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Celso Omoto1, Fernando Luis Cônsoli1*
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Abstract

The exploration of new niches for microorganisms capable of degrading recalcitrant mole-

cules is still required. We hypothesized the gut microbiota associated with insect-resistant

lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to

degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrad-

ing capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains

resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron,

using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were

obtained, from which four were also associated with the susceptible strain. However, growth

of gut bacteria associated with larvae from the susceptible strain was not obtained in any of

the insecticide-based selective media tested. Growth of isolates was affected by the con-

centration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-

degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In

conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrad-

ing bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected

to the selection pressure imposed by insecticides on their hosts and may influence the meta-

bolization of pesticides in insects.

Introduction

Several fitness traits of insects are heavily influenced by associated microbiota [1–3]. The asso-

ciation of insects with microbials is very important for the evolution of ecological features and/

or feeding habits in insects. Symbiotic-associated polydnavirus aids in host exploitation by par-

asitoids [4], and flagellates, bacteria and yeasts allow insects to feed on hard to digest and/or
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nutritionally-poor diets [5]. Although insects may be associated with a variety of microbials,

associations with bacteria are the most spread and common. More we investigate on the role

of bacterial associations with insects, more we learn on how diverse their contribution to

insects is. While contribution of primary, obligate insect-associated bacteria is basically related

to nutrient provisioning to the host insect, secondary, facultatively insect-associated bacteria

may influence a range of fitness traits of their host insect, including host nutrition. Secondary

bacterial symbionts improve host immune response to entomophages [6–8] and entomo-

pathogens [9–11], influence host plant selection [12], provide protection against heat stress

[13], and contribute to the process of detoxification of metabolites produced for plant defense

against herbivores [14–16]. The role of microbiota in detoxification of xenobiotics also

includes the catabolization of organic molecules employed in applied pest control, as demon-

strated by degradation [17,18] or histochemical analyses [14,19].

The diverse role and effect of symbionts to insect fitness traits has now gained new perspec-

tives for biotechnological exploration. Insect associated symbionts are currently investigated

i) for the development of new strategies for pest control and insect-vector disease management

[20–23], and ii) as a source of molecules for biotechnological applications [24,25], such as

enzymes for biomass conversion [26,27], antimicrobial and insecticide bioactive molecules

[28,29], and molecules to manipulate insect behavior [30,31], for example.

Nonetheless, the participation of the microbiota associated with insects in the degradation

of xenobiotics, including the synthetic organic compounds generally used for pest control

raises important issues. The first would be related to the possibility to explore insect associated

microbiota to select for bacteria capable to degrade xenobiotics for further application in bio-

remediation. Secondly, the role of microbiota in influencing the efficiency of insecticides in

insect pest control [32–34].

Microorganisms have been widely used for environmental decontamination and are quite

common in areas that have been contaminated by improper and/or excessive use of pesticides

in agricultural areas [35–37]. Such intensive and continuous use of organic pesticides also pro-

duces another undesirable effect, as it leads to the evolution of insect resistance to insecticides

[38,39]. Insecticide resistance always leads to a surge in pesticide use, resulting in increased

side-effects to non-target organisms and environment [40,41]. As conservation and sustainable

agricultural practices are progressively demanded by society, there is a constant need for bioac-

tive molecules and/or microorganism that could be employed in the biodegradation of such

xenobiotics. Bacteria have been exploited as one of the main targets for the development of

biotechnological products that could be used in such applications, and contaminated soils are

usually the source of potential bacterial candidates for bioremediation of contaminated areas

[42–45].

The exploration of new niches as sources of new microorganisms or microorganisms with

higher potential for degradation of xenobiotics remains a necessity. Insects share a long his-

tory of association with bacteria, and there are a number of indications insect-associated

microbiota participate in the degradation of natural [14] and synthetic organic molecules

[14,17,46,47]. Besides, the gut microbiota of insects has been shown to be amenable to com-

munity changes in response to pesticides [48] and evolution of pesticide resistance [49]. As

current data have demonstrated that phenotypes are the result of the expression of the

genomes of all organisms living in a close association [50,51], we hypothesized that labora-

tory insect strains selected for insecticide resistance would also carry bacteria selected to

degrade the pesticides their hosts were selected against, and as such serve as potential new

sources for the target-oriented selection of bacteria for bioremediation applications.

Insecticide-degrading bacteria in the gut of resistant insects
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Materials and methods

Insects

Field populations of Spodoptera frugiperda have been exposed to F2 screening procedure for

selection of genotypes and establishment of resistant lines [52] to pyrethroid (deltamethrin

and lambda-cyhalothrin), organophosphate (chlorpyrifos ethyl), naturalyte (spinosad), and to

chitin synthesis inhibitor (lufenuron). All of the resistant lines of S. frugiperda have been

selected and constantly maintained under selection pressure in the Arthropod Resistance

Management Laboratory, Department of Entomology and Acarology (ESALQ/USP). Lines

were reared on a bean based artificial diet under controlled conditions (27 ± 1˚C; 60 ± 10%

RH; 14 h photophase), following standard rearing procedures [53].

Isolation of gut bacteria

Fifth instars of S. frugiperda from each resistant line available (deltamethrin, lambda-cyhalo-

thrin, chlorpyrifos ethyl, spinosad and lufenuron) and the susceptible reference line were

removed from their rearing containers, surface-sterilized in 5% sodium hypochlorite in 70%

ethanol for 5 min, and rinsed in sterile distilled water (3x—1min). Larvae were dissected in

minimum medium 9 (MM9) [54] under sterile conditions, and the gut obtained was rinsed in

clean, sterile MM9. Guts from each line were individually macerated in 1 mL MM9 in plastic

tubes with the aid of sterile pestles, and 6 guts were later pooled, resulting in a 6 mL sample.

Samples were vortexed and the volume of 1 gut/equivalent was transferred to 6 mL of MM9

added of 10 μg/mL of the insecticide the strain had been selected against in 0.1% Tween 20

solution (hereafter denominated as the selective medium) (Insecticide purity: deltamethrin =

98.5%; lambda-cyahalothrin = 87.4%; Chlorpyriphos = 99.2%; Lufenuron = 99.7%; Spino-

sad = 95.5%). Two selective media were prepared for each insecticide. One containing only the

insecticide as carbon source for bacterial growth, while the other was supplemented with 1g/L

glucose. Glucose was initially used to provide an additional nutritional carbon source for fas-

tidious bacteria.

Samples were incubated at 28˚C under constant shaking (225 rpm) for up to 10 days. Ali-

quots were removed at 5, 7 and 10 days after the beginning of the cultivation. Serial dilutions

were prepared (1, 1/10, 1/100) and aliquots plated on MM9 agar supplemented with 10 μg/mL

of the original insecticide. Samples were incubated at 28˚C for bacterial growth and colony iso-

lation. Experiments were run in triplicates. Bacterial colonies were isolated based on their mor-

phology (size, color, and shape) and growth. At least three colonies per morphotype were

selected and subjected to reisolation before molecular characterization. Each one of the

selected colonies were grown in liquid medium (MM9 + 10 μg/mL insecticide) at 28˚C under

constant shaking (225 rpm) for 5 days. Samples were subjected to centrifugation, cell pellets

were resuspended in MM9 and most of the cells were stored in 20% glycerol at -80˚C. The

remaining cells were centrifuged (2000g x 5 min) and used for genomic DNA extraction.

Molecular identification of bacterial isolates

Bacterial cells were subjected to genomic DNA (gDNA) extraction following Sunnucks &

Hales (1996) [55], and gDNA quality was verified by gel electrophoresis in a 0.8% (w/v) aga-

rose gel slab containing 0.5 μg/mL ethidium bromide in TAE buffer (40 mM Tris-acetate, 1

mM EDTA, pH = 7.2) at constant voltage (70 V) for 1 h. gDNA samples were also evaluated by

UV measurements and the OD ratio at 260/280 nm determined.

An almost complete sequence of the 16S rRNA gene was used for the molecular identifica-

tion of the isolates obtained. 10–20 ng gDNA of each isolate was subject to PCR amplification

Insecticide-degrading bacteria in the gut of resistant insects
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using the universal primer set 8F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1491R (5’-
GGTTACCTTGTTACGACTT-3') [56] in 1x enzyme buffer, 1.5 mM MgCl2, 200 μM dNTPs,

320 pM of each primer, and 0.625 U of Taq polymerase (Promega), in a final reaction volume

of 25 μL. PCR cycling conditions were 4 min at 95˚C (1x); 95˚C—1 min, 55˚C—1 min, and

72˚C—2 min (35x), followed by a final extension at 72˚C for 10 min (1x). Amplicons were

resolved by gel electrophoresis in a 1% agarose slab as described before. Amplicons were visu-

alized using an UV transilluminator coupled to an image acquisition and processing device

(DNR Bioimaging Systems). PCR reactions were subjected to standard ExoSap treatment

(Thermo Scientific, USA) (1U exonuclease and 1U alkaline phosphatase) for elimination of

residual dNTPs and primers. Samples were incubated at 37˚C for 30 min, and then at 80˚C for

15 min.

Aliquots (4 μL) of the amplicons were first subjected to restriction fragment length poly-

morphism (RFLP) analysis using EcoRI, Rsa or DdeI (Promega) in a reaction volume of 10 μL

(5 U of enzyme). Samples were incubated at 37˚C for 4h, and the restriction pattern observed

after gel electrophoresis in 1.2% agarose as before. Restriction fragment sizes were calculated

after image acquisition and processing using the GelQuant software (DNR Bio-Imaging Sys-

tems Ltd.). Amplicons that yielded the same restriction pattern for the same morphotype were

grouped and two amplicons selected for bidirectional sequencing. Amplicon sequencing was

conducted at the Human Genome Studies Center (CEGH), University of São Paulo. Ampli-

cons were subjected to sequencing using the primers set of the original amplification and the

internal universal primer 515F (5'-GTGCCAGCAGCCGCGGTAA-3') to obtain the complete

sequence [57].

Sequences obtained were analyzed using FinchTV v1.4.0 (Geospiza Inc.) and different

reads were assembled in a single sequence using the Blast2 tool. After sequence trimming,

1350 bp were selected for heuristic blast search against databases at the “National Center for

Biotechnology Information” (NCBI) (http://www.ncbi.nlm.nih.gov/) and EzTaxon-e (http://

eztaxon-e.ezbiocloud.net/) [58] for putative identification of the isolates obtained against refer-

ence sequences.

Phylogenetic analysis of the sequences obtained for the different isolates was obtained after

alignment using ClustalW as implemented in Mega 6.0, with a gap penalty = 15 and gap exten-

sion = 9 [59] (Tamura et al, 2013). Phylogenetic relationships were inferred by Neighbor-Join-

ing [60] to obtain a phylogenetic tree, and the Jukes and Cantor model [61] used to calculate

the distance matrix. 16S rDNA sequences of bacteria closely related to those we isolated from

the gut of S. frugiperda were obtained from the NCBi/EzTaxon-e databses and used for

alignment.

Detection of isolated strains in susceptible larvae

As no bacterial colonies from the gut of the susceptible line of S. frugiperda grew on insecti-

cide-based selective media, the occurrence of the selected isolates in the gut of the susceptible

larvae was checked by diagnostic PCR.

Fifth instars of the susceptible line of S. frugiperda were dissected as before, the guts of five

larvae were pooled and DNA extracted using the DNeasy Blood & Tissue kit (QIAGEN).

gDNA qualitative and quantitative evaluation were done as before. Diagnostic PCR amplifica-

tions were carried out using 10–20 ng gDNA, 1x enzyme buffer, 1.5 mM MgCl2, 200 μM

dNTPs, 320 pM of each primer (Table 1), and 0.625 U of Taq polimerase (Promega), in a final

reaction volume of 25 μL. Thermocycling conditions were 1 cycle at 95˚C for 4 min, followed

by 35 cycles at 95˚C for 1 min, X˚C (given by each primer set) for 1 min, 72˚C for 2 min, and a

final extension at 72˚C for 10 min. Amplicons were resolved in 1% agarose gel electrophoresis

Insecticide-degrading bacteria in the gut of resistant insects
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as before. Amplicons from positive amplifications were treated with exonuclease and alkaline

phosphatase and subjected to bidirectional sequencing as earlier described.

Bacterial growth on insecticide-based media

The growth of bacterial isolates in insecticide-based growth media was investigated to select

the most suitable bacteria for each insecticide for further analysis on insecticide degrada-

tion. Bacterial growth curves were assessed by inoculating 120 μL 105 CFU/mL in 3 mL

MM9 supplemented with 10 μg/mL of insecticide, under constant shacking as before. The

colony forming units (CFU) was assessed by daily plating 10 μL of serial dilutions of 100 μL

aliquots, followed by incubation at 28˚C for 48 h. Isolates were cultivated for up to 5 days.

Each treatment was replicated three times and each sampling time was done in technical

triplicates.

Bacterial growth under different concentrations of insecticides

Dose-dependent studies of the effects of insecticides on the growth of the isolated bacteria

were conducted only for the best growing bacteria obtained from the previous experiment.

Selected isolates were grown in MM9 media with different concentrations of insecticides (10,

20, 40, 80, and 160 μg/mL). Samples were prepared and bacterial growth assessed as earlier

described for 5 days of cultivation or until no changes in the number of viable cells were

observed.

Table 1. Species-specific primer sets, annealing temperature and expected amplicon size (pb) used in diagnostic-PCR amplifications for detection

of gut microbes isolated from resistant larvae of Spodoptera frugiperda in the gut of a susceptible strain.

Symbiont Primer (5’– 3’) Annealing (˚C) Amplicon (bp)

Enterococcus casseliflavusabcd • Ec-1: ATGGAAGAAAGTTGAAAGGCG

• Ec-2: AAGGGGAAGCTCTATCTCTAG

56 820

Enterococcus mundtiiabde • Em-1: ATGGTTTCGTTTTGAAAGGCG

• Em-2: AGGGGTGAACAGTTACTCTC

56 285

Delftia lacustrisa • Da-1: ACTGGTTGTTGGGAATTAGTTTTC

• Da-2: TGTGTGCAGGTTCTCTTTC

56 211

Leclercia adecarboxylataa • La-1: ATCAGATGTGCCCAGATGG

• La-2: CAAGGGAACAACCTCCAAG

58 601

Microbacterium paraoxydansa • Mp-1: ATACTGGATATGTGACGTGAC

• Mp-2: ACTAGTTCCCAACGTTTACG

56 644

Pseudomonas stutzerib • Ps-1: GCAGTAAGTTAATACCTTGCTG

• Ps-2: ACCCTCTGCCATACTCTAG

56 196

Arthrobacter nicotinovoransc • An-1: TCAACTCCGGTTCTGCAGT

• An-2: AGGTCTTTCCGGTTCATGTC

56 374

Pseudomonas psychrotoleransd • Pp-1: AGGAAGGGCTCATAGCGAATACC

• Pp-2: CTACCGCACTCTAGCCAGACA

58 197

Microbacterium arborescense • Ma-1: GGTCAGTAGCTGGAAAGAAT

• Ma-2: GTTTCCAGACGTTTCCTCTATA

56 804

Staphylococcus sciuri subsp. sciurie • Ss-1: TCGGCTGTCACTTATAGATGG

• Ss-2: CCGTCAAGACTTGTTCAGTTA

56 254

Superscript letters indicate the insecticide the host strain was resistant to: achlorpyrifos ethyl, blambda-cyhalothrin, cdeltamethrin, dspinosad and elufenuron.

https://doi.org/10.1371/journal.pone.0174754.t001

Insecticide-degrading bacteria in the gut of resistant insects
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GC-MS and LC-MS/MS analyses

Insecticide degradation by the selected microbiota was investigated by cultivating 200 μL 105

CFU/mL of each isolate in vials with 50 mL MM9, each containing 10 μg/mL of the insecticide

tested. Samples were grown at 28˚C under constant shaking as before. Each treatment was rep-

licated three times. Samples of the growth media without bacteria were maintained under the

same conditions to allow the assessment of natural degradation of the tested insecticides.

After cultivation, samples were centrifuged (10000g x 10 min x 4˚C), the supernatant col-

lected and subjected to liquid-liquid extraction using an equal volume of ethyl acetate (HPLC

grade—JTBaker). Samples were vigorously mixed, the organic phase collected and concen-

trated in a rotary evaporator (40 rpm; 45˚C). The residues obtained were recovered and stored

in amber vials at -20˚C for further GC or LC-MS/MS analyses depending on the chemical

nature of each insecticide.

Samples obtained from cultures using the pyrethroids deltamethrin and lambda-cyhalo-

thrin were dried under N2, recovered in 200 μL MeOH and injected in a HP6890 gas

chromatograph equipped with a 30 m long x 320 μm id HP-5MS (5% diphenyl 95%

dimethylpolisiloxane) capillary column (Agilent 19091J-413), coupled to a HP5973 mass

detector operated in the electron impact mode at 70eV. Samples (1 μL) were injected in

split-mode (20:1) using He as the carrier gas at a flow rate of 1.2 mL/min, and 250˚C at the

injection port. Oven temperature was initially set at 200˚C followed by 4˚C increases/min

until 300˚C, followed by a 5 min hold at 300˚C. Identification of the target ions were made

by comparisons to the fragmentation pattern obtained with the use of technical products as

standards—deltamethrin [m/z 172 (30), 175 (29), 181 (100), 208 (15), 209 (16), 253 (57)]

and lambda-cyhalothrin [m/z 181 (100), 197 (92), 208 (72), 449 (10)]. Deltamethrin and

lambda-cyhalothrin concentrations in the samples were calculated using serial dilutions

(50, 200, 350, 500, and 650 μg/mL) for determination of standard curves (deltamethrin:

y = 145788x, r2 = 0.998; lambda-cyhalothrin: y = 245320x, r2 = 0.998).

Samples for chlorpyrifos ethyl, lufenuron and spinosad were obtained as before but were

subjected to analysis using a liquid chromatograph ACQUITY UPLC H-Class coupled to a

XEVO TQ-S mass spectrophotometer (Waters, Manchester, UK). The system was equipped

with a quaternary pump, a vacuum degas system, and an automatic injector. Analyte chroma-

tography separation was obtained using an ACQUITY UPLC BEH C18 column (50 mm long x

2.1 id; particle size = 1.7 μm) using acidified water (A: 0.1% ammoniun acetate in water) and

methanol (B: 0.1% formic acid in MeOH) as mobile phases, starting with 35%A:65%B and

ending with 3%A:97%B for a running time of 5 min at a flow rate of 0.4 mL/min. Mass spec-

trum acquisition data occurred with 3.2 kV capillary voltage, source temperature 150˚C, N2

desolvation temperature 350˚C, cone gas flow 150 L/h. Sample ionization was obtained using a

Z-spray ionization source operated in positive (chlorpyrifos ethyl and spinosad) and negative

(lufenuron) modes, and ion monitoring followed the multiple reaction monitoring strategy

(MRM). Argon (Ar) was used as the collision gas for molecule dissociation (CAD—collision

activated dissociation). Identification was done by comparisons with the fragmentation pat-

tern produced by using technical products. Chlorpyrifos ethyl—parental ion m/z 350, daughter

ion m/z 97, 350> 97. Spinosad—spinosyn A: parental ion m/z 773, daughter ion m/z 142,

773> 142; spinosyn D—parental ion m/z 747, daughter ion m/z 142, 747> 142. Lufenuron—

parental ion m/z 509, daughter ion m/z 326, 509> 326. The concentration of these compounds

was calculated using standard curves based on serial dilutions curves (0, 5, 10, 50, 100 e 250

ng/mL)—chlorpyrifos ethyl: y = 2E+07x, r2 = 0.999; Spinosad: spinosyn A: y = 5E+07x, r2 =

0.997, and spinosyn D: y = 1E+07x, r2 = 0.996; and Luneuron: y = 2E+06x, r2 = 0.978). All data

Insecticide-degrading bacteria in the gut of resistant insects
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acquisition for LC-MS/MS analysis was done using the MassLynx 4.1 software and the applica-

tion manager for TargetLynx (Waters).

MS and MS/MS data obtained were used to determine the changes in the concentration

(%BD) of each insecticide tested remaining available in suspension after bacteria cultivation.

The %BD was given by subtracting the total degradation in the sample (%TD) by the natural

degradation observed in the control (%ND). All samples were run in biological triplicates and

averages within each treatment were compared by a t test (p< 0.05).

Results

Selective isolation of insecticide-degrading bacteria

Supplementation of the basal medium MM9 with insecticides was very efficient to sustain the

growth of gut bacteria adapted to such substrates as their nutritional resource from the gut of

resistant lines of S. frugiperda, but no bacterial isolates were obtained from the gut of suscepti-

ble larvae (S1 Fig). Moreover, our data also indicate the selection pressure imposed on insects

by their continuous exposure to xenobiotics can also works as a selective pressure acting upon

on the gut microbiota of S. frugiperda. No bacterial growth was obtained from cultivation of

the gut microbiota of susceptible larvae of this species, even though the microbiota of resistant

and susceptible larvae share different phenotypes of identical phylotypes. Phylotypes that were

common to the gut microbiota of insecticide-resistant and susceptible strains of S. frugiperda
only grew on insecticide-based media if coming from the gut of the resistant line. Moreover,

common phylotypes from resistant strains only grew on the selective media based on the insec-

ticide their host strain was selected against. In other words, bacterial isolates reflected the phe-

notypes of the strains of S. frugiperda they were associated with. We also demonstrated that

lines resistant to different insecticides carry particular gut symbionts capable of exploring the

source insecticide as a food resource.

More than 120 bacterial morphotypes were isolated from the gut of S. frugiperda larvae

resistant to insecticides (S1 Fig). Successful isolation of bacteria from the gut microbiota asso-

ciated to insects resistant to deltamethrin only occurred in MM9 supplemented with glucose

(S1 Fig). Glucose supplementation also improved selective isolation of bacteria from the gut of

lines resistant to chlorpyrifos ethyl and spinosad. On the other hand, microbiota from the gut

of lines resistant to lambda-cyhalothrin or lufenuron grew better in glucose-free media. Bacte-

ria from lines resistant to pyrethroids grew faster in glucose-free media (S2 Fig). In spinosad

and lufenuron, isolates were obtained after prolonged cultivation in liquid media (S2 Fig).

Time of cultivation in liquid media did not affect the number of isolates obtained from the gut

microbiota of larvae resistant to deltamethrin (S2 Fig).

Molecular characterization of gut-associated insecticide-degrading

microbiota

Molecular analysis of all morphotypes by PCR-RFLP followed by sequencing of the 16S rDNA

led to the identification of five phylotypes from the microbiota of chlorpyrifos ethyl resistant

larvae (IIL-Cl 05, 22, 25, 29 and 32), two from deltamethrin (IIL-Dm 01 and 05), and three

each from lambda-cyhalothrin (IIL-Lc 09, 16 and 32), spinosad (IIL-Sp 06, 16 and 32) and lufe-

nuron (IIL-Luf 12, 14 and 18). Heuristic comparative searches using 1350 bp of the 16S rDNA

of these isolates led to their putative identification (Table 2).

The Enterococcaceae Enterococcus casseliflavus and Enterococcus mundtii were common to

the microbiota of chlorpyrifos ethyl, lambda-cyhalothrin and spinosad. Yet, E. mundtii was

isolated from lufenuron resistant larvae while E. casseliflavus from deltamethrin (Table 2,

Insecticide-degrading bacteria in the gut of resistant insects
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Fig 1). They were also the most abundant bacteria isolated for most of the selective media they

grew, with the exception of chlropyrifos ethyl, in which Leclercia adecarboxylata dominated

(Table 2, Fig 1). All remaining bacteria were exclusively selected on the selective media con-

taining the insecticide the strain they were associated with was resistant against. Microbacter-
ium paraoxydans, Delftia lacustris and L. adecarboxylata were only isolated from the gut of

chlorpyrifos ethyl resistant larvae, Pseudomonas stutzeri from lambda-cyhalothrin, A. nicotino-
vorans from deltamethrin, Pseudomonas psychrotolerans from spinosad, and Staphylococcus
sciuri subspecies sciuri and Microbactetium arborescens from lufenuron (Table 2, Figs 1 and 2).

Analysis of the phylogenetic tree generated with the sequences of the isolated strains and of

type species indicated that almost all of the strains we isolated resolved in well-defined clades

with their closest type species (Fig 2). Isolates originating from different host resistant strains

putatively identified as E. casseliflavus and E. mundtii grouped in their specific clades, all with

very high bootstrap support values (Fig 2).

Detection of insecticide-degrading bacterial isolates

Although no isolates were obtained from the gut of susceptible larvae of S. frugiperda in selec-

tive media, diagnostic-PCRs detected E. casseliflavus, E. mundtii, S. sciuri and P. stutzeri in the

gut of susceptible larvae. Identification of the isolates was obtained by sequencing the ampli-

cons produced, which all shared 99.9% identity with their reference sequence.

Growth of insecticide-degrading bacteria

The growth capacity of the insecticide-degrading bacteria in the selective media containing

the insecticide they were selected against indicated isolates IIL-Cl29 (L. adecarboxylata)

Table 2. Putative identification of bacterial isolates obtained from the larval gut of strains of Spodoptera frugiperda resistant to different

insecticides.

Isolated Similarity

Nearest match GenBank accession Identity (%)

IIL-Cl05 (KX280768)a Enterococcus casseliflavus AJ420804 99.6

IIL-Cl22 (KX273063)a Delftia lacustris EU888308 99.8

IIL-Cl25 (KX280769)a Enterococcus mundtii AJ420806 99.9

IIL-Cl29 (KX272966)a Leclercia adecarboxylata AB273740 99.9

IIL-Cl32 (KX280770)a Microbacterium paraoxydans AJ491806 99.8

IIL-Lc09 (KX280771)b Pseudomonas stutzeri CP002881 99.9

IIL-Lc16 (KX280772)b Enterococcus mundtii AJ420806 99.9

IIL-Lc32 (KX280773)b Enterococcus casseliflavus AJ420804 99.6

IIL-Dm01 (KX280774)c Enterococcus casseliflavus AJ420804 99.6

IIL-Dm05 (KX280775)c Arthrobacter nicotinovorans X80743 99.4

IIL-Sp06 (KX280776)d Enterococcus casseliflavus AJ420804 99.6

IIL-Sp19 (KX280777)d Pseudomonas psychrotolerans AJ575816 100.0

IIL-Sp24 (KX280778)d Enterococcus mundtii AJ420806 99.9

IIL-Luf12 (KX280779)e Staphylococcus sciuri subsp. sciuri AJ421446 99.9

IIL-Luf14 (KX280780)e Microbacterium arborescens X77443 99.9

IIL-Luf18 (KX280781)e Enterococcus mundtii AJ420806 99.9

Identification is based on 16S rDNA (1350 pb) sequence similarity obtained from heuristic search against sequences in NCBi and EzTaxon-e databases.

Superscript letters indicate the insecticide the host strain was resistant to: achlorpyrifos ethyl, blambda-cyhalothrin, cdeltamethrin, dspinosad, and
elufenuron.

https://doi.org/10.1371/journal.pone.0174754.t002
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(109 CFU/mL in 3 days), IIL-Lc09 (P. stutzeri) (109 CFU/mL in 5 days), IIL-Dm05 (A. nicotino-
vorans) (1010 CFU/mL in 5 days), IIL-Sp19 (P. psychrotolerans) (109 CFU/mL in 5 days), IIL-

Luf14 (M. arborescens) (108 CFU/mL in 5 days) grew better and faster in selective-media based

on chlorpyrifos ethyl, lambda-cyhalothrin, deltamethrin, spinosad and lufenuron, respectively

Fig 1. Relative proportion (%) of phylotypes isolated from the larval gut of insecticide-resistant lines of Spodoptera frugiperda

afterr RFLP-PCR analysis and partial sequence (550 pb) of the 16S rDNA. Putative identification obtained after heuristic search of 1350

bp of 16S rDNA against sequences available in the NCBi and EzTaxon-e databases.

https://doi.org/10.1371/journal.pone.0174754.g001
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Fig 2. Neighbor-joining phylogenetic tree of bacterial isolates obtained from the larval gut microbiota

of insecticide-resistant lines of Spodoptera frugiperda. Tree was built using 1350 bp sequences of the

16S rDNA. Support bootstrap values are shown in the branches. Scale bar indicates 0.02 substitutions per

nucleotide position.

https://doi.org/10.1371/journal.pone.0174754.g002
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(Fig 3). Isolates obtained from the gut of larvae resistant to several insecticides, such as E.

mundtii e E. casseliflavus, were not as competitive to grow on insecticide-based media (Fig 3).

Isolates with the best growth performance were further selected to investigate their growth

response under different concentrations of insecticide. Most of them had a similar growth

trend up to 40 μg/mL of insecticide in their growing media. With the exception of P. psychroto-
lerans, all other bacteria had some growth in media with 80 μg/mL. But none grew in concen-

trations as high as 160 μg/mL (Fig 4).

Insecticide use by selected insecticide-degrading bacteria

GC-MS or LC-MS/MS analysis of growth media indicated the selected isolates obtained from

the gut of insecticide-resistant lines of S. frugiperda cleared from 27 to 77% of the insecticide

Fig 3. Growth of insecticide-degrading bacterial isolates obtained from the gut microbiota of strain of Spodoptera frugiperda resistant to

the insecticides chlorpyrifos ethyl (A), lambda-cyhalothrin (B), deltamethrin (C), spinosad (D), and lufenuron (E) when cultured in minimum

medium M9 added of 10 μg/mL of the insecticide the host insect strain was resistant to.

https://doi.org/10.1371/journal.pone.0174754.g003
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they were selected against during the period of cultivation tested (Table 3). Natural loss of the

insecticides by exposure to the environment ranged from 0 to 9%, with lambda-cyhalothrin

being the most sensitive to natural degration (Table 3). Chlorpyrifos ethyl was the least used

(27%), while spinosad, mainly the spinosyn D fraction, was the most used by bacteria (77%)

(Table 3).

Discussion

We demonstrate the gut of insecticide-resistant lines of S. frugiperda is a successful environ-

ment for the isolation of insecticide-degrading bacteria, revealing an underexplored niche

for the search of microbials targeted to biodegradation applications. All selected bacteria

Fig 4. Growth of selected insecticide-degrading bacterial isolates obtained from the gut microbiota of insecticide-resistant lines of

Spodoptera frugiperda at different insecticide concentrations (10, 20, 40, 80 or 160 μg/mL). Isolates A) IIL-Cl29 (Leclercia adecarboxylata), B)

IIL-Lc09 (Pseudomonas stutzeri), C) IIL-Dm05 (Arthrobacter nicotinovorans), D) IIL-Sp19 (Pseudomonas psychrotolerans), and E) IIL-Luf14

(Microbacterium arborescens) were isolated and cultivated on insecticide-based media containing, respectively, chlorpyrifos ethyl, lambda-cyhalothrin,

deltamethrin, spinosad and lufenuron.

https://doi.org/10.1371/journal.pone.0174754.g004
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demonstrated continuous growth up to 40 μg/mL, a concentration that is much higher than

the CL95 of some of the insecticides tested (e.g. spinosad and lufenuron—CL95 = ~2 μg/mL)

and close to the CL50 of others (e.g.lambda-cyhalothrin—CL50 = ~55 μg/mL), demonstrating

they would be exposed and able to metabolize the concentrations applied in the field to control

S. frugiperda.

Degradation of organophosphates has been reported for Delftia acidovorans [62], Microbac-
terium [63] and Pseudomonas [64], but little is available on the microbial degradation of the

organophosphate chlorpyrifos ethyl. Arthrobacter sp. [65], Enterobacter asburiae [66], and the

Pseudomonadaceae Pseudomonas stutzeri [45] and Pseudomonas kilonensis [67] are the few

microbials reported to degrade chlorpyrifos-ethyl. We identified a new potential candidate for

bioremediation of contaminated areas with chlorpyrifos-ethyl, as there are no records for

Leclercia adecarboxylata degrading this insecticide. As far as we know, Arthrobacter nicotino-
vorans and Pseudomonas stutzeri are also new records of microbials with potential to degrade

deltamethrin and lambda-cyhalothrin, respectively, even though their potential in bioremedia-

tion has been acknowledged [68,69].

Spinosad and lufenuron degradation in the soil is based on microbial activity [70,71], but

no potential microbials that degrade these compounds have yet been identified. Our data

clearly demonstrates the gut microbiota associated with insects resistant to insecticides offers a

rich environment for the isolation of potential microbials for bioremediation against target

compounds.

The association of different bacterial species with the gut of insecticide resistant lines of S.

frugiperda able to grow on selective media based on insecticides the host insect was resistant

against indicates the gut microbiota of S. frugiperda is also under pressure during the directed

selection of resistant lines. Such differences also suggest that insect populations exposed to dif-

ferent selection pressures under natural conditions may contribute with a diversified micro-

biota. Moreover, the occurrence of the same microbial species in most of the resistant and

susceptible lines of S. frugiperda, but with different potential to explore the insecticides tested

as nutritional resources demonstrate gut microbials are also subjected to selection by the con-

tinuous exposure to insecticides. Bacteria that are exposed to directed selective pressures are of

great interest because their genetic machinery has been selected to respond to the source of

stress [72]. In the case of resistant insects, bacteria have to be able to metabolize the insecticides

to survive, once several pesticides may also have antimicrobial activity [73,74]. But the gut

microbiota is subjected to a number of stress factors that may alter its composition. Nutritional

factors have been under intense investigation and there are clear evidence on the role the food

Table 3. Natural (ND), bacterial (BD) and total (TD) degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosad

(spinosyn A e D) after 5 days of cultivation of bacterial isolates from the larval gut of insecticide-resistant lines of Spodoptera frugiperda.

Insecticide Isolate Degradation (±SE, n = 3)

TD % ND % BD %*

Lambda-cyhalothrin IIL-Lc09 –P. stutzeri 46.5 ± 7.2 9.3 ± 3.7b 37.2 ± 3.9a

Deltamethrin IIL-Dm05 –A. nicotinovorans 59.6 ± 6.1 4.7 ± 4.6b 54.9 ± 9.3a

Chlorpyrifos ethyl IIL-Cl29 –L. adecarboxylata 31.0 ± 9.8 4.0 ± 1.2b 27.0 ± 8.7a

Lufenuron IIL-Luf14 –M. arborescens 38.0 ± 16.7 0.0 ± 0.0b 38.0 ± 16.7a

Spinosyn A IIL-Sp19 –P. psychrotolerans 48.6 ± 10.3 2.8 ± 1.4b 45.8 ± 11.6a

Spinosyn D 81.0 ± 7.2 3.8 ± 1.9b 77.2 ± 9.2a

*BD% = TD%—ND%; means followed by different letters within lines indicates the bacterial degradation differs from the natural degradation using t test

(p�0.01)

https://doi.org/10.1371/journal.pone.0174754.t003
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source, genetics, and others factors play in shaping the gut microbiota [75,76], including that

of insects [48,49,77].

The role of insect symbionts in the metabolization of xenobiotics is seldom reported

[17,18,73], but several have already argued on their potential on the host nutritional ecology

[5], enhancing the host immune system against microbials and macrobials [11,78], adaptation

to the environment [79], insect-plant interactions [15] and on host population dynamics [80].

Thus, there have been few examples in which insect associated symbionts were demonstrated

to increase the host tolerance to natural and synthetic stressors, including insecticides. The

increased tolerance of insect to insecticides provided by microbial symbionts led to the sugges-

tion that microbial symbionts may also contribute to the evolution of insect resistance to insec-

ticides [47,81,82]. Gut-associated microbes are a valuable resource as they contribute to the

overall nutritional ecology of the host by participating of processes involved in host food utili-

zation (digestion, detoxification), nutrient recycling and nutrient provisioning, and interfere

with the host multitrophic interactions [83].

Insects can use several strategies for detoxification of xenobiotics in the gut lumen by

providing a reducing environment and a complex of enzymes (monooxygenases, esterases,

hydrolases, transferases) to cleave or modify the target xenobiotic for excretion [84,85]. The

relevance of the gut microbiota contribution to the enzymatic reactions that occur in the

lumen of the host gut can be demonstrated by the use of microbiota-related enzymes to over-

come enzyme inhibitors produced by plants the host insect feeds on [81,86,87]. There are indi-

cations the microbial enzymatic contribution in the gut lumen could also contribute to the

degradation of insecticides ingested by the host, and the hydrolysis of these compounds would

render nutrients for the microbiota growth [88]. The diversity and differences between pro-

karyote and eukaryote-produced enzymes indicate microbial enzymes could greatly contribute

with the metabolization of insecticides in contaminated insects [34,89].

We demonstrated the gut microbiota of insecticide-resistant lines is a rich resource for the

isolation of microbes capable to degrade insecticides, and a promising tool for biotechnologi-

cal exploration in bioremediation programs [32–35]. However, the contribution of the associ-

ated microbiota to processes of detoxification of insects and in the level of tolerance or in the

evolution of resistance to insecticides remains to be further investigated. Investigation should

be concentrated in mechanisms of symbiont acquisition and in processes microbes employ to

metabolize such substrates, as the successful contribution of gut microbes has been reported

for a soil-acquired bacterium [47].

Supporting information

S1 Fig. Total bacterial morphotypes (128) isolated from the midgut of larvae of strains of

Spodoptera frugiperda resistant to different insecticides, using the M9 minimum medium

added of 10 μg/mL of the insecticides the strain was resistant to, supplemented (1 g/L) or

not with glucose.

(TIF)

S2 Fig. Bacterial morphotypes isolated from the midgut of larvae of strains of Spodoptera
frugiperda resistant to different insecticides, using the M9 minimum medium added of

10 μg/mL of the insecticides the strain was resistant to, supplemented (1 g/L) or not with

glucose, after different periods of cultivation in liquid media.

(TIF)

S3 Fig. Standard curves for lambda-cyhalothrin and deltamethrin used in GC-MS analysis

(50, 200, 350, 500 and 650 μg/mL), and for chlorpyrifos ethyl, lufenuron, spinosyn A and
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spinosyn D used in UPLC-MS/MS analysis (50, 100, 150, 200 and 300 ng/mL).

(TIF)
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