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The aims of this paper are threefold: (i) to present amodel for the complex𝛼-𝜇 fading channel; (ii) to propose an efficient, simple, and
general method to generate complex 𝛼-𝜇 samples; (iii) to make use of this channel in order to assess the bit error rate performance
of an OFDM system. An analytical framework is then used, whose output is validated through Monte Carlo simulation. Several
important conclusions concerning the systemperformance as a function of the channel parameters, namely, nonlinearity, clustering,
and power imbalance of in-phase and quadrature components, are drawn.

Dedicated to the memory of our beloved and brilliant friend Wander Henrique Machado Freitas, the first author of this paper,
who passed away in December 16, 2016, one week after the submission of this paper

1. Introduction

Wireless communication channels are subject to fading, with
the received signal varying in a random manner [1, 2].
Because signal variation deteriorates the performance of
the communication systems, the correct characterization of
the phenomenon is of paramount importance. It is widely
understood that the signal oscillates on a statistical basis with
several short-term distributions adequately describing this
variation. One of such distributions, arising from the 𝛼-𝜇
fading model [3], describes the small-scale variations of the
signal in a highly diffuse scattering environment. It is a gen-
eral, flexible, and mathematically easily tractable distribution
which models the nonlinearity of the propagation medium,
given by the parameter 𝛼, as well as the multipath clustering
of the radio waves, given by the parameter 𝜇. It includes
important and widely accepted distributions such as Gamma,
Nakagami-𝑚, exponential, Weibull, one-sided Gaussian, and
Rayleigh. Specifically, for 𝛼 = 2 and 𝜇 = 𝑚, the 𝛼-𝜇model be-
comes the Nakagami-𝑚 one with 𝑚 representing the degree

of fading. For 𝜇 = 1, 𝛼-𝜇 deteriorates into Weibull. It is note-
worthy that 𝛼-𝜇, as well as Nakagami-𝑚, was initially con-
ceived to model only the signal envelope. Therefore, their
corresponding phases constitute an open matter. In several
applications, however, the characterization of the phase may
be critical, and a model for it is certainly of interest. In the
absence of the knowledge of the phase statistics, and for
simplicity, some researchers have adopted the uniform phase
distribution. However, this is a rather simplistic assumption,
since it is hard to imagine a fading signal with uniform
distributionwhose envelope approximately ranges fromHoyt
toRice,Hoyt andRice themselves having nonuniformphases.
In an attempt to fill this gap, in [4], a complex fading model
leading to Nakagami-𝑚 envelope and nonuniform phase
distribution was proposed. Such a model was then improved
in [5] to account for power, or, equivalently, clustering, imbal-
ance between in-phase and quadrature components. It is
noteworthy that the Nakagami-𝑚 complexmodel has already
been validated in practice through field measurements [6].
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The increase of the demand for wireless services has
led the systems to operate in a variety of environments.
In particular, the diversity of scenarios envisaged for the
fifth generation (5G) applications at the millimeter wave
(mmWave) bandwill certainly lead to a variety of propagation
conditions, whichmay not be characterized by simpler fading
models. The widely used distributions, such as Rayleigh [7],
Hoyt [8], Rice [9], Nakagami-𝑚 [10], and Weibull [11], will
still find their place, of course, but they are less flexible
for encompassing more sophisticated situations. One general
and rather flexible, yet simple, model such as 𝛼-𝜇 [3] may
serve this purpose. Interestingly enough, the 𝛼-𝜇 fading
distribution has shown yielding an excellent curve fitting
performance with real field data collected at ammWave band,
namely, 60GHz [12].

In [13], a very general, probably themost general, complex
short-term model, the 𝛼-𝜂-𝜅-𝜇 fading model, was proposed.
Such a model comprises as special cases a number of
important distributions, for example, 𝛼-𝜇, 𝜂-𝜇, 𝜅-𝜇, and 𝜂-𝜅 (Beckmann), already widely explored in the literature.
Hence, it is possible to specialize the 𝛼-𝜂-𝜅-𝜇 model into the
complex 𝛼-𝜇 scenario with an aim at assessing some wireless
performance metrics upon which in-phase and quadrature
distributions may impact. And this is one of the objectives
of this paper.

Currently, an enormous variety of waveforms are consid-
ered to be potential candidates for the 5G air interface. They
include (i) Single-Carrier Frequency Division Multiplexing,
also called differently cyclic prefix (CP) DFT-Spread-OFDM
(already used in 4G LTE uplink), G-DFT-s-OFDM [14]; (ii)
Zero-Tail (ZT) or Unique-Word (UW) DFT-Spread-OFDM
[15, 16], UW-OFDM,GFDM[17], CP-OFDM(already used in
the 4G LTE downlink); (iii) Resource-Block-Filtered OFDM,
Filter-Bank-Multicarrier (FBMC), and Universal Filter Mul-
ticarrier (UFMC). As can be seen, the OFDM technique
is omnipresent in the 5G waveform proposals. The OFDM
technique shall certainly remain as the root framework for the
new 5Gwaveform design, with some optimization to support
the new 5G requirements [18, 19].

This paper makes use of the complex 𝛼-𝜇 fading channel
to assess the bit error rate (BER) performance of a BPSK-
based OFDM system. In particular, it generalizes the results
of [20], in which such a performance metric was carried
out for the Nakagami-𝑚 case. The generalization approaches
two important issues concerning their impact on the system
performance: (i) the effect of the nonlinearity parameter;
(ii) the effect of the power (or, equivalently, clustering)
imbalance between in-phase and quadrature components.
The analytical results are contrasted with simulation and a
perfect agreement between them is found.

As a by-product of our main investigation, we propose
an efficient method for generating complex 𝛼-𝜇 random vari-
ables, in which clustering imbalance is found. It is noteworthy
that the proposed 𝛼-𝜇 variate generation method is simple
and can be used in several other scenarios.

The paper is organized as follows. In Section 2, we present
the complex 𝛼-𝜇 model highlighting its main statistics,
namely, the probability density function (PDF) of the enve-
lope, phase, and the joint PDF of in-phase and quadrature

components. Section 3 presents an efficient, simple, and
general method to generate 𝛼-𝜇 random variables. Section 4
details the procedure used to estimate the BER in a given
subcarrier. The results both for the simulation algorithm
and for the BER performance are shown in their respective
sections. Finally, Section 5 concludes the paper.

2. The Complex 𝛼-𝜇Model

This section introduces the complex 𝛼-𝜇model.The complex𝛼-𝜇 random variable 𝑍 is defined as

𝑍 = 𝑋 + 𝑗𝑌, (1)

where 𝑋 and 𝑌 correspond to the in-phase and quadrature
components. Define 𝑅 = |𝑍| and Θ = arg(𝑍) as the envelope
(modulus) and the phase (argument) of the complex 𝛼-𝜇
variate, respectively. The PDF 𝑓𝑅(𝑟) of the envelope 𝑅 is
known to be given by [3]

𝑓𝑅 (𝑟) = 𝛼𝜇𝜇𝑟𝛼𝜇−1𝑟𝛼𝜇Γ (𝜇) exp(−𝜇𝑟𝛼𝑟𝛼) , (2)

with 𝑟 ≥ 0, and (i) 𝛼 > 0 describes the nonlinearity of the
propagation medium; (ii) 𝜇 > 0 represents the number of
multipath clusters adding up at the receiver; (iii) 𝑟 = 𝛼√E[𝑅𝛼]
is the 𝛼-root mean value of the envelope; (iv) E[⋅] is the
expectation operator; (v) and Γ(⋅) is the Gamma function [21,
eqn. (6.1.1)]. As already mentioned, as far as the envelope
statistics are concerned, the 𝛼-𝜇 random variable includes
the Gamma (and its discrete versions Erlang and central
Chi-squared), Nakagami-𝑚 (and its discrete version Chi),
exponential,Weibull, one-sidedGaussian, andRayleigh ones.
TheWeibull distribution can be obtained from the 𝛼-𝜇 distri-
bution by setting 𝜇 = 1. From the Weibull distribution, by
setting 𝛼 = 2, the Rayleigh distribution results. Still from the
Weibull distribution, the negative exponential distribution is
obtained by setting 𝛼 = 1. The Nakagami-𝑚 distribution can
be obtained from the 𝛼-𝜇 distribution by setting 𝛼 = 2. From
the Nakagami-𝑚 distribution, by setting 𝜇 = 1, the Rayleigh
distribution results. Still from the Nakagami-𝑚 distribution,
the one-sided Gaussian distribution is obtained by setting𝜇 = 1/2.

Starting out from the 𝛼-𝜂-𝜅-𝜇 fading [13] and specializing
its parameters as 𝜅 → 0 and 𝜂 = 1, it is possible to arrive at the
corresponding𝛼-𝜇phase-envelope joint PDF. From there, the
in-phase-quadrature joint PDF can be found. On the other
hand, as detailed in [13], the nonlinearity parameter does not
affect the phase statistics, so that its phase PDF 𝑓Θ(𝜃) is that
of Nakagami-𝑚. Hence

𝑓Θ (𝜃)
= Γ (𝜇)2𝜇Γ (((1 + 𝑝) /2) 𝜇) Γ (((1 − 𝑝) /2) 𝜇) |sin (2𝜃)|𝜇−1|tan (𝜃)|𝑝𝜇 , (3)

with −𝜋 ≤ 𝜃 ≤ 𝜋 and −1 ≤ 𝑝 ≤ 1 is a power (or clustering)
imbalance parameter. This parameter is intrinsically con-
nected to the multipath clustering effect as [5] (the definition
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of the clustering imbalance parameter in this paper keeps that
used in [5] and is different from that used in [13]; of course,
one is related to the other as detailed in [13]). From [3], we
know that the 𝑘thmoment of the envelope-based𝛼-𝜇 random
variable is given by E[𝑅𝑘] = 𝑟𝑘Γ(𝜇 + 𝑘/𝛼)/(𝜇𝑘/𝛼Γ(𝜇)), which
makes us able to set

𝑟 = √ 𝜇2/𝛼Γ (𝜇)E [𝑅2]Γ (𝜇 + 2/𝛼) . (4)

Again, particularizing 𝛼-𝜂-𝜅-𝜇 fading model as required, the𝛼-𝜇 joint PDF 𝑓𝑅,Θ(𝑟, 𝜃) is then found as

𝑓𝑅,Θ (𝑟, 𝜃)
= 𝛼𝜇𝜇𝑟𝛼𝜇−1 exp (−𝜇 (𝑟𝛼/𝑟𝛼)) |sin (2𝜃)|𝜇−12𝜇𝑟𝛼𝜇Γ (((1 + 𝑝) /2) 𝜇) Γ (((1 − 𝑝) /2) 𝜇) |tan (𝜃)|𝑝𝜇 .

(5)

It can be seen from (5) that envelope and phase are indepen-
dent variates. This is coherent with the complex Nakagami-𝑚 model [4, 5] in which the independence condition arose
naturally out of the derivation of the model. As a particular
case, the following are noted: (i) 𝑝 = 0 denotes the power bal-
ance condition; (ii) 𝑝 = 1 implies that the all signal power is
concentrated in the in-phase component; (iii) 𝑝 = −1 implies
that all the signal power is concentrated in the quadrature
component.

Given 𝑓𝑅,Θ(𝑟, 𝜃), it is possible to find 𝑓𝑋,𝑌(𝑥, 𝑦) as𝑓𝑋,𝑌(𝑥, 𝑦) = |𝐽|𝑓𝑅,Θ(𝑟, 𝜃), where |𝐽| = 𝑟 is the Jacobian of
the transformation𝑋 = 𝑅 cos(Θ) and 𝑌 = 𝑅 sin(Θ). Hence

𝑓𝑋,𝑌 (𝑥, 𝑦)
= 𝛼𝜇𝜇 (𝑥2 + 𝑦2)𝜇(𝛼−2)/2 |𝑥|𝜇(1+𝑝)−1 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝜇(1−𝑝)−12𝑟𝛼𝜇Γ (((1 + 𝑝) /2) 𝜇) Γ (((1 − 𝑝) /2) 𝜇)

× exp(− 𝜇̂𝑟𝛼 (𝑥2 + 𝑦2)𝛼/2)
(6)

with−∞ < 𝑥 < ∞ and−∞ < 𝑦 < ∞.The expression in (6) is
general and, to the best of the authors’ knowledge, new.Notice
that, in general, the in-phase and quadrature components are
not independent random variables. As a consequence, the
joint PDF of 𝑋 and 𝑌 can not be factorized as a product of
the marginal PDFs. It is found that the random variables 𝑋
and 𝑌 are independent if and only if 𝛼 = 2. In such a case

𝑓𝑋 (𝑥)󵄨󵄨󵄨󵄨𝛼=2
= ( 𝜇̂𝑟2 )((1+𝑝)/2)𝜇 |𝑥|(1+𝑝)𝜇−1Γ (((1 + 𝑝) /2) 𝜇)exp(−𝜇𝑥2𝑟2 ) , (7)

𝑓𝑌 (𝑦)󵄨󵄨󵄨󵄨𝛼=2
= ( 𝜇̂𝑟2 )((1−𝑝)/2)𝜇

󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨(1−𝑝)𝜇−1Γ (((1 − 𝑝) /2) 𝜇) exp(−𝜇𝑦2𝑟2 ) . (8)

Of course, 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) given in (7) and (8) coincide,
respectively, with those of (11) and (12) of [5].

The importance of (6) will become clear in Section 4 as it
is used to compute the BER in a given subcarrier of theOFDM
system. Another important aspect to be noticed about this
joint PDF is that it does not provide the marginal PDFs of 𝑋
and𝑌 in a closed-formby integrating over𝑦or𝑥, respectively.
However, in the next section, we present an efficient method
for generating the complex 𝛼-𝜇without the knowledge of the
marginal PDFs of𝑋 and 𝑌.
3. Generating Complex 𝛼-𝜇 Samples

This section presents the method used to generate the
complex 𝛼-𝜇 random variables for arbitrary values of its
parameters. Bearing in mind that the nonlinearity parameter
does not affect the phase statistics of the 𝛼-𝜇 process, then its
phase is given by that of the Nakagami-𝑚 process. Therefore,
in order to generate 𝛼-𝜇 complex variates, one can simply
generate Nakagami-𝑚 complex variates and use the relation
between the envelopes of the two processes. Assuming that𝑍𝑁 and 𝑍 are, respectively, Nakagami-𝑚 and 𝛼-𝜇 complex
variates, then, 𝑅 = |𝑍| = |𝑍𝑁|2/𝛼 and Θ = arg(𝑍) = arg(𝑍𝑁).
Now, from (7) and (8), it can be seen that the in-phase and
quadrature components of the Nakagami-𝑚 have a Gamma
PDF with symmetry around zero. Hence, the following can
be written:

𝑍𝑁 = 𝑆𝑋√𝐺𝑋𝜇 + 𝑗𝑆𝑌√𝐺𝑌𝜇 , (9)

where 𝐺𝑋 ∼ Gamma((1 + 𝑝)𝜇/2, 𝑟2) and 𝐺𝑌 ∼ Gamma((1 −𝑝)𝜇/2, 𝑟2) are independent Gamma random variables, 𝜇
accounts for the fading parameter, and 𝑟2 = E[|𝑍𝑁|2]. The
multiplicative factors 𝑆𝑋 and 𝑆𝑌 are independent discrete
random variables assuming the values 1 and −1 with equal
probabilities. Any mathematical software tool (e.g., Mathe-
matica) that provides Gamma variate generator can be used
here. Then to create the complex 𝛼-𝜇 random variable, it
suffices to make the transformation

𝑍 = 󵄨󵄨󵄨󵄨𝑍𝑁󵄨󵄨󵄨󵄨2/𝛼 exp (𝑗 arg (𝑍𝑁)) . (10)

It should be mentioned that the fact that the marginal PDFs
for the in-phase and quadrature components of the 𝛼-𝜇
process have not been obtained in closed-form did not affect
the generation of the 𝛼-𝜇 complex samples.The PDFs closed-
form issue has been circumvented by generating complex
samples for Nakagami-𝑚 variates, whose marginal PDFs are
given in closed-form, and then applying the appropriate
transformation of variables as in (10), from which the 𝛼-𝜇
samples result.

When compared to other generation methods of com-
plex Nakagami-𝑚 variates, such as the Acceptance-Rejection
method used in [22], the proposed method here has a
dramatically better efficiency.

In order to validate this newmethod, we show some plots
comparing theoretical (solid lines) and simulated (symbols)
curves. Each curve was generated using 5 × 105 samples with𝜇 = 3, where, without loss of generality, 𝑟𝛼 = 1 was used.
Figure 1 depicts various shapes of the 𝛼-𝜇 envelope density.
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Figure 2 shows the corresponding shapes of the 𝛼-𝜇 phase
PDF, plotted in polar coordinates.

In Figures 3 and 4, the PDFs of real and imaginary parts
of the 𝛼-𝜇 distribution are plotted, respectively. In all plots,
we consider the parameter 𝜇 = 3, and we vary the parameters𝛼 and 𝑝 to verify the correctness of the proposed method to
generate the 𝛼-𝜇 complex density.We can notice the excellent
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Figure 4: Empirical and theoretical 𝑓𝑌(𝑦) distribution with 𝜇 = 3.
agreement between the simulation and the theoretical curves.
It is worth mentioning that the theoretical curves of real and
imaginary parts were calculated numerically, because they do
not lend themselves into closed-form expressions.

4. OFDM System under
the Complex 𝛼-𝜇 Channel

4.1. Theoretical Expression for the BER. The OFDM system
under investigation here is an idealized one, in which issues
like channel estimation by training, cyclic prefix length,
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equalization strategy, the presence of narrowband interfer-
ence, impulse noise, and transceiver impairments, and others
are overlooked. To accomplish the analysis of an OFDM
system under the complex 𝛼-𝜇 channel presented in this
paper, a framework developed in [20] is used. In a simplified
manner, the BER is computed combining three equations
[20]:

(1) The Characteristic Function:

Φℓ (𝑢, V) = E [𝑒−𝑗𝑋ℓ{𝑢 cos(2𝜋(𝑛/𝑁)ℓ)+V sin(2𝜋(𝑛/𝑁)ℓ)}
× 𝑒−𝑗𝑌ℓ{𝑢 sin(2𝜋(𝑛/𝑁)ℓ)−V cos(2𝜋(𝑛/𝑁)ℓ)}] , (11)

where (i) the subscript ℓ denotes ℓth path with ℓ =0, 1, 2, . . . , 𝐿 − 1 in which 𝐿 is the total number
of multipath rays; (ii) 𝑋ℓ and 𝑌ℓ are the real and
imaginary part of the complex 𝛼-𝜇 channel at theℓth path, respectively; (iii) 𝑁 is the total number of
subcarriers with 𝑛 = 0, 1, 2, . . . , 𝑁 − 1 being the index
of the subcarrier.

(2) The Moment Generating Function:

M (𝑧) = E [𝑒−𝑧|𝐻𝑛|2]
= 1𝜋 ∫∞

−∞
∫∞
−∞

𝑒−(𝑢2+V2)
× 𝐿−1∏
ℓ=0

Φℓ (2√𝑧𝑢, 2√𝑧V) 𝑑𝑢 𝑑V,
(12)

where 𝐻𝑛 = ∑𝐿−1ℓ=0 𝑍ℓ𝑒−𝑗2𝜋𝑛ℓ/𝑁 is the frequency-
domain channel impulse response and 𝑍ℓ, ℓ = 0, 1,2, . . . , 𝐿 − 1, are independent complex 𝛼-𝜇 random
variables given by (1) with the appropriate subscript.

(3) The BER of BPSK ((13) is slightly different from that
of [20, eqn. (24)] due to typo found there):

𝑃𝑏 = 1𝜋 ∫𝜋/2
0

M
𝐷 ( SNR2 sin2 (𝜃)) 𝑑𝜃, (13)

where𝐷 is the order of diversity of themaximumratio
combiner (MRC) and SNR is the signal-to-noise ratio.

For the 𝛼-𝜇 channel, however, (11) has to be computed
numerically as

Φℓ (𝑢, V)
= ∫∞
−∞

∫∞
−∞

𝑓𝑋ℓ,𝑌ℓ (𝑥ℓ, 𝑦ℓ) 𝑒−𝑗(𝑥ℓ𝑤𝑥ℓ+𝑦ℓ𝑤𝑦ℓ )𝑑𝑥ℓ𝑑𝑦ℓ, (14)

where 𝑓𝑋ℓ,𝑌ℓ(𝑥ℓ, 𝑦ℓ) is the joint PDF of the in-phase and
quadrature components of the channel at the ℓth path given
by (6),𝑤𝑥ℓ = {𝑢 cos(2𝜋(𝑛/𝑁)ℓ)+V sin(2𝜋(𝑛/𝑁)ℓ)}, and𝑤𝑦ℓ ={𝑢 sin(2𝜋(𝑛/𝑁)ℓ) − V cos(2𝜋(𝑛/𝑁)ℓ)}.

It is worth mentioning that (13) can be easily generalized
to other modulations schemes such as the 𝑀-PSK [1, eq.
(5.67)] and 𝑀-QAMmodulations [1, eq. (8.110)].
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Figure 5: Average BER against the fading parameter 𝜇 under 𝛼-𝜇
fading channel with SNR = 20 dB, 𝐿 = 3, and 𝑝 = 0.
4.2. Numerical Examples. This section assesses the perfor-
mance of the BPSK-based OFDM system in terms of BER
concerning the influence of the main system parameters. All
experiments depicted here consider 𝑛 = 𝑁/2, as also used
in [20], and ∑𝐿−1ℓ=0 E[𝑅2ℓ] = 1. The theoretical results are
calculated numerically using (13). Independent simulations
have been performed so as to validate the theoretical expres-
sions.MATLABwas used to implement the code according to
the models described throughout the paper. For each point
we generate at least 2 × 107 samples using the Monte Carlo
approach.

In Figure 5, the theoretical probability error of a bit (solid
lines) and the estimated through simulation bit error rate
(symbols) are plotted against the parameter 𝜇. The nonlin-
earity parameter 𝛼 varies as {1; 1.5; 2; 3; 4; 5; 6} and 𝐿 = 3 for
a fixed value of 𝑝 = 0 (balanced scenario). Note the excellent
agreement between theoretical and simulated curves showing
the usefulness and correctness of the analytical procedure. It
is worth mentioning that for 𝛼 = 2, that is, the Nakagami-𝑚 case, the result is the same as the one obtained in [20], as
expected. It is possible to conclude that the increase of the
clustering parameter 𝜇 diminishes the BER for a fixed value
of𝛼.This is an expected result, since the parameter𝜇 accounts
for the number of multipath clusters. In other words, the
higher the value of 𝜇 is, the less severe the fading is. Hence the
performance in terms of probability of error is improved. In
the same way, the increase of the parameter 𝛼 also improves
the BER performance. Of course, the higher the values of 𝛼
are, the more deterministic the channel is and, therefore, the
less vulnerable to variation the channel is.

In order to assess the impact of the phase parameter,
Figure 6 depicts the same set of curves of Figure 5 but now
with 𝑝 = 1/3, corresponding to a case in which the power
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Figure 6: Average BER against the fading parameter 𝜇 under 𝛼-𝜇
fading channel with SNR = 20 dB, 𝐿 = 3, and 𝑝 = 1/3.

(or the number of clusters) of the in-phase component is the
double as that of the quadrature component. In addition to
the conclusions already drawn from Figure 5, by comparing
the curves for the same nonlinearity parameter 𝛼, for 𝛼 > 2,
the increase in the phase parameter leads to a lower BER.
Furthermore, the performance obtained for 𝑝 = 0 (balanced)
and 𝑝 = 1/3 (imbalanced) scenarios improves as 𝛼 increases.
However, for 𝛼 ≤ 2 the performance under the variation
of the phase parameter 𝑝 is practically the same for any
value of 𝛼. This means that the power imbalance between in-
phase and quadrature components has very little effect on the
system performance in terms of BER. Moreover, the impact
of phase imbalance on the system performance is greater for
high values of 𝛼.

With the objective of clarifying even more the impact of
phase imbalance, Figure 7 depicts the same set of curves of
Figure 5 but now against the absolute value of the parameter𝑝 for fixed 𝜇 = 3. Firstly, all the previous conclusions are
corroborated by this new graph. Additionally, for 𝛼 ≤ 2
the impact of phase imbalance on the system performance
is greater for high values of |𝑝| increasing slightly the BER.
In contrast, for 𝛼 > 2, for high value of the power imbalance
between in-phase and quadrature components, the effect on
the system performance in terms of BER is higher. It is
desirable to have an intuitive explanation for such a behavior.
Unfortunately, the problem is rather intricate and nonlinear,
so further investigation is due.

In Figure 8, the BER is plotted against the SNR for fixed𝜇 = 3 and 𝐿 = 3 using the balanced (𝑝 = 0) and imbalanced
(𝑝 = 1/3) scenarios for single (𝐷 = 1) and dual (𝐷 = 2)
channel diversity reception. In this figure the influence of 𝛼
and the diversity parameter𝐷 is clearly noticed. As expected,
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Figure 7: Average BER against the phase parameter 𝑝 under 𝛼-𝜇
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Figure 8: Average BER against SNR for single and dual channel
diversity reception with 𝜇 = 3 and 𝐿 = 3 for balanced and unbal-
anced scenarios.

for higher diversity system order, the performance in terms
of probability of error is improved. The difference between
the BER of the single and dual channel diversity reception
increases at higher SNR values. Again, phase imbalance
impacts positively on the system performance, especially for
high values of SNR.
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5. Conclusions

In this paper, a model for the complex 𝛼-𝜇 channel was
presented. From such a model, the joint probability density
function of in-phase and quadrature components was found.
This was then used within an analytical framework to assess
the bit error rate performance of an OFDM system. As a by-
product of the main results, an efficient, simple, and general
complex 𝛼-𝜇 variates generator was proposed. It was found
that an increase of the value of the nonlinearity parameter
as well as of the number of clusters improves the system
performance in terms of its bit error rate. In the same way,
the imbalance of power (or clustering) between in-phase and
quadrature components also has a positive impact on such
performance.
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