal degree of the Pi ’s
as can be seen by Max degree({P1, . . . ,Pn}), at line 4. Following the instructions provided in Sect. 4 the
function Matrix D(r , dr ,P1, . . . ,Pn) construct the matrix of the morphism M . Then, we detail the cases
were the transitions are defined by non-linear systems, i.e., when d ≤ 2. See the condition at line 7. Then,
we define T as a polynomial of degree dr − r in its canonical form, i.e., with parameterized coefficients. See
Template Canonical Form(n, d , r , dr−r), at line 7.Here, Template Canonical Form(n, d , r , dr−r) returns
the lists of unknown coefficient that we denoted by λ0, . . . , λs in Sect. 5.2. Note that s depends only on the values
of n, d , and r . One can now call the function Matrix L(r , dr ,T) that construct the matrix L as shown in Sect.
5.2.

Next, we apply our decision procedure Reduce Rank Assigning Values(M − L) to assign values to the
coefficients ofT in such away thatKer (M−L) �� 0. See line 10.Aswe saw in the previous section,Ker (M−L) �� 0
is equivalent to having Rank (M − L) < Dim(Rr [X1, . . . ,Xn]). In other words, it is the same as having M − L
with rank strictly less than the dimension v (r) ofRr [X1, . . . ,Xn]. We then reduce the rank ofM −L by assigning
values of the parameters in L. This function applies the decision procedure detailed in Sect. 5.4, Step 2. Next, we
determine whether the matrix obtained,M − L, has a trivial kernel by first computing its rank and then checking
if Rank(M − L) < Dim(Rr [X1, ..,Xn]) holds, at line 11. We can now apply our main Theorem 5:

• IfM − Lhas a trivial kernel,weknow there is noT -scale invariants of degree less than r andwecan increase the
degree r of the desired invariants until Theorem 5, or Corollary 3, applies, or until stronger hypotheses occur,
e.g. if all v (r)×v (r) sub-determinants are null. Note, at line 12, the call to return Ideal Loop Inv Gen(r +
1,P1, . . . ,Pn ,X1, . . . ,Xn). If there is no ideal for non-trivial invariants for a value ri then we conclude
that there is no ideal of non-trivial invariants for all degrees k ≤ ri . This can also be used to guide other
constraint-based techniques, since checking for invariance with a template of degree less or equal to ri will
not be necessary.

• Otherwise, Theorem 5, or Corollary 3, guarantees the existence and computation of T -invariants. Finally,
the function Nullspace Basis(M − L) outputs the basis of the nullspace of the matrix M − L, in order to
construct non-trivial invariants. See line 15.

For basis computations, we use well-known state-of-the-art algorithms, for example those that Sage provides.
These algorithms calculate the eigenvalues and associated eigenspaces ofM − Lwhen it is a square matrix.When
M − L is a rectangular matrix, we can use its singular value decomposition (SVD). A SVD ofM − L provides an
explicit representation of its rank and kernel by computing unitary matrices U and V and a regular diagonal
matrix S such thatM − L � USV . We compute the SVD of a v (r + d − 1) × v (r) matrixM in two steps. First,
we reduce it to a bi-diagonal matrix, with a cost of O(v (r)2v (r + d − 1)) flops. The second step relies on an
iterative method, as is also the case for other algorithms that compute eigenvalues. In practice, however, it suffices
to compute the SVD up to a certain precision, i.e. up to a machine epsilon. In this case, the second step takes
O(v (r)) iterations, each using O(v (r)) flops. So, the overall cost is O(v (r)2v (r + d − 1)) flops. For the encoding
of the algorithm we could rewrite Corollary 3 as follows.

Corollary 4 Let (M − L)′ � USV be the singular value decomposition of matrix (M − L)′ described just above.
There will be a non-trivial T -invariant for any given initial condition if and only if the number of non-zero elements
in matrix S is less than v (r)− 2, where v (r) is the dimension of Rr [x1, . . . , xn]. Moreover, the orthonormal basis for
the nullspace obtained from the decomposition directly gives an ideal for non-linear invariants. �

820 R. Rebiha et al.

Algorithm 1: Ideal Loop Inv Gen(r ,P1, . . . ,Pn ,X1, . . . ,Xn)
/*Finding degree bounds for discrete transitions.*/;
Data: r is the candidate degree for the set of basis invariants elements we are looking for, P1, ..Pn the n

polynomials given by the considered loop, and X1, ..Xn ∈ V
Result: Ideal Inv , a basis of ideal of invariants.
begin

int d ;1

Template T ;2

MatrixM , L;3

d ←− Max degree({P1, . . . ,Pn });4

/*d is the maximal degree of Pi ’s*/;5

M ←− Matrix D(r , dr ,P1, . . . ,Pn);6

if d >� 2 then7

T ←− Template Canonical Form(n, d , r , dr − r);8

L ←− Matrix L(r , dr ,T);9

M − L ←− Reduce Rank Assigning Values(M − L);10

if Rank(M − L) >� Dim(Rr [X1, ..,Xn]) then11

return Ideal Loop Inv Gen(r + 1,P1, . . . ,Pn ,X1, . . . ,Xn);12

/*We need to increase the degree r of candidates invariants.*/;13

else14

return Nullspace Basis(M − L);15

/*There exists an ideal of invariants that we can compute*/;16

else17

... /*We refer to our previous work for constant scaling.*/;18

end

Remark 4 It is important to emphasize that eigenvectors or nullspace ofM − L are computed after the parameters
of LT have been assigned. When the discrete transition system has several variables and none or few parameters,
which correspond to practical cases, M − L will be over the reals and there will be no need to use the symbolic
version of these algorithms. �

7. Invariant generation for discrete transitions and fractional systems

We now want to deal with transition systems ρτ of the following type⎡
⎢⎢⎣
X ′

1 � P1(X1,..,Xn)
Q1(X1,..,Xn)
...

X ′
n � Pn (X1,..,Xn)

Qn (X1,..,Xn)
,

⎤
⎥⎥⎦.

where the Pi ’s and Qi ’s belong to R[X1, ..,Xn] and each Pi is relatively prime to the corresponding Qi . In this
case, one needs to relax the consecution conditions to fractional-scale as soon as fractions appear in the transition
relation.

Theorem 8 A polynomial Q in R[X1, ..,Xn] is a F -scale invariant for fractional discrete scale consecution with a
parametric fractional F ∈ R(X1, ..,Xn) for τ if and only if

Q
(
P1

Q1
, ..,

Pn

Qn

)
� FQ .

�

Generating invariants for non-linear loops 821

Let d be the maximal degree of the Pi ’s and Qi ’s, and let � be the least common multiple of the Qi ’s. Now let
U � X1

i1 ..Xn
in be a monomial of degree less than r , i.e., i1 + .. + in < r . Then,

�rU (P1/Q1, . . . ,Pn/Qn) � �r (P1/Q1)i1 . . . (Pn/Qn)in .

But as Q ij
j divides �ij , for all j , we see that Q i1

1 . . .Q in
n divides �i1+...+ir , which divides �r . We conclude that

�rQ(P1/Q1, . . . ,Pn/Qn) is a polynomial for every Q in Rr [X1, ..,Xn].
Now suppose that F � T/S , with T relatively prime to S , satisfies the equality of the previous theorem.

Suppose, further, that we are looking for bases for invariants Q of degree r . Then, multiplying by �r we get

�rQ(P1/Q1, . . . ,Pn/Qn) � (�rTQ)/S .

As we have no a priory information on Q , in most cases Q will be relatively prime to S . In this situation we see
that S divides �r . So, let F be of the form T/�r , and note that we argued that this constraint is weak.

Now letM be the morphism

M :

{
Rr [X1, . . . ,Xn] → Rnrd [X1, . . . ,Xn]

Q �→ �rQ
(

P1
Q1

, .., Pn

Qn

)
.

LetM be its matrix representation in the canonical basis, let T be a polynomial in Rnrd−r [X1, ..,Xn], and letL
denote the vector space morphism

L :
{
Rr [X1, . . . ,Xn] → Rnrd [X1, . . . ,Xn]

Q �→ TQ .

Also, let L be its matrix representation in the canonical basis. As stated in the following theorem, our problem is
equivalent to finding a L such thatM − L has a non-trivial kernel.

Theorem 9 ConsiderM andL as described above. Then, there existF -scale invariants, whereF is of the formT/�r ,
if and only if there exists a matrix L such thatKer (M −L) �� ∅. In this situation, any vector in the kernel ofM −L
will give rise to a F -scale discrete invariant. �
This is similar to Theorems 6 and 7. For the initiation step, we have a hyperplane in Rr [X1, . . . ,Xn]. In order for
the transition system tomake sense, the n-tuple of initial valuesmust not be a root of any of theQi ’s, and similarly
for further iterations as long as the loop is applied. In thisway, theywill not cancel�r .Wehave the following result.

Theorem 10 We have a non-trivial invariant if and only if there exists a matrix L such that the intersection of the
kernel of M − L and the hyperplane given by the initial values is not zero. The invariants will correspond to vectors
in the intersection. �

We also have the following important corollary.

Corollary 5 We will have a non-trivial invariant for any non-trivial initial value if and only if there exists a matrix
L such that the dimension of Ker (M − L) is at least 2. �

Example 8 Consider the system ρτ ≡
[
x ′
1 � x2

(x1+x2)
x ′
2 � x1

(x1+2x2)

]
. We are looking forF -scale invariant polynomials of degree

2. The least common multiple of (x1 + x2) and (x1 + 2x2) is their product, so thatM is given by:

Q ∈ R2[x1, x2] �→
[
[(x1 + x2)(x1 + 2x2)]2Q

(
x1

(x1 + x2)
,

x2
(x1 + 2x2)

)]
.

As both x2
(x1+x2)

and x1
(x1+2x2)

have degree zero,

[(x1 + x2)(x1 + 2x2)]2Q
(

x2
(x1 + x2)

,
x1

(x1 + 2x2)

)

will be a linear combination of degree 4, if it is non-null.
Hence,M has values in Vect(x 4

1 , x 3
1 x2, x

2
1 x

2
2 , x1x 3

2 , x 4
2). With T and Q in R2[x1, x2] we verify that

[(x1 + x2)(x1 + 2x2)]2Q
(

x2
(x1 + x2)

,
x1

(x1 + 2x2)

)
� TQ .

822 R. Rebiha et al.

As the left member is in Vect(x 4
1 , x 3

1 x2, x
2
1 x

2
2 , x1x 3

2 , x 4
2), T must be of the form λ0 x

2
1 + λ1 x1x2 + λ2 x

2
2 , and Q

must be of the form a0x 2
1 + a1x1x2 + a3x 2

2 . We see that we can take Q in Vect(x 2
1 , x1x2, x 2

2), and similarly for T .
Then both M , L : Q �→ TQ are morphisms from Vect(x 2

1 , x1x2, x 2
2) into Vect(x 4

1 , x 3
1 x2, x

2
1 x

2
2 , x1x 3

2 , x 4
2). In the

corresponding canonical basis, the matrix M − L is

M − L �

⎛
⎜⎜⎜⎝

− λ0 0 1
− λ1 1 − λ0 2
1 − λ2 3 − λ1 1 − λ0

4 2 − λ2 − λ1
4 0 − λ2

⎞
⎟⎟⎟⎠ .

Taking λ0 � 1, λ1 � 3 and λ2 � 2, the second column cancels out and the kernel will be equal to Vect(0, 1, 0).
Now, Corollary 5 applies toM − L, and we obtain: T (x1, x2)/Q(x1,2) � 1/((x1 + x2)(x1 + 2x2))2 and we have the
nullspace [(0, 1, 0)] and the basis of scale invariant {x1x2}. It was clear from the beginning that the corresponding
polynomial x1x2 is 1

[(x1+x2)(x1+2x2)]2
-scale invariant. In particular, it is an invariant for the initial values (0, 1).

Moreover, it clearly never cancels x1 + x2 and x1 + 2x2, because they are of the form (a, 0) or (0, b) with a and b
strictly positive. �

8. Branching conditions and nested loops

We have generated bases of vector spaces describing invariants for transition systems. A global invariant would
be any invariant which is in the intersection of these vector spaces. In this way, we avoid the definition of a
single isomorphism for the whole transition system. Instead, we generate the basis for each separate consecution
condition. To compute a basis of global invariants, we could use the following theorem. It suggests to multiply
all the elements of each computed basis. By so doing, we also avoid the heavy computation of ideal intersections.

Theorem 11 Let I � {I1, . . . , Ik } a set of ideals in R[X1, . . . ,Xn] such that Ij � (f (j)1, . . . , f (j)nj
) for j ∈ [1, k]. Let

�(I1, . . . , Ik) � {δ1, . . . , δn1n2...nk
} be such that all elements δi in �(I1, . . . , Ik) are formed by the product of one

element from each ideal in I . Assume that all Ij ’s are ideals for invariants for a loop at location lj , described by
a transition τj . If all lj describe the same location or program point l , then �(I1, . . . , Ik) is an ideal of non-trivial
non-linear invariants for the entire loop located at l . �

Note that when we have several transitions looping at the same point, we can obtain an encoding of possible
execution paths of a loop containing conditional statements.

This approach is a sound, but not complete, way of computing ideals for global invariants, and it also has
a low computational time complexity. In order to take into account initial conditions we intersect these vector
spaces with the initial semi-hyperplanes deduced from the isomorphism associated with initial requirements.
Next, we show how our method deals with the conditional statements inside loops. Let’s consider the follow-
ing type of loop while(B 1){ [I 1;] if(B 2){[I 2;] } else{ [I 3;] } [I 4;], where each Ii represent
a block of multivariate fractional instructions. First we represent the loop with the following two transitions
τ1 � 〈li , li , (B1 ∧ B2), ρτ1〉 and τ2 � 〈li , li , (B1 ∧ ¬B2), ρτ2〉, where: ρτ1 ≡ [x ′

1 � F1,[I1; I2; I4;]◦ (x1, . . . xn), . . . , x
′
n �

Fn,[I1; I2; I4;]◦(x1, . . . , xn)] and ρτ2 ≡ [x ′
1 � F1,[I1; I3; I4;]◦ (x1, . . . xn) . . . , x

′
n � Fn,[I1; I3; I4;]◦(x1, . . . , xn)], with [; ;]◦

denoting our operator, based on separation rewriting rules, used to compose blocks of instructions. We first inde-
pendently generate the ideals of invariants ξ1 � (μ1, . . . , μn) and ξ2 � (κ1, . . . , κp) for the respective transitions τ1
and τ2. Any elementμi ∈ ξ1 refers to an inductive invariantμi (X1, . . . ,Xn) � 0 corresponding to the partial loops
described by transition τ1. Similarly, any κi ∈ ξ2 refers to an inductive invariant κi (X1, . . . ,Xn) � 0 for the loop
described by transition τ2. Then we can take μi (X1, . . . ,Xn) ∗ κi (X1, . . . ,Xn) � 0 as global loop invariant, since
these invariants will remain true in any sequence of transitions during the execution of the loop.We deal with loop
conditions using the same methods that we proposed to handle initiation conditions. We know, for instance, that
if our Corollary 3 holds, then there exist invariants for any (semi-)hyperplane that could be induced by the loop
conditions.We illustrate this point in Fig. 1. Let (Pi (x1, .., xn) < 0) be semi-algebraic loop conditions at location l
and letQ be an inductive invariant forD(l). Thus (Pi (x1, .., xn)−Q(x1, .., xn) < 0) is also an inductive invariant.
Then, we can build an operator, similar to the one introduced in Theorem 11, to generate, in a different way,
ideals of non-trivial invariants at a state l with semi-algebraic loop conditions. If a loop condition has the form
Ci (x1, .., xn) � 0 we could then associate it directly to polynomial systems induced by the transition relations.

Generating invariants for non-linear loops 823

Fig. 1. Intersectionbetween the conditional loop: 800 < (x−5)2+(y−5)2+(y0−5)2 < 1000and the invarianty0(1−y0)x 2+xy−x+y2−2y+1 �
0 from the invariant ideal ({x 2, xy − x , y2 − 2y + 1}) obtained for Example 7

Example 9 Consider the following loop.
int u_0; //initialization
((M > 0)&&(Z = 1)&&(U = u_0)...)

...
While ((X>=1) || (Z>=z_0)){

If(Y > M){
X = Y / (X + Y);
Y = X / (X + 2 * Y);}

Else{
Z = Z * (U + 1);
U = U^2; }

}

We first generate an invariant for the loop corresponding to the first conditional if. Using Fractional-Scaling we
obtain the basis of scale invariant {{xy}}. See Example 8 for more details. Then, we obtain the basis of invariants
{u0z 2 − u2

0 z
2 + zu + u2 − z − 2u +1, . . .} corresponding to the other alternative transition τ2 of the loop, namely,

the Else clause. Now we return the global invariants:
{xyu0z 2 − u2

0 z
2 + xyzu + xyu2 − xyz − 2xyu + xy, . . .} So, xyu0z 2 − u2

0 z
2 + xyzu + xyu2 − xyz − 2xyu + xy � 0 is

one typical invariant that can be generated. Once again, here there are no need for Gröbner basis computation
and the complexity of the described steps remains polynomial. �

Example 9 illustrate our method for the case where the loop contains two conditional statements. In the
presence of nested loops, our method generates ideals for invariants for each inner-loop and then generates a
global invariant.

9. Experiments

The third column in Table 1a summarizes the type of linear algebraic problems associated with each kind of
consecution approximation, listed in the second column, and with the semantic of the program instructions
appearing in the first column. The last column in Table 1a gives some existential results which, we note, can also
be used by other constraint-based approaches or reachability analysis methods. We have also used it to obtain
some experimental results that attest to the effectiveness and scope of our methods considering the computation

824 R. Rebiha et al.

Table 1. Examples and experimental results
(a) Linear algebraic problems and consecution approximations

Prog. Loop Aprox.Consec. Linear Algebra Existence Cond.
Affine/lin. inst. Strong Scaling Nullspaces Dim Ker (MD) ≥ 2

for any init. cond.,
and Ker (MD) �� ∅
otherwise.

Affine/lin. inst. Lambda Scaling Eigenspaces Dim Eigen(MD) ≥ 2
for any init. cond.,
and Eigen(MD) �� ∅
otherwise.

Algebraic/poly. inst. Polynomial Scaling Nullspaces Ker (MD − LT) ≥ 2
for any init. cond.,
and Ker (MD − LT) �� ∅
otherwise.

Fractional inst. Fractional Scaling Nullspaces Dim Ker (M� − LT) ≥ 2
for any init. cond.,
and Ker (M� − LT) �� ∅
otherwise.

(b) Experimental results: computation of nullspaces and eigenspaces

Loop prog. Var. Par. Scaling Basis inv. CPU (s)

1 -
[
x ′
1 � 2x1 + x2 + 1
x ′
2 � 3x2 + 4

]
{x1, x2} λ ∈ {9, 6, 4,

3, 2, 1} {{x 2
2 + 4x2 + 4}; ...} 0.39

2 - [s ′ � s + i ; j ′ � j − 1;
i ′ � i ; j ′

0 � j0]
{s, i, j , j0} λ ∈ {1} {{ji + s, i2, ij0, i, j0, 1}} 1.27

3 -
[
x ′
1 � ax1 + bx2 + c

x ′
2 � dx1 + ex2 + f

]
{x1, x2} {a, b, c,

d, e, f }
λ ∈ {0,d2 + 1

2de + 1
2 e

2

± 1
2 sqrt(8d

3e + d2e2

+6de3 + e4), ...}
{{x1 − 1}; ...} 1.35

4 - (τ1) : [r ′ � r + 1; w ′ � 0;
k ′ � k − c1; c1 � c1]

{r ,w , k , c1} λ ∈ {0, 1}
{{rw ,w 2,wk ,

wc1,w , k + c1};
{c2

1 , c1, 1}}
0.37

5 -
(τ2) : [r ′ � 0; w ′ � w + 1;
k ′ � k − c2;
c2 � c2]

{r ,w , k , c2} λ ∈ {0, 1} {{r 2, rw , rk , rc2, r};
{wc2 + k}} 0.4

6 - (τ3) : [r ′ � r − 1; w ′ � 0;
k ′ � k + c1; c1 � c1]

{r ,w , k , c1} λ ∈ {0, 1} {{rw ,w 2,wk ,wc1,w};
{rc1 + k , c2

1 , c1, 1}}.
0.39

7 - (τ4) : [r ′ � 0; w ′ � w − 1;
k ′ � k + c2; c2 � c2]

{r ,w , k , c2} λ ∈ {0, 1} {{r 2, rw , rk , rc2, r};
{c2

2 ,w , c2, 1}}. 0.43

8 -
[
x ′ � xy + x
y ′ � y2

]
{x , y} T (x ,y) � y2 + 2y + 1

{{x 2, xy − x ,

y2 − 2y + 1}} 0.4

9 -
[
x ′ � xy + x
y ′ � y2

]
{x , y} T (x ,y) � y2 + y {{xy,y2 − y}} 0.41

10 -
[
x ′ � xy + x
y ′ � y2

]
{x , y} T (x ,y) � y2 {{y2}} 0.41

11 -
[
x ′ � xy + x
y ′ � y2

]
{x , y} T (x ,y) � y + 1 {{x ,y − 1}} 0.47

12 -
[
x ′ � xy + x
y ′ � y2

]
{x , y} T (x ,y) � y {{y}} 0.37

13 -

[
x ′
1 � x2

(x1+x2)

x ′
2 � x1

(x1+2x2)

]
{x1, x2} T (x1, x2) � x 2

1
+3x1x2 + 2x 2

2
{{x1x2}} 0.37

14 -
[
x ′ � ax 2 + dx
y ′ � axy + dy

]
{x , y} {a, d} T (x ,y) � a2x 2 + 2adx + d2 {{x 2, xy,y2}} 0.48

15 -
[

x ′ � ax 2 + dx
y ′ � axy + iy2 + dy

]
{x , y} {a, d, i} T (x ,y) � a2x 2 + 2adx + d2 {{x 2}} 0.42

16 -
[
x ′ � ax 2 + bxy + dx
y ′ � axy + by2 + dy

]
{x , y} {a, b, d} T (x ,y) � ax + by + d {{x ,y}} 0.43

17 -
[
x ′ � bxy + cy2 + x

y ′ � y

]
{x , y} {b, c, d} T (x ,y) � 1 {{y2,y, 1}} 0.45

18 -

[x ′ � bxy + cy2

+dx + ey + f ;
y ′ � bx 2 + cxy
+dx + ey + f]

{x , y} {b, c, d,

e, f } T (x ,y) � −bx − cy {{x − y}} 0.54

19 -
[x ′ � ax 2 + bxy ;
y ′ � gx 2 + hxy
+iy2 + ky]

{x , y} {a, b, g,

h, i, k} T (x ,y) � ax + by {{x }} 0.47

20 -
[
x ′ � ax 2 + bxy
y ′ � axy + by2

]
{x , y} {a, b} T (x ,y) � ax + by {{x ,y}} 0.46

21 -
[
x ′ � ax 2 + cy2 + f
y ′ � ax 2 + cy2 + l

]
{x , y} {a, c, f ,

l} T (x ,y) � 0 {{x 2, 2 ∗ ((f ∗ g ...}; ...} 1.84

Generating invariants for non-linear loops 825

of eigenspaces or nullspaces. By using efficient mathematical packages, e.g. Sage [SJ05], Maple, Mathematica,
Lapack or Eispack, one can obtain the eigenvalues as closed-form algebraic expressions. That is, algebraic
numbers which comprise the solutions of an algebraic equation in terms of its coefficients, relying only on
+,−,∗,/, and the extraction of roots. Also, eigenvalues are already obtained as algebraic numbers in practice, for
large well known classes of matrices, such as when n < 5, and when the matrix is 5 × 5 block triangular, among
others. FromTable 1a, we note that the computation of nullspaces or eigenspaces remain themain computational
steps in our approaches. Table Sec-experimentb lists some of these experimental results focusing on the type of
systems, scaling and basis of invariants that one could expect using our approaches. The first column refers to
the specific problem of the experiment. The second column provides the numbers of variables. The third column
gives the parameters used to represent a program class. The column Scaling shows the approximation of the
consecution conditions. The column Basis Inv. presents the types of basis of invariants that one can generate.
The last column refers to the cpu time required to compute those nullspaces or eigenspaces that turn out as
vector spaces of invariants. We can see that our methods efficiently handle a large number of non-linear examples
treated elsewhere in the literature. The experiment 2 is from [SSM04b] and the experiments 4–7 relate to the loop
transitions of the generalized readers-writers case studies from [SSM04b]. Experiments 8–20, listed in Table 1b,
involve non-linear systems most of which can be shown to be beyond the limits of other recent approaches.
The experiments 8–11, expose the types of basis of invariants that one can generate considering four different
polynomial scalings. More important experiment 3 and experiments 13–20 refer to generic programs, i.e., large
classes of programs and the associated generic basis of invariants that we provide.We use parameters to represent
these classes of programs and we generate generic basis of invariants. Those parameters could also be use to
abstract away some variables of a larger program. The experiment 12 involves a fractional system. We used the
very complete Sage [SJ05] algebraic framework with interfaces written in Python so as to be able to access
useful mathematical packages. Although the main contribution of this work is theoretical—we present theorems
that could well be used with, or complement, other existing formal methods—the computation of these specific
nullspaces or eigenspaces was conducted and depended on the Sage’s on-line servers available. Those results show
the strength of our approach for generating non-linear invariants for non-linear systems.

10. Discussion

The notions of Gröbner bases and their computations, together with the ideal membership problem are central
to most recent approaches to program verification and static analysis [SSM04b, BBGL00, RCK07a, BLS96,
CXYZ07, Kov08, KJ06, Cou05, MOS02, RCK07b, GT08, PC08]. In order to better understand the difficulties
they incur,we first need somedetails onGröbner basis and the idealmembership problem.Consider amultivariate
polynomial,Q � ∑

i1,..,in
ai1,..,in x1

i1 . . . xn in , where the coefficients ai1,...,in are in a fieldK . How dowe know if it is
in an ideal I ofK [X1, . . . ,Xn]? This is known as the Ideal membership problem. To handle it we can use aGröbner
basisG � {g1, . . . , gs} for I . There are algorithms that compute such bases as long as we know a finite generating
basis for I [Buc96, Fau99]. Then, we can compute the normal form of Q for I using the basis G . Denote the
normal form by NFG (Q). We note that the use of a Gröbner basis guarantees the confluence and termination of
those reductions. In general, we haveNFG (Q) � ∑

i1,..,in
f (a)i1,..,in x1

i1 . . . xn in , where f (a)i1,..,in is a combinations
of the coefficients ai1,..,in . Then the statement (Q ∈ I) is equivalent to the assertion (NFG (Q) � 0), that is, all the
coefficients f (a)i1,...,in are null.

Returning to the mentioned approaches for program verification and static analysis, the loop instructions are
considered in order to form varieties and to build associated algebraic assertions and the ideal I . Then, these
techniques compute a Gröbner basis G for I . Next, they postulate a template polynomial Q , i.e., a polynomial
with unknown coefficients, as a candidate invariant. As we have seen just above, Q is an invariant if it belongs to
the ideal I or, in other words, if (NFG (Q) � 0). So, the next step in these techniques, is to obtain the reduction
NFG (Q). An important obstacle faced at this point is that all known algorithms for computingGröbner basis and
for the construction of the normal form reduction NFG (Q) are of doubly exponential time complexity. Having
the normal form NFG (Q), they generate the set of candidate invariant constraints in the form of the system of
equations (NFG (Q) � 0), and attempt to solve it directly. Moreover, as we have seen in Sect. 4.3, as soon as
the loop contains a non-linear instruction, the candidate invariant constraints results in a non-linear system of
equation, which makes its resolution all but unfeasible. Further, there are no conditions over the degree of their
candidate invariants that would guarantee the non-triviality of the resulting invariant, when it can be computed.

826 R. Rebiha et al.

In terms of performance and efficiency, we succeeded in reducing the non-linear loop invariant generation
problem to a linear algebraic problem, i.e., to the computation of eigenspaces of specific morphisms. Our tech-
niques have fewer computational steps: we first compute some specific matrices and then we compute their
nullspaces. Each of these steps remains of polynomial time complexity. Further, our approaches do not simply
generate an invariant at a time. Instead, we generate an ideal of invariants which is a large—infinite—structure.
We also handle fractional systems and our algorithm incorporates a strategy to find degree bounds which allow
for the automatic generation of ideals of non-trivial invariants. Moreover, as one of the main results, we provide
very general sufficient conditions allowing for the existence and computation of such invariant ideals. Note that
these conditions could be directly used by any other invariant generation methods.

As a more applied motivation, our techniques can be made to bear on new domains that require the compu-
tation of complex invariants. Along these lines, some recent work on security [RM11c, RM09, RM11b, RM11a],
showed how such invariants play a central role in static analysis of malwares, e.g., viruses, and how they can be
used to build new invariant-based intrusion detection systems. Invariants generated overmalware codes are strong
semantic aware signatures that can be used to analyze and identify intrusions caused by such malicious code.
These new approaches could form parts of intrusion detection systems where an alarm is a proof of abnormal
behavior caused by the violation of a precomputed invariant induced by the intrusion. We note that binary code
gives rise to non-linear arithmetic and the methods described here allow, as we have shown, for the generations
of complex and precise invariants in such cases. We stress that the more the complex the invariant is, the harder
it will be to morph the corresponding signatures in an automatic way.

11. Conclusions

Our primary goal and motivation were to provide invariant generation methods for static analysis that could
serve as a basis for automatic program verification.

We have shown that the preconditions for discrete transitions can be viewed as morphisms over a vector space
of bounded degree polynomials. These morphisms, in turn, could be suitably represented by matrices. By doing
so, we succeeded in reducing the non-linear loop invariant generation problem to linear algebraic problems or,
more precisely, to the computation of eigenspaces of these morphisms.We also treated fractional systems and our
algorithms incorporate a strategy to find degree bounds for candidate invariants, thus allowing for the automatic
generation of non-trivial invariants.

These techniques lead to algorithms ofmuch lower time complexity than othermodern approaches. The latter
incur in computationswhich are of a doubly exponential time complexitywhile, by contrast, our techniques induce
algorithms of polynomial time complexity.

Further, our methods do not generate a single invariant at a time. Instead, we generate non-linear invariant
ideals, which are infinite structures, giving rise to families of non-trivial invariants. As another important main
result, we provided very general sufficient conditions that can guarantee the existence of such invariant ideals.

We also noted that our techniques could be combined with other formal verification methods and their
associated tools. A case in point are formal methods that treat logics with uninterpreted functions [GT06], which
can handle function calls and operating system calls.

Acknowledgements

We would like to thank the anonymous reviewers for their detailed comments.

A. Appendix

Proof of Theorem 1 If Q(X ′
1, ..,X

′
n) − λQ(X1, ..,Xn) belongs to the ideal I generated by the family (X ′

1 −
L1, . . . ,X ′

n − Ln), then there exists a family (A1, . . . ,An) of polynomials in R[X ′
1, . . . ,X

′
n ,X1, . . . ,Xn] such

that Q(X ′
1, . . . ,X

′
n) − λQ(X1, . . . ,Xn) � (X ′

1 − L1)A1 + · · · + (X ′
n − Ln)An . Letting X ′

i � Li , we obtain
Q(L1(X1, . . . ,Xn), . . . ,
Ln (X1, . . . ,Xn)) � λQ(X1, . . . ,Xn). Conversely suppose

Q(L1(X1, ..,Xn), ..,Ln (X1, ..,Xn)) � λQ(X1, ..,Xn). Then as Q(X ′
1, . . . ,X

′
n) is equal to Q(L1, ..,Ln)

modulo the ideal I , we get Q(X ′
1, ..,X

′
n) � λQ(X1, . . . ,Xn) modulo I . �

Generating invariants for non-linear loops 827

Proof of Theorem 2 Let Q be a polynomial in Rr [X1, ..,Xn]. We have the following sequence of deduction:
(Q(L1(X1, . . . ,Xn), ..,
Ln (X1, . . . ,Xn)) � λQ(X1, . . . ,Xn)) ⇔ (M (Q) � λQ) ⇔ (M (Q) � λ Id (Q)) ⇔ ((M − λ Id)(Q)
� 0R[X1,..,Xn]) ⇔ (Q ∈ Ker (M − λ I)). Using the definition of an invariant and Theorem 1, we can see that
Q will be a λ-scale invariant if and only if it belongs to the eigenspace corresponding to λ. �

Proof of Corollary 1 Suppose M is block triangular with blocks 4 × 4 or less, then its characteristic polynomial
will a product of polynomials of degree less than four, whose roots can be calculated by the Lagrange resolvent
method [Lan02].For the secondassertion,we alreadyknow that 1 is an eigenvalue. Suppose that the corresponding
eigenspace is of dimension exactly one. Then the only vectors in that space are the constant polynomials. If it is
of dimension two or more, then we get non-trivial polynomials in the eigenspace. �

Proof of Theorem 3We first consider Theorem 2. The initiation step defines onRr [x1, . . . , xn] a linear form on this
space, namely, Iu : P �→ P (u1, . . . , un).Hence, initial values correspond to a hyperplane ofRr [X1, ..,Xn] given by
the kernel of Iu , which is {Q ∈ Rr [X1, ..,Xn] | Q(u1, . . . , un) � 0}. If we add initial conditions of the form (x1(0)
� u1, . . . , xn (0) � un), we are looking for a λ-scale invariant in Rr [x1, . . . , xn] that belongs to the hyperplane
P (u1, . . . , un) � 0, i.e., we are looking for Q in ker (M − λ I) ∩ {P | P (u1, . . . , un) � 0}. �

Proof ofCorollary 2We take each direction, in turn. [(⇒)] There is aλ-scale invariant for any initial value. Then the
corresponding eigenspace has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at least
necessary to have λ-invariants), than taking any nonzero vectorQ in the eigenspace (i.e. a λ-invariant),Q should
lie in any hyperplane of initial values. That is for every n-tuple (u1, . . . , un) one would have Q(u1, . . . , un) � 0,
hence Q � 0, which is absurd. [(⇐)] Any eigenspace of M with dimension at least 2 will intersect any space,
in particular any hyperplane, given by any initial constraints. As any hyperplane is of co-dimension one in
Rr [X1, . . . ,Xn], it must have a nonzero intersection with any subspace of dimension strictly greater than one.
This establishes the result. �

Proof of Theorem 4 [(⇒)] If Q(X ′
1, ..,X

′
n) − TQ(X1, ..,Xn) belongs to the ideal I generated by the family

(X ′
1−P1, . . . ,X ′

n−Pn), then there exists a family (A1, . . . ,An) of polynomials inR[X ′
1, ..,X

′
n ,X1, ..,Xn] such that

Q(X ′
1, ..,X

′
n)− λQ(X1, ..,Xn) � (X ′

1 − P1)A1 + · · · + (X ′
n − Pn)An . Letting X ′

i � Pi , we obtain Q(P1(X1, ...,Xn), ...,
Pn (X1, ...,Xn)) � TQ(X1, ...,Xn). [(⇐)] Conversely suppose

Q(P1(X1, ..,Xn), ..,Pn (X1, ..,Xn)) � TQ(X1, ..,Xn). Then asQ(X ′
1, ..,X

′
n) is equal toQ(P1, ..,Pn) modulo

the ideal I , we get Q(X ′
1, ..,X

′
n) � λQ(X1, . . . ,Xn) modulo I . This establishes the result. �

Proof of Theorem 5 Let Q be a polynomial in R[X1, ..,Xn]. Such a polynomial Q is T -invariant if and only if
Q(P1(X1, ..,Xn), ..,
Pn (X1, ..,Xn)) � T (X1, ..,Xn)Q(X1, ..,Xn), i.e., if and only if M (Q) � L (Q) ⇔ (M − L)(Q) � 0R[X1,..,Xn].
Writing this in matrix equivalent terms we have ((M −L)Q � 0) ⇔ (Q ∈ Ker (M −L)), and the result follows. �

Proof of Theorem 6 From linear algebra, we know that M − L with a non-trivial kernel is equivalent to it
having rank strictly less than the dimension v (r) of Rr [x1, . . . , xn]. This is equivalent to the fact that each
v (r) × v (r) sub-determinant of MD − LT is equal to zero. Those determinants are polynomials with variables
(t1, .., tv (d−1)), which we will denote by V1(t1, . . . , tv (d−1)), . . . ,Vs (t1, . . . , tv (d−1)). From the form of L, this is
zero when (t1, . . . , tv (d−1)) � (0, . . . , 0). Hence, M − L has its last column equal to zero, giving a common root
for these polynomials, corresponding to the constant invariants. �

Proof of Theorem 7 Consider Theorem 5. The initiation step defines onRr [x1, . . . , xn] a linear form on this space,
namely, Iu : P �→ P (u1, . . . , un). Thus, initial values correspond to ahyperplane ofRr [X1, ..,Xn] given by the ker-
nel of Iu , which is {Q ∈ Rr [X1, ..,Xn] | Q(u1, . . . , un) � 0}. With initial conditions (x1(0) � u1, . . . , xn (0) � un),
we are looking for aT -scale differential invariant inRr [x1, . . . , xn] that belongs to the hyperplaneP (u1, . . . , un) �
0, i.e., we are looking for Q in Ker (M − L) ∩ {P | P (u1, . . . , un) � 0}. �

Proof of Corollary 3 [(⇒)] If there is a T -scale invariant for any initial value, then the corresponding eigenspace
has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at least necessary to have T -
invariants), taking any non-zero vector Q in the eigenspace (i.e. a T -invariant), Q should lie in any hyperplane
of initial values, and so for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) � 0, hence Q � 0, which is

828 R. Rebiha et al.

absurd. [(⇐)] Any eigenspace ofMD − LT with dimension at least 2 will intersect any space given by any initial
constraints. This establishes the result. �
Proof of Corollary 4 The right singular vectors corresponding to vanishing singular values of M − L span the
null space of M − L. The left singular vectors corresponding to the non-zero singular values ofM − L span the
range of M − L. As a consequence, the rank of M − L equals the number of non-zero singular values which is
the same as the number of non-zero elements in the matrix S . �
Proof of Theorem 8 [(⇒)] IfQ(X ′

1, ..,X
′
n)−FQ(X1, ..,Xn) belongs to the fractional ideal J generated by the family

(X ′
1−P1/Q1, . . . ,X ′

n−Pn/Qn), then there exists a family (A1, . . . ,An) of fractional functions inR(X ′
1, ..,X

′
n ,X1,

..,Xn) such that Q(X ′
1, ..,X

′
n) − FQ(X1, ..,Xn) � (X ′

1 − P1/Q1)A1 + · · · + (X ′
n − Pn/Qn)An Letting X ′

i � Pi

Qi

we obtain Q(P1
Q1

, .., Pn

Qn
) � λQ(X1, . . . ,Xn). [(⇐)] Conversely suppose Q(P1

Q1
, .., Pn

Qn
) � FQ(X1, ..,Xn). Then as

Q(X ′
1, ..,X

′
n) is equal to Q(P1

Q1
, .., Pn

Qn
) modulo the ideal J , we get that Q(X ′

1, ..,X
′
n) � FQ(X1, ..,Xn) modulo

J . And we have the result. �
Proof of Theorem 9 Let Q be a polynomial in R[X1, ..,Xn]. In fact, a polynomial Q is T/�r -invariant
if and only if Q(P1(X1, ..,Xn), ..,Pn (X1, ..,Xn)) � T/�r (X1, ..,Xn)Q(X1, ..,Xn), which is equivalent to
�rQ(P1(X1, ..,Xn),
..,Pn (X1, ..,Xn)) � T (X1, ..,Xn)Q(X1, ..,Xn), and this holds if and only if (M (Q) � L (Q)) ⇔
((M −L)(Q) � 0R[X1,..,Xn] Writing this inmatrix equivalent termswe get ((M −L)Q � 0) ⇔ (Q ∈ Ker (M −L)),
and the result follows. �
Proof of Theorem 10 We first consider Theorem 9. The initiation step defines on Rr [x1, . . . , xn] a linear form on
this space, namely, Iu : P �→ P (u1, . . . , un). Hence, initial values correspond to a hyperplane of Rr [X1, ..,Xn]
given by the kernel of Iu , which is {Q ∈ Rr [X1, ..,Xn] | Q(u1, . . . , un) � 0}. With initial conditions (x1(0) �
u1, . . . , xn (0) � un), we are looking for a strong-scale differential invariant in Rr [x1, . . . , xn] that belongs to the
hyperplane P (u1, . . . , un) � 0, i.e., we are looking for Q in Ker (M − L) ∩ {P | P (u1, . . . , un) � 0}. �
Proof of Corollary 5 [(⇒)] If there is a non-trivial F -scale invariant for any initial value, then the corresponding
eigenspace has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at least necessary
to have F -invariants), taking any non-zero vector Q in the eigenspace (i.e. a F -invariant), Q should lie in any
hyperplane of initial values, i.e. for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) � 0, hence Q � 0,
which is absurd. [(⇐)] Any intersection between an eigenspace of M with dimension at least 2 will intersect any
space given by any initial constraints. And we have the result. �

Proof of Theorem 11 Let f (j)1 , . . . , f (j)nj
∈ K [X1, . . . ,Xn] be such that Ij � (f (j)1 , . . . , f (j)nj

), for all j in [1, k]. Let β ∈
(�(I1, . . . , Ik)) Then there exists e1, . . . , en1n2...nk

∈ K [X1, ..,Xn] such that β � e1δ1+· · ·+en1n2...nk
δn1n2...nk

. Also,
by construction of �(I1, . . . , Ik) we know that for all r ∈ [1, . . . ,n1n2 . . .nk], δr ∈ �(I1, . . . , Ik). In other words,
there is (α(r)

1 , . . . , α
(r)
k) ∈ I1 × · · · × Ik such that δr � �k

i�0α
(r)
i . Then we have β � ∑n1n2...nk

j�1 [λj �k
i�1α

(j)
i]. Now,

for allm in [1, k], if Im correspond to a precomputed inductive ideal of invariants associated to a transition τm at
location l , then for all j ∈ [1,n1n2 . . .nk] we have α(j)

m (X 1, . . . ,Xn) � 0. Hence, for all j ∈ [1,n1n2 . . .nk] we get
�k

i�1α
(j)
i � 0.Finally,we obtainβ(X1, . . . ,Xn) � 0 for allm in [1,n1n2 . . .nk]. In otherwords,β(X1, . . . ,Xn) � 0

is an algebraic assertion true at any step of the iteration of the loop for any transition τm that could possibly be
taken. Then (β(X1, . . . ,Xn) � 0) is an inductive invariant and we can conclude that (�(I1, . . . , Ik)) is an ideal of
inductive invariants. �

References

[AV97] Arnaudiesa JM, Valibouze A (1997) Lagrange resolvents. J Pure Appl Algebra 117–118:23–40
[BBGL00] Bensalem S, Bozga M, Ghirvu J-C, Lakhnech L (2000) A transformation approach for generating non-linear invariants. Stat

Anal Sympos 5:101–114
[BLS96] Bensalem S, LakhnechY, Saidi H (1996) Powerful techniques for the automatic generation of invariants. In: Alur R,Henzinger

TA (eds) Proceedings of the 8th international conference on computer aided verification CAV, vol 1102, pp 323–335
[Buc96] Buchberger B (1996) Symbolic computation: computer algebra and logic. In: Frontiers of combining systems. Proceedings of

the 1st international workshop, Munich, pp 193–220
[CC77] Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or

approximation of fixpoints. In: Symposium of the principles of programming languages, pp 238–252. ACM Press, New York

Generating invariants for non-linear loops 829

[CC92] Cousot P, Cousot R (1992) Abstract interpretation and application to logic programs. J Logic Program 13(2–3):103–179
[Col75] CollinsGE (1975) Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition.

In: LNCS. Springer, New York
[Cou05] CousotP (2005)Provingprogram invariance and terminationbyparametric abstraction, lagrangian relaxationand semidefinite

programming. In: Conference on VMCAI, pp 1–24, Paris, LNCS, vol 3385, 17–19 January 2005
[CXYZ07] Chen Y, Xia B, Yang L, Zhan N (2007) Generating polynomial invariants with discoverer and QEPCAD. In: Formal methods

and hybrid, real-time systems, pp 67–82
[Dij76] Dijkstra EW (1976) A discipline of programming. Prentince-Hall, London
[Fau99] Faugere J-C (1999) A new efficient algorithm for computing Grobner bases (f4). J Pure Appl Algebra 139(1–3):61–88
[Flo67] Floyd RW (1967) Assigning meanings to programs. In: Proceedings of the 19th symposium on applied mathematics, pp 19–37
[GT06] Gulwani S, Tiwari A (2006) Assertion checking over combined abstraction of linear arithmetic and uninterpreted functions.

In: Sestoft P (ed) European symposium on programming, ESOP 2006, LNCS, vol 3924, pp 279–293
[GT08] Gulwani S, Tiwari A (2008) Constraint-based approach for analysis of hybrid systems. In: Proceedings of the 14th international

conference on computer aided verification (CAV)
[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580
[JKP06] Jebelean T, Kovacs L, Popov N (2006) Experimental program verification in the theorema system. Int J Softw Tools Technol

Transf (STTT) (in press)
[Kap04] Kapur D (2004) Automatically generating loop invariants using quantifier elimination. In: Proceedings of the IMACS inter-

national conference on applications of computer algebra
[KJ06] Kovacs L, Jebelean T (2006) Finding polynomial invariants for imperative loops in the theorema system. In: Proceedings of

the verify’06 workshop, pp 52–67, 15–16 August 2006
[Kov08] Kovacs L (2008) Reasoning algebraically about p-solvable loops. In: TACAS 2008, Proceedings of the 14th international

conference on tools and algorithms for the construction and analysis of systems, LNCS, vol 4963, pp 249–264.
[Lan02] Lang S (2002) Algebra. Springer, New York
[MOS02] Müller-Olm M, Seidl H (2002) Polynomial constants are decidable. In: Static analysis symposium, LNCS, pp 4–19
[MP95] Manna Z, Pnueli A (1995) Temporal verification of reactive systems: safety. Springer, New York
[PC08] Platzer A, Clarke EM (2008) Clarke Computing differential invariants of hybrid systems as fixedpoints. In: Proceedings of the

computer-aided verification, CAV 2008, Princeton, LNCS. Springer, New York
[PJ04] Prajna S, Jadbabaie A (2004) Safety verification of hybrid systems using barrier certificates
[RCK07a] Rodrı́guez-Carbonell E, Kapur D (2007) Automatic generation of polynomial invariants of bounded degree using abstract

interpretation. Sci Comput Program 64(1):54–75
[RCK07b] Rodrı́guez-Carbonell E, Kapur D (2007) Generating all polynomial invariants in simple loops. J Symb Comput 42(4):443–476
[RM09] Rebiha R, Moura AV (2009) Automated malware invariant generation. In: 6th international conference on forensic computer

science, ICoFSC2009 and ICCYBER2009 (best paper award)
[RM11a] RebihaR,MouraAV (2011) Algebraic formalmethods for invariant generation. In: Ph.D.Dissertation, Faculty of Informatics

USI, University of Lugano, Switzerland, pp 1–209
[RM11b] RebihaR,MouraAV (2011) Algebraic formalmethods for invariant generation. In: Ph.D.Dissertation, Insitute of Computing

UNICAMP, University of Campinas, Sao Paulo, pp 1–214
[RM11c] Rebiha R, Moura AV (2011) Semantic malware resistance using inductive invariants. Int J Forensic Comput Sci (IJoFCS0)

(best paper award, 5)
[RMM08a] RebihaR,MatringeN,MouraAV(2008)Endomorphism fornon-trivial semi-algebraic loop invariant generation. In:Technical

report TR-IC-08-31, Institute of Computing, University of Campinas
[RMM08b] Rebiha R, Matringe N, Moura AV (2008) Endomorphisms for non-trivial non-linear loop invariant generation. In: 5th

international conference on theoretical aspects of computing, pp 425–439, LNCS
[RMM10] Rebiha R, Matringe N, Moura AV (2010) Generatin invariants for non-linear hybrid systems by linear algebraic methods. In:

17th international static analysis symposium, SAS2010, LNCS
[Sch86] Schrijver A (1986) Theory of linear and integer programming. Wiley, New York
[SJ05] Stein W, Joyner D (2005) SAGE: system for algebra and geometry experimentation. ACM SIGSAM Bull 39(2):61–64
[SSM04a] Sankaranarayanan S, Sipma H,Manna Z (2004) Constructing invariants for hybrid system. In: Hybrid systems: computation

and control (HSCC), LNCS, vol. 2993, pp 539–554. Springer, New York
[SSM04b] Sankaranarayanan S, Sipma HB, Manna Z (2004) Non-linear loop invariant generation using grobner bases. In: POPL ’04,

Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on principles of programming languages, pp 318–329. ACM
Press, New York

[Tiw08] Tiwari A (2008) Generating box invariants. In: Proceedings of the 11th international conference on hybrid systems: compu-
tation and control (HSCC)

[Wei97] Weispfenning V (1997) Quantifier elimination for real algebra—the quadratic case and beyond. Appl Algebra Eng Commun
Comput 8(2):85–101

Received 7 November 2012
Revised 4 January 2015
Accepted 2 February 2015 by E. Allen Emerson
Published online 18 March 2015

