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Abstract--This paper describes a new method to represent 

single-phase overhead transmission lines (TL) under corona 

effect in electromagnetic transient simulation program. Based on 

Bergeron model and the scheme proposed by Dommel to 

represent transmission lines in Electromagnetic Transients 

Programs (EMT), a voltage-dependent line model (VDLM) was 

developed. This model can be represented through of an 

equivalent impedance network and easily combined with other 

components of the electric power system. To solve the nodal 

equations of the network a simple technique is proposed, which is 

suitable to calculate lightning overvoltages transients and avoids 

the necessity of iterative methods, increasing the efficiency of the 

algorithm. The proposed method was implemented in Matlab 

software, and the simulation’s results were compared with field 

measurements to verify the accuracy of the model. Comparisons 

were also made with the traditional linear Corona Model. A good 

agreement could be observed between them. 

 
Index Terms-- Corona, Transmission line modeling, lightning 

overvoltages. 

I.  INTRODUCTION 

ccurate knowledge of overvoltages’ magnitude and 

waveform is essential to the insulation coordination design 

of overhead transmission lines. This information is normally 

obtained through digital simulations, where the Electromagnetic 

Transient Programs (EMT-type programs) are widely used due 

their versatile to represent several components of an electric 

power system. 

The basic structure of the EMT was firstly presented by 

Dommel in 1969 [1]. Nowadays these programs have very robust 

line models capable of representing with good accuracy the 

frequency-dependence of line parameters [2], [3], [4], although 

the corona effect cannot be represent directly in these line models. 

The corona effect occurs in an overhead line when the electric 

field in the conductor’s surface exceeds a certain critical value, 

causing the ionization of the air and the generation of space 

charge in the vicinity of the conductor [5],  [6]. This phenomenon 

acts as a natural attenuator of surges, reducing the magnitude of 

the overvoltages and slowing the traveling waves’ propagation 

speed. For this reason, neglecting it on the simulations can lead to  
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unrealistic and conservative results [7]. However, since it has 

distributed, nonlinear, hysteretic and frequency-dependent 

behavior, the representation of corona effect in the 

electromagnetic transient simulations is not easy to perform. 

To the best of the authors’ knowledge, the only way to 

represent the corona effect in EMT consists in subdividing the TL 

into linear sections, and at each junction node is placed a shunt 

corona branch [8], [9]. Basing on this method, a technique that 

considers the corona branch implicitly was posteriorly proposed, 

it uses a recursive scheme and represents the line as a nonlinear 

component [10], [11]. Anyway, in these cases the corona is 

treated as an external and lumped component, and line parameters 

are kept invariant. To represent the distributed nature of the 

corona effect different methods were proposed over the years, 

which normally use numerical algorithms to solve the telegraph's 

equations [12], [13] or discretized Maxwell's equations [14], [15]. 

However, it should be noted that such methods are not suitable 

for representation in EMT type programs, since they are not 

described through Norton equivalents. 

In this paper we present a new methodology to represent the 

corona effect in lightning overvoltages simulations. Basing on 

Bergeron line model and the scheme proposed by Dommel to 

represent single-phase overhead lines in EMT [1], a voltage-

dependent line model (VDLM) was developed, which 

corresponds to a more general case of the Bergeron model and 

allows the corona effect to be represented directly into the line 

model. More specifically, the great difference between the 

proposed model and the previous models consists in the fact that 

the capacitance per unit of length of the line is treated as a 

voltage-dependent parameter, which results in a nonlinear 

representation of the line and reproduces the distributed nature of 

the phenomenon. Furthermore, since the VDLM can be 

represented by an equivalent impedance network, it can be 

implemented as a separate component or as a subroutine in any 

EMT program, which allows the model to be easily combined 

with other power system elements. 

The corona model was implemented in Matlab software along 

with an algorithm that automatically makes the spatial 

discretization of the line, besides it calculates the nodal voltages 

without using iterative methods, increasing the proposed model 

efficiency. Furthermore, to investigate its accuracy, comparisons 

between computed results and two different measurement data 

available in literature were carried out. Additional tests were 

made with traditional linear component method (TLCM). Good 

agreement was obtained for both cases. 

This paper is structure as follows. The first part of the document 

presents a brief review of the classical Bergeron line model. 

Development of a Voltage-Dependent Line Model 

to Represent the Corona Effect in Electromagnetic 

Transient Program 
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A 

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on August 12,2020 at 16:29:38 UTC from IEEE Xplore.  Restrictions apply. 

mailto:tmatias@dsce.fee.unicamp.br


0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.2990968, IEEE
Transactions on Power Delivery

 2 

The second part describes the structure of the VDLM, the 

corona model and the computational procedure. The third part 

validates the proposed method. 

II.  A REVIEW OF BERGERON LINE MODEL 

Consider a lossless single-phase transmission line with 

constant parameters (CP) and length 𝑙, as shown in Fig. 1. 

According to Bergeron model, the relationship between 

voltage and current at the terminals 𝑘 and 𝑚 can be expressed 

by (1) and (2). 

𝑣𝑘(𝑡) + 𝑍0 ∙ (−𝑖𝑘,𝑚(𝑡))

= 𝑣𝑚(𝑡 − 𝜏0) + 𝑍0 ∙ 𝑖𝑚,𝑘(𝑡 − 𝜏0) 
(1) 

𝑣𝑚(𝑡) + 𝑍0 ∙ (−𝑖𝑚,𝑘(𝑡))

= 𝑣𝑘(𝑡 − 𝜏0) + 𝑍0 ∙ 𝑖𝑘,𝑚(𝑡 − 𝜏0) 
(2) 

Where: 

𝑍0 = √
𝐿0

𝐶0

 (3) 

𝜏0 =
𝑙

𝑣𝑝𝑟𝑜𝑝

= √𝐿0𝐶0 ∙ 𝑙 (4) 

In above equations, 𝑖𝑘,𝑚(𝑡) and 𝑖𝑚,𝑘(𝑡) correspond to the 

instantaneous currents entering terminals 𝑘 and 𝑚, 

respectively; 𝑣𝑘(𝑡) and 𝑣𝑚(𝑡) correspond to the instantaneous 

voltages on the terminals 𝑘 and 𝑚, respectively, 𝑍0 is the 

characteristic impedance of the line, 𝜏0 is the travel time (or 

the time that a signal takes to travel from one terminal to the 

other), 𝑣𝑝𝑟𝑜𝑝 is the wave propagation speed, 𝐿0 and 𝐶0 are, 

respectively, the series inductance and the shunt capacitance 

of the line per unit of length. 

 
Fig. 1.  Lossless single-phase line with constant parameters. 

Equations (1) and (2) may be properly understood as 

follows: a signal that leaves a line terminal reaches the other 

end with the same amplitude (lossless line), after a time delay 

of 𝜏0. This concept is shown in Fig. 2. 

 
Fig. 2.  Graphical interpretation of the Bergeron’s equations for a lossless 

single-phase line. 

By means of (1) and (2) we can obtain (5) and (6), which 

describe the currents at line terminals, 𝑖𝑘,𝑚(𝑡) and 𝑖𝑚,𝑘(𝑡). 

This pair of equations can also be expressed by an equivalent 

impedance network, which is composed by resistors and 

historical current sources, as shown in Fig. 3. 

𝑖𝑘,𝑚(𝑡) =
𝑣𝑘(𝑡)

𝑍0

+ 𝐼𝑘(𝑡 − 𝜏0) (5) 

𝑖𝑚,𝑘(𝑡) =
𝑣𝑚(𝑡)

𝑍0

+ 𝐼𝑚(𝑡 − 𝜏0) (6) 

𝐼𝑘(𝑡 − 𝜏0) = −
𝑣𝑚(𝑡 − 𝜏0)

𝑍0

− 𝑖𝑚,𝑘(𝑡 − 𝜏0) (7) 

𝐼𝑚(𝑡 − 𝜏0) = −
𝑣𝑘(𝑡 − 𝜏0)

𝑍0

− 𝑖𝑘,𝑚(𝑡 − 𝜏0) (8) 

 

 
Fig. 3.  Equivalent impedance network of the lossless Bergeron single-phase 
line model. 

To calculate the currents 𝑖𝑘,𝑚(𝑡) and 𝑖𝑚,𝑘(𝑡) it is necessary 

to know the voltages at line terminals, 𝑣𝑘(𝑡) and 𝑣𝑚(𝑡). These 

voltages can be calculated by means of the system nodal 

equations, as shown in (9): 
[𝒀] ∙ [𝒗(𝑡)] = [𝒊(𝑡)] − [𝑰] (9) 

Where: 
[𝒀] - Nodal conductance matrix 
[𝒗(𝑡)] – Column vector of node voltages at time 𝑡. Some 

elements may be known (specified voltage source from datum 

node), and others are unknown. 
[𝒊(𝑡)] – Column vector of injected node currents at time 𝑡 

(specified current sources from datum to node) 
[𝑰] – Known column vector, which is made up from 

equivalent historical currents sources. 

 Since (9) corresponds to a system of linear equations it can 

be easily solved by different methods, which are well-known 

and will not be explained here. More information can be found 

in [1], [16]. 

III.  VOLTAGE-DEPENDENT LINE MODEL 

To represent the corona effect in transmission lines we can 

consider that the shunt capacitance and shunt conductance in 

any point along the line are voltage dependent, which means 

that the distributed characteristic of this phenomenon should 

be properly modeled. Thereby, the only way to represent this 

phenomenon is through spatial discretization.  

The appropriate length of each line section when 

performing the spatial discretization depends on the type of 

the phenomenon analyzed. By performing the discretization of 

the line and calculating the shunt capacitance and shunt 

conductance based on the voltage at each line section terminal, 

it is assumed that the voltage along the line section is constant. 

However, this approximation is reasonable only if the travel 

time along the section is a fraction of the period associated to 

the maximum frequency involved in the analysis. For 

lightning, for example, the maximum frequency involved in 

the analysis is in the range of 1 MHz, which is equivalent to a 

period of 1 µs. Since the surge waves propagate less than 
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300 m each microsecond, section lengths must be of 50 m or 

less [8]. 

Assuming that the line has been properly discretized 

according to the analyzed phenomenon, the voltage along a 

section is approximately the same. Thus, the shunt capacitance 

and shunt conductance can be calculated based on the voltage 

at sending end 𝑣𝑘(𝑡) or receiving end 𝑣𝑚(𝑡), which will 

generically be named 𝑣(𝑡) in the next sections. 

A.  Representation of Dynamic Capacitance 

Consider again the lossless transmission line at Fig. 1. To 

represent the dynamic capacitance it is necessary to consider 

the characteristic impedance and the travel time as voltage 

functions, as shown in (10) and (11): 

𝑍(𝑣(𝑡)) = √
𝐿0

𝐶(𝑣(𝑡))
 (10) 

𝜏(𝑣(𝑡)) = √𝐿0. 𝐶(𝑣(𝑡)) ∙ 𝑙 (11) 

Thus, (1) and (2) can be rewritten as shown in (12) and 

(13): 

𝑣𝑘(𝑡) + 𝑍(𝑣(𝑡)) ∙ (−𝑖𝑘,𝑚(𝑡))

= 𝑣𝑚(𝑡 − 𝜏(𝑣(𝑡))) + 𝑍(𝑣(𝑡))   

∙ 𝑖𝑚,𝑘(𝑡 − 𝜏(𝑣(𝑡))) 

(12) 

𝑣𝑚(𝑡) + 𝑍(𝑣(𝑡)) ∙ (−𝑖𝑚,𝑘(𝑡))

= 𝑣𝑘(𝑡 − 𝜏(𝑣(𝑡))) + 𝑍(𝑣(𝑡))

∙ 𝑖𝑘,𝑚(𝑡 − 𝜏(𝑣(𝑡))) 

(13) 

Knowing that when the TL is under corona effect a rise in 

the shunt capacitance occurs, it can be seen in (10) and (11) 

that the phenomenon causes simultaneously a decreasing in 

characteristic impedance and an increasing in the travel time. 

A physical interpretation of (12) and (13) is shown in Fig. 

4. As can be seen, these equations describe that when a signal 

leaves a line terminal it gets to the other end with the same 

amplitude (lossless). However, differently from (1) and (2), in 

this case the signal amplitude and the travel time are voltage 

dependent and can be modified in each time step, following 

𝑣(𝑡). 

 
Fig. 4.  Graphical interpretation of the Bergeron’s equations for a lossless 

line with representation of the dynamic capacitance. 

Isolating 𝑖𝑘,𝑚(𝑡) and 𝑖𝑚,𝑘(𝑡) in (12) and (13) we obtain (14) 

and (15), respectively, which describe the currents on each 

terminal of a lossless TL with voltage-dependent capacitance. 

These pair of equations also can be represented by an 

equivalent impedance network as shown in Fig. 5, which is 

composed by non-linear resistors and voltage-dependent 

current sources. 

𝑖𝑘,𝑚(𝑡) =
𝑣𝑘(𝑡)

𝑍(𝑣(𝑡))
+ 𝐼𝑘(𝑡 − 𝜏(𝑣(𝑡))) (14) 

𝑖𝑚,𝑘(𝑡) =
𝑣𝑚(𝑡)

𝑍(𝑣(𝑡))
+ 𝐼𝑚(𝑡 − 𝜏(𝑣(𝑡))) (15) 

𝐼𝑘(𝑡 − 𝜏(𝑣(𝑡))) = −
𝑣𝑚(𝑡 − 𝜏(𝑣(𝑡)))

𝑍(𝑣(𝑡))
− 𝑖𝑚,𝑘(𝑡 − 𝜏(𝑣(𝑡))) (16) 

𝐼𝑚(𝑡 − 𝜏(𝑣(𝑡))) = −
𝑣𝑘(𝑡 − 𝜏(𝑣(𝑡)))

𝑍(𝑣(𝑡))
− 𝑖𝑘,𝑚(𝑡 − 𝜏(𝑣(𝑡))) (17) 

 
Fig. 5.  Equivalent impedance network of a lossless TL with representation of 

dynamic capacitance. 

B.  Representation of series resistance and shunt conductance 

The shunt conductance and series resistance can be 

represented by means of lumped resistances combined with 

the lossless line. Since short line sections are used to represent 

the corona effect in electromagnetic transients, these 

parameters can be included only in the line terminals [10], as 

shown in Fig. 6(a). In this figure, 𝑅𝑙 is the total series 

resistance of the section, and 𝑅𝑠 is the total shunt resistance, 

which assumes very high values when the line is not under 

corona. It should be noted that since the shunt resistance is 

placed in parallel with the line terminals, it must be multiplied 

by two and not divided by two, as done for the series 

resistance. 

The Fig. 6(a) circuit can be further simplified with 

Kirchhoff’s Laws, resulting in Fig. 6(b) circuit. The currents at 

the line terminals are described by (18) and (19).  

 
(a) 

 
 (b) 

Fig. 6. TL equivalent impedance network with approximate representation of 
series losses, voltage-dependent capacitance and shunt conductance. (a) 

Complete circuit. (b) Simplified circuit. 

𝑖𝑖𝑛(𝑡) =
𝑣𝑖𝑛(𝑡)

𝑍𝑒𝑞(𝑣(𝑡))
+ 𝐼𝑘(𝑒𝑞)(𝑡 − 𝜏(𝑣(𝑡)))  (18) 
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𝑖𝑜𝑢𝑡(𝑡) =
𝑣𝑜𝑢𝑡(𝑡)

𝑍𝑒𝑞(𝑣(𝑡))
+ 𝐼𝑚(𝑒𝑞)(𝑡 − 𝜏(𝑣(𝑡)))  (19) 

Where: 

𝐼𝑘(𝑒𝑞)(𝑡 − 𝜏(𝑣(𝑡))) = − 
1

𝑍𝑒𝑞(𝑣(𝑡))
∙ [𝑣𝑜𝑢𝑡 (𝑡 − 𝜏(𝑣(𝑡)))     

+ (𝑍𝑠(𝑣(𝑡)) −
𝑅𝑙

2
) ∙ 𝑖𝑜𝑢𝑡(𝑡 − 𝜏(𝑣(𝑡)))] 

(20) 

𝐼𝑚(𝑒𝑞)(𝑡 − 𝜏(𝑣(𝑡))) = − 
1

𝑍𝑒𝑞(𝑣(𝑡))
∙ [𝑣𝑖𝑛(𝑡 − 𝜏(𝑣(𝑡)))

+  (𝑍𝑠(𝑣(𝑡)) −
𝑅𝑙

2
) ∙ 𝑖𝑖𝑛(𝑡 − 𝜏(𝑣(𝑡)))] 

(21) 

𝑍𝑠(𝑣(𝑡)) =
2𝑅𝑠(𝑣(𝑡)) ∙ 𝑍(𝑣(𝑡))

2𝑅𝑠(𝑣(𝑡)) + 𝑍(𝑣(𝑡))
 (22) 

𝑍𝑒𝑞(𝑣(𝑡)) = 𝑍𝑠(𝑣(𝑡)) +
𝑅𝑙

2
 (23) 

Some important considerations must be made in relation to 

(18) and (19): 

• It can be observed that these equations consist of a more 

general case of Bergeron Model. Calculating the limit 

when 𝑅𝑠(𝑣(𝑡)) → ∞, 𝑅𝑙 → 0, 𝑍𝑒𝑞(𝑣(𝑡)) → 𝑍0, 

𝜏(𝑣(𝑡)) → 𝜏0 we obtain (5) and (6), which represent the 

currents at the terminals of a lossless TL. Thus, this 

equations can be used in general, both when the corona 

effect occurs as when there is no occurrence of the 

phenomenon. 

• Variations on capacitance are represented in the 

equivalent impedance 𝑍𝑒𝑞(𝑣(𝑡)) and in the travel time 

𝜏(𝑣(𝑡)). The value of these parameters can be updated 

every time step, however, the variation must be smooth, 

otherwise numerical oscillations may occur. 

• As the travel time 𝜏(𝑣(𝑡)) varies with the voltage, in 

general it will not be an integer of the time step used in 

the simulation. This will imply in applying linear 

interpolation to the variables 𝐼𝑘(𝑒𝑞) and 𝐼𝑚(𝑒𝑞), as done in 

EMT-type programs to represent frequency-dependent 

transmission lines [4]. 

C.  Corona model 

To calculate the voltage-dependent capacitance and shunt 

conductance the empirical equations proposed by Skilling [17] 

and Umoto [18] were adopted. This model is adequate since 

the capacitance variation proposed is smooth and without 

discontinuity points. Moreover, it has already been adopted in 

previous works of lightning overvoltages calculation ([19] -  

[20]) with satisfactory results, although it does not consider 

the frequency-dependence of corona phenomenon. 

According to the Skilling-Umoto model, the capacitance 

per unit of length and total shunt resistance of a section with 

length 𝑑 can be obtained, respectively, by (24) and (26). 

𝐶(𝑣(𝑡)) = {

𝐶0,                                           𝑣(𝑡) < 𝑉𝑐𝑟𝑖𝑡

𝐶0 +  2𝐾𝐶 (1 −
𝑉𝑐𝑟𝑖𝑡

𝑣(𝑡)
) , 𝑣(𝑡) ≥ 𝑉𝑐𝑟𝑖𝑡

 
(24) 

𝐺(𝑣(𝑡)) = {

0,                                    𝑣(𝑡) < 𝑉𝑐𝑟𝑖𝑡

𝐾𝐺 (1 −
𝑉𝑐𝑟𝑖𝑡

𝑣(𝑡)
)

2

, 𝑣(𝑡) ≥ 𝑉𝑐𝑟𝑖𝑡

 (25) 

𝑅𝑠(𝑣(𝑡)) =
1

𝐺(𝑣(𝑡)) ∙ 𝑑
 (26) 

𝐾𝐶 = 𝜎𝐶√
𝑟

2ℎ
. 10−11 𝐹/𝑚 (27) 

𝐾𝐺 = 𝜎𝐺√
𝑟

2ℎ
. 10−11 𝑆/𝑚 (28) 

Where: 

𝑣(𝑡): Line voltage [V] 

𝑉𝑐𝑟𝑖𝑡: Corona onset voltage (or critical voltage) [V] 

𝑟; ℎ: Radius and height above ground of conductor [m], 

respectively 

𝜎𝐶; 𝜎𝐺: Corona loss constants in [F/m] and [S/m], respectively. 

D.  Computational procedure 

As can be seen in (18) and (19), it is necessary to know the 

voltages at the line terminals to calculate the currents 𝑖𝑖𝑛(𝑡) 

and 𝑖𝑜𝑢𝑡(𝑡). As shown in section II, nodal equations were used 

to calculate these voltages. However, it can be observed in 

Fig. 6(b) that the equivalent conductances and the historical 

currents in equivalent impedance network are voltage 

functions, which makes the nodal conductance matrix and the 

historical currents vector also functions of the voltage, as 

shown in (29): 
[𝒀([𝒗(𝑡)])] ∙ [𝒗(𝑡)] = [𝒊(𝑡)] − [𝑰([𝒗(𝑡)])] (29) 

To solve (29) it is necessary to use iterative methods [1]. 

However, considering that the line must be discretized into a 

very large number of sections, the solution of all these 

equations has a high computational burden. To avoid this an 

approximation is adopted, where the nodal voltages [𝒗(𝑡)] are 

obtained using the nodal conductance matrix and the historical 

current vector calculated based on previous time step, as 

shown in (30).  

[𝒀([𝒗(𝑡 − ∆𝑡)])] ∙ [𝒗(𝑡)] = [𝒊(𝑡)] − [𝑰(𝒗(𝑡 − ∆𝑡))] (30) 

As [𝒀([𝒗(𝑡 − ∆𝑡)])], [𝒊(𝑡)] and [𝑰([𝒗(𝑡 − ∆𝑡)])] are 

known, the nodal voltages calculation consists in the 

resolution of a linear system. This procedure avoids the need 

of iterative methods, increasing the efficiency of the proposed 

algorithm. It should be noted that this approximation is valid 

because a very short time step is used for the lightning 

overvoltages simulation, actually of the order of ns. As a result 

the nodal voltages and the voltage-dependent conductances 

within the nodal conductance matrix vary smoothly from one 

time step to the next.  

This solution technique is shown in the flow chart of Fig. 7, 

where the process of the line spatial discretization was 

automated. Some important algorithm properties are 

highlighted below: 

• As shown in Fig. 8, the line is discretized into 𝑛 sections of 

𝑑 length, and each line section is represented by the 

equivalent impedance network of Fig. 6(b). The travel time 

and the equivalent impedance are calculated based on the 

receiving end voltage of section (𝑣𝑜𝑢𝑡
𝑠 ), where 𝑠 =

1,2,3, … , 𝑛. 
• The automatic line discretization can be easily performed 

because the equivalent impedance network is composed 

only by one resistor connected to each terminal. Thus, the 
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transmission line can be represented by diagonal elements 

in the nodal conductance matrix [1]. 

 

 
Fig. 7.  Flow chart of the transient computation program. 

 

Fig. 8.  Spatial line discretization. 

• In the first time step no section of the line is considered 

under corona effect. Thus, 𝑍𝑒𝑞
𝑠 = 𝑍0 and 𝜏𝑠 = 𝜏0. This 

means that the nodal conductance matrix 𝒀 and the vectors 

of historical current 𝑰 can be built as usual. For the next 

time steps these parameters are updated based on the 

voltage calculated in the previous time step. 

• In the absence of the corona effect, the nodal conductance 

matrix is not modified. When the voltage across any line 

section becomes greater than the critical voltage (𝑉𝑐𝑟𝑖𝑡), the 

equivalent impedance and travel time of the section are 

recalculated, and the corresponding terms are updated in 

the matrix 𝒀, as well as the historical current vectors 𝑰. 

IV.  VALIDATION TESTS 

The proposed algorithm was implemented in Matlab 

software, and to evaluate its performance simulations were 

carried out and compared with two different field tests 

available in the literature.  

In addition, the results obtained with the VDLM were also 

compared with the traditional linear component method 

(TLCM), normally used in simulations in EMT-type 

programs. As previously commented, this method consists in 

discretizing the transmission line into linear sections, and in 

each junction node is disposed a shunt bus that represents the 

corona effect according the corona model adopted (Fig. 9). In 

this paper, comparisons were made with the linear corona 

model proposed by Motoyama and Ametani [21]. This model 

is also based on the Skilling-Umoto equations, where the 

authors carry out an adaptation that allows it to be easily 

implemented in EMT-type programs. Simulations with this 

model were performed in PSCAD/EMTDC software, which 

has in its library all the necessary components for the model 

implementation. A more detailed description about the linear 

corona model can be found in Appendix A. 

As the VDLM is not able to represent the frequency 

dependence of the line parameters, to make a fair comparison 

at this stage no frequency dependence was adopted. To 

circumvent this problem constant parameter model was 

adopted, and line series impedance was calculated for 

100 kHz. 

Finally, it should be noted that although these 

measurements were performed on three-phase transmission 

lines, they can be represented in the simulations as single-

phase lines, because only one phase was energized. Adjacent 

phases did not interfere in the results. This procedure has 

already been adopted in previous studies [8], [10], [22], [23]. 

 
Fig. 9.  Spatial discretization of the line applied in the TLCM. 
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A.  Simulations for Tidd line experiments 

In the early 50's, Wagner et al. carried out a series of 

experiments in the Tidd line to investigate the influence of the 

corona effect on lightning overvoltages propagation [24].  

The scheme used to represent this line is presented in Fig. 

10. The sending end is connected to a lumped voltage source, 

where a positive pulse voltage similar to double exponential of 

1.55 MV peak (positive), 1 s rise time and 6.3 s time-to-

half value is applied. The transmission line is composed by a 

2.3-km-long overhead horizontal ACSR wire (25.40 mm 

radius), which is at an average height (H) of 18.89 m. The soil 

resistivity is 20 Ω∙m [23]. The receiving end is connected to a 

matching resistor, whose resistance is equal to the 

characteristic impedance of the line in the absence of corona 

(Z0). 

 
Fig. 10.  Configuration used to represent the Tidd and Shiobara lines in the 

simulations. 

In the Table I is shown the line parameters calculated for 

frequency 𝑓 = 100 𝑘𝐻𝑧, and in the Table II is shown the 

corona model parameters. It should be noted that the corona 

loss constants (𝜎𝐺 and 𝜎𝐶) were adjusted by a trial-and-error 

process in which simulations were carried out varying their 

values and the computed waveforms were compared with 

measurements.  

An important observation must be made regarding the ideal 

values for the 𝜎𝐺 and 𝜎𝐶 constants, which are different for the 

TLCM and the VDLM. It occurs because these constants 

determine the value of the corona capacitance and shunt 

conductance. However, the circuit structure in each model is 

different, and therefore the values of the circuit components 

are also different. The adoption of different values for the 𝜎𝐺 

and 𝜎𝐶 parameters does not affect the physical coherence of 

the models, since these parameters are only numeric values, 

which has no direct physical meaning. 

To the simulations, for both TLCM and VDLM the line was 

discretized into 115 sections of 20 meters, and a time-step 

∆𝑡 = 1 𝑛𝑠 was adopted. In Fig. 11(a) is shown the computed 

waveforms with the Bergeron model without representation of 

the corona effect, and in Fig. 11(b) is shown the results 

obtained with the TLCM and the VDLM. Simulations results 

are plotted with field measurements at approximately 660 m, 

1300 m and 2180 m from sending end. 
TABLE I 

Tidd Line Parameters – 100 kHz 

R0 

[Ω/m] 

L0 

[H/m] 

C0 

[pF/m] 

Z0 

[Ω] 

0.02 1.49 7.61 443.65 

TABLE II 

Corona Model Parameters for Tidd Line 

 h 

[m] 

r 

[mm] 

σG 

[S/m] 

σC 

[F/m] 

Vcrit 

[kV] 

TLCM 18.89 25.40 4.5∙106 15 470 

VDLM 18.89 25.40 33∙109 24 470 

 

 
(a) 

 
(b) 

Fig. 11.  Surge propagation on Tidd line. Comparison between measured and 

computed waveforms. (a) Bergeron without corona. (b) TLCM and VDLM. 

B.  Simulations for Shiobara line experiments 

In this section it is introduced the configuration used in the 

simulations to reproduce the experiments on the Shiobara line, 

which were carried out by Inoue [25]. Similarly to the Tidd 

line experiments, the system can be represented by a lumped 

voltage source, a horizontal overhead wire and a matching 

resistor. The difference is that, in this case, it is applied a non-

standard waveform of 1.58 MV peak (positive) with 1.2 s of 

rise time, and the line is composed by a 1.4-km-long overhead 

horizontal ACSR wire (12.65 mm radius), arranged 22.2 m 

above ground. The soil resistivity was taken as 100 Ω∙m, since 

it was not measured for the site where the experiments where 

performed. Tables III and IV show, respectively, the line 

parameters calculated for frequency 𝑓 = 100 𝑘𝐻𝑧 and the 

corona model parameters. 

Ground

 

Voltage 

source
Matching 

resistor
H

l

Overhead wire
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TABLE III 

Shiobara Line Parameters – 100 kHz 

R0 

[Ω/m] 

L0 

[H/m] 

C0 

[pF/m] 

Z0 

[Ω] 

0.04 1.66 7.05 499 

TABLE IV 

Corona Model Parameters for Shiobara Line 

 h 

[m] 

r 

[mm] 

σG 

[s/m] 

σC 

[F/m] 

Vcrit 

[kV] 

TLCM 22.2 12.65 13∙106 12 303 

VDLM 22.2 12.65 15∙109 27 303 

For both TLCM and VDLM the line was discretized into 70 

sections of 20 meters, and a time-step ∆𝑡 = 1 ns was adopted. 

In Fig. 12(a) is shown the computed waveforms with the 

Bergeron model without representation of the corona effect, 

and in Fig. 12(b) is shown the results obtained with the TLCM 

and the VDLM. In both cases, the simulations results are 

plotted with field measurements at approximately 360 m, 700 

m and 1060 m from sending end. 

 
(a) 

 
(b) 

Fig. 12.  Surge propagation on Shiobara line. Comparison between measured 

and computed waveforms. (a) Bergeron without corona. (b) TLCM and 

VDLM. 

The Figs. 11(a) and 12(a) only confirm the well-known fact 

that disregarding corona effect in the simulations leads to very 

conservative results, and the attenuation and distortion 

increase as the signal propagates along the line. In this case, 

the maximum difference between measured and calculated 

voltage peak is around 33% for the Tidd line and 30% for the 

Shiobara line. 

 On the other hand, Figs. 11(b) and 12(b) present 

comparisons between the results obtained with the TLCM, 

VDLM and field measurements. As can be seen, the 

waveforms produced by the VDLM have a good agreement 

with the measurements, being able to reproduce with a better 

precision level than the TLCM the attenuations and distortions 

caused by the corona effect. This occurs due to the fact that, as 

previously mentioned, in the VDLM the capacitance and shunt 

conductance of the line are represented as non-linear 

parameters, and for this reason the model is capable to 

accurately represent the real nature of the corona effect. 

 Regarding the computation time, it is worth noting that 

VDLM has a slightly longer calculation time than the TLCM. 

More specifically, in the case of simulations for Tidd line, 

where the line was discretized into 115 sections and a time-

step ∆𝑡 = 1 ns was adopted, the total simulation time to the 

VDLM was approximately 30 s, whereas the TLCM 

(performed in the PSCAD software) was approximately 20 s. 

It should be noted that all simulations were performed on a 

Dell XPS 8930 Desktop Computer, which was an Intel Core i7 

processor and 16 GB RAM memory. 

V.  CONCLUSIONS  

In the present document a voltage-dependent line model 

(VDLM) was introduced. It is a generalization of Bergeron 

line model and can represent the corona effect produced by 

lightning overvoltages simulations. Since the VDLM can be 

represented by an equivalent impedance network, it is possible 

to implement it in EMT-type programs. The main advantage 

of this model is that the corona effect can be directly 

incorporated in transmission line equations, and not as an 

external parameter. 

The proposed model was tested with Matlab software along 

with an efficient algorithm that allows the automatic line 

discretization and solves the system through nodal equations 

without the use of iterative methods. To calculate the voltage-

dependent shunt capacitance and shunt conductance, the 

Skilling-Umoto equations were adopted. 

Validations tests were implemented considering surge 

propagation in two different transmission lines and compared 

with field measurements and the traditional linear component 

method. The simulations results validate the robustness of the 

VDLM, showing that it is capable of representing the corona 

effect with good accuracy and low computational cost. 

In forthcoming material VDLM will be extended to 

incorporate the frequency-dependence of line parameters and 

to represent multiphase transmission lines. 

 

VI.  APPENDIX 

A.  Linear Corona Model 

This section presents a brief review of the linear corona 

model adopted in this work, which was proposed by 

Motoyama and Ametani in 1987 [21]. In fact, this model 

consists of a piecewise linearization of the non-linear corona 

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on August 12,2020 at 16:29:38 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.2990968, IEEE
Transactions on Power Delivery

 8 

model presented by K. Lee [19], which is in turn based on the 

Skilling-Umoto equations. 

In this model, corona is represented by three parallel linear 

R-C branches, which are combined with diodes and DC volt-

age sources, as shown in Fig. 13. As commented in section IV, 

to represent the corona effect in EMT-type programs this 

circuit is arranged at each junction node of the line (Fig. 9). 

The parameters of the model can be calculated through equa-

tions (30) – (34).  

𝑉1 = 𝑉𝑐𝑟𝑖𝑡  𝑉2 = 2𝑉𝑐𝑟𝑖𝑡  𝑉3 = 3𝑉𝑐𝑟𝑖𝑡  (30) 

𝑅𝑘 =
1

𝐾𝐺 ∙ [1 − 
𝑉𝑐𝑟𝑖𝑡

𝑉𝑐𝑟𝑖𝑡 +  𝑉𝑘
]

2

∙ 𝑑

 
(31) 

𝐶𝑘 = 2𝐾𝐶 ∙ [1 − 
𝑉𝑐𝑟𝑖𝑡

𝑉𝑐𝑟𝑖𝑡 + 𝑉𝑘

] ∙ 𝑑 
(32) 

𝐾𝐺 = 𝜎𝐺√
𝑟

2ℎ
. 10−11  

(33) 

𝐾𝐶 = 𝜎𝐶√
𝑟

2ℎ
. 10−11 

(34) 

 In the above equations, 𝐶𝑘 is the linear corona capacitance, 

in 𝐹; 𝑅𝑘 is the linear corona resistance, in Ω; 𝑉𝑐𝑟𝑖𝑡  is the 

corona onset voltage, in 𝑘𝑉; 𝑟 is the conductor radius, in m; ℎ 

is the conductor height above ground, in m; 𝑑 is the section 

length adopted in the line spatial discretization, in m; 𝜎𝐺 and 

𝜎𝐶 are corona loss constants, in 𝑆/𝑚 and 𝐹/𝑚, respectively; 

𝑘 = 1,2,3. 

 
Fig.  13 – Linear corona model proposed by Motoyama and Ametani.  
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