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Abstract
Nowadays, there is a huge and growing concern about security in information and communication technology among the
scientific community because any attack or anomaly in the network can greatly affect many domains such as national security,
private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research
area, and many different techniques and approaches for this purpose have emerged through the years. In this study, the main
objective is to review the most important aspects pertaining to anomaly detection, covering an overview of a background
analysis as well as a core study on the most relevant techniques, methods, and systems within the area. Therefore, in order
to ease the understanding of this survey’s structure, the anomaly detection domain was reviewed under five dimensions:
(1) network traffic anomalies, (2) network data types, (3) intrusion detection systems categories, (4) detection methods and
systems, and (5) open issues. The paper concludes with an open issues summary discussing presently unsolved problems,
and final remarks.

Keywords Anomaly detection · Network security · Network management · Intrusion detection · Anomaly detection methods

1 Introduction

Nowadays, the scientific community has a constant worry
about high-efficiency security and quality of service in
large-scale networks. The expansion of new communication
technologies and services, along with an increasing number
of interconnected network devices, web users, services, and
applications, contributes to making computer networks ever
larger andmore complex as systems.Moreover, there is the so
called boundless communication paradigm, for next genera-
tion networks, which envisages offering anytime, anywhere,
anyhow communications to its users and requires the full inte-
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gration and interoperability of emergent technologies [1–4].
These issues make it even more complex and challenging
to maintain precise network management and lead to seri-
ous network vulnerabilities, as security incidents may occur
more frequently [5,6].

Such security instances can be caused either by outsiders,
as malicious attacks aiming to shut down services or steal
private information, or by inside factors (operational prob-
lems), such as configuration errors, server crashes, power
outages, traffic congestion, or non-malicious large file trans-
fers [7]. Regardless of the source, such threats, which are
commonly called anomalies, can have a significant impact
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on the network service and end-users and harm computer
network operations and availability.

The term anomaly has several definitions. Barnett and
Lewis define a data set anomaly as “observation (or a sub-
set of observations) which appears to be inconsistent with the
remainder of that set of data” [8]. Chandola et al. express this
term as “patterns in data not conforming to a well-defined
notion of normal behavior” [9]. According to Lakhina et
al., “anomalies are unusual and significant changes in a
network’s traffic levels, which can often span multiple
links” [10]. Hoque et al. define it as “non-conforming inter-
esting patterns compared to thewell-definednotion of normal
behavior” [11]. By these definitions, it is clear that the con-
cept of normality is one of the main steps toward developing
a solution to detect network anomalies.

Although apparently unpretentious, the problem of defin-
ing a region denoting normal behavior and marking as
an anomaly any occasion contrasting this normal pattern,
is defiant. Faster diagnosis, lower complexity and suit-
able corrections of the causes are the main objectives
of the field. Every factor is vital to developing a bet-
ter anomaly detection approach. The precision and speed
factors, alongside with the correct identification of such
abnormal events in a timely fashion are critical to reduc-
ing significant service degradation, malicious damage, and
cost. For this reason, the research community has been devel-
oping a lot of models, algorithms, and mechanisms, over
the years, to develop better solutions and approaches to
guaranteeing the health of ever larger and complex network
systems.

Researchers have been studying the anomaly detec-
tion subject since the early 19th century, and so far, they
have produced a multitude of papers, each using a vari-
ety of techniques, from statistical models, up to evolu-
tionary computation approaches. Nevertheless, it is not a
straightforward task to identify and categorize all exist-
ing anomaly detection techniques. Plenty of topics must
be considered, such as anomaly types, system types, tech-
niques and algorithms used, as well as technical dilemmas
such as processing costs and network complexity. There-
fore, this leads to the fragmented literature available today,
in which many works try to summarize everything but are
unable to show the bigger picture of the anomaly detection
spectrum.

As in [12,13], the focus is just on the most popular tech-
niques and methods, such as machine learning, clustering
and statistical approaches. Still, surveys such as [14,15]
briefly discuss the whole problem statement, setting aside
relevant topics such as data set, challenges, and recommen-
dations. Marnerides et al. [16] have a reviewed anomaly
detection over backbone networks. Although each of those
inspected surveys summarizes many important topics per-
taining to anomaly detection, they are not entirely complete.

For instance, some of them emphasize anomaly types but do
not cover all kinds ofmethodswhile others research uponvast
approaches but forget about the basis of intrusion detection
systems and data input, and so on. For this reason, in this sur-
vey, we present a systematic overview of the whole anomaly
detection domain under five dimensions: (i) network anoma-
lies, (ii) network data types, (iii) intrusion detection systems
overview, (iv) detection methods and systems, and (v) open
issues. Table 1provides a comparisonbetween someanomaly
detection surveyswith regard to the variety of techniques they
address.

At last, this survey aims to bring a complete and straight-
forward review of state-of-the-art anomaly detection topic.
Then, the main contributions of the paper are the following:

• Review the anomaly detection subject under five research
directions;

• A detailed study of the most relevant techniques, meth-
ods, and systems within the area;

• Address the main drawbacks found in the analyzed sur-
veys extracted from the literature;

• Analysis of the four traffic anomaly types categorized by
the causal aspect;

• Forward-looking discussion and comparative analysis of
other surveys regarding open issues and future trends.

This paper is organized as follows. The introduction presents
the overall motivation for developing this survey and a com-
parison with other surveys in the literature. Section 2 defines,
categorizes, explains, and provides examples of most com-
mon types of network anomalies. Section 3 gives a brief
explanation of network data types used as input in anomaly
detection systems. Section 4 gives a complete overview of
intrusion detection systems and the differences between each
approach. Section 5 is the core section, which lists many
anomaly detection methods and systems using a variety of
techniques and algorithms of different nature and purpose.
Section 6 summarizes everything discussed in previous sec-
tions into some topics considered as open challenges in the
anomaly detection domain. Finally, Sect. 7 concludes the
survey. Figure 1 shows all contents presented and discussed
within the paper.

2 Network traffic anomalies

One of the first tasks envisioned by researchers in creating
an anomaly detection model is the correct identification and
definition of the problem statement. It means that there must
be prior knowledge about what type of anomaly researchers
would deal with. There are several types of network traffic
anomalies, and each author surveying this topic addresses
them differently. For the sake of simplicity, and after analyz-
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Fig. 1 Paper summary

ing and studying the anomaly context and its categorization,
network anomalies can be categorized giving two relevant
properties: according to their nature (grouped by how they
are characterized, regardless of whether they are malicious
or not); and according to their causal aspect (distinguished
depending on their cause, regarding either their malicious or
non-malicious aspect). Figures 2 and 3 illustrates this cate-
gorization and all points that are covered in this section.

2.1 Anomaly categorization based on its nature

The nature of an anomaly is an important aspect of an
anomaly detection technique. Depending on the context
within which an abnormality is found, or on how it occurred,
it can be or not be an abnormality. This aspect can direct how
the system will handle and understand mined and detected
anomalies. Based on their nature, there are three categories of
anomalies: point anomalies, collective anomalies, and con-
textual anomalies [9,17,18].

A point anomaly is the deviation of an individual data
instance from the usual pattern/behavior. These anomalies
are the simplest ones, and because of that, they are the focus
of most researchers. For better understanding, suppose that
the daily spending of a person is one hundred dollars; then, on
a specificday, they spend three hundreddollars. This situation
characterizes a point anomaly [9,18].

A collective anomaly occurs when only a collection of
similar data instances behaves anomalously with reference
to the whole dataset. In a collective anomaly, individual
anomalous behaviors themselves are not considered anoma-
lies; however, their collective occurrence is considered an
anomaly. A point anomaly occurring continuously for an
extended period or in a cluster amid background data is a
collective anomaly. Consider this example: in a sequence of
actions in a computer like “…HTTP-web, buffer-overflow,
HTTP-web, HTTP-web, FTP, HTTP-web, SSH, HTTP-web,
SSH, buffer-overflow…”, the underlined sequence is a col-
lective anomaly. The individual events occurring in other
positions in the sequence are not anomalies; however, the
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Fig. 2 Traffic anomalies
categorization

Fig. 3 Network data types categorization

underlined sequencematches aweb-based attack by a remote
machine followed by the copying of data from the host
computer to a remote destination via FTP. Another com-
mon example is the ECG exam output, in which low values
observed over a long period indicate an anomaly, while one
unique low value is not considered abnormal [17,18].

Contextual Anomalies, also called conditional anomalies,
are events considered as anomalous depending on the context
in which they are found. Two sets of attributes define a con-
text (or the condition) for being an anomaly, both of which
must be specified during problem formulation. Contextual
attributes define the context (or environment); for instance,
geographic coordinates in spatial data or time in time-series
data specifies the location or position of an instance, respec-
tively. On the other hand, behavioral attributes denote the
non-contextual features of an instance, i.e., indicators deter-
mining whether or not an instance is anomalous in the
context [9,18,19]. Consider a time-series data set describing
the average bits/s of network traffic in a set of days (contex-
tual attribute), in which every day, at 0 h, the server does a
regular backup (behavioral attribute). Although the backup
generates an outlier in the traffic series, it may not be anoma-
lous since it is normal behavior due to a regular backup.
However, a similar traffic outlier at 12 h could be considered
a contextual anomaly.

2.2 Anomaly categorization based on its causal
aspect

The causal aspect distinguishes anomalies depending on
their cause, regarding either their malicious or non-malicious

aspect. Anomalies are not always related to attacks intended
to harm computer systems or steal information. They can
be both events caused by human/hardware failure, bugs
or private users when demanding heavy traffic usage,
for instance. Thus, as found in Barford et al. [20] and
Marnerides et al. [16], anomalies are grouped into four
categories: operational/misconfiguration/failure events; flash
crowd/legitimate but abnormal use; measurement anomalies;
and network abuse anomalies/malicious attacks (or simply,
network attacks) [20,21].

Operational events (also called Misconfiguration events
or Failures) are non-malicious issues, which may occur in a
network system mostly by hardware failures, software bugs
or human mistakes. Server crashes, power outages, config-
urations errors, traffic congestion, non-malicious large file
transfers, inadequate resource configuration, or significant
changes in network behavior caused by imposing rate limits
or adding new equipment, are all examples of this category
of anomaly [7]. Such problems can be perceived visually by
nearly abrupt changes in bit rate, which appear steady but
occur at a different level over a time period [21].

Legitimate but not abnormal use is commonly referred to
as flash crowds. Flash crowds are large floods in traffic,which
occurwhen rapid growth of users attempts to access a specific
network resource, causing a dramatic surge in server load.
Anomalies in this category consist of legitimate requests,
which are usually an aftermath of mutual reaction to hot
events but far bigger than the load which the system can
handle. Flash crowdsmay occur when a contest result is pub-
lished on a URL, or when an e-commerce website announces
a big sale, or even due to software release. Although it is not
malicious, if there is not enough time to react and provide the
necessary resources to handle overload demand, these flash
events can seriously flood or lead to complete web service
failure [22,23]. Flash crowd behavior is related to the rapid
growth of particular traffic flow types, such as FTP flows, or
the gradual fall of a well-known destination over time.

Measurement anomalies are other issues, which are not
network infrastructure problems, abnormal usage, or mali-
cious attacks. These anomalies are related to collection
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452 G. Fernandes Jr. et al.

infrastructure problems and problems during data collection.
Examples are the loss of flow data caused by router overload,
or when there is a collection of infrastructure problems and
the UDP NetFlow transport to the collector becomes unread-
able.

Network abuse anomalies (or network attacks) are a set of
malicious actions aiming to disrupt, deny, degrade or destroy
information and services from computer network systems,
compromising their integrity, confidentiality or availability.
Numerous types and classes of attacks currently existingmay
vary from simple email spam to intrusion attacks on critical
network infrastructures. Worms, malicious resource abuse,
bug exploits and unauthorized access are some examples of
common computer attacks.According toGhorbani et al. [24],
attackers gain access to a system, or limit the availability of
that system through some general approaches. These are:

• Social Engineeringwhen an attacker manipulates people
to obtain confidential information, making use of hostile
persuasion or other interpersonal tactics [25]. Examples
are email phishing and email Trojan horses;

• Masquerading this is a type of attack inwhich the attacker
uses a fake identity to gain unauthorized access or greater
privileges in a system through official access identifica-
tion. The attacker illegitimately poses or
assumes the identity of another legitimate user, gener-
ally by using stolen IDs and passwords [26].

• Implementation Vulnerabilities these are cases in which
the attacker exploits software bugs in their targets, such
as software, services or applications, in order to gain
unauthorized access. Examples are the buffer overflow
vulnerability or the mishandling of temporary files.

• Abuse of Functionalitymalicious activities performed by
attackers excessively performing a legal action in order
to congest a link or cause a system to fail. A denial-of-
service performed on a web-login system by flooding it
with valid usernames and arbitrary passwords in order
to lock out authentic users, when the allowed login retry
limit is exceeded, constitutes an abuse of functionality.

Based on those general approaches of network abuse anoma-
lies (network attacks), there are various classes of attacks.
Table 2 shows the main attack, which commonly harms com-
puter networks and is the major target of anomaly detection
mechanisms.

3 Network data types

Another essential step required for building an anomaly
detection system is choosing the network data source. The
nature of the selected data set may dictate which types of
anomalies the system can detect. One needs to choose a data

source correctly depending on what kind of anomalies and
IDS approaches are intended as the focus of the research.
Because of that, accurate data characterization results in the
better performance of the anomaly detection system. This
section presents some of the most popular sources used in
the anomaly detection subject.

3.1 TCP dump

Tcpdump is a packet analyzer tool used tomonitor packets on
a computer network. It shows the headers of TCP/IP packets
passing through the network interface. It is a tool for network
packet capturing and analysis and is recommended to pro-
fessionals who need to performmonitoring and maintenance
on computer networks, as well as to students who want to
understand the operation of the TCP/IP protocol stack. Nev-
ertheless, this type of data is not used as much nowadays due
to its limited information.

3.2 SNMP

The Simple Network Management Protocol (SNMP) [34]
is one of the widely used standards for managing IP net-
work components. This protocol has a client-server structure
(SNMP managers and SNMP agents) which runs through-
out the UDP protocol [35]. SNMP data has been used on
intrusion detection systems, since it is useful when it comes
to collecting accurate network activity data at a single host
level. All collected data are stored, as SNMP objects, in a
hierarchical database called MIB (Management Information
Base). SNMPobjects are summary traffic data constructed by
the aggregation of raw data (pcap records) collected mostly
by TCP dump tools [16].

Although efficient in their proposals, the works by Cabr-
era et al. [36] and Yu et al. [37] are limited to detecting
only DoS/DDoS attacks, since these are volume anomalies
and SNMP objects rely on volume attributes (bits and packet
counts). As presented in Moises et al. [38] and Zarpelao et
al. [39], the proposed alarm systems developed over SNMP
data have shown high anomaly detection rates by combining
clustering and parameterizing techniques. However, none of
them had any other information about unknown anomalies,
despite the alarms being triggered.

A significant advantage is that SNMP is still a widely
deployed protocol with available fine-grained data. It is used
in traditional network management tools for measuring per-
formance parameters such as error counter interfaces and
traffic volume. Packet and bit interface counters are useful;
however, nowadays, understanding which IP addresses are
the source and destination of traffic and which TCP/UDP
ports are generating traffic is vital.
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3.3 IP flow

IP flow analysis is a complete management technology that
has been used as an alternative to the SNMP protocol. The
development of new services and the increasing complex-
ity of networks led to a need for more detailed information
on transmitted data, which is essential in understanding
application behavior, users, business departments and other
structures relying on the network for their operation.

Accordingly, using flow management tools and protocols
allows the construction of a detailed database composed of
essential traffic information, enabling the better understand-
ing of more subjective aspects of network operation [40,41].
Thus, it was necessary to go beyond the limited bit and
packet counters provided by SNMP in order to character-
ize more specific traits in the traffic, showing network trends
and behavior. Moreover, although packet and byte interface
counters are useful, knowing the source and destination IP
addresses of the traffic, andwhich applications are producing
it, is invaluable [42].

As a result of these constraints, Cisco Systems presented
theNetFlowprotocol in 1996 [41,43] and pioneered the intro-
duction of flow structure. A flow [44] is defined as a set of
IP packets passing through an observation point over a pre-
defined time interval. All packets constituting a flow have
a set of common properties including source/destination IP
addresses and TCP/UDP ports, VLAN, application proto-
col type (layer 3 from the OSI model) and TOS (Type of
Service). Moreover, a flow also has some other important
attributes, such as byte and packet counts, timestamps, class
of service (CoS) and router/switch interface. NetFlow intro-
duced a new practice to assist network management. This
was the NetFlow probe, embedded into the network devices
(switches), which captures all packets coming through the
switch and aggregates them into IP flows according to their
common properties. Then, after the timeout of the previously
establishedmaximumflow duration, flowswere exported out
to a collector responsible for analyzing the flow data [45].
NfSen [46] and nTop [47] are the most common graphical
applications enabling the analysis of exported flow data.

Besides NetFlow, there are other protocols that have
emerged for the same purpose. sFlow was introduced by the
InMon Corp. in 2001 [48,49]. Its major difference to other
protocols is the usage of random sampling mechanisms dur-
ing traffic flow aggregation. This feature is appropriate for
high-speed networks (gigabit or more). By the year 2008,
the Internet Engineering Task Force (IETF) standardized
the export of IP flow information from routers, probes, and
switches by introducing the IPFIX (IP Flow Information
Export) protocol [44]. IPFIX was based on NetFlow version
9; it was developed with more flexible data handling and is
able to operate regardless of which transport protocol ormes-
sage formats are used. Recently, two NetFlow enhancements

appeared. Flexible NetFlow uses an extensible format and
can export other features apart from the traditional ones. It
also has the immediate cache concept, which lets the direct
export of flow information without hosting a local cache.
NetFlow-lite [50,51] comes at a lower price tier, compared to
standardNetFlow, due to not using expensive customer appli-
cation specific integrated circuits (ASIC). It offers flexibility,
similar network visibility and maintains the same packet for-
warding performance.

There are several advantages of using flow traffic to detect
anomalies [52–54]:

• Lower processing cost. Since flow-based IDSs are based
only on packet headers, they only process a small number
of flows compared to the big amount of packets processed
in packet-based approaches

• Reduced privacy issues, such as the packet’s payload, are
not considered in the analysis

• Detailed traffic data, mainly regarding NetFlow v9 and
IPFIX

Regarding the disadvantages of developing anomaly detec-
tion methods under IP flow data, most of them rely on the
following:

• Untrustworthy state of UDP protocol and drawbacks of
SCTP in confronting scenarios, where multiple network
interfaces (routers and switches) need to interact with
multiple NetFlow data collectors.

• There is also difficulty in understanding end-to-end traf-
fic, since it may be passing through many hops and
routing paths and changing dynamically.

• Although sampling techniques for both flow and packets
are efficient in reducing the load of exported and aggre-
gated traffic, respectively, they offer a non-reliable view
of the entire network operation. Many researchers have
discussed the problems and proposed solutions to opti-
mizing sampling mechanisms; namely, Bartos et al. [55],
Zhang et al. [56] and Silva et al. [57].

Table 3 compares the two data sources discussed in this sec-
tion.

4 Intrusion detection systems

Intrusion Detection Systems (IDS) are automated defense
and security systems for monitoring, detecting and analyz-
ing hostile activities within a network or a host. Although the
name “Intrusion detection” suggests that these systems actu-
ally detect “intrusions”, it is not that simple. Kemmerer and
Vigna [58] say that, in fact, IDSs do not detect intrusions at
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Table 3 Comparison between
commonly used data sources for
network anomaly detection

Source Advantages Disadvantages

TCP dump Provides comprehensive
information about the
operation of the TCP/IP
protocol stack

Limited information

SNMP Widely deployed protocol Only packet and bit
interface counters

Available fine-grained data No IP nor TCP/UDP ports
information

IP Flow Lower processing cost Untrustworthy state of UDP
protocol

Based only on packet
headers

Drawbacks of SCTP in
confronting scenarios
where multiple network
interfaces need to interact
with multiple flow data
collectors

Reduced privacy issues Difficult to understand
end-to-end traffic

Detailed traffic data Sampling techniques offer a
non-reliable view of the
entire network

Fig. 4 Intrusion detection systems categorization

all, but they are only able to recognize evidence of intrusions,
either during or after the circumstance.

Additionally, Lee and Stolfo [59] state that there are
four essential elements to be considered when creating an
IDS: resources to protect (accounts or file systems, for
instance); models to identify the typical behavior of these
resources; techniques that compare the actual activities of
these resourceswith their normal behaviors; andfinally, iden-
tify what is considered abnormal or intrusive. Apart from
these basic IDS functions, they may also be able to provide
reports for network administrators and track user policy vio-
lations as well as to take self-measures to stop threats or
correct problems [13,17,60].

An IDS detects hostile activities by either monitoring net-
work traffic, gathering packets (mostly as a kind of sniffer)
to analyze possible incidents, or by analyzing computational

system events (such as log files, for instance), in search of
security policy violations, unusual use, etc. These incidents
may occur due to various reasons, from malware (worms,
spyware, etc.) to unauthorized access attacks. The goal of
any IDS is to guarantee the security of a network or com-
puter system with regard to confidentiality, integrity, and
availability. A firewall is commonly the first defensive line
in a network and an IDS is used when there is evidence of
an intrusion/attack, which the firewall was unable to stop or
mitigate. The IDS then works as the second line of defense.
Furthermore, the task is difficult, and in fact intrusion detec-
tion systems do not detect intrusions at all, they only identify
evidence of intrusions, either while they are in progress or
after the fact

IDSs can be categorized in many ways [61]. Depending
on the monitored platform (data source), IDSs are divided
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into three types: network-based IDS (NIDS), host-based
IDS (HIDS), and hybrid. Furthermore, regarding the tech-
nique of detecting unusual activity, IDSs can be categorized
into four types: anomaly-based IDS, signature-based IDS,
specification-based IDS, and hybrid. Figure 4 and Table 4
condense the seven aforementioned IDS types, which are
presented and discussed thoroughly in subsequent sections.

4.1 IDS types bymonitored platform (data source)

4.1.1 Network-based IDS (NIDS)

Anetwork-based IDS is deployed in order to detect intrusions
in network data over network connections and to protect all
network nodes. Since intrusions usually occur as irregular
patterns, this kind of IDS analyzes andmodels traffic to iden-
tify the occurrence of regular traffic and suspicious activities.
They are composed of a set of sensors placed at many net-
work points in order to monitor traffic. Each sensor performs
a local analysis and reports suspicious activity to a central
management console. A network-based IDS is capable of
gathering and analyzing entire transmitted packets as well as
their payloads, IP addresses, and ports.

NIDS are effective for monitoring both inbound and out-
bound network traffic. This type of IDS ensures that a large
network can be monitored with only a few installed IDSs, as
long as they are well positioned. It is usually simple to add
this type of IDS to a network and they are considered well
secured against attacks. However, they have some disadvan-
tages, such as the difficulty in processing all packages from
a large and overloaded network. Thus, they may fail to rec-
ognize an attack launched during periods of intense traffic.
Moreover, many of the advantages of network-based IDSs do
not apply to more modern networks based on switches since
they segment the network and require enabling monitoring
ports for the sensors to function properly. Port mirroring or
spanning is used to enable a complete view in a switched
network; however, this causes overhead.

Another disadvantage of network-based IDSs is that they
are unable to analyze encrypted network packets, since those
appear only on the target machine. Finally, since NIDSs
can detect the presence of suspicious activities, there is no
reassurance for their success or failure [17,60,62]. Figure 5
illustrates a conventional network-based IDS.

4.1.2 Host-based IDS (HIDS)

A Host-based IDS is set to operate on specific hosts (single
PCs). Its focus is to monitor events on the host and detect
local suspicious activities, i.e., attacks performed by users of
the monitored machine or attacks occurring against the host
where it operates.

Since this type of IDS is designed to operate with only a
host, it is capable of specific tasks,which are not possiblewith
an NIDS, such as integrating code analysis, detecting buffer
overflows, monitoring system calls, privilege misuse, privi-
lege abuse, system log analysis, and others. These systems
are classified as agent-based, since they require the installa-
tion of software on the host. This IDS evaluates the safety
of the host based on operating system log files, access log,
and application log, for instance. It is vital because it pro-
vides security against the types of attack that the firewall and
NIDS do not detect, such as those based on encrypted proto-
cols, since they are located at the destination. Another benefit
of HIDS over NIDS is that the success or failure of an attack
can be promptly determined [17,60,62]. Figure 6 illustrates
a general host-based IDS.

4.1.3 Hybrid IDS

Hybrid IDSs are developed considering data provided by the
host events and the network segments and by combining the
functionalities of both network and host-based IDSs [61].
These systems aggregate the benefits of both approaches
while overcoming many of the drawbacks. However, hybrid
systemsmay not always mean better systems. Since different
IDS technologies analyze traffic and look for intrusive activ-
ity in various ways, getting these different technologies to
interoperate and coexist in a single system successfully and
efficiently is a challenging task.

4.2 IDS types by detection technique

4.2.1 Signature-based (misuse detection)

Signature-based techniques, also known as knowledge-based
or misuse detection, evaluate network activities by using a
set of well-known signatures or patterns of attack stored in
the IDS database. Whenever an attempt matches a signature,
the IDS triggers an alarm. This operation ensures an effi-
cient detection with minimal false alarms, and a good level
of accuracywith regard to the identification and classification
of abnormalities, making it easier for network administrators
to take preventive or corrective measures.

However, as any other action not recognized by the IDS
knowledge database is considered normal, unknown anoma-
lies, or little variations in known attacks, cannot be detected.
For this reason, signature-based IDSs require constant updat-
ing of their knowledge database. Signatures must be defined
in order to ensure that all probable variations of an attack
are covered. Additionally, they do not match non-malicious
activities, which can be a hard task [16,24,63,64]. Generally,
misuse detection techniques work as shown in Fig. 7.
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Table 4 IDS type classification and organization summary

Classification IDS type/description Advantages Disadvantages

Data source/monitored platform Network-based (NIDS) Monitor both inbound and
outbound network traffic

Difficulty in processing all
packages from a large and
overloaded network

Detect network-specific
attacks, such as
denial-of-service

Failure to recognize attacks
launched during periods
of intense traffic

Detect known worms and
viruses, flash crowds, port
scan

Unable to analyze
encrypted packets

Demand for more sensors in
today’s large networks is
costly

Host-based (HIDS) Detect local suspicious
activities

Incomplete network picture

Detect attacks based on
encrypted data, since they
are located on the
destination

Since they are agent-based,
support for different
operating systems is
required

Privilege abuse, buffer
overflows

Hybrid Aggregate benefits of both
approaches

Get distinct approaches to
interoperate and coexist in
a single system

Overcome many drawbacks

Detection technique Misuse detection High detection accuracy Unable to detect unknown
anomalies

Use of prior-knowledge
attack database
(signatures)

Low false alarm rate Difficult and
time-consuming task to
build and update
signatures

Anomaly detection Detect both known and
unknown anomalies

High false positives and
false negatives

Profile representing normal
network behavior

Discover new attacks (and
use on signature-based
IDSs)

Less efficient in dynamic
network environments

No demand for prior
knowledge

Demand time and resources
to construct the profile

Specification-based Unknown attacks discovery Complexity

Set of constraints to
describe and monitor the
operation of a program or
protocol

Low false positive rates Elaboration of detailed
specifications and
constraints is costly and
time consuming

Resistant to subtle attack
changes

Restricted to the proper
operation of a program or
protocol

Hybrid Aggregate benefits of the
three approaches

Get distinct approaches to
interoperate and coexist in
a single system

Overcome many drawbacks
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Fig. 5 Network-based IDS example

Fig. 6 Host-based IDS example

Fig. 7 Misuse detection (signature-based) techniques general scheme
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4.2.2 Anomaly-based (anomaly detection)

Anomaly-based techniques, also known as profile-based or
anomaly detection, are founded on the creation of a baseline
profile representing normal/expected network behavior, and
on that anyobserved deviation of current activity compared to
this profile is considered anomalous. This profile is generated
mostly through statistical and historical network traffic data.

A classic example of this type of detection is when a spe-
cific user always uses the Internet for a certain period of the
day, during business hours. Imagine that this user is a man-
ager at a company being monitored by an anomaly-based
IDS. This IDS has spent a whole week creating this user’s
normal profile, and from the last dayof thatweek, it employed
this profile asmandatory for the time allowed to use the Inter-
net. While detection is active, the manager wants to use the
Internet during night-time in order to submit a last-minute
report, which is something unusual to regular usage. The
response of the anomaly-based IDS to this unusual behavior
is to restrict Internet access to that user, which would be valid
if this was not an exception; however, this would actually be
treated as a false positive.

Therefore, the main drawback of profile-based techniques
is the possibility of increased false alarm (false positive) rates,
because users and system behavior may widely vary. Addi-
tionally, attacks may be launched during the learning period
and result in a profile containing intrusion behavior, which
may not be able to detect some anomalous behaviors. These
are false negatives, which is evenmore serious than false pos-
itives. Therefore, constant retraining of the profile is required;
however, this may cause the unavailability of the detection
system or an increase of false alarms [65]. Finally, depending
on the approach, profile creation may demand an extended
monitoring period or high computational resource usage.

Anomaly detection techniques are the most commonly
used IDS detection type. This is due to their ability of detect-
ing both known and unknown attacks and anomalies, since
the detection is performed under the discovery of unusual
patterns, which makes this technique more dynamic than the
static signature-based technique. It is also helpful in discov-
ering new types of attack and behavior, and as a knowledge
builder for new signatures in misuse detection systems.

Anomaly-based detection is the most popular and well-
investigated topic among researchers. There are many dif-
ferent techniques and algorithms, described in the literature,
used to build this normal profile and find unusual patterns,
such as statistical procedures, machine learning, clustering,
fuzzy logic, and heuristics. This has been studied for over
20 years, and there is still a wide investigation panel to be
discovered, as well as critical challenges and open issues
to overcome, as will be presented later in this survey. Fig-
ure 8 shows the general structure of an anomaly detection
approach.

4.2.3 Specification-based

Asdescribed in [63,66], anomalydetection systemsdetect the
effect of abnormal behavior, while misuse detection systems
recognize already known abnormal behavior. Accordingly,
specification-based methodologies were created in order
to utilize the benefits of both techniques. Therefore, these
IDSs manually develop specifications and constraints to
characterize normal network behavior. This methodology is
accomplished byobtaining the correct operation of a program
or protocol and monitoring its execution through the defini-
tion of set constraints. Accordingly, this methodology can be
more resistant to suitable changes in attacks and allows the
discovery of previously unknown attacks while having a very
low false positive rate.

On the other hand, specification-based techniques are
much more complex since their analysis can be performed in
the layers existing below the application layer of the Internet
protocol stack, or at the operating system control level. These
techniques are restricted to the proper operation of a program,
or protocol, and can be excessively tedious and susceptible
to errors since they rely on user knowledge. Furthermore,
the elaboration of detailed specifications and constraints is
costly and time consuming.

This detection model is not as widely distributed as others
cited in this paper, especially because of its greater devel-
opment complexity and restricting the intended application,
since it is aimed, for example, to be a single application.

4.2.4 Hybrid techniques

Hybrid IDSs, or Compound detection, implement com-
binations of misuse, anomaly and specification detection
techniques. These systems can be based on the normal net-
work profile and also attack behavior, for instance.

An example of a hybrid IDS has been proposed by Assis
et al. [67], in which a network profile called digital signa-
ture of network segment using flow analysis (DSNSF) was
created to detect unknown anomalies within network traffic.
Then, pre-loaded signatures classified the discovered anoma-
lous behavior as a DoS, DDoS, flash crowd or port scan
attack.Another example has been presented byStakhanova et
al. [68], who combined specification-based techniques with
anomaly-based ones in an effort to mitigate the limitations
of the former. The need of user expertise is overcome by an
approach for the automatic generation of normal and abnor-
mal behavioral specifications as variable-length patterns,
which are classified via anomaly-based machine learning
techniques.
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Fig. 8 General scheme of anomaly detection (anomaly-based) techniques

5 Anomaly detection techniques, methods
and systems

In this survey, we focus on anomaly detection (anomaly-
based IDS); the following chapters contain a review of its
most current techniques, methods, and systems. However,
since there are many emerging types of research propos-
ing hybrid approaches, the combination of both misuse and
anomaly detections, for instance, may be addressed as well
(Fig. 9).

5.1 Statistical methods

Statistical methods for anomaly detection are widely used
and are commonly based on probabilistic models associated
with training data for the purpose of tracking network behav-
ior. Anomalies are related to sudden changes in network data.
Mostly, these abrupt changes are detected by modeling hard
thresholds. The primary challenge for statistical techniques
is to find methods reducing false alarm generation caused by
hard thresholds [12]. For instance, statistical signal process-
ing procedures may be used to increase the detection rate
while decreasing false alarms, as Lakhina et al. did in their
work with principal component analysis [10,69,70].

5.1.1 Wavelet analysis

Wavelet analysis focuses on modeling non-stationary data
series’. Such data series may contain signals that can vary
in both amplitude and frequency over extended periods of
time.UnlikeFourier analysis,which uses trigonometric poly-
nomials, data series are modeled using wavelets, which are
powerful basis functions localized in time and frequency,
allowing a close connection between the series being repre-
sented and their coefficients. In this manner, wavelet analysis
is fundamentally away to describe levels of detail with regard

to particular data, which can be images, curves, surfaces, and
so on.

Callegari et al. [71] propose a real-time anomaly detec-
tion method using wavelets combined with sketches. It is a
router level analysis performed by extracting NetFlow traces
and transforming them into ASCII data files. After format-
ting, sketches are used to aggregate different traffic flows in
sketch tables through hash functions. Next, the time series
are submitted to a wavelet transform for the purpose of dis-
covering discontinuities.

Another study using wavelets was produced by Hamdi
and Boudriga [72]. It relied on identifying attack-related
anomalies by differentiating between dangerous and non-
threatening anomalies. This task was achieved based on the
concept of period observation, where wavelet theory was
used to decompose one-dimensional signals in order to ana-
lyze both their special frequencies and time localization.

5.1.2 Principal component analysis

Principal component analysis (PCA) is a widely used statis-
tical technique for anomaly detection in computer networks.
It is defined as a dimensionality reduction approach, in which
a data set consisting of n correlated variables can be mapped
onto a new and reduced set of k variables, the principal
components (PCs), where k � n. These PCs are a set of
orthonormal vectors, which define a k-subspace, and are
uncorrelated and arranged so that the first components retain
most of the variation present in all original variables [73,74].

Lakhina et al. [10], who pioneered this field, addressed the
anomaly diagnosis problem in network wide-traffic by using
PCA to efficiently separate traffic measurements into nor-
mal and anomalous subspaces. The main idea was that PCA
results in a reduced set of k variables (principal components
or k-subspace) which corresponds to normal network traf-
fic behavior, while the remaining subspace of m components
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Fig. 9 Anomaly detection methods, techniques and systems analyzed in this research

(m = n− k) consist of anomalies or noise. Then, every new
traffic measurement is projected onto both subspaces so that
different thresholds can be set to classify thesemeasurements
as normal or anomalous. Their work was responsible for
the massive attention on PCA-based approaches for anomaly
detection received in the last decade. However, although it
was a notorious work with good results and advances in the
area, it received some criticism from various authors, mainly
related to the calibration sensitivity of PCA, as reported in
Ringberg et al. [75].

Ringberg et al. [75] and others [76,77] have criticized the
studies of Lakhina et al. [10,70] on PCA by outlining four
main challenges regarding its sensitivity: (i) false positive
rates are affected by small noises in the normal subspace; (ii)
the level of traffic aggregation canmitigate the value of PCA;
(iii) large anomalies can infect the normal subspace; (iv) no
mapping amongst the reduced subspace PCA produced and
the original spatial source of the anomaly.

In this manner, the anomaly detection method proposed
by Pascoal et al. [78] used a robust PCA detector merged
with a robust feature selection algorithm in order to obtain
adaptability to distinct network contexts and circumstances.
Additionally, this robust PCA approach does not require per-
fect ground-truth for training, which is one of the limitations
of standard PCA discussed in [75]. In [79], the authors pro-
poseADMIRE,which is a combination of three-step sketches
and entropy-based PCA, and results in better true and false
positive rates while being capable of capturing distinct kinds
of anomalies due to the different entropy time series for PCA.
Furthermore, O’Reilly et al. [80] surpassed those limitations
in finding the PCs from a dataset with anomalies by propos-
ing aMinimumVolumeElliptical PCA (MVE-PCA)method,
consisting of the solution to a convex optimization problem
by creating a soft-margin minimum volume ellipse around
the training dataset, which decreases the effect of anomalies
existing in the data.

Nevertheless, Camacho et al. [81] actively maintain that
neither the original PCA proposal nor critical researchers
could effectively surpass the disadvantages of using PCA
for anomaly detection. To overcome these drawbacks, the
authors used a PCA-based multivariate statistical process
control (MSPC) approach, which monitors both the Q-

statistic and D-statistic. Thereby, it was possible to establish
control limits in order to detect anomalies, when they became
consistently exceeded. Additionally, the MSPC approach
has contribution plots used for finding the root cause of
the anomaly. Data pre-processing relies on the feature-as-
a-counter approach in which variables are counters for the
number of times someevent is logged throughout a given time
interval. This is in contrast to the idea of Lakhina et al. [10],
which considers counters as simple quantitative variables.

Fernandes et al. [82,83] proposed PCADS-AD, an auto-
nomous profile-based anomaly detection system based on
a dimensionality reduction procedure and principal compo-
nent analysis (PCA). It is an enhanced version of their initial
work presented in [84]. The system was divided into two
main stages. First, the authors used a different interpretation
of PCA to generate a network profile called Digital Signa-
ture of Network Segment using Flow analysis (DSNSF). The
system analyzed historical network traffic data over a period
of days, identifying among them the most significant traffic
time intervals while reducing the data set so that the new
reduced set could efficiently characterize normal network
behavior. Then, the DSNSF was used as a threshold to detect
volume anomalies by restricting an interval,where deviations
were considered normal, through some PCA parameters.
This system used three IP flow features (bits/s, packets/s
and flows/s) to predict network normal behavior and gen-
erate the DSNSF. Another four flow attributes (origin and
destination IP addresses and TCP/UDP Ports) were used to
produce a report containing useful information concerning
the abnormal traffic interval; thus, the network administrator
was assisted in taking fast measures to resolve the identified
problem. The drawback of this approach is the usage of only
volume attributes for anomaly detection, which only consid-
ers the detection of volume-based attacks. In this manner,
the system is unable to detect attacks which do not impact
on bits, packets, and flows.

5.1.3 Covariance matrix

Covariance matrices are second-order statistics and have
been proven to be a powerful anomaly detection method.
An interesting direction in this area is finding which vari-
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ables best label network anomalies and improve detection
performance.

The work presented in [85] employs covariance matrix
analysis to detect flooding attacks. This approachmodels net-
work traffic as covariance-matrix samples in order to make
use of statistical assets contained in the temporally sequen-
tial samples for the purpose of detecting flooding attacks.
Then, it directly uses changes of covariance matrices and
differences of correlation features to reveal the alterations
between normal traffic and various types of flooding attacks.

MiaoXie [86] performed anomaly detection in a segment-
based manner by handling a collection of neighboring data
segments, with the aid of random variables, and exploiting
their spatial predictabilities to determinewhich ones behaved
abnormally. This approach used a sample covariance matrix
approximated per the concepts of Spearman’s rank corre-
lation coefficient and differential compression in order to
substantially reduce the computational cost.

Huang et al. [87] supported the use of covariance matrix
for dimensionality reduction instead of traditional PCA dis-
cussed in the previous section. They pointed out that a
static choice of k principal components is poor at capturing
real-time changes, in addition to only allowing weak heuris-
tics due to sensitivity to small variations in the dimensions
representing the normal subspace. Therefore, to overcome
the limitations of variance-based approaches, the authors
came up with a distance-based dimensionality reduction
approach for anomaly detection. Depending on their types,
anomalies manage to cause distinct types of deviances in
the covariance matrix of observed traffic. These deviances
allow the categorization of detected anomalies and immedi-
ate decision-making with regard to mitigation actions. Their
proposal was also able to adapt to changing patterns in the
test data such that the model would only use a few important
dimensions at any time.

5.1.4 Others

This section presents other noteworthy statistical methods,
which do not fit into the previous ones since they combine
different statistical techniques.

The study by Kalkan and Alagöz [88] used traffic filtering
as a way to prevent network attacks and especially DDoS
attacks. ScoreForCore was classified as a statistical filter-
ing model based on reaction time and collaboration, which
selects the most suitable features from the attack related
traffic. The model calculates a score for each packet using
the nominal and current profile; then, it compares them in
order to find the two features deviating the most from the
nominal profile by using collaboration between routers and
thresholds. Ozkan et al. [89] studied the anomaly detection
problem for fast streaming temporal data, in an online set-
ting, and proposed an efficient statistical online algorithm

fusing Markov statistics with Neyman–Pearson (NP) char-
acterization. Their proposal successively learns the feasible
varying nominalMarkov statistics in a time series and detects
anomalous subsequences by first assigning scores to each
fixed length subsequence using pair-wise distances and then
considering the magnitude of the anomaly score and provid-
ing Neyman–Pearson characterization.

Network traffic is currently composed of cycles consist-
ing of bursts with specific characteristics directly affected by
working days and user access periods. Under this assump-
tion, Proença et al. [90] introduced the Digital Signature of
Network Segment (DSNS), which is a set of information
capable of defining the traffic profile. It automates the task of
monitoring network segments by statistically estimating the
traffic behavior based on historical traffic data. The algorithm
is called BLGBA and is based on a variation of the statistical
measure mode. After extracting SNMP traffic samples from
the MIB, the DSNS is built second by second through the
analysis of a prior period. The calculation distributes the ele-
ments in frequencies according to differences between the
size of each sample. Then, the authors validated the DSNS
through visual analysis, Bland–Altman plots, residual anal-
ysis, linear regression, and the Hurst parameter.

A correlational paraconsistent machine (CPM) has been
proposed by Pena et al. [91] and relies on two unsu-
pervised traffic characterization methods and non-classical
paraconsistent logic (PL). The authors used both ant colony
optimization for digital signature (ACODS) and auto regres-
sive integrated moving average (ARIMA) [92] methods in
order to analyze historical network traffic data and generate
two distinct network profiles able to describe normal traffic
behavior. These profiles are called digital signature of net-
work segment using flow analysis (DSNSF) and is derived
from the work proposed in [90]. The existence of anoma-
lies is related to degrees of certainties and contradictions
produced by paraconsistent logic over a correlation between
two prediction profiles and associated real traffic measure-
ments. From the Euclidian distance calculation between the
two DSNSFs and the evaluation of paraconsistent logic sig-
nals, the model obtains real evidence for the proposition P (P
-> “interval contains an anomaly”) to be true.

Another statistical traffic characterization approach for
anomaly detection by creating the DSNSF network profile
is proposed by Assis et al. [67]. It is a seven-dimensional
profile-based anomaly detection system based on the Holt–
Winters forecasting technique. The IP flow traces bits/s,
packets/s, flows/s, origin and destination IP addresses, and
Ports, are simultaneously analyzed in every one-minute time
window; therefore, the system can identify different anoma-
lies and generate alarms. The normal network profile of
how the network should behave in the next day is predicted
dynamically by using the current traffic of the day and the
previous day’s generated profile. Authors use thresholds to
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indicate the interval between real traffic and the profile con-
sidered as normal. These thresholds are calculated in an
asymmetric way, using the profile, a scaling factor for its
width, and a deviation measure. The intervals with mostly
greater errors are updated with the absolute deviation of the
interval while the opposite confidence band is updated with
the standard deviation of the profile. Finally, the alarm sys-
tem is capable of detecting anomalies in two ways: (i) by
alerts, which are related to anomalous behaviors not existing
in the system anomaly database; and (ii) by alarms, generated
when the system knows the anomalous behavior signature.

Bang et al. [93] propose an IDS using a hidden semi-
Markov model (HsMM) aimed specifically at the detection
of advanced LTE signaling attacks on WSNs. According
to the authors, traditional hidden Markov Models (HMM)
cannot represent many possible transition behaviors; there-
fore, HsMM overcomes this limitation since it has arbitral
state sojourn time and is more suitable to time-series behav-
ior analysis. They used the HsMM to effectively model the
spatial-temporal characteristic of the wake-up packet gener-
ation process, taking the process log-likelihood as the test
basis of normality. Then, their detector compared observed
spatiotemporal features of a server’s wake-up packet gen-
eration, with the normal criteria established by the HsMM.
Therefore, an alarm is set offwhenever significant divergence
occurs.

Although classical Markov chain techniques are widely
accepted in anomaly detection applications, their short mem-
ory property may ignore interactions among the data. On the
contrary, the longmemory property of a higher orderMarkov
model clouds the relationship between previous and current
test data and, thus, it reduces reliability. In light of this, Ren
et al. [94] defended that once Markov models are established
in the training phase, their order is fixed to detect anoma-
lies in the testing phase. However, the fixed Markov models
(n-order) force each state of a sequence to be conditioned
on previous n states and may not be enough to provide an
accurate estimate of the detecting state. Thus, the authors pro-
posed a dynamic Markov model to balance the length of the
memory property ofMarkovmodels and keep the strong cor-
relation between memory (or theMarkov model) and current
test data. To achieve this, the proposed approaches repeatedly
calculate the Pearson correlation in order to find the proper
order of the Markov model in a sliding window, where the
sequential data is segmented. To keep detection continuous, a
substitution strategy of anomalies was reported to protect the
building of models from the infection of detected anomalies.

Jazi et al. [95] explored several types of application-layer
DoS attacks and proposed a detection approach based on a
nonparametric CUSUM algorithm. The proposed approach
relies on a selected combination of application and network-
level attributes for anomaly detection. According to the
authors, the resulting method was evaluated on various types

of attacks on modern web servers since they represent the
most common target for DoS attacks. In addition, the study
investigated the performance fluctuation in the presence of
thirteen different sampling methods and explored the impact
of sampling on the detection of application level DoS attacks.
The results confirmed that even specialized sampling tech-
niques could introduce some distortion in detection quality.
In this manner, detection should be tied to the sampling tech-
nique in order to compensate for distortions provided by
sampling and to ensure the improved assessment of traffic
characteristics.

5.1.5 Summary

In summary, statistical approaches include the following
advantages.

• Intrinsic capability to detect network anomalies than any
other method,

• Ability to learn the expected behavior of the traffic (net-
work system),

• Traffic analysis is based on the theory of sudden changes,
which sets an alarmwhenever a significant deviation hap-
pens.

• The methods do not require any kind of prior knowledge
about the system as an input.

However, there are some relevant drawbacks that must be
considered.

• Somekinds of attacksmay be a regular part of the training
dataset and may be incorporated in the normal behavior,
causing it to be considered as normal.

• It requires some relevant time to train the models in order
to be able to set the first alarm.

• The use of thresholds may not be reliable in some real-
world cases due to its limited and static nature.

Table 5 summarizes the characteristics of discussed statistical
approaches, regarding techniques, data precedence, investi-
gated anomalies, and validationmetrics used to test detection
performance.

5.2 Clusteringmethods

Clustering analysis aims to group a set of objects into classes
of similar objects. These classes, or groups, called a clus-
ter, and its objects, are similar (in one way or another)
to each other and dissimilar to those in other clusters.
Clustering-based processes are adaptable to changes and help
single out useful features distinguishing different groups.
Clustering techniques can be used for outlier detection, iden-
tifying values, which are too “far away” from any cluster,
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or as a preprocessing step for other algorithms/approaches.
Additionally, classification is an effective resource for dis-
tinguishing groups or classes of objects; however, it requires
the often costly collection and labeling of a large set of train-
ing tuples or patterns, which the classifier uses to model each
group [96].

Rajasegarar [97] presented a distributed hyperspherical
cluster based algorithm for anomaly detection in wireless
sensor networks. Clustering was used to model the traffic
data at each node by classifying data vectors as either nor-
mal or anomalous. Anomalous clusters were identified by
using the average inter-cluster distance of the k nearest neigh-
bor (KNN) clusters. This works under a distributed scheme,
where sensor nodes report on cluster summaries, which are
merged by intermediate nodes before communicating with
other nodes and, thus, minimize communication overhead.

Mazel et al. [98] introduce a non-supervised approach
to detecting and characterizing network anomalies. This
approach initially works by using a clustering technique,
combining sub-space clustering with evidence accumulation
clustering and inter-clustering results association in order to
blindly identify anomalies in traffic flows.

K-means is a popular clustering technique in the anomaly
detection field and is able to classify data into distinct cate-
gories. However, it has drawbacks such as local convergence
and sensitivity to the selection of cluster centroids. Therefore,
many researchers try to combine k-means with other tech-
niques in order to overcome these shortcomings. Karami and
Guerrero-Zapata [99] introduced a fuzzy anomaly detection
system based on the hybridization of particle swarm opti-
mization (PSO) and k-means with local optimization in order
to determine the optimal number of clusters. It is divided into
two phases: the training phase aims to find the near optimal
solution by combining a novel boundary handling approach
of PSO’s global search with the fast convergence of k-means;
thus, it avoids being trapped in a locally optimal solution. The
fuzzy approach is used in the detection phase, in which false
positive rates are reduced with a reliable detection of intru-
sive activities. This is due to any data (normal or attack),
which may be at close distance to some clusters.

Carvalho et al. [100] developed a proactive networkmoni-
toring system that can detect unusual events and reduce man-
ual intervention and error probability in decision-making.
Their proposal consists of creating a network profile called
DSNSF (digital signature of network segment using flow
analysis), which describes normal network usage using a
clustering approach through the modification of the ant
colony optimization (ACO) metaheuristic, called ACODS.
ACODS characterizes network traffic discovery in the large
volume of high-dimensional input data in a cluster set, and by
optimizing the extraction of behavioral patterns through an
unsupervised learning mechanism. Then, to detect anoma-
lous behavior, authors use the pattern matching technique

called dynamic time warping (DTW). They first compute the
similarity between real traffic and normal profile in each time
interval; then, compute the distance between the series and
provide a measure based on both form and distance. The pro-
posed alarm system works with seven flow attributes, using
entropy to summarize information regarding IP addresses
and Port features. When an anomaly is detected, ACODS
provides a full report containing IP flow information indicat-
ing the impact of each attribute on the detected anomalous
time interval. ACODS has a square complexity, resulting in
a solution convergence by many iterations, in which authors
try tomitigate by using local search and pheromone updating.

In, Dromard et al. [101] proposed ORUNADA, an unsu-
pervised anomaly detector based on the incremental grid
clustering algorithm called IDGCA and a discrete time slid-
ing window. Incremental grid clustering is more efficient
than usual clustering algorithms since they latter only update
the previous feature space partition, instead of repartitioning
the whole space whenever few points are added or removed.
Then, the systemmerges these updated partitions in an effort
to recognize the most dissimilar outliers. Incremental grid
clustering usage contributes to lowering system complexity,
which makes it more feasible for real-time detection.

Regarding SDNs and their challenges, like high density
and variety of hosts, He et al. [102] recently developed a
two-stage unsupervised clustering algorithm for anomaly
detection. The first stage is a feature selection procedure used
to remove unnecessary features in the dataset. Its basis is
the calculation of a maximal information coefficient (MIC),
which describes the relationship between two continuous
features, and relevancy, which is a symmetric uncertainty
estimator for discrete features. After selecting relevant fea-
tures, a density peak-based clustering algorithm classifies the
reduced dataset into normal and misbehaved patterns. Their
experimental results proved that when a typical SDN hier-
archy of controllers is used, the traffic data can be locally
analyzed in each controller. This lessens the volume of traf-
fic shuffled across the network.

Some of the main limitations of anomaly detection meth-
ods are basically: the absence of labeled data; finding of new
unknown anomaly patterns; noisy data; and high false alarm
rates. As an effort to overcome these problems, Bigdeli et
al. [103] proposed an incremental two-layer cluster based
structure for anomaly detection. The core idea is to cluster
network data and represent these clusters as a Gaussian Mix-
ture Model, so the model can categorize new instances and
also detect and ignore redundant ones. Moreover, the high
false alarm rate issue was addressed by a collective labeling
method, which labels new inward instances in both collective
and incremental ways.
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5.2.1 Summary

With regard to clustering-based approaches, their advantages
are listed as the following.

• Incremental clustering has a fast response generation.
• Stable performance when comparing to statistical meth-
ods or classifiers.

• Reduce computational complexity due to the ability to
group large datasets into small ones.

However, limitations of these techniques can be seen below.

• They are highly dependent on proximity measures, and
each one can affect the detection rate in a positive or
negative way.

• Time consuming.
• They are not optimized for anomaly detection.
• Sometimes, the algorithms can be trapped in the local
minima.

At last, Table 6 summarizes some characteristics of the dis-
cussed clustering approaches with regard to data precedence,
investigated anomalies, and validation metrics used to test
detection performance.

5.3 Finite state machinemethods

A Finite State Machine (FSM), also called finite automata, is
a mathematical behavioral model composed of states, tran-
sitions, and actions, used to represent computer problems or
logical circuits. Each state stores information about the past,
which are changes that have occurred since the entry into a
state from the start of the system to the present time. This
type of machine can only be in one state at a time. A transi-
tion indicates a state change and is disclosed by a condition,
which must be achieved for the transition to occur. An action
is a description of an activity, which must be carried out at a
particular time. Moreover, these machines have strong ana-
lytical techniques, given that one can explore every possible
sequence of states, since their alphabet of input and output
allows representing a wide variety of situations.

Estevez-Tapiador et al. [104] presented aprotocol anomaly
detector using a finite state machine (FSM) approach, where
network protocols were modeled from state sequences and
transitions through aMarkov chain. Itsmain ideawas tomon-
itor a given protocol in order to find deviations from “normal”
usage. If the conditions are complete enough, the model can
detect illegitimate behavioral patterns successfully.

Su [105] employed finite state machines to implement a
framework applying frequent episode rules for a network
intrusion prevention system (NIPS). The presentedNIPSwas
developed to explore Probe attacks and anomalies that are

difficult to be effectively detected by firewalls and anti-virus
software. At first, it works by mining log files, which are
posteriorly refined, resulting in episode rules that are con-
verted to build an FSM. Via the FSM, every connection on a
particular port is monitored and mapped out. Once a default
alarm condition is achieved, the integrated real-time firewall
update tool disconnects the malicious connection.

In [106], the authors produced an engineering method of
gathering only a small volume of relevant IP flow records
and aggregated them into a state space representation. This
aggregation served as input to a finite state machine scheme.
They developed an FSM with a stream learning component,
such that it would be feasible to start modeling and learning
a fine-grained communication profile in real-time. Their sys-
tem produced promising detection rates over botnet malware
detection. Additionally, they concluded that it is worthwhile
to use limited IP flow data rather than large datasets for
training.

5.3.1 Summary

Finite state machine techniques are not as popular as statis-
tical or classification techniques, however, they have some
good points to consider.

• Robustness and flexibility
• Strong analytical techniques, since their alphabet of input
and output, allows representing a wide variety of situa-
tions

• High detection rate whether there is a considerable
knowledge base regarding attacks and normal cases.

Some disadvantages of these techniques are listed below.

• Time-consuming.
• Inability to detect rare or indefinite attacks.
• Dynamic updating of rules/conditions are costly.

Table 7 summarizes some characteristics of the discussed
clustering approaches, regarding data precedence, investi-
gated anomalies, and validationmetrics used to test detection
performance.

5.4 Classification-basedmethods

Classification [107] is widely used in the anomaly detec-
tion field. The main idea of such techniques applied to
this area can be summarized as two steps. First, during the
training phase, a classifier is built (learned) using labeled
training data. Then, this classifier is used to classify an
instance as normal or anomalous (testing phase). According
to each available labeled data for training, classification-
based anomaly detection techniques can be either multi-class
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Table 7 Comparison of finite state machine anomaly detection approaches

Paper Year Anomaly typea Dataseta Sourceb Validation metrics

Estevez-Tapiador et al. [104] 2003 Protocol misusages (R) TCP traffic filtered by
destination port (R)

– –

Su et al. [105] 2010 DoS, worm (R) SMB with NetBIOS
Session service (R)

– –

Hammerschmidt et al. [106] 2016 Botnet malware (R) Publicly available dataset of
manually labeled IP flow
traces (R)

– TP, FP, Precision

aData precedence; R, Real; S, Simulated
bSource types in blank are either not clearly specified by the authors or not relevant in their research

or one-class. The latter occurs when all training data have
only one normal class label. The first assumes that training
instances have multiple normal class labels. In this case, a
classifier is built to be able to distinguish instances among
normal classes and those who do not belong to any class
(anomaly).

5.4.1 Naïve Bayesian

Naïve Bayesian is a simple probabilistic classifier commonly
used for network intrusion detection problems. It combines
prior information with sample information and implements
it in statistical deduction, which uses probability to show
all forms of uncertainty. Its principles are founded on the
assumption that all input attributes are conditionally inde-
pendent to each other. Thus, it calculates the probability of a
certain instance belonging to a singular class.

Klassen and Ning [108] proposed a Naïve Bayesian
approach to detect black holes, selective forwarding and
DDoS attacks, in real time. The system monitored pack-
ets sent from nodes; therefore, their behavior is checked
in order to detect any abnormality. The classifier assumes
that data are normally distributed; then, the probability of a
sample belonging to a class is calculated by a normal dis-
tribution probability procedure. Tao et al. [109] also used a
Naïve Bayesian approach; however, they combined it with a
time slicing function and, thus, they exploited the relation-
ship between time and network traffic, since network traffic
changes at distinct times and some traffic does not occur at
a particular time. The work of Swarnkar and Hubballi [110]
accurately detected suspicious payload content in network
packets through the use of the one classNaiveBayes classifier
for payload based anomaly detection (OCPAD), a combina-
tion of frequency information of short sequences with a one
class multinomial naïve Bayes classifier.

5.4.2 Support vector machines

Another classification method is Support Vector Machine
(SVM) [111], which is also used in pattern recognition.

SVMs are a supervised learning concept characterized by the
use of feature vectors/kernels (such as radial basis function—
RBF), the nonexistence of local minima, sparseness of the
solution, and capacity check achieved by operating on the
border (the distance of the solution hyperplane to its clos-
est point). Classifiers are obtained with good generalization,
which is defined as its ability to correctly predict the class of
new data from the same domain in which learning occurs.

Catania et al. [112] proposed a novel approach to pro-
viding autonomous labeling to normal traffic, in order to
overcome imbalanced class distribution situations and reduce
the presence of attacks in the traffic data used for training an
SVM classifier. Amer et al. [113] applied two modifications
of the unsupervised one-class SVM: Robust one-class SVMs
and eta one-class SVMs. Their goal was to make the decision
boundary less sensitive to outliers in the data.

Erfani et al. [114] stated that problem domains with a high
number of dimensions are an obstacle to anomaly detection
since irrelevant features can cover the presence of anoma-
lies. Additionally, although the use of SVMs in detecting
anomalies is effective on small datasets with many features,
in complex high-dimensional data, the method is likely to
take a long time for training. To overcome this limitation,
the authors combined an unsupervised deep belief network
(DBN) with one-class SVMs. The unsupervised DBN is
trained to extract the features that are less sensitive to irrel-
evant deviations in the input data, producing a new data set
suitable for being used to train a one-class SVM.

Additionally, Wang et al. [115] created an effective IDS
based on a SVM with augmented features. Their frame-
work integrates the SVMwith the logarithmmarginal density
ratios transformation (LMDRT), a feature transduction tech-
nique that transforms the dataset into a new one. The new and
concise dataset is used to train the SVM classifier, improving
its detection. By evaluating the framework using the mostly
used NSL-KDD dataset, the authors could achieve a fast
training speed, high accuracy and detection rates, as well
as low false alarm presences.

Kabir et al. [116] proposed an IDS based on amodification
of the standard SVMclassifier, known as the least square sup-
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port vector machine (LS-SVM). This alteration is sensitive
to outliers and noise in the training dataset when compared
to a regular SVM. Their decision-making process is divided
into two stages. The first stage is responsible for reducing
the dataset dimension by selecting samples depending on the
variability of data by using an optimum allocation scheme.
Then, the next stage uses these representative samples as the
input of the LS-SVM. The algorithm was optimized to work
on both static and incremental data and produced effective
results.

5.4.3 Artificial neural networks

Artificial Neural Networks (ANNs) are computational tech-
niques that present a mathematical model inspired by the
neural structure of intelligent organisms, which acquire
knowledge through experience. They are self-adapting, self-
organizing and able to learn according to inputs and feedback
from the ecosystem within which they operate. Although
neural networks are considered a bio-inspired model, they
are used in the anomaly detection domain mostly as classi-
fiers. Multi-layer Perceptron (MLP) and Back Propagation
(BP) algorithms are the most common ANN techniques.

Subba et al. [117] employed an ANN model in order to
introduce an intelligent agent for classifying whether the
underlying patterns of audit records are normal or abnormal
while classifying them into new and unseen records. This
goal is accomplished through feed forward and back prop-
agation (BP) algorithms. They are responsible for feeding
the neural network with inputs processed to become vectors,
comparing the calculated and expected output generated by
the ANN, and at finally, altering the weights of the ANN
connections in order to approximate the output. After some
experiments, this approach proved to be high in performance
and low in terms of computational overhead.

Saeed et al. [118] proposed a two-level anomaly-based
IDS using a Random Neural Network (RNN) model in an
IoT environment. The RNN model was employed in order
to build a behavior profile based on both valid and invalid
system input parameters to distinguish normal and abnormal
patterns. The system learns the relationship between input
and output by adjusting the interconnection weights of the
RNN.The second level of the IDS is responsible for detecting
a broad range of IllegalMemoryAccess (IMA) bugs and data
integrity attacks.

Brown et al. [119] proposed a two-class classifier using an
evolutionary general regression neural network (E-GRNN)
for intrusion detection based on the features of application
layer protocols such as HTTP, FTP, and SMTP. Authors used
evolutionary computation to evolve parameters and salient
features (feature mask) from the general regression neural
network and to find its optimal configuration. This method

reduces computational complexity by eliminating unneces-
sary features and increases classification accuracy.

Supervised learning models can train a classifier by only
using labeled samples, which are difficult to obtain due to
requiring expert knowledge. On the other hand, unsupervised
approaches consider only unlabeled samples, which are eas-
ily available in real-world situations. Ashfaq et al. [120] pro-
posed a fuzziness-based semi-supervised learning approach,
merging both unlabeled and labeled data to build a better clas-
sifier. The base classifierwas the neural networkwith random
weights (NNRW) due to its excellent learning feature. For all
unlabeled samples produced by theNNRW, theirmodel com-
putes fuzziness as an effort to discover relationships between
the output fuzzy membership vectors and misclassification
rates. Subsequently, the unlabeled samples receive a pre-
dicted label according to fuzziness groups (high, mid and
low), and the classifier is retrained with them. The authors
found out that samples within low and high fuzziness groups
are vital in improving the performance of the NNRW classi-
fier and result in high accuracy rates. Additionally, samples
belonging to mid-fuzziness groups showed increased uncer-
tainty of misclassification.

5.4.4 Ensemble approach

An ensemble approach means combining responses of
multiple classifiers into a single one, thus yielding bet-
ter performance compared to using individual classifiers.
The weighted-majority algorithm (WMA) is a well-known
ensemble technique responsible for combining and selecting
the best response among all classifiers [121].

Aburomman and Reaz [122] cite that an ensemble clas-
sifier achieves success conditional to the diversity in the
outcomes of its component classifiers and themethod chosen
to combine these outcomes into a single one. In this manner,
they first trained six SVM experts (in which an expert con-
sists of five binary classifiers producing a binary vector of
outcomes) and six other experts using the k-nearest neigh-
bor (k-NN). Then, they used particle swarm optimization
(PSO), meta-optimized PSO and weighted majority algo-
rithm (WMA) techniques to combine the experts’ opinions
and accurately create three new ensembles. After testing
and comparing the three new techniques over some KDD99
datasets, the PSO ensemble approach achieved better results,
improving accuracy by 0.756 %, in a short runtime. The
authors explained that the sets of generated weights, which
were also optimized to produce results with the best possible
accuracy, were responsible for the success of the PSO-based
ensemble. Despite the fact that the meta-optimized PSO
approach accomplished a better accuracy gain, it took 500
times more time to achieve it. On the other hand, the WMA
approach had the worst results since it had a reasonably low
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accuracy of base classifiers for the occurrences of Normal
and R2L classes.

Sornsuwit and Jaiyen [123] proposed a novel ensem-
ble approach for intrusion detection using the AdaBoost
algorithm, which combines the solution of the following
classifiers: naïve Bayes, decision tree, multilayer perceptron
(MLP), k-NN and SVM. The AdaBoost algorithm initializes
the distribution of data, trains the classifiers, evaluates errors
and assigns weights to each of them. Then, the combina-
tion of classifiers is linear and based on a weighted voting
approach.

Bukhtoyarov and Zhuckov [124] developed an ensemble-
distributed classifier for network IDS based on a new
tree-level approach for combining the individual classifiers’
decisions. The approach relies on using ensembles of neu-
ral networks designed through genetic programming-based
ensembling (GPEN). GPEN automatically builds a program
using genetic programming operators to indicate how to com-
bine the component networks’ predictions in order to get a
reliable ensemble prediction. This study differs from oth-
ers dealing with traditional ensemble since it provides the
partial obtaining of adaptive outcomes by distinct classifiers
deprived of an ensemble classifier.

5.4.5 Summary

To sum up, classification-based methods are prevalent due
to its simplicity and effectiveness. Here are some additional
advantages.

• Flexibility for testing and training by incorporating new
information into the execution strategies.

• High detection rates for acknowledged attacks.
• ArtificialNeuralNetworks have an adaptive nature, being
possible to train and test cases incrementally.

• Regarding efficiency, multi-level neural network tech-
niques are better than a single-level neural network.

• Ensemble methods perform well by combining multiple
classifiers, even if they are weak ones.

However, despite being popular among researchers, there are
some disadvantages, as follows.

• High resource consumption.
• Inability to detect unknown anomalies without some rel-
evant training information.

• Neural network usage may cause over-fitting.
• The selection of sample datasets is slow for big datasets.
• In some cases, real-time performance is hard to acquire.

Table 8 summarizes some characteristics of discussed clus-
tering approaches, regarding data precedence, investigated

anomalies, and validation metrics used to test detection per-
formance.

5.5 Information theory

Information Theory is a mathematical subject centered on
the quantification of information and redundancy analysis.
It was formerly envisioned by Claude E. Shannon, in 1948,
while seeking data compression, transmission, and storage
for signal processing and communication operations [125].
However, its application extended to many other purposes
such as telecommunications, estimation, decision support
systems, pattern recognition and so on [126]. There are
several information-theoretic measures, such as Shannon
entropy, generalized entropy, conditional entropy, relative
entropy, information gain and information cost.

Its use for anomaly detection purposes relies mainly on
the calculus of mutual information or entropy values for
designated traffic features in order to identify anomalous dis-
tributions on them. Since it adopts statistical properties for
the time series of a traffic-related features (e.g. Gaussian),
this methodology may result in inaccuracies.

5.5.1 Entropy

Entropy is the most well-known information theoretical
measure, defined as the equivalent probabilities, or the uncer-
tainty, involved in the value of a stochastic variable or the
occurrence of a random process. Considering the use of
entropy in the anomaly detection field, it is efficient in
describing traffic features, such as source/destination ports
or IP addresses, as distributions, since there are certain types
of anomalies causing significant disturbances on these distri-
butions. In this manner, it is possible to detect, for instance,
a port scan attack, indicated by a change in the entropy of
destination ports, or even the occurrence of a DDoS attack,
denoted by changes in the entropy of source/destination IP
addresses [127].

David et al. [128] proposed an enhanced detection of
DDoS attacks through a fast entropy method and the use of
flow-based analysis. Authors aggregate the observed flows
into a single one with consideration to the flow count of each
connection at a certain time interval instead of taking the
packet count of every connection. The second step is basi-
cally the calculation of the fast entropy of the flow count for
each connection. Finally, an adaptive threshold is generated
based on the fast entropy and the mean and standard devi-
ations of flow counts. The constant update of the threshold
with regard to the traffic pattern condition improves detec-
tion accuracy, while fast entropy use reduces computational
processing time.

Amaral et al. [129] proposed a feature-based anomaly
detection system using both IP Flow properties and a graph
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representation in order to carry out a deep inspection of net-
work traffic. The detection is based on the Tasallis entropy,
a generalization of Shannon entropy. The major divergence
is that it has a parameter to define which probabilities will
contribute to the entropy result. It adjusts the sensibility of
the anomaly detector, allowing it to adapt to different types
of networks and detect more inexpressive attacks than those
detected by methods based on volume analysis.

The work presented by Bhuyan et al. [130] brings an
outlier-based anomaly detection approach using general-
ized entropy and mutual information for creating a feature
selection technique capable of choosing a relevant, non-
redundant subset of features. According to the authors, since
mutual information reduces the uncertainty about one ran-
dom variable and generalized entropy measures the amount
of uncertainty in the data, they make detection faster and
more accurate.

Moreover, Berezinski et al. [131] introduced a network
anomaly detector, based on Shannon entropy, in order to
detect modern botnet malware. Their approach created a net-
work profile, which stores min and max entropy values in a
sliding timewindowof 5minutes. These valueswere used for
comparison with the observed entropy. This defines a thresh-
old, thus, abnormal dispersion or concentration for different
feature distributions can be identified. Finally, the authors
used popular classifiers, such as decision trees and Bayesian
networks, in order to classify the anomalies.

Behal andKumar [132] stated that sinceDDoS attacks and
flash events cause substantial alterations in network traffic
patterns, information theory-based entropy or divergence can
rapidly capture such disparities in network traffic behavior.
Therefore, they proposed a generalized anomaly detection
algorithm, which exploits the entropy difference between
traffic flows. They employed a set of generalized φ-Entropy
and φ-Divergence metrics, in which the detection efficiency
was directly connected to the information distance between
legitimate and attack traffic. The proposed algorithm resulted
in high detection accuracy with regard to flash events and
High-Rate DDoS, overcoming the results of other informa-
tion theory approaches in the literature.

5.5.2 Kullback–Leibler distance

The Kullback–Leibler Distance or Divergence (KLD) mea-
sures the difference between the true probability distribution
P and an arbitrary probability distribution Q (an approxima-
tion of P).

The work of Xie et al. [133] consisted of an algorithm to
track long-term anomalies in WSNs by using the Kullback–
Leibler divergence tomeasure the differences between global
Probability Density Functions (PDF) for each of two con-
secutive periods of time. This function produces a time
series to be analyzed and make decisions based on the

adaptive threshold, identifying any unusual changes. The
approximate Kullback–Leibler divergences, obtained from
distributed computing with no significant accuracy degrada-
tion, is used to reduce the communication cost since it can
reflect the variation amongPDFs in a sensitivemanner. Li and
Wang [134] proposed a differential Kullback–Leibler diver-
gence based anomaly detection scheme for wireless sensor
networks. The authors used a clustering approach to sepa-
rate the sensor nodes into clusters. All the nodes composing
a cluster had related sensed value and were physically close
to each other. Then, the Kullback–Leibler divergence was
used within each cluster in order to detect abnormal values
by statisticallymeasuring the disparity between twodata sets.
Theirwork achieved a gooddetection rate and low false alarm
rate while consuming less energy than other similar studies
in the literature.

5.5.3 Summary

In conclusion, information theoretic-based approaches have
been emerging increasingly in the network anomalydetection
field. Their main benefits are that they can be highly scalable,
very sensitive and low to false positives. Other advantages are
stated below.

• Operating in an unsupervised mode is possible.
• There are no assumptions about the primary statistical
distribution for the data.

• Since information theory-based methods only use header
information for calculation, the complexity of time and
space is a minor problem.

Besides, they are susceptible to these limitations.

• The adoption of statistical properties for the time series of
traffic-related features (e.g., Gaussian) may cause inac-
curacies.

• The detection of anomalies may be possible only if there
is a significant presence of them in the data set. This way,
these approaches need a highly sensitive information the-
oretic measure to detect irregularities made by very few
anomalous patterns.

• Difficulty in associating an anomaly score with a trial
case.

Table 9 summarizes some characteristics of discussed clus-
tering approaches, regarding data precedence, investigated
anomalies, and validation metrics used to test detection per-
formance.
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5.6 Evolutionary computation

The field of evolutionary computation, also named bio-
inspired computing [135], is a set of intelligent algorithms
and methods inspired by natural evolution and able to learn
and adapt like biological organisms [136]. It encompasses
genetic algorithms (GA), genetic programming (GP), evolu-
tion strategies (ES), particle swarm optimization (PSO), and
artificial immune systems (AIS) [137,138].

5.6.1 Artificial Immune Systems (AIS)

Artificial Immune Systems (AIS) are adaptive systems,
enhanced by theoretical immunology and biological immune
system functions, principles and models, and are applied to
problem-solving, as defined by de Castro and Timmis [139].

The authors of [140] presented EPAADPS, a proactive
anomaly detection and prevention system based on an Artifi-
cial Immune System (AIS) aiming to identify and prevent
new and undetected anomalies. Their motivation lied on
gaps found in related previous studies, such as the lack of
co-operation between detectors in order to classify any pat-
tern as anomalous, the identification and inhibition of novel
and zero-day attacks and lacks in self-configuration, learn-
ing, adaptability and preventive abilities. The whole system
consists of three modules: the repertoire training module
(RTM), responsible for selecting efficient detectors to gener-
ate a detector set (DS); the vulnerability assessment module
(VAM), which creates collaborative detector agents (DA)
able to correctly identify and flag any test set instance hap-
pening to be an anomaly; and response module (RM), which
takes appropriate preventive actions in the cases where VAM
found an anomalous instance. Saurabh and Verma also com-
bined PCA and min-max normalization as a pre-processing
feature in order to make the dataset both substantial and sta-
ble, respectively. In this manner, the number of features is
reduced, helping the choice of better-trained detectors.

Moreover, Igbe et al. [141] proposed a distributed NIDS
against cyber-attacks using theNegative SelectionAlgorithm
(NSA), which exist in the AIS field. The entire system has
autonomous agents communicating with each order while
running the NSA to create classification rules. These rules
and identified threat vectors are shared among all agents and
enhance the fast detection of more problems.

Shahaboddin et al. [142] introduced Co-FAIS, a
cooperative-based fuzzy artificial immune system for detect-
ing malicious activities in a WSN. The adopted defense
strategy is modular and derived from the danger theory of
the human immune system as an AIS. The agents work in a
mutual way in order to identify attackers or any abnormal-
ities in sensor behavior regarding the context antigen value
(CAV). Then, agents inform the Fuzzy Q-learning algorithm
initiation threshold, which examines the attack behavior and

checks if the system can respond and defend itself. That
response was designed to act similar to the ability of rapid
response to recurring attacks present in a natural immune
system. The response module elaborates an attack signature
and eliminates it from the safe list; therefore, if repeated, the
reaction to the same attack will be quicker.

5.6.2 Genetic algorithms (GA)

Genetic algorithms (GA) are commonly used as part of a
whole intrusion detection system together with other tech-
niques. As in [143], the authors use a genetic algorithm to
transform the data set such that an SVM classifier can bet-
ter process it. In [131], for instance, the authors combine
a genetic algorithm (GA) with kernel principal component
analysis (KPCA). The genetic algorithm creates a new opti-
mal set of features and assigns a separate groupwith a certain
priority to each obtained feature.

In their research [144], Singh and Kushwah employed
genetic algorithms to build an optimized cluster-based intru-
sion detection system in wireless sensor networks. The entire
system was divided into four modules: the data collection
module, which makes the head node observe the movement
of the member sensor node; the intrusion information mod-
ule, which gathers intrusion information for explanation; the
intrusion detection module, responsible for setting a device
activity as the misbehavior or legitimate behavior prior to a
threshold; and the alert module, in which the cluster-head
node alerts nearby nodes about the existence of intrusion. A
genetic algorithm is used to mutate the nodes presenting less
energy by a mutation parameter with a mutation probability
in order to flip the node energies; thus, power consumption
and network efficiency are improved.

Another approach using Genetic Algorithms is presented
byHamamoto et al. [145]. TheGA is used to deal with uncer-
tainties in network traffic, and through natural selection, learn
the normal characteristics of the traffic flows. As all traf-
fic attributes used in the research are numeric, the authors
applied a numeric chromosome encoding to optimize each
time interval separately and each attribute in parallel. The
result is the Digital Signature of Network Segment using
Flow Analysis (DSNSF), a prediction of the network traffic
behavior in each time interval. Moreover, the authors also
added a Fuzzy logic approach to assess whether a time inter-
val in the IP flows data has an anomaly or not. The evaluation
was conducted by using a real network traffic from an univer-
sity with simulated anomalies injected in some flow entries.

5.6.3 Differential evolution

Differential evolution is a global search evolutionary algo-
rithm also used for detecting anomalies. Although it is not
widely used yet, it has great potential in order of being wor-
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thy to mention in this section. It encompasses two concepts
within the area: the idea of using larger population from
genetic algorithms and self-adapting mutation from evo-
lutionary strategies. Elsayed et al. [146] applied a feature
reduction mechanism using a flexible neural tree to select
significant traffic features and then adopted a differential
evolution algorithm to evolve individual (rules) for anomaly
detection. A fitness function calculates the quality of every
rule or individual.

5.6.4 Particle swarm optimization

Particle SwarmOptimization is a common evolutionary com-
putation technique used for anomaly detection. Its main
purpose is to perform an optimum search, and that is why this
algorithm ismainly combinedwith clustering techniques and
classifiers, such as k-means [38,99] and SVM [122,147,148],
for instance (please refer to works discussed in sections 6.2
and 6.4).

Bamakan et al. [149] proposed a novel intrusion detection
framework by using a modification of the PSO, called time-
varying chaos particle swarm optimization (TVCPSO). It is
a new adaptive, robust, precise optimization method, aimed
at doing parameter setting and feature selection for multiple
criteria linear programming (MCLP) and SVM simultane-
ously. The authors introduced time varying inertia weight
and a time varying acceleration coefficient, along with the
adoption of the chaotic concept in the PSO. In this manner,
the PSO algorithm searches the optimum faster than normal,
while avoiding the search being stuck to a local optimum.

5.6.5 Summary

Evolutionary computation methods are increasingly obtain-
ing distinction due to their intelligent algorithms that can
learn and adapt like real living organisms, therefore being
able to produce latent solutions to many of the complex
network problems that have been intensified recently. Other
advantages of these methods are the following.

• They add to intrusion detection systems capabilities for
parallel processing.

• Prior knowledge of the problem space is not required.
• The natural retraining ability makes the entire system
more adaptable.

• Noise and discontinuities existing in the dataset do not
cause a considerable impact on solutions.

Although their efficiency, evolutionary methods also have
some limitations.

• The fitness function may not be trivial to find.
• Choosing the optimal parameters is hard.

• Sometimes, it can be a complicated task to map the prob-
lem into a biological approach.

Table 10 summarizes some characteristics of the discussed
evolutionary computation approaches, with regard to data
precedence, aimed network paradigm, techniques, anoma-
lies, and validation metrics used to test detection perfor-
mance.

5.7 Hybrid/others

This section presents hybrid approaches to anomaly detec-
tion, which are a combination of various classes of algo-
rithms, techniques, and methods. Additionally, unclassified
techniques, which are not listed in previous sections but are
still interesting and promising, are also listed here.

Grill and Pevný [151] state that successive alarm analysis
is costly and cannot cover all alarms, only a small portion,
as well as the noise in training data is always an important
feature to consider.Moreover, combining anomaly detectors,
although simple, may become a significant challenge when
it attempts to combine the output of individual detectors.
Therefore, the authors propose a novel approach to finding
a convex combination of various anomaly detector outputs
and carried out a study on the effects of label noise in the
training dataset over the accuracy of combinations achieved
by different detectors. They compare their approach to two
existing ensemble methods, one using NetFlow and the other
using HTTP server logs.

Another interesting hybrid intrusion detection system is
proposed by Al-Yaseen et al. [152], in which the authors
combine the SVM and extreme machine learning (EML)
classifiers and the k-means clustering technique. The clas-
sifiers are responsible for reducing false positives as well as
improving detection accuracy. The categories of attacks are
divided into three groups; four SVMs classify instances as
DoS, U2R, R2L, or Normal while an ELM classifier detects
probe attacks, since they are better for them than an SVM.On
the other hand, k-means is modified to build a suitable train-
ing dataset, which can meaningfully contribute to improving
the classifiers’ training time and overall performance. The
modification consists of selecting the initial centroids of clus-
ters conditional to the maximum distance between them and
dataset instances. Five datasets are produced to each one of
the five classification categories and serve as the basis of
creating accurate SVM and ELM classifiers.

Forestiero [153] used a swarm intelligence technique to
build a bio-inspired clustering algorithm in order to identify
anomalies in distributed data streams. Bio-inspired agents
follow the principles of the flocking-based examination
approach,which states that agentswill interact autonomously
with immediate neighbors and form flocks (clusters) of sim-
ilar agents. The similarity between agents depends on the
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carried data items and can be calculated using various tech-
niques such asmeasuring theEuclidian distance of associated
data items.

Salem et al. [154] developed a framework for anomaly
detection that operates in wireless body area networks
(WBAN). They combined the SVM classification algorithm
with the statistical linear regressive model. The SVM part
classifies incoming sensor data as normal or abnormal. Then,
whenever an abnormality is found, a linear regressive pre-
diction model analyzes it and decides whether the patient is
entering a dangerous state or a sensor is reporting incoherent
readings. This decision is accomplished by building a deci-
sion tree and searching for linear coefficients from normal
vital signs falling inside a given threshold.

Wang et al. [155] combined three classes of algorithms for
the purpose of introducing a data abstraction phase situated
between the well-known attribute construction and detection
ofmodel building phases thatmost IDSs have. Their ideawas
applied to process big data by reducing the amount of data
while keeping the valuable information they carry. For that
purpose, three strategies were proposed and evaluated. The
attribute abstraction strategy was based on applying PCA for
reducing the data to a low dimensional subspace and then
projecting the testing data onto it in order to detect anoma-
lies. The attribute selection strategy consists of calculating
the information gain (IG) to rank the correlations of each
attribute to the class—whether it is normal or attack—and
select key attributes based on this ranking. After the selec-
tion, the authors combined this with a k-nearest neighbor
and a PCA or SVM-based detection approach. Finally, the
exemplary extraction strategy uses either k-means or affinity
propagation clustering techniques to extract exemplars from
the large audit data. After the extraction, authors also com-
bined this with a k-nearest neighbor, a PCA or an SVMbased
detection approach.

Adaniya et al. [156] created a hybrid anomaly-based
clustering approach for anomaly detection, combining the
k-harmonic means (KHM) clustering method with the bio-
inspired heuristic firefly algorithm (FA). The traffic profile
is created through the GBA tool by using the historical traf-
fic data, proposed by Proença et al. [157]. KHM solves the
initialization sensitivity of k-means and the FA helps it con-
verge to local optima. This approach groups data points in
order to separate normal from abnormal ones. They achieved
goodoutcomes,with true-positive rates above80%and false-
positive rates below 20 %.

Chen et al. [158] managed to build a novel classifier
through an evolutionary computation basis for intrusion
detection. The central segment of this IDS is an artificial
immune system (AIS), which is enhanced by a population-
based incremental learning (PBIL) procedure. The PBIL
enhancement in the AIS consists of evolving new antibodies
with higher affinities thanolder ones,which are not capable of
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properly recognizing the class (removal of weak antibodies).
Then, the authors combined the AIS-PBIL with collabora-
tive filtering (CF) in order to cluster all antibodies related to
a target-occurrence and categorize target intrusions.

Bostani and Sheikhan [61] proposed a novel hybrid IDS
framework consisting of anomaly-based and specification-
based modules. Their goal was the detection of two routing
attacks that cause significant problems in IoT: sinkhole and
selective-forwarding attacks. The framework is divided into
three stages. In the first stage, the specification-based agents
in the router nodes identify suspicious nodes by analyzing the
behavior of their host nodes and sending it to the root node.
In the second stage, an anomaly-based agent located in the
root node uses that information to extract traffic features and
create samples for each source node. This is accomplished
by using an unsupervised optimum-path forest algorithm and
a MapReduce architecture for projecting clustering models.
Finally, the last stage uses the first stage results to make deci-
sions about mistrustful behavior detected in the second stage
through a voting mechanism.

Grill et al. [159] propose a local adaptive multivari-
ate smoothing (LAMS) method to effectively smooth an
anomaly detector output in order to reduce the rate of unstruc-
tured false positives by the Nadaraya–Watson estimator. It
replaces the output of a networking event with an aggregate
of its output on similar network events observed previously.

Guo et al. [160] combine both misuse detection and
anomaly detection to build an IDS. The development is
divided into 2 phases. The first phase is the elaboration of
a lightweight misuse detector based on the change of loca-
tion of cluster centers. In phase 2, two anomaly detectors are
built using the k-nearest neighbor (k-NN) algorithm. By this
combination, authors were capable of detecting both known
and unknown anomalies with a low false positive rate (FPR).

As an emergent network paradigm, Software-Defined
Networks (SDN) also face the problem of DoS attacks, since
massive malicious requests can truly harm their central-
ized control characteristic. Thus, although many researchers
propose detection mechanisms, most of them only focus
on detection itself. In this manner, Assis et al. [150] pro-
posed GT-HWDS, a hybrid autonomic defensive approach
for SDNs against DoS/DDoS attacks by applying a game
theory (GT) decision-makingmodel togetherwith theirHolt–
Winters-based anomaly detection system (HWDS [67]).
The GT-HWDS system is fully able to detect, identify and
mitigate events of DoS/DDoS in SDN traffic. Their core con-
tribution is the mitigation module performed by a GT-based
method. GT consists of changing a problem with opposing
interests into a game, where many “players” take actions
to optimize the results of trying to achieve their objectives.
Therefore, the system analyzes a set of probable actions
for both attacker (malicious nodes) and defense systems,
estimates rewards and costs for all measures, and finally,

performs an optimal countermeasure. This blocks (mitigates)
any traffic originating from the attackers’ IP and port.

5.7.1 Summary

In summary, hybrid techniques are an excellent choice for sit-
uations in which the same system might solve many distinct
problems. Also, one technique may overcome the limitations
of others, leading to a more reliable system. These are the
main advantages of hybrid anomaly detection methods.

• Hybrid methods can benefit from the main features of
both anomaly and signature-based approaches.

• They can detect both known and unknown anomalies.

However, when developing hybrid methods, there some lim-
itations to consider.

• As more techniques are used together, the is a high
demand for computational resources, increasing its cost.

• Dynamism is still an unsolved problem.

Table 11 summarizes some characteristics of the approaches
discussed in this section, with regard to data precedence,
aimed network paradigm, techniques, investigated anoma-
lies, and validation metrics used to test detection perfor-
mance.

6 Open issues

There are a significant number of challenges within the
anomaly detection field. This section aims to summarize
the most relevant open issues found during the development
of this paper and also to consider those most discussed in
the literature. All of them were identified by analyzing and
comparing all surveys [9,12–18] listed in Table 1 and every
research addressed in this survey. The list and a brief discus-
sion upon each topic can be seen below:

• The concept of normality It is one of the main steps to
build a solution to detect network anomalies. The ques-
tion “how to create a precise idea of normality?” is what
has driven most researchers into creating different solu-
tions through the years. This can be considered as the
main challenge related to anomaly detection and has not
been entirely solved yet. Many of the works discussed in
this survey tried to achieve this goal.

• Adaptability Anomalies keep changing every time new
ones are introduced or old ones are improved to overcome
current detection solutions. Therefore, IDSs need to be
constantly updated in order to adapt to those changes,
and this is not an easy task.
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Fig. 10 Occurrences (%) of discussed open issues in the analyzed surveys

• Dynamic profile updateWhenever an unknown attack is
detected and addressed by anomaly-based IDSs, the pro-
file database needs to be updated with these new data.
Nevertheless, it is a challenge to carry out such updates
dynamically, without compromising performance and
generating conflicts.

• Standard datasets There are only a few openly available
intrusion datasetswith enough information about attacks;
however, none of them is a standard evaluation dataset for
anomaly detection. The lack of reliable public standard
datasets, which can simulate accurate network environ-
ments, is still a problem.

• Noisy data Normal variations in datasets are also a
problem when creating a profile since they can be mis-
understood as abnormalities if they are not well defined.
Moreover, this information is neither always clear in pub-
lic datasets nor private ones.

• False alarm ratesAnother problem is to keep false alarms
as minimal as possible; although it is still not possible to
completely avoid them and build a one hundred percent
reliable IDS. That still remains a challenge.

• Real-time monitoring The amount of traffic generated
by computer networks today is constantly increasing as
Internet traffic doubles every year. Therefore, it has been
difficult to produce a reliable monitoring process on a
network, in real time.

• Complexity As researchers try to cover all the challenges
mentioned above, the complex nature of the systems
increases by adding and mixing different techniques and
approaches. Additionally, regarding data collection and
preprocessing, the complexity of today’s network archi-
tectures also contributes to the persistence of this issue.

The graph in Fig. 10 shows the relevance of each open
issue discussed in this section amongst the others ana-
lyzed surveys [9,12–18] presented in Table 1, showing the
most concerning issue in the anomaly detection field based
on the study in this survey. For instance, the complexity
issue appeared in 43% of the other surveys, while the stan-
dard dataset problem was considered in 60%. So, it can be
observed that althoughmanyof the other discussed topics had
a significant rate of discussion, the problem of not having a
standard and updated dataset that simulates a real environ-
ment and contains labels for anomalies is a major concern
among practitioners in the literature.

7 Conclusion

This literature review aimed to provide a theoretical under-
standing of the anomaly detection problem with regard to
the different aspects related to it. It also aimed to provide
a comparative analysis of different techniques developed to
address this problem.

A discussion on what an anomaly is and the identification
of its most commonmanifestations were presented. Based on
their nature, anomalies can be grouped into point anomalies,
collective anomalies, and contextual anomalies. Neverthe-
less, based on their causal aspect, they can also be divided into
operational events, flash crowd,measurement anomalies, and
network attacks. Their correct identification is crucial to the
development of an IDS, which can focus on the primary con-
straints related to each kind of occurrence. An additional
topic discussed was the description of an IDS and its types.
The correct choice of the IDS type to develop depends on
whether it is aimed at local or wide traffic detection, or
even the detection of unknown anomalies by compromis-
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ing accuracy. Anomaly-based detection is the most common
IDS since it is dynamic and provides the detection of both
known and unknown anomalies.

Many papers were reviewed in this study, with the pur-
pose of providing a broad perspective of what has been done
in anomaly detection, and what could be improved. From
straightforward approaches to complex systems, there is a
wide range of possibilities to address the anomaly detec-
tion problem, though every technique has its advantages and
drawbacks. As stated in this survey, classification methods
have the highest detection rates amongst all papers reviewed;
however, they have some drawbacks regarding dependence
on classification assumptions and resource consumption.
Moreover, clustering-based techniques provide a stable per-
formance in terms of detection rate and complexity, although
they showed to be time-consuming and highly reliant on
proximity measures. Ultimately, the literature cannot affirm
which is the ideal technique to handle network anomalies,
but a methodical investigation of each technique is essential
to understand which problem domain it suits best.

Furthermore, this survey underlined the most relevant
open issues within the field. The major gap observed is the
unavailability of a standard and updated labeled dataset, so
it would be a worthwhile investment to build some public
database covering many anomalies and real traffic behaviors
of distinct network infrastructure.

In conclusion, there are still some open issues to improve
the effectiveness and feasibility of anomaly detection, but in
contrast, there are also quite a few promising guidelines for
researchers to follow in further investigations on the anomaly
detection subject.
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