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ABSTRACT 

This work aims to evaluate different routes of raw material production to be used in thixoforming process. 

The semisolid materials exhibit particular structural characteristics, such the characteristic non dendritic 

structure. The studies for the production of near-net-shape parts have progressed together with the studies of 

material weight reduction on the automobile industries production lines. In general the advantages are energy 

saving, manufacturing steps reduction, productivity and quality increasing. Five processing routes have been 

investigated (conventional casting, electromagnetic stirring, grain refinement technique and different cooling 

rates) through microstructural characterizations, conventional metallographic and colour metallography. The 

material used in this study was the A356 alloy (commercial) having a hypoeutectic structure and grain size of 

about 750 m and primary dendrite arm spacing size of around 80 m, the combination of electromagnetic 

stirring + grain refining + high cooling rate provided the best route processing to obtain a refined structure, 

with grain sizes of around 240 m, being feasible at the thixoforming process. Note also that using conven-

tional metallography (black and white) all routes tested showed almost the same primary dendrite arm spac-

ing size values ie had identical characteristics. Importantly, only with the characterization via polarized col-

our metallography is that was achieved in fact the best processing route definition. 

Keywords: A356 alloy, casting, electromagnetic stirring, grain refinement, thixoforming. 

1. NTRODUCTION 

Thixoforming is a technological process that involves the metal alloys forming in the semisolid state (SSM). 

Interest in this process is justified by the numerous advantages that can be obtained compared to the conven-

tional manufacturing methods: smaller turbulence during filling matrices, smaller shrinkage during solidifica-

tion, longer dies and tooling lifetime, smaller loads involved, among others. The semisolid processing of 

metals has been widely accepted by the industry as a feasible route to the of near net-shape components of 

aluminum and magnesium alloy production [1,2]. The electronics, aerospace and especially the automobile 

industries already use components manufactured by such processing. In Europe, it highlights parts such as 

suspension parts, brackets for motors and pipes to fuel injection for industries such as Alfa Romeo, Fiat, 

Peugeot and Renault and already in the USA, the production includes bikes and snowmobiles mechanical 

components, while in Asia, there is a concentration in the production of electronic components and power 

supply, particularly using magnesium alloys [3,4].  

Aluminum castings alloys have a fundamental role in the metal-mechanics industry, these alloys are 

supplied in a wide range of chemical compositions [5,6]. Among the various possibilities of thixoformable 

materials, Al-Si alloys are the most frequently used, particularly A357 and A356 alloys present favourable 

thermodynamic  characteristics to thixoforming:  at  the  eutectic  temperature,  liquid fraction  is  around  

50%  and  the  50%  of  solid  is  the primary  alpha  phase.  In  this  condition,  the  material thixoformability 

depends on the morphology and the solid  crystals size present  in  the  semisolid:  small dimensions  and  

globular  morphology  are  required [7]. Raw material production to thixoforming  usually involves  high  

cost  equipments;  the main  purpose  of  this work is to investigate low cost procedures to allow wider popu-

larization  of  the  SSM  processing. Cast  structures  with  non-dendritic,  small  equiaxial grains  can  be  

mailto:torres@ifsp.edu.br
mailto:lftorres00@yahoo.com.br


TORRES, L.V.; TORRES, L.F.; ZOQUI, E.J. revista Matéria, v.22, n.4, 2017. 

produced  using  different  approaches: chemical agents (appropriate choice of  alloying elements or  grain  

refiners)  and  physical or thermal agents (mechanical/electromagnetic  stirring,  vibration,  low  pouring  

temperature, high cooling rate, etc) [2,7,8,9]. The use of the electromagnetic stirring technique has been 

widely used in the last years for the thixoforming processes raw material production due to its numerous ad-

vantages, among them we can mention the absence of contact between the liquid metal and the stirring envi-

ronment, fact that doesn´t happen in the mechanical agitation, allows the continuous and direct casting of 

billets with varied forms, has low electric energy consumption, among others. Electromagnetic stirring is 

promoted in the solidifying liquid by the action of strong electromagnetic fields. The field-induced electric 

currents promote a strong agitation, breaking the structure in formation and stimulating the crystalline multi-

plication; achieving low values of primary globules sizes and grains that are important factors for the 

thixoforming process. [10,11,12,13]. In order to, this work aims to evaluate different processing routes, using 

A356 alloy as base material the in terms of microstructural characterization by optical microscopy, using 

conventional metallographic (black and white) and polarized metallography (colour).  

2. MATERIALS AND METHODS 

The material used in this work was the commercial A356 alloy whose chemical composition can be seen in 

Table 1. To the alloy chemical composition analysis via optical emission spectrometry equipment, the sam-

ples were abraded with water sandpaper grain size of 220, 320, 400 and 600 mesh and were finished for 

about 30 seconds in ultrasound to remove any impurities. The material was acquired in the market in cast 

condition (gravity casting). 

Table 1: A356 alloy chemical composition (in wt %): *obtained in the literature; **chemical analysis performed by this 

foundry industry commercial ; ***and obtained by optical emission spectrometry;. 

 Si Mg Fe Cu Zn Mn Ti Al 

*A356 Min - Max [14] 6,50 - 7,50 0,25 - 0,45 0 - 0,20 0 - 0,20 0 - 0,10 0 - 0,10 0 - 0,20 Bal. 

**A356 (by industry) 6,72 0,38 0,20 0,09 0,02 <0,01 <0,01 Bal. 

***A356 6,96 0,38 0,19 0,08 0,02 <0,01 <0,01 Bal. 

 

The characterization of the solidus and liquidus temperatures of the alloy is given by simulation soft-

ware Thermo-Calc® through the chemical composition of the analyzed alloy by optical emission spectrome-

try, the solidus temperature is 557 °C and the liquidus temperature is 612 °C, namely, a semisolid tempera-

ture range of 55 °C. It is observed by solidification path shown in Figure 1 two eutectic temperatures (TE) 

577
o
C and 557

o
C. The first TE (577

o
C) is the solidification of the second phase (silicon particle) and second 

TE (557
o
C) represents the solidification of the third phase (Mg2Si intermetallic phase), finally forming a in-

terdendritic eutectic mixture composed of Al-+Si+Mg2Si. The proper characterization of this temperature is 

extremely important since this eutectic to liquefy increases the material temperature quickly which could 

compromise the fusion or solidification structure control during the processing. A casting temperature of 

50 °C above the liquidus temperature was used because of the temperature drop associated with the furnace 

raw material withdrawal moment until its casting moment. 



TORRES, L.V.; TORRES, L.F.; ZOQUI, E.J. revista Matéria, v.22, n.4, 2017. 

 

Figure 1: Mass fraction of liquid versus temperature for A356 alloy predicted by software Thermo-Calc® showing the 

present transformations (database: TTAl5). 

The alloy was melt and poured at 660 °C in a Cu mould as shows the Figure 2, producing up ingots 

with approximately 250 mm in length and 30 mm in diameter. The first processing technique was used as 

comparison parameter, since it is a conventional casting, without electromagnetic stirring and without grain 

refiner use. The use of electromagnetic stirring [10,11,12,13] has great benefits to obtain refined structures, 

because promotes the breakdown of structure formation, stimulating like this crystalline multiplication and its 

consequent globularization. In the whole tests which utilized electromagnetic agitation was used the higher 

power provided by the system, 8kW that is enough to produce a magnetic field of 13 Gauss [12]. The used 

water flow rate for cooling the metal mould was given using the two extremes provided by the system, a min-

imum flow rate of 1 l/min and a maximum flow rate of 10 l/min.  

 

Figure 2: Schematic representation of the casting assembly to produce ingots under different conditions: 1) Cu mould, 2) 

electromagnetic coils - 13 Gauss, 3) electric motor, 4) water drain and 5) water inlet [18]. 

In this work were investigated five different processing routes aiming to optimize the process, obtain-

ing a refined structure. The different processing routes of the raw material are summarized in Table 2.  
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Table 2: Summary of the different processing routes investigated. 

CONDITIONS DESCRIPTIONS 

Casting casting in Cu mould + high water cooling (10 l/min) 

EMS + HWC electromagnetic stirring + high water cooling (10 l/min) 

EMS + LWC electromagnetic stirring + low water cooling (1 l/min) 

EMS + GR + HWC electromagnetic stirring + grain refiner + high water cooling (10 l/min) 

EMS + GR + LWC electromagnetic stirring + grain refiner + low water cooling (1 l/min) 

 

The samples produced were characterized by optical microscopy to evaluate the morphological 

changes resulting from several investigated conditions, all the samples were submitted to conventional metal-

lography (black and white) and polarized metallography (colour). Samples were cut longitudinally in the 

middle of the ingot, whose size was 300 mm, in sequence the samples were sanded with sandpaper in a parti-

cle size of 220, 320, 400, 600, 800, 1200 and 1500 mesh and polished with diamond paste of 1m. After pol-

ishing, the samples were attacked with hydrofluoric acid (1 ml HF and 99ml H2O), the attack was performed 

with total immersion of the sample in the reagent during 10s. To the microstructural characterization by col-

our metallography, the same samples used in previous characterization passed through an electrolytic attack 

with deposition of HBF4 (hydrofluoric acid) in 2,0% solution and 25V voltage for about 6 minutes under 

moderate and constant stirring. To the image acquisition we used a optical microscope Leica DM ILM. Polar-

izing filters have been used to obtain the samples grains colour images, doing the grains that have the same 

crystal orientation exhibit similar colour, which makes it much easier its identification and characterization 

thereof. To the primary dendrite arm spacing size measurements (1) in conventional metallography and 

grain size in colour metallography we used Heyn intercepts method. The count of the primary dendrite arm 

spacing was made by building up a triad of length equal to a multiple of full scale used in the image, counting 

the number of intersections covered by each straight line forming the triad. After the first count the triad was 

moved to the other four different positions, thus five different count fields were analyzed in each micrograph, 

four images being used in different regions of the sample for a total of 20 fields analyzed for each condition. 

With the obtained data was generated an average primary dendrite spacing of the four counting micrographs 

obtained. With such value was hand picked the size of the line forming the triad, and its length compared to 

the micrograph scale line length, through a three-rule, it was calculated the triad line micrometers size. Final-

ly, dividing the length in micrometers of a triad line the average primary dendrite spacing count, an average 

size of primary dendrite spacing was obtained. 

3. RESULTS AND DISCUSSION  

Figure 3 shows the micrographs of the A356 alloy (commercial), it is observed that the alloy has primary 

dendrite arm spacing size much higher as compared to the investigated conditions; as well as a microstructure 

in the form of gross dendrite, typical commercial foundry. When using images got by polarized light, we 

have that the same showed efficient to determine the grain sizes. Thus, the colour metallography wich can be 

seen is a quite high grain size, of about 750 m and a dendritic microstructure, showing that the use of such 

material to the thixoforming process is not feasible.  

  

(a) (b) 

Figure 3: A356 alloy (commercial) - (a) Conventional B&W metallography and (b) Polarized colour metallography. 
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Figure 4 shows the micrographs of different processing routes investigated by conventional B&W 

metallography and polarized colour metallography. In the conventional B&W metallography notice a typical 

hypoeutectic structure as a result of solidification, there is dendrite of the primary phase (α-Al) and a network 

of the interdendritic constituted for the Al-Si eutectic. The dendritic growth is evident, however, due to the 

high solidification rate imposed by the used metal mould (cooling) as well as the electromagnetic stirring, the 

primary dendrite arm spacing is relatively small, in order of 30 µm, there was a large reduction when com-

pared with the material (commercial) it is known that the grain refining technique for Al-Si-Cu alloys with 

low silicon percentages (1wt% Si, 2wt% Si and 4wt% Si) is effective, but for high silicon percentages, in the 

case of 7wt% Si (similar to the A356 alloy, but with the addition of 2.5 wt% of Cu), it doesn’t have a satis-

factory result, presenting a totally dendritic structure [15]. Knowing that the grain refining technique for al-

loys with high silicon percentages is not effective, the electromagnetic stirring technique was added to the 

material's production, in according to EMS + GR + HWC and EMS + GR + LWC conditions. Studies that 

report only the use of electromagnetic agitation show the benefits of obtaining refined structures, providing 

primary globules and grains considerably inferior when compared to non-agitated structures [16,17]. When 

used grain refiner (Al-5wt%Ti-1wt%B) notices a change in its shape, namely, the material passes from a typ-

ically dendritic structure to a structure trending to the rosette shape, with a substantial gross on the dendritic 

branches (EMS + GR + HWC and EMS + GR + LWC).  

The micrographs with polarized colour metallography revealed relatively gross equiaxed grains, with 

an average size of 400 m, however when using the combination electromagnetic stirring and grain refining 

technique (EMS + GR + HWC/LWC), the average size falls substantially, namely, 240 m in other words, 

the combination of these two production techniques is the one that presents the best results in relation to grain 

size, an important factor when dealing with semi-solid materials processes [18,19,20]. Therefore, the use of 

the grain refining technique interferes with nucleation, causing an increase in the initial nucleation rate, that 

is the number of nuclei as a function of time and volume of the liquid, thus restricting its growth and result-

ing in a solid structure of fine grains. It is therefore important to encourage extensive nucleation throughout 

the liquid volume when associated with high cooling rates [21].Importantly, only with the characterization 

via polarized colour metallography is that can be obtained in fact the best condition. 

 

Casting 

  

EMS 

+ 

HWC 
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Figure 4: Micrographs of the different processing routes investigated by conventional B&W metallography and polarized 

colour metallography (samples were cut longitudinally in the middle of the ingot). 

On the Table 3 the average size of primary dendrite arm spacing and average grain sizes to all pro-

cessing routes investigated are presented. Note the combination of electromagnetic stirring + grain refining 

technique + high flow rate (EMS + GR + HWC) provides the best values on the average grain size, since: the 

grain refining acts as a catalyst nucleation; the agitation promoted on the liquid in solidification generates 

strong electromagnetic fields, contributing to the breakdown of the structure in formation and stimulating the 

crystalline multiplication, preventing dendritic growth. Which can be noted a gradual average grain size de-

crease in relation to the different investigated  processing routes, especially when the use of electromagnetic 

stirring + grain refining technique + high water cooling, providing a grain size about 3 times smaller when 

compared to commercial alloy; it also notes that the primary dendrite arm spacing of different routes investi-

gated remains almost the same and that only with the use of characterization via colorful metallography to 

the result be found [18].  

Table 3: Primary dendrite arm spacing size and grain size for each investigated condition. 

CONDITIONS PRIMARY DENDRITE ARM SPACING SIZE [m] GRAIN SIZE [m] 

Commercial alloy 85  10 743  258 

Casting 31  3 457  125 

EMS + HWC 31  3 367  106 

EMS + LWC 31  3 393  155 

EMS + GR + HWC 34  3 244  53 

EMS + GR + LWC 36  3 251  52 
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4. CONCLUSION 

Some conclusions about the different processing routes investigated in this work are: 

i.    The A356 alloy processed through the combination of electromagnetic agitation + grain refining + 

high water cooling (EMS + GR + HWC) showed the best results for the grain size, demonstrating 

that this processing route is effective in thixoforming process, once from this process is expected 

homogeneous structures and with small grain sizes. Being that both techniques, electromagnetic stir-

ring and ultra-refining technique provide the breakdown of the structures in solidification and pre-

vent the raw material dendritic growth. 

ii.    The microstructural characterization via colour metallography is quite efficient, doing with the 

grains with the same crystal orientation present similar colour, making it much easier identification 

and characterization thereof. 
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