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Abstract
Mucositis research and treatment are a rapidly evolving field providing constant new avenues of research and potential therapies. The
MASCC/ISOO Mucositis Study Group regularly assesses available literature relating to pathogenesis, mechanisms, and novel thera-
peutic approaches and distils this to summary perspectives and recommendations. Reviewers assessed 164 articles published between
January 2011 and June 2016 to identify progress made since the last review and highlight new targets for further investigation. Findings
were organized into sections including established and emergingmediators of toxicity, potential insights from technological advances in
mucositis research, and perspective.Research momentum is accelerating for mucositis pathogenesis, and with this has come utilization
of new models and interventions that target specific mechanisms of injury. Technological advances have the potential to revolutionize
the field of mucositis research, although focused effort is needed to move rationally targeted interventions to the clinical setting.
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Introduction

TheMASCC/ISOOMucositis StudyGroup periodically reviews
the literature relating to mucositis pathogenesis, mechanisms,

and novel therapeutic approaches and distils this to summary
perspectives and recommendations for research. Continuing this
tradition, in 2017, 164 articles published between January 2011
and June 2016were identified by systematic review and critiqued
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by 15 reviewers in a bid to uncover progress made and highlight
new targets for further investigation. Moreover, all findings have
been assessed in the context of the current state of knowledge
discussed in the previous reviews [1–3]. The approach differed
slightly from the last update that reviewed 90 articles, in that each
paper was critiqued by one reviewer compared to two previously
due to the substantial increase in new literature that needed to be
included, although all other aspects including the key search
terms, databases mined, and the review form were unchanged
(for further details see [1]).

In the previous review, a summary of the key mediators of
mucosal toxicity was provided including a discussion of the
role of tissue structure (including the extracellular matrix and
epithelial tight-junctions [TJ]), inflammation, and the
microbiome. In addition, discussion also focused on emerging
understanding of the toxicities associated with targeted anti-
cancer agents, toxicity clusters, biomarkers of mucosal injury,
and risk prediction of mucosal injury. Collectively, this was an
exhaustive summary of the state of the field when published.
This update aimed to provide a perspective on advances and
momentum shift since 2011 in regards to understanding the
pathogenesis of mucositis (Table 1).

Established and emerging mediators of toxicity

Microbiome and host immune response

While shifts in oral microbial composition during development
of oral mucositis have been long recognized [4] and targeted
[5], the role for gastrointestinal (GI) flora in intestinal injury has
only more recently been appreciated. Underpinning much of
the new knowledge has been technical advancement in micro-
bial species identification through genomic sequencing. What
is emerging is a complex interaction between the baseline com-
position of diverse species, as well as dynamic changes as a
result of cancer treatment as being important in both oral and
intestinal mucositis. Recent patient studies have looked at over-
all diversity of oral flora and shifts during chemotherapy [6] to
determine relationships with oral mucositis. In vitro models of
oral keratinocytes have also been used to demonstrate how
microbes impact healing [7, 8], as well as the functional chang-
es to the microbes themselves during exposure to irradiation [9,
10]. The field has also been advancing rapidly in the area of
intestinal mucositis, where microbial dysbiosis, measured in
easily accessible fecal samples, has led researchers to postulate
that gut microbiome composition can be used as a surrogate
marker for changes leading to diarrhea [11]. Furthermore, there
appears to be mechanistic linkages with altered microbial sig-
natures during high-dose chemotherapy and ability to metabo-
lize nutrients and xenobiotics [12]. The plausible relationships
between microbiota and cancer chemotherapy outcomes have
been extensively reviewed by Alexander et al. [13].

Although it would be presumptuous to directly compare
microbial composition in humans to animal models of muco-
sitis, there has been some evidence of overlapping features
that are commonly seen and could be used for comparative
studies. This includes the observation of a general decrease in
microbial diversity seen following cancer treatment [14–16],
and a shift towards increased relative proportions of
proteobacteria which include facultative anaerobes such as
E. coli and Salmonella spp. [15–18]. Given these overlaps, it
encourages exploring the relationship between microbiome
shifts and mucositis further in animal models.

Opportunities for targeting microbial-mucosal interactions
have been elegantly demonstrated with the emergence of ge-
netic knock out models of mucositis. The toll-like receptors
(TLRs) have been a major area of focus due to their direct
interface between microbial ligands and signaling cascades
through epithelial, neural and immune cells [19]. In the con-
text of irinotecan-induced intestinal mucositis, germ-line de-
letion of TLR4 is protective [20], as is MYD88 [21] which is
the main adapter protein for the TLR signaling pathway.
However, protective effects of TLR deletion can be receptor
and drug class-specific. For example, methotrexate-induced
intestinal mucositis is exacerbated in TLR2 knock out mice,
a phenotype that is corrected when the co-receptor MD2 is
also deleted [22]; yet, TLR2 knock out is protective against
irinotecan-induced mucositis [21]. In contrast, TLR2 deletion
and TLR9 antagonism are protective against doxorubicin-
induced intestinal mucositis [23]. Importantly, TLRs are also
able to signal non-microbe related cellular danger signals
(damage-associated molecular patterns) [24]. As such, more
work is needed to interpret the role of pathogen verses non-
pathogen related activation of TLR signaling in the develop-
ment of mucositis.

Evidence for a direct contribution of the intestinal microbes
was demonstrated in germ-free mice which were protected
against irinotecan-induced GI mucositis, but lost protection
when colonized with a diverse microbiome [25].
Furthermore, the contribution of B-glucuronidase-producing
microbes was shown to be associated with the development of
mucositis, but not wholly responsible [25]. This is in contrast
to studies that have found no clear protection against oral
mucositis with antibiotic treatment designed to ablate the oral
microbial load [5].

TLR agonism may also be protective in some settings. The
TLR5 agonist, CBLB502, was shown to reduce radiation-
induced oral mucositis [26], while the natural ligand, flagellin,
protects against radiation-induced intestinal injury [27]. A
TLR9 agonist could protect against lethal doses of whole body
and abdominal radiation in mice [28]. Finally, addition of
lipopolysaccharide (LPS), the cogent TLR4 agonist, prior to
abdominal radiation has previously been shown to reduce
radiotherapy-induced mucosal barrier injury via a
cyclooxygenase-dependent manner [29]. Whether TLR
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agonism confers direct protection to the epithelium or via
resident microbes is still to be shown. However, this does
support recent evidence that consumption of probiotics can
dampen mucosal injury following cancer treatment [30–37].
The evidence for probiotics is strongest in the setting of pelvic
radiation [38, 39], and this suggests that the protective effects
in rodent models of radiation-induced mucositis may be trans-
lated to the clinic. The potential mechanisms may relate to
TLR agonism by gram-posi t ive species such as
Lactobacillus. However, given the variability in outcomes of
probiotic clinical trials, much more exploratory work is need-
ed to fully understand the microbial-mucosal interactions spe-
cific to mucositis pathogenesis.

In contrast to intestinal microbiota, there was a lack of
research articles exploring relationships between oral micro-
bial composition and development of oral mucositis published
during the review period. Although generally agreed that the
oral microbiome plays a role in the susceptibility to, and in-
fectious consequences of ulcerative mucositis, as well as be-
ing altered by cancer treatments, there is a lack of mechanistic
understanding [40]. Two studies explored changes in oral mi-
crobial composition during treatment and identified potential
species important for mucositis pathogenesis [6, 41], although
these included different cohorts and detection methods. As
such, further work is required to unravel the complexities
regarding the oral microflora and mucositis, particularly in
the setting of baseline composition linked to mucositis sus-
ceptibility, given the lack of effectiveness of broad spectrum
antibiotic treatment.

The emerging potential to manipulate the microbiome with
new treatments beyond the current concept of probiotics and
prebiotics also delineates a clear path forward. As such, we
should now consider the role of the microbiome in all phases
of mucositis pathogenesis (Fig. 1), rather than viewing it as a
passive contributor of the ulcerative phase.

Sophisticated targeting of inflammation

The previous review identified inflammation as central to mu-
cositis pathogenesis and expanded on the role of pro-
inflammatory cytokines and NF-κB signaling [1]. Although
based on a sound scientific rationale, the approach to inhibi-
tion of these pathways, such as with pentoxifylline and
celecoxib, has thus far poorly translated from the preclinical
[42–44] to clinical setting [45, 46]. Newer studies have con-
tinued to investigate the potential for use of anti-inflammatory
agents for mucositis management in preclinical models, al-
though focused on broader outcome measures to link effec-
tiveness with mechanisms. Since the last pathogenesis update,
there have been two preclinical studies testing IL-1ra, the nat-
urally occurring IL-1 antagonist [47–49]. Both studies found
protection against chemotherapy-induced intestinal mucositis
and crypt destruction in the small intestine which was

attributed to apoptosis prevention. Work using transgenic
mice expressing nuclear protein Smad7 in keratinocytes has
shown that antagonizing TGF-β1 and NF-κB effectively pre-
vents radiotherapy-induced oral mucositis [50]. Furthermore,
Smad7 delivered as a local therapy also prevented oral muco-
sitis with similar effectiveness to palifermin and was able to
significantly reduce epithelial apoptosis. Production of reac-
tive oxygen and nitrogen species and oxidative stress are well-
characterized upstream mediators of NF-κB activation as well
as inflammasomes [51, 52]. Oxygen radical scavengers and
antioxidant enzymes, such as superoxide dismutase, have
shown promise as anti-mucotoxic agents [53–55]. As such,
there remains a clear benefit to targeting NF-κB-mediated
inflammatory signaling, including upstream and downstream
regulators, for prevention of oral and intestinal mucositis.
However, more research is needed to confirm if protection is
mediated via a NF-κB-specific effect, or part of shared signal-
ing cascades.

Other protein-based anti-inflammatory therapies have in-
cluded antibodies against chemokines, CXCL4 [56] and
CXCL9 [57], indicating a more sophisticated knowledge of
the immune contributors to mucositis pathogenesis and how it
could be more precisely targeted. Downstream of TLR acti-
vation is the well-characterized upregulation of NF-κB-
dependent cytokine production; targeting these downstream
mediators, for instance by knocking out IL-4 [58], is protec-
tive in rodent models of intestinal mucositis. This might
emerge as the preferred technique when translating to the clin-
ic since it has been recently suggested that intact TLR signal-
ing is necessary for adequate anti-tumor responses to chemo-
therapy and immunotherapy [59].

Cell-based approaches to established inflammation man-
agement have recently emerged and present a paradigm shift
from the traditional protein and pharmaceutical compound
mode of mucositis therapy. Mesenchymal stem cell (MSC)
therapy has been investigated in autologous transplant to pigs
and rats with radiation-induced proctitis [60, 61]; transplant of
human umbilical cord MSCs to mice with radiation-induced
intestinal mucositis [62], and guinea pigs with radiation-
induced oral mucositis [63]; and adipose-derived MSCs have
shown effectiveness for resolving radiation-induced colonic
inflammation [64]. The utility of MSCs to prevent oral muco-
sitis induced by fractionated radiotherapy has also shown
promising results in mice; interestingly, the positive modula-
tion was dependent on the timing of MSC transplantation
[65]. Collectively, this provides some early evidence for
MSC therapy in the setting of radiation-induced inflammation
and with either bone marrow derived or peripheral sources of
stem cells. However, while promising results thus far in some
preclinical models of established inflammation, translation to
the clinic will require longer term safety and further efficacy
studies. Finally, a new subset of immune cells, the innate
lymphoid cells, have recently been suggested to play a role

4026 Support Care Cancer (2019) 27:4023–4033



Fig. 1 Impact of microbiota on all phases of mucositis, including pre-
therapy risk. Example shows interaction of intestinal microbes in muco-
sitis pathogenesis; however, oral microbes will also play a similar role in
oral mucositis development, although the mechanisms have been less
studied to date relative to GI mucositis. Bacterial ligands can regulate

immune responses to both radiation and chemotherapy to modify ROS
generation and downstream signaling through NF-κB leading to produc-
tion of proinflammatory cytokines. Microbes also play a role in mucosal
healing, with restoration of a diverse flora a key aspect for mucosal health

Support Care Cancer (2019) 27:4023–4033 4027



in protection against oral mucositis following hematologic
stem cell transplant [66]. This underscores the importance of
continuing to explore immune responses, both innate and cel-
lular, in the pathogenesis of mucositis.

Altered functional physiology

Diarrhea occurs when there is unmatched absorptive and se-
cretory capacity of the intestines, often due to enhanced mo-
tility or presence of osmotically active or inflammatory lumi-
nal contents. Clinical anti-diarrheal agents target secretory
process and motility, yet there is a lack of attention in preclin-
ical models on these as outcome measures [67, 68]. Models
capable of assessing absorption of nutrients have been recent-
ly developed [69–71], and the role of secretory processes has
been extensively profiled in models of inflammatory bowel
disease [72]. However, there is a dearth of papers that have
directly examined changes in motility in response to cancer
therapy, both in preclinical models and the clinic. Some papers
have recently assessed changes in enteric neuron populations
following chemotherapy [73, 74] and provide mechanistic in-
sight to the underlying functional changes. Furthermore, neu-
ral support cells, enteric glia, have been shown in vitro to
mitigate altered permeability following exposure to inflamma-
tory cytokines [75]. Collectively, the role of motility and par-
ticularly enteric neurons in the pathogenesis of mucositis is an
under-researched field that has the potential to uncover new
therapeutic targets aimed at underlying functional changes in
the intestines during mucositis.

Chemotherapy and radiation therapy have been known to
alter TJs and increase intestinal permeability for decades [76].
However, there have been recent advances in our understand-
ing of the role specific TJs play and how intestinal permeabil-
ity leads to not only microbiome translocation and subsequent
activation of immune responses to mediate mucositis patho-
genesis, but also may also be essential for systemic anti-tumor
responses [13]. At the time of the last update, it was unknown
to what extent TJ alterations contribute directly to clinical
symptoms of mucositis. There was a single study showing
an association between protection against oral mucositis and
retention of TJ properties following radiation [77]. Wardill
and colleagues showed a relationship between endotoxin
levels and diarrhea, which was linked to changes in TJs and
FITC-dextran translocation [20, 78]. Further studies exploring
the specific relationship between altered permeability and mu-
cositis have been conducted by Biju et al., who used a surro-
gate maker for endotoxemia during radiotherapy in mice [79];
Russo et al., who evaluated blood and urine markers of mu-
cosal barrier injury in patients [80]; and Beutheu et al., who
showed that amino acid supplemented feed was protective
against chemotherapy induced mucosal barrier injury in rats
by preventing FITC-dextran translocation [81]. Given that TJ
loss is the preceding lesion to increased intestinal

permeability, future research should measure the ability of
mucositis interventions to stabilize these proteins as a routine
outcome measure.

Potential insights from technological advances
in mucositis research

Efforts to replicate the complexities of the mucosa has led
to the emergence of novel in vitro models of mucositis.
Gut-on-a-chip and other microfluidic-style technology
[82] provides opportunities to ask more sophisticated
questions in a physiologically relevant environment
consisting of multiple cell types that differentiate into ma-
ture intestinal structures over long term culture. Human
cell, three-dimensional, tissue models of oral mucosa
[83–86], and the role of co-culturing with microbial bio-
film [7] provide a more comprehensive interaction of fac-
tors related to radiation-induced oral mucositis pathogen-
esis. Finally, intestinal organoids; crypt structures formed
by stem cells from either human or mice, can be geneti-
cally manipulated for expression of factors important in
mucositis pathogenesis [87–89]. It is expected that these
approaches will overcome the reliance on monoculture
models and rodents which been used in the past and pro-
vide an incomplete view of dynamic interactions between
tissues during mucositis development, or lack translatabil-
ity between animal and human settings, respectively.
Nonetheless, it is noteworthy that despite the gaps noted
above, the predictive value of animal models in guiding
clinical development has been demonstrated by correla-
tive pre-clinical and clinical studies [90–93].

The study of the mechanistic aspects of mucositis has been
largely characterized by approaches that have been derived
and framed around an approach which favors evaluating mo-
lecular, cellular, and tissue changes in the context of specific
elements such as cells, pathways, or genes. This reductionist
approach has been an important component of biomedical
research for years and has been an effective tool to understand
many fundamental phenomenon. But while it has value, it also
has significant limitations, especially in its ability to accurate-
ly define complex diseases or phenotypes such as mucositis in
which there are multiple cellular elements, dynamic cross-
talk, a trajectory in which biology changes over time and
which may well be subject to external influences such as the
microbiome. Consequently, one of the major opportunities
going forward is to begin to assess the impact of multiple
mechanistic variables—genomics, proteomics, metabolomics,
microbiomics—simultaneously in a systems biology and
medicine approach.

While in vitro and organotypic models offer tools to answer
specific fundamental questions about mucositis, their limited
utility in defining complex processes is clear. Finally, it has
become increasingly clear that mechanistic learnings from
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diseases with similar clinical endpoints such as Crohn’s dis-
ease, inflammatory bowel disease and irritable bowel syn-
drome with diarrhea may well be informative as we try to
better understand mucositis. In a reciprocal way, given the
kinetics of mucosal regimen-related injury, studies that deter-
mine how mucosal injury is elicited by chemotherapy or radi-
ation may provide fundamental knowledge about the patho-
genesis of chronic diseases.

Perspective

Of the papers reviewed, there was a dominance of work car-
ried out in rodents; with a modest reliance on clinical-sample-
derived research; and a paucity of human in vitro evidence
which likely reflects the difficulty in conducting mucositis
research outside of interventional clinical trials. While we
have evolved over the years from the separation of oral mu-
cositis and GI mucositis to alimentary mucositis in terms of
underlying pathobiology, the two are still overwhelming in-
vestigated in Bsilos^. While there is proven overlap in the
downstream inflammatory signaling cascades including
NF-κB and proinflammatory cytokine production, upstream
microbe-receptor interactions are region-specific due to the
inherent compositional differences of the oral verses intestinal
microbiome. Understanding of the role of the extracellular
matrix in alimentary mucositis in the panel’s opinion has not
been significantly advanced since the last update and thus
indicates a missed opportunity for new targets that promote
healing. Models continue to be developed for investigation of
single modality cancer treatments which no longer reflects
current clinical practice. It would be of assistance to the field
if future research incorporated combination of classes of
agents when investigating both mechanisms of injury and
new interventions. In addition, in vitro and animal models
should, where possible, incorporate measures that are relevant
for both oral and GI mucositis knowledge creation.
Investigation of natural agents and plant derivatives
[94–104] has shown promise through protection from oxida-
tive stress pathways in oral and GI mucositis models. Yet, the
isolated active components and specific mechanisms of pro-
tection require further elucidation. Finally, while not ad-
dressed in this review, the issue of personalized medicine
and mucositis risk prediction is still vital and needs urgent
attention. Concurrently, knowledge gained can also be applied
to the recently appreciated area of predicting response to mu-
cositis interventions.

Take home messages

& Research momentum is accelerating for mucositis patho-
genesis, reflected by the increased publications reviewed
in this update compared to the previous effort. With this
has come utilization of new models and interventions that

target more specific mechanisms of injury. Technological
advances have the potential to revolutionize the field of
mucositis research.

& More effort is needed to establish transdisciplinary re-
search teams to promote discovery as well as translation
to the clinic of mucositis interventions that are mechanis-
tically targeted, and tailored to those who are at risk as
well as likely to respond.

& Clear selection of outcome measures in animal models
that reflect changes in clinical settings are needed to con-
firm effectiveness of new interventions. In particular, the
non-invasive and dynamic measurement of intestinal
changes, with peripheral and fecal compounds such as
citrulline, FITC-dextran, and calprotectin, should be in-
cluded as standard. This will improve the ability to iden-
tify the most capable agents for translation to clinical
trials.

& It will be vital to keep up with the emergence of novel
regimens in the clinic (including immunotherapy) and un-
derstanding of increased complexity of mucositis patho-
genesis related to combinations of traditional drugs, radi-
ation, and targeted agents.
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