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Exploring the role of auxin in the androgynophore movement in Passiflora

Livia C.T. Scorza and Marcelo Carnier Dornelas

Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Vegetal,

Campinas, SP, Brazil.

Abstract

The flowers of the species belonging to the genus Passiflora show a range of features that are thought to have arisen
as adaptations to different pollinators. Some Passiflora species belonging to the subgenus Decaloba sect.
Xerogona, show touch-sensitive motile androgynophores. We tested the role of auxin polar transport in the modula-
tion of the androgynophore movement by applying auxin (IAA) or an inhibitor of auxin polar transport (NPA) in the
flowers. We recorded the movement of the androgynophore during mechano-stimulation and analyzed the duration,
speed, and the angle formed by the androgynophore before and after the movement, and found that both IAA and
NPA increase the amplitude of the movement in P. sanguinolenta. We hypothesize that auxin might have a role in
modulating the fitness of these Decaloba species to different pollination syndromes and demonstrate that an
interspecific hybrid between insect- and hummingbird-pollinated Xerogona species present a heterosis effect on the
speed of the androgynophore movement.
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Introduction

The genus Passiflora comprises about 500 species

which are mostly woody vines that present a huge diversity

in flower shape, colors and sizes. Consequently it is a good

model for studying plant-pollinator interactions and co-

evolution, since it displays all kinds of pollination syn-

dromes. Although this diversity exists, the flowers always

exhibit unique features that characterize and cluster the

species in the genus. One of them is the corona filaments,

which comprises one or more extra whorls that can play dif-

ferent roles in different species, functioning as nectar

guide, or forming a floral tube in flowers adapted for bird

pollination, and even serving as a landing platform for in-

sects (Ulmer and MacDougal, 2004). Another common fea-

ture is a nectary system containing an operculum and a

membrane structure called limen that encloses a nectary

chamber. Finally, the androgynophore, a column in the cen-

ter of the flower that elevates the androecium and the

gynoecium, is present in different sizes and even in shapes.

In P. edulis, which has flowers adapted to insect pollina-

tion, the androgynophore is a short and straight column. In

contrast, in P. mucronata, which is bat pollinated, the

androgynophore is a long curved column (Ulmer and

MacDougal, 2004).

Recently, we showed that in some Passiflora species,

the androgynophore can also be a thigmotropic structure,

i.e., it has the capability to move in response to touch and

the movement is dependent on the direction of the stimulus

(Scorza and Dornelas, 2014; Scorza et al., 2014). When

mechanically stimulated, the androgynophore inclines to

the same side where the stimulus came in about 2 seconds.

These species, P. sanguinolenta, P. citrina, P. capsularis

and P. rubra are in the subgenus Decaloba, and the move-

ment is believed to be related to the pollination system of

these species. The motile androgynophore would enhance

the chances of pollen deposition on pollinators that would

approach the flower and touch the column, which in turn

would curves in the pollinator’s direction upon the mechan-

ical stimulus (Scorza and Dornelas, 2014; Scorza et al.,

2014).

Plant fast movements have been widely studied (for

reviews, see Braam, 2005; Scorza and Dornelas, 2011), in

particular pulvinar movements in Fabaceae species, such as

Mimosa pudica, where the leaflets of compound leaves

shows a fast closing movement in response to touch

(thigmonastism) or light regime (photonastism and nycti-

nastism) (Samejima and Sibaoka, 1980; Moran, 2007;

Volkov et al., 2010a). Additionally, carnivore plants such

as Drosera, Dionaea (Droseraceae) and Utricularia

(Lentibulariaceae), have adapted organs that can produce

active movements to capture preys (Sibaoka, 1991; Braam,

2005; Volkov et al., 2008; Singh et al., 2011). Still, stamina

of Portulaca grandiflora (Portulacaceae), Berberis
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canadensis (Berberidaceae), Opuntia (Cactaceae) and

Loasaceae (Henning and Weigend, 2012) flowers for ex-

ample, can also bend in response to a visiting pollinator in-

creasing pollen transfer among the flowers, boosting the

cross pollination (Jaffe et al., 1977; Fleurat-Lessard and

Millet ,1984; Schlindwein and Wittmann, 1997; Scorza and

Dornelas, 2011).

The fact that plants are capable of rapidly moving

their structures without having any kind of neurological

system is attributed to the capability of specific plant cells

to swell or shrink by losing water quickly. The maintenance

of a differential turgor pressure among plant tissues pro-

vides an energy storage that, when released, is capable of

moving plant organs within seconds (Sibaoka, 1991;

Braam, 2005; Volkov et al., 2008, 2010b).

This turgor pressure is maintained by the activity of

proton pumps in the plasma membranes (H+-ATPase),

which are coupled with K+ and Cl- fluxes (Samejima and

Sibaoka, 1980; Sibaoka, 1991; Fleurat-lessard et al., 1997;

Moran, 2007). When the cells get turgid the H+-ATPase

proton pumps is acting extruding H+ protons outwards of

the cell. In order to balance the proton gradient across the

membrane, K+ ions are pumped inwards, increasing the

cell’s osmotic potential, and therefore, there is a water in-

flux through aquaporins which causes swelling of the cells.

When a mechanical or electrical stimulus is applied, an ac-

tion potential triggers a rapid turgor loss associated with an

efflux of ions in the cells that is followed by water (Camp-

bell and Garber, 1980; Moran, 2007; Volkov et al., 2010a).

Auxin is an important coordinator of plant growth

and development, and one of the mechanisms where this

hormone is involved is the regulation of water and ion per-

meability to cells (Blatt and Thiel, 1994; Takahashi et al.,

2012). In order to clarify how this hormone affects cell

turgor regulation, experiments related to the pulvinar

movements of Cassia fasciculata, Phaseolus vulgaris and

M. pudica have been reported (Watanabe and Sibaoka,

1983; Bourbouloux et al., 1992; Bonmort and Roblin,

1996; Iino et al., 2001; Moyen et al., 2007). Applying

indol-3-acetic acid (IAA) to protoplasts of pulvinus of P.

vulgaris caused swelling of the cells. This was interpreted

as enhanced effluxes of K+ and Cl- (Iino et al., 2001). When

exogenously applied in M. pudica and C. fasciculata, IAA

(indol-acetic acid) increased the angles during the folding

of the leaflets (Bourbouloux et al., 1992). 2,4-D, a synthetic

auxin, when applied, inhibited the leaflet folding by dark

stimulus (Bonmort and Roblin, 1996; Moyen et al., 2007).

In all cases the auxin effects seem to be directed towards

maintaining a high turgor pressure in the cells (Bourbou-

loux et al., 1992; Bonmort and Roblin, 1996). These exper-

iments further contributed to the evidence that auxins stim-

ulate the proton extrusion driven by H+-ATPases in the

plasma membrane. Although it was known that auxins have

an effect on proton pumps, the mechanisms by which it acts

became clear only recently, when Takahashi et al. (2012)

showed that auxins mediate H+-ATPase activation by phos-

phorylation of the penultimate threonine of the H+-ATPase

during hypocotyl elongation in Arabidopsis (Takahashi et

al., 2012).

The P. sanguinolenta androgynophore is less sensi-

tive to touch than thigmonastic Fabaceae leaflets and also

does not respond to a dark or light stimulus (Scorza and

Dornelas, 2014). Therefore, we tested the effects of auxin

on the movement of the androgynophore of the model spe-

cies, Passiflora sanguinolenta. Among the Passiflora spe-

cies that present a motile androgynophore, we chose P.

sanguinolenta because this species shows a more conspicu-

ous movement than the others, thus being easier to observe.

Additionally, as this species is evolutionary derived in rela-

tion to other Decaloba species, and adapted to humming-

bird pollination (Scorza and Dornelas, 2014), we tested

whether the flowers of the interspecific hybrid between P.

sanguinolenta and the more basal, insect-pollinated P.

capsularis inherited thigmotropic androgynophore fea-

tures. We also tested the effects of a specific inhibitor of the

auxin efflux, 1-N-naphthylphthalamicacid (NPA) on an-

drogynophore movement. The effect of NPA has not been

tested before in the context of active plant movements.

Material and Methods

Plants

Plants of Passiflora sanguinolenta Mast., Passiflora

capsularis L. and their ornamental interspecific hybrid

named Passiflora ‘capsang’ (Ulmer and MacDougal 2004)

were grown under greenhouse conditions at the Univer-

sidade Estadual de Campinas, Instituto de Biologia, Cam-

pinas, SP, Brazil.

Auxin and NPA treatments

To test whether the movement is influenced by exog-

enous application of auxin and an auxin polar transport in-

hibitor we prepared treatment solutions using indol-3-

acetic-acid (IAA, SIGMA), and N-1-napthyl-phtalamic

acid (NPA, Chem Service, West Chester, PA). IAA solu-

tion was made at a final concentration of 1 mM. The con-

centration of IAA was chosen based on Moyen et al.

(2007), where pulvinar movements were inhibited using

2,4-D, a synthetic auxin, at a final concentration of 0.1 mM.

They argued that 2,4-D is about 10-fold more effective than

IAA, so we used IAA for our experiments at 1 mM. The

NPA final concentration was 0.1 mM, based on Petrasèk

(2003).

A preliminary test was made spraying NPA at

0.1 mM on the opened flowers still attached to the plant,

and the movement tests were made 3 h after spraying. Al-

ternatively, recently opened flowers of P. sanguinolenta

were removed from the plant and directly transferred to wa-

ter to avoid desiccation. Subsequently, the tips of the flower

pedicels were cut with a sharp knife and immediately
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dipped in the treatment solutions (IAA 1 mM; NPA 0.1 mM

and water as the control solution). These solutions were in

Petri dishes covered with Parafilm, where tiny holes were

made to fit the pedicels and keep the flowers in an upright

position. The flowers were kept in the treatment solutions

for about 3 h, as this was described as a period when, in gen-

eral, the maximum effect was achieved in pulvinar move-

ment experiments (Moyen et al., 2007).

Recordings and calculations of the duration,
angulation and speed of the movement

After treatment with hormonal solutions we trans-

ferred the flowers to wet floral foam and removed part of

the perianth to visualize the entire androgynophore (Figu-

re 1). The flowers were kept untouched for another 15 min

as sometimes we touched the androgynophore when cut-

ting off the perianth, inducing the thigmotropic movement.

Finally, we recorded the mechanically induced movement

of the androgynophore and calculated the duration, the an-

gle formed between the steady state (before the movement)

and the final state (after the movement) and speed as de-

scribed previously (Scorza and Dornelas, 2014). The same

protocol was used to evaluate untreated flowers of the pa-

rental species (P. capsularis and P. sanguinolenta) and

their interspecific hybrid (P. ‘capsang’). Ten flowers from

different individuals were used as replicates for each treat-

ment. The results of the measurements presented in Figures

2-4 are shown as mean values � SD and asterisks indicate

significant differences at p < 0.05 according to Kruskal-

Wallis test.

Results

When the flowers of P. sanguinolenta were immersed

in IAA at a final concentration of 1 mM for 3 h the mean of

the angle formed by the androgynophore trajectory before

and after the movement was significantly higher than in the

control, where flowers were immersed only in water (Fig-

ures 1 and 2). The time that the androgynophore took to

bend after the mechanical stimulus was also increased in

plants treated with IAA (Figure 2). Therefore, we did not
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Figure 1 - Images of flowers of P. sanguinolenta showing the androgynophore before (A, B, C) and after (D, E, and F) mechano-stimulation, after being

treated with water (control, A and D), IAA 1 mM (B and E) and NPA 0.1 mM (C and F). The images of the androgynophore before and after the movement

were put exactly in the same position related to the X-axis to clearly illustrate the change in position. The movement amplitude can be measured by �1- �0,

where �0 is the angle formed by the androgynophore axis before the movement (t0) and a line traced perpendicularly to the image; and �1 is the angle

formed between the androgynophore axis after the movement (t1) and the same perpendicular line. Note that when IAA or NPA is applied the amplitude of

the movement is clearly greater than in the control.



find any difference when comparing the speed of the move-

ment in flowers treated with IAA and the water control

treatment (Figure 2).

Flowers that were immersed in the auxin polar trans-

port inhibitor NPA also showed a significant increase in the

values of the angle formed between the steady state and af-

ter the movement (Figures.1 and 2). When analyzing the

duration of the movement we did not find a statistical dif-

ference between the NPA treated and the water control, al-

beit there was a tendency to an increase in time (Figure 2).

Opened flowers of P. sanguinolenta sprayed with the NPA

test solution did not show any difference in the dynamics of

the movement compared to control flowers that were not

sprayed (Figure 3).

As it has been previously suggested that the hum-

mingbird-pollinated P. sanguinolenta is derived in relation

to other insect-pollinated Decaloba species (Scorza and

Dornelas, 2014), we tested whether the flowers of the

interspecific hybrid between P. sanguinolenta and the in-

sect-pollinated P. capsularis inherited thigmotropic andro-

gynophore features. We observed that both P. capsularis

and P. sanguinolenta presented similar angles formed by

the androgynophore trajectory, but P. ‘capsang’ showed a

much wider movement when compared to the parental spe-

cies (Figure 4A). While the duration of the androgynophore

movement was significantly shorter in P. capsularis when

compared to P. sanguinolenta, it was even shorter in the

interspecific hybrid (Figure 4B). Therefore, the speed that

the P. ‘capsang’ androgynophore took to bend after the me-

chanical stimulus was more than twice the one observed for

the parental species (Figure 4C).

Discussion

We tested whether exogenous application of auxin

(IAA) or an inhibitor of its polar transport, NPA, would al-

ter the thigmotropic movement pattern of androgynophores

of P. sanguinolenta.

In a preliminary test we wanted to see whether spray-

ing a solution containing NPA at 0.1 mM would generate

any response on the movement. Our results showed that

only spraying opened flowers was not sufficient to induce

any effect on the movement, probably because the epider-

mis, together with the cuticle, was a barrier difficult to pass

through. We did not intend to spray or treat young flower

buds continuously with the “petiole-feeding” technique

(Lin et al., 2011; Rocha et al., 2015) as this could alter the

normal development of the flower organs (Benkova et al.,

2003).

When we adopted a treatment procedure of dipping

the flower pedicels at anthesis in the treatment solutions for
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Figure 2 - Effect of the IAA and NPA treatments on the movement dynamics of the P. sanguinolenta androgynophore. (A) Movement amplitude mea-

sured by the angle formed between the initial state (before the movement) and the final state (after the movement) in degrees. (B) Duration of the move-

ment in seconds. (C) Angular speed of the movement in deg/s. Data represent means � SD. Asterisks indicate statistical differences from the control (ac-

cording to Kruskal-Wallis test).

Figure 3 - Effect of spraying NPA on opened flowers. (A) Movement amplitude measured by the angle formed between the initial state (before the move-

ment) and the final state (after the movement) in degrees. (B) Duration of the movement in seconds. (C) Angular speed of the movement in deg/s. The data

shows that only spraying NPA is not sufficient to cause alteration in the androgynophore movement.



3 h we were able to detect effects of IAA and NPA on the

androgynophore movement. We observed that flowers

treated with a 1 mM IAA solution showed a significant in-

crease in the amplitude of their androgynophore bending

movement (Figures 1 and 2). This then caused an increase

in the duration of the movement, as the androgynophore

took more time to make the longer trajectory while the

speed of the movement was unaltered when compared to

the water control (Figure 2).

As we had previously shown that Passiflora andro-

gynophore movement presents certain mechanistic similar-

ities with pulvinar movements (Scorza and Dornelas, 2014;

Scorza et al., 2014), it is worthy of note that when IAA or

2,4-D were applied to detached leaves of C. fasciculata, the

amplitude of the leaflet opening induced by light increased,

whereas the dark-induced closure of the leaflets was inhib-

ited (Bourbouloux et al., 1992; Bonmort and Roblin, 1996).

When M. pudica leaflets were mechanically stimulated in

darkness after application of IAA, rapid closure and open-

ing were observed, similarly to what happens in daylight

(Watanabe and Sibaoka, 1983). 2,4-D had a more drastic

effect and inhibited touch-induced leaflet closure in M.

pudica (Moyen et al., 2007). The mechanism by which

auxins influence the pulvinar movements is the activation

of H+-ATPase proton pumps in the plasma membrane,

leading to ion and water influx to the cells. This process

leads to an increase in turgor pressure and the pulvinar cells

are kept constantly turgid, preventing the leaflets to fold up

during the dark induction period, and increasing the ampli-

tude of the leaflet opening during the light induction. In P.

sanguinolenta a similar effect of increased turgidity might

have occurred, but the turgidity was not refractory to touch

as sometimes also happened with Fabaceae thigmonastic

leaflets treated with auxins, and where the androgynophore

was still inclined in response to a mechanical stimulus

(Samejima and Sibaoka, 1980; Moran, 2007; Volkov et al.,

2010a). We have already shown that the basis of the move-

ment of Passiflora motile androgynophores is the swelling

and shrinking of the androgynophore epidermis and

parenchyma cells (Scorza et al., 2014). If the cells get more

turgid it is more likely that they also have the potential to

lose more water when plasmolysed after being touch-

stimulated. This would explain the increase in the ampli-

tude of the P. sanguinolenta androgynophore movement,

as seen after IAA treatment.

Auxin is a weak organic acid that enters the cell easily

through diffusion across the plasma membrane (Zazíma-

lová et al., 2014). When inside the cells, most of the auxin

dissociates in the anionic form, which makes it more diffi-

cult to be transported out of the cells. Auxin efflux carrier

proteins promote the transport of auxin from cell to cell in a

directional manner (Benkova et al., 2003). This process is

commonly referred to as auxin polar transport, and it has

been related to various aspects of plant development. The

polar transport inhibitor NPA is probably the most effective

inhibitor of auxin polar transport (Petrásèk et al., 2003).

NPA impairs the auxin polar efflux, but has no influence on

decreasing IAA concentration or activity; on the contrary, it

can increase auxin accumulation in the cells (Morris et al.,

2005; Petrásèk et al., 2003). In our experiments, when NPA

was applied to P. sanguinolenta flowers, a very similar ef-

fect to IAA treatments was observed, as the amplitude of

the androgynophore movement was also increased.

In Arabidopsis, stamina are major sites of IAA accu-

mulation during flower development (Aloni et al., 2006).

As well as in many other species, Arabidopsis petals only

develop after stamina have almost fully developed. It has

been shown that the high IAA production in young organs,

especially in stamina, inhibits the development of other or-

gans, such as petal elongation (Aloni et al., 2006). The

androgynophore column only develops at later stages of P.

sanguinolenta development, after the stamina and the

gynoecium have already developed (our observations). The

androgynophore column elongates concomitantly with pet-

als and corona filaments, which also develop later during

flower bud formation, suggesting that a mechanism similar

Auxin in Passiflora thigmotropisms 305

Figure 4 - Movement dynamics of the androgynophore of P. capsularis, P. sanguinolenta and their interspecific hybrid P. ‘capsang’. (A) Movement am-

plitude measured by the angle formed between the initial state (before the movement) and the final state (after the movement) in degrees. (B) Duration of

the movement in seconds. (C) Angular speed of the movement in deg/s. Data represent means � SD. Asterisks indicate statistical differences between ge-

notypes (Kruskal-Wallis test).



to stamen inhibition by auxin might be involved in P.

sanguinolenta flower development. Under the hypothesis

that the tip of each floral organ is a primary site of auxin

production that can induce its own development and differ-

entiation, and sometimes inhibit the growth of neighboring

organs (Aloni et al., 2006), it is reasonable to assume that

the androgynophore, including the column, the stigma and

the gynoecium, also produce auxin, which might be trans-

ported basipetally. When NPA is applied, the auxin that

might be produced by the P. sanguinolenta androgyno-

phore would not be transported and, thus, accumulate at its

base, generating a similar response as when exogenous

IAA is applied.

In Passiflora there are many examples of flowers in

which selective pressure has driven the evolution of novel

mechanisms that impact on the reproduction and survival

(Lindberg and Olesen, 2001; Aizza and Dornelas, 2011;

Rocha et al., 2015). In the flowers of P. sanguinolenta, P.

citrina, P. capsularis and P. rubra, the motile androgyno-

phore seems to be a novel feature that maximizes pollen de-

position onto pollinators - hummingbirds in species with

tubular flowers such as P. sanguinolenta and P. citrina and

insects in bowl shaped flowers, such as those of P.

capsularis and P. rubra. As we mentioned, the cellular ba-

sis of the movement is a subtle loss of turgor in cells at the

stimulated side of the androgynophore, which is capable of

turgor recovery within minutes, a mechanism that enables

the organ to respond to a new stimulus, i.e., other polli-

nators visiting the flower (Scorza and Dornelas, 2014;

Scorza et al., 2014). Auxins are implied in maintaining the

cell turgor. Accordingly, the cells of the androgynophore in

our study were sensitive to the application of this hormone,

showing as a phenotypic response an increase in the ampli-

tude of the movement, which, in turn, has a potential role in

the process of pollen transfer onto pollinators. This process

seems to be especially decisive on the reproduction of

self-incompatible species, as P. sanguinolenta and P.

citrina (Scorza and Dornelas, 2014). Taken together, these

data put in evidence a probable role of auxin in modulating

the fitness of these Decaloba species to different polli-

nators.

Another issue is whether the thigmotropic andro-

gynophore features are adaptively inherited for their poten-

tial role in the evolution of flower-pollinator relationships

in Passiflora. It has been suggested that hummingbird-

pollinated Xerogona species, such as P. citrina and P.

sanguinolenta, are derived in relation to other insect-polli-

nated Decaloba species (Milward-de-Azevedo et al.,,

2014). We therefore infer that the wide-moving andro-

gynophores, characteristic of hummingbird-pollinated spe-

cies (such as P. sanguinolenta) are derived with respect to

insect-pollinated species with more ‘restricted’ movement

(such as P. capsularis). As artificial interspecific hybrids,

used as ornamental plants, are widely available among

Passiflora species (Ulmer and MacDougal, 2004), we as-

sessed the thigmotropic androgynophore features of P.

‘capsang’ and its parental species, P. capsularis and P.

sanguinolenta. We observed that the androgynophore

movement of the hybrid is two-times faster than that of the

parental species. Although we cannot discard the hypothe-

sis that this particular phenomenon is of epigenetic nature,

it seems more likely that it can be explained as a ‘hybrid

heterosis effect’ (Birchler et al., 2003). Future studies on

the gene expression profiles of the parental species and the

interspecific hybrid should shed light on this unresolved is-

sue. Although the genetic nature of this heterosis remains to

be determined, our results suggest that the characteristic

features (such as speed) of the androgynophore movement

are prone to be under evolutionary pressure. Taken together

and assuming that faster androgynophore movement can

provide a greater fitness to flowers that are pollinated by

hummingbirds, our results suggest general mechanisms by

which hummingbird-pollinated flowers can arise from in-

sect-pollinated ancestors.

Acknowledgments

We acknowledge funding by Fundação de Amparo à

Pesquisa do Estado de São Paulo (FAPESP, São Paulo,

Brazil), Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior (Capes, Brazil) and Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq,

Brazil).

References

Aizza LCB and Dornelas MC (2011) A genomic approach to

study anthocyanin synthesis and flower pigmentation in

passionflowers. J Nucleic Acids 2011:1-17.

Aloni R, Aloni E, Langhans M and Ullrich CI (2006) Role of

auxin in regulating Arabidopsis flower development. Planta

223:315-328.

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova

D, Jürgens G and Friml J (2003) Local, efflux-dependent

auxin gradients as a common module for plant organ forma-

tion. Cell 115:591-602.

Birchler JA, Auger DL and Riddle NC (2003) In search of the mo-

lecular basis of heterosis. Plant Cell 15:2236-2239.

Blatt MR and Thiel G (1994) K+ channels of stomatal guard cells:

Bimodal control of the K+ inward-rectifier evoked by auxin.

Plant J 5:55-68.

Bonmort J and Roblin G (1996) Effect of 2,4-dichlorophenoxy-

acetic acid on the dark- and light-induced pulvinar move-

ments in Cassia fasciculata Michx. Plant Growth Regul

19:61-65.

Bourbouloux A, Roblin G and Fleuratlessard P (1992) Calcium

involvement in the IAA-induced leaflet opening of Cassia

fasciculata. J Exp Bot 43:63-71.

Braam J (2005) In touch: Plant responses to mechanical stimuli.

New Phytol 165:373-389.

Campbell NA and Garber RC (1980) Vacuolar reorganization in

the motor cells of Albizzia during leaf movement. Planta

148:251-255.

306 Scorza and Dornelas



Fleurat-Lessard P and Millet B (1984) Ultrastructural features of

cortical parenchyma cells (motor cells) in stamen filaments

of Berberis canadensis Mill and tertiary pulvini of Mimosa

pudica L. J Exp Bot 35:1332-1341.

Fleurat-Lessard P, Bouché-Pillon S, Leloup C and Bonnemain J-l

(1997) Distribution and activity of the plasma membrane

H+-ATPase in Mimosa pudica L. in relation to ionic fluxes

and leaf movements. Plant Physiol 13:747-754.

Henning T and Weigend M (2012) Total control - pollen presenta-

tion and floral longevity in Loasaceae (blazing star family)

are modulated by light, temperature and pollinator visitation

rates. PloS One 7:e41121.

Iino M, Long C and Wang X (2001) Auxin- and abscisic acid-

dependent osmoregulation in protoplasts of Phaseolus

vulgaris pulvini. Plant Cell Physiol 42:1219-1227.

Jaffe MJ, Gibson C and Biro R (1977) Physiological studies of

mechanically stimulated motor responses of flower parts.1.

Characterization of thigmotropic stamens of Portulaca

grandiflora Hook. Bot Gaz 138:438-447.

Lin YH, Lin MH, Gresshoff PM and Ferguson BJ (2011) An effi-

cient petiole-feeding bioassay for introducing aqueous solu-

tions into dicotyledonous plants. Nat Protoc 6:36-45.

Lindberg AB and Olesen JM (2001) The fragility of extreme spe-

cialization: Passiflora mixta and its pollinating humming-

bird Ensifera ensifera. J Trop Ecol 17:323-329.

Milward-de-Azevedo MA, Freitas LB and Kinoshita LS (2014)

Taxonomy and evolutionary relationships of Passiflora

subg. Decaloba supersect. Decaloba sect. Xerogona

(Passifloraceae): Contributions of palynological, morpho-

logical and molecular studies. Acta Bot Bras 28:301-308.

Moran N (2007) Osmoregulation of leaf motor cells. FEBS Lett

581:2337-2347.

Morrys SE, Cox MCH, Ross JJ, Krisantini S and Beveridge CA

(2005) Auxin dynamics after decapitation are not correlated

with the initial growth of axillary buds. Plant Physiol

138:1665-1672.

Moyen C, Bonmort J and Roblin G (2007) Membrane effects of

2,4-dichlorophenoxyacetic acid in motor cells of Mimosa

pudica L. Plant Physiol Biochem 45:420-426.

Petrásèk J, Cerna A, Schwarzerova K, Elckner M, Morris DA and

Zazimalova E (2003) Do phytotropins inhibit auxin efflux

by impairing vesicle traffic? Plant Physiol 131:254-263.

Rocha DI, Monte-Bello C, Sobol S, Smach A and Dornelas MC

(2015) Auxin and physical constraint exerted by the perianth

promote the androgynophore bending in Passiflora

mucronata L. (Passifloraceae). Plant Biol 17:639-643.

Samejima M and Sibaoka T (1980) Changes in the extracellular

ion concentration in the main pulvinus of Mimosa pudica

during rapid movement and recovery. Plant Cell Physiol

21:467-479.

Schlindwein C and Wittmann D (1997) Stamen movements in

flowers of Opuntia (Cactaceae) favour oligolectic polli-

nators. Plant Syst Evol 204:179-193.

Scorza LCT and Dornelas MC (2011) Plants on the move: To-

wards common mechanisms governing mechanically-

induced plant movements. Plant Signal Behav 6:1979-1986.

Scorza LC and Dornelas MC (2014) Rapid touch-stimulated

movement in the androgynophore of Passiflora flowers

(subgen. Decaloba; Sect. Xerogona): An adaptation to en-

hance cross-pollination? Plant Signal Behav 9:e27932.

Scorza LCT, Rossi ML and Dornelas MC (2014) Vacuolar re-

modelling mediates touch-induced androgynophore move-

ment in Passiflora (Subg. Decaloba, Sect. Xerogona) flow-

ers. Flora 209:613-619.

Sibaoka T (1991) Rapid plant movements triggered by action po-

tentials. Bot Mag Tokyo 104:73-95.

Singh AK, Prabhakar S and Sane SP (2011) The biomechanics of

fast prey capture in aquatic bladderworts. Biol Lett

rsbl.2011.0057.

Takahashi K, Hayashi K and Kinoshita T (2012) Auxin activates

the plasma membrane H+-ATPase by phosphorylation dur-

ing hypocotyl elongation in Arabidopsis. Plant Physiol

159:632-641.

Ulmer T and MacDougal JM (eds) (2004) Passiflora: Passion-

flowers of the World. Timber Press, Inc., Portland, 430 pp.

Volkov AG, Adesina T, Markin VS and Jovanov E (2008) Kinet-

ics and mechanism of Dionaea muscipula trap closing. Plant

Physiol 146:694-702.

Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JONA

and Markin VS (2010a) Mimosa pudica: Electrical and me-

chanical stimulation of plant movements. Plant Cell Environ

33:163-173.

Volkov AG, Pinnock MR, Lowe DC, Gay MS, and Markin VS

(2010b) Complete hunting cycle of Dionaea muscipula:

Consecutive steps and their electrical properties. J Plant

Physiol 168:109-120.

Watanabe S and Sibaoka T (1983) Light-Induced and auxin-

induced leaflet opening in detached pinnae of Mimosa

pudica. Plant Cell Physiol 24:641-647.

Zazímalová E, Petrásek J and Benková E (2014) Auxin and its

role in plant development. Springer, Wien, 442 pp.

Associate Editor: Igor Schneider

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Auxin in Passiflora thigmotropisms 307


