
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

http://www.davidpublisher.org/index.php/Home/Article/index?id=7739

DOI: 10.17265/2159-5275/2015.03.003

Direitos autorais / Publisher's copyright statement:

©2015 by David Publishing. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/

Journal of Mechanics Engineering and Automation 5 (2015) 153-160
doi: 10.17265/2159-5275/2015.03.003

Neural Networks and the Study of Time Series: An
Application in Engineering Education

José Tarcísio Franco de Camargo1, Estéfano Vizconde Veraszto2, Gilmar Barreto3 and Sérgio Ferreira do Amaral4
1. Department of Computer Engineering, Regional Universitary Center of E. S. do Pinhal, E. S. do Pinhal 13990-000, Brazil

2. Department of Natural Sciences, Mathematics and Education, Federal University of Sao Carlos, Araras 13604-900, Brazil

3. School of Electrical and Computing Engineering, State University of Campinas, Campinas 13083-852, Brazil

4. School of Education, University of Campinas, Campinas 13084-865, Brazil

Received: February 16, 2015 / Accepted: March 04, 2015 / Published: March 25, 2015.

Abstract: Time series are an important object of study in sciences, engineering and business, especially in cases where it is expected
to know, predict and optimize behaviors. In this context, we intend to show the feasibility of using artificial neural networks in the
study of several time series in an engineering course, especially those that have no overt behavior or are not able to be modeled
mathematically in a simple way and have direct application in the education of future engineers.

Key words: Engineering education, time series, mathematical modeling.

1. Introduction

According to our proposal, this paper is organized
as follows: Section 2 presents the perspective of the
study of time series in engineering education,

Knowing, predicting and optimizing behaviors are
quite common objectives in the study of time series.
Being able to analyze data sets, understand its
behavior and approximate predict future values can
become a crucial factor for a project success. Thus,
the study of series with no easy modeling behaviors,
such as those from data mining, process optimization
or demands prediction is, therefore, an objective to be
carefully treated in engineering courses. Future
engineers must, therefore, be able to analyze and
“extract knowledge” from non-trivial time series
modeling, being able to, as far as possible, predict
future situations. In this context, this paper presents a
methodology, the use of neural networks for the study
of time series, aiming to contribute to this objective.

Corresponding author: José Tarcísio Franco de Camargo,

Ph.D., research fields: computer graphics, automation and
education. E-mail: jtfc@bol.com.br.

introducing the use of ANNs (artificial neural
networks) in non-trivial time series analysis; Section 3
presents the basic concepts on modeling and
simulating ANN; Section 4 discusses the application
of ANN in time series analysis; finally, Section 5
presents our conclusions about the use of ANN in time
series analysis and its use in engineering education.

2. Time Series in Engineering Education

The study of time series can be achieved more
frequently through the use of well-defined equations,
when the series has a well-defined behavior, or
through approximation or interpolation equations,
when there is a behavior that can be identified, but not
modeled with accuracy.

For example, Table 1 shows a time series that can
be completely defined by the equation:

11 −+ += kkk xxx (1)

where, 110 == xx .
Table 2 shows a time series representing the

Brazilian population evolution from 1900 to 1990; it

D
DAVID PUBLISHING

Neural Networks and the Study of Time Series: An Application in Engineering Education

154

Table 1 Fibonacci series.

x0 x1 x2 x3 x4 x5 x6 x7 x8 X9 ...
1 1 2 3 5 8 13 21 34 55 ...

Table 2 Brazilian population during the twentieth century
[1].

Year (x) Population in millions (y)
1900 17.4
1910 23.4
1920 30.6
1930 35.8
1940 41.2
1950 51.9
1960 70.9
1970 94.5
1980 121.1
1990 146.9

can be approximated by an exponential function of the
type:

xaeay ⋅⋅= 1
0 (2)

where, a0 and a1 are constants that can be determined
through the solution of the system:

][][][][][YXAXX TT •=•• (3)

While the above cases have a relatively predictable
behavior, we should consider a problem to be outlined:
a time series does not always have a well-defined
behavior which can be accurately described by an
equation. Also, they do not always have a behavior
that allows an approximation or interpolation using a
given equation. In this context we intent to present the
use of neural networks in the study of time series: they
can detect and learn behaviors that are not
mathematically modeled in a trivial way.

As presented in Ref. [2], we can state that ANN is
able to identify behaviors from prior learning of
certain patterns. Thus, the series behaviors we
presented before may be learned by a particular ANN,
making it possible to infer values for this series,
within certain limits. Furthermore, implicit behaviors,
which could not be observed in a direct or trivial way,
may be detected by an ANN. For example, the study
of a series of prices of a particular share traded on a

stock exchange can be accomplished through an ANN.
In this way, Table 3 shows a time series with the
AMA (arithmetic moving averages) of five days of
EMBR3 share closing price (EMBRAER-ON) traded
on the Sao Paulo Stock Exchange (BOVESPA).

The MLP (multilayer perceptron) is an ANN model
very interesting for the study of time series. Through
this model, implicit patterns in a time series are likely
to be detected, allowing the network to identify certain
behaviors. Thus, the time series analysis we proposed
here is focused on the use of the MLP-ANNs, as an
alternative to conventional methods for the series study.

3. Neural Networks and Engineering
Education

An ANN is a system commonly abstract, which can
be used in various applications such as recognition
and classification of patterns, modeling of physical
and/or mathematical problems, processes control and
signal processing as well as several other applications
such as shown in Refs. [3-8]. Therefore, before its use
in these tasks, an ANN must be “trained” through
behavior patterns examples. Thus, in its training phase,
the network is presented to different input patterns and
their desired output patterns, in order to “learn” the
“formation law”, correlating each input pattern to its
respective output pattern.

After this phase, if an input pattern that is not part
of the training set is presented to the network, it is
expected that the ANN could infer a likely output
pattern. As an example, let us consider that we want to
check a possible formation law for the series described
in Table 3.

Table 3 Arithmetic moving average of EMBR3 share
closing prices.

Date Price (in Brazilian Reais)
14/03/13 17.22
15/03/13 17.25
18/03/13 17.27
19/03/13 17.28
20/03/13 17.28
21/03/13 17.33
22/03/13 17.40

Neural Networks and the Study of Time Series: An Application in Engineering Education

155

Table 4 Training set for an ANN.

Input vector Desired output
(x1; x2; x3; x4) (y)
17.22; 17.25; 17.27; 17.28 17.28
17.25; 17.27 ; 17.28; 17.28 17.33
17.27; 17.28; 17.28; 17.33 17.40

In this case, during its training phase, we could give
to the network the following input and output patterns,
so it could understand the formation of this law series.

So after the training phase, if the following input
pattern is presented to the network (17.27; 17.28;
17.28; 17.33), it is expected that it presents in its
output an estimate for a moving average of 22/03/13
(i.e., 17.40, according to Tables 3 and 4).

An ANN model that fits within this proposal is the
MLP proposed in Ref. [9], which is discussed below.

3.1 The Perceptron

A MLP-ANN is a layered organization of a
computational element called “perceptron”. A
perceptron, in turn, is characterized by trying to
express a symbolic (and mathematical) representation
of a biological neuron. Fig. 1 shows a symbolic model
of a perceptron. Its model is widely discussed in Refs.
[2, 9, 10] and briefly presented below. Refs. [9-12]
also present in details the “ackpropagation algorithm”
which will be discussed later.

In this model there is a “node”, representing the
neuron’s body, powered by various external stimuli (x)
through “synaptic connections”. The computation
result of the external stimuli processed by the
perceptron is exported via an output synaptic
connection (y), which will transmit this signal to the
input of other network perceptrons.

The external stimuli that a perceptron receives can
be obtained from the output exported by other
perceptrons or from the ANN input, or from a
particular “polarization signal” (bias) of the neuron.
According to Ref. [13], the polarization signal has
great importance in controlling the noise of the data
presented to the network. All signals that arrive at a
neuron are considered by the connection “synaptic

Fig. 1 Symbolic model of a perceptron.

weight” that takes this signal to the neuron.
The mathematical equation that forms this model

takes into account that the input stimuli have their
effects thoughtfully summed. That is:

bx
n

i
ii +⋅= ∑

=1

ων (4)

where, “v” is the thoughtfully sum of the input stimuli,
“wi.xi” is the product between an input signal “x” and
the synaptic weight “w” of the connection that leads
the signal to the neuron, “b” is the particular
polarization signal of this neuron.

The perceptron response to incoming stimuli is a
function of their considered sum. That is:

y = φ(v) (5)
where, “y” is the neuron's response, “φ(v)” is the
neuron’s “activation function”, correlating the output
to input stimuli.

The perceptron activation function “φ (v)” must be
non-linear in order to allow the entire ANN to
represent non-linear functions, in addition to being
continuous and “soft” in order to be differentiable in
all its interval of consideration.

An example of a very popular activation function in
MLP networks is the tangent-hyperbolic function:

𝜑𝜑(𝑣𝑣) = α. tanh(𝛽𝛽. 𝜈𝜈) (6)
where “α” and “β” are constants.

For this activation function, Ref. [14] considers α =
1.7159 and β = 2/3 as appropriate values.

3.2 Layered Neural Networks

As we mentioned previously, an ANN-MLP is
composed by layers association of perceptrons. Fig. 2
shows a model for a MLP.

In this architecture we have an “input layer”, where

Neural Networks and the Study of Time Series: An Application in Engineering Education

156

the network stimuli (signals) are applied, which are
propagated layer by layer until the network output,
from the “1st hidden layer” of neurons until the
network “output layer”, which will present the results
of all network processing to the external environment.

It should also be noted that in a MLP the inputs
from a given neuron are connected to the outputs of all
neurons of the preceding layer, and the output of this
neuron is connected to all inputs of the neurons of
immediately posterior layer.

3.3 ANN Learning — The Backpropagation Algorithm

During the learning phase, so that the network can
learn the desired behavior, a recursive algorithm such
as the “error backpropagation algorithm” (or error
backpropagation) is used.

In the backpropagation algorithm, during the
network training phase, an “x” input pattern is
presented to the network and propagated towards the
output, generating an “o” output pattern, which is
compared to the desired value “d” for the concerned
input pattern.

The “o-d” difference between the desired pattern
and the actually obtained in the network output is the
error “e” of this learning phase for this pattern. If e = 0,
then we conclude that the network has “learned” the
“x” input pattern. If e ≠ 0, then the error should be
backpropagated (from the output layer toward the 1st

hidden layer) in order to adjust the connections
weights between the layers’ neurons.

Formally, we have:
error signal: ej = dj – oj

where, dj is an element of the desired output vector for
the presented input pattern, oj is an output vector
element obtained with the input vector propagation,
and ej is the error vector element obtained.

According to Ref. [13], to minimize ANN training
difficulties, the error function should be non-linear.
Thus, for the presented input pattern, we define the
instantaneous sum of squared errors on the network
output by:

∑
=

⋅=
m

j
je

1

2

2
1ε (7)

where, “m” is the number of elements of the error
vector (which equals the number of neurons in the
output layer of the network).

If we consider all input patterns to be presented in
the training phase, we can determine the “mean square
error” for these patterns during an “epoch” (“epoch” is
every propagation/backpropagation held for all input
patterns presented to the network in its training phase).
Therefore,

∑
=

⋅=
N

n
QM n

N 1
)(1 εε (8)

where, N is the number of training patterns presented

Fig. 2 Basic model for a MLP.

Neural Networks and the Study of Time Series: An Application in Engineering Education

157

to the network and ε(n) is the obtained error while
presenting the pattern n.

Therefore, the less will be the mean square error
value (εQM) the better the network input patterns
learning in a given epoch. Thus, if εQM = 0, the
network learned with absolute precision all patterns
presented.

Thus, a proposal to a MLP training can be:
• While εQM is not low enough:
(a) For each training pattern:
- propagate this pattern, toward the output, layer

by layer;
- calculate the error “e” between the desired output

and the output obtained;
- Retropropagate the output error towards the input,

correcting the synaptic weights of each connection.
- End
(b) Update the value of εQM.
• End
In the algorithm presented above, the error correction

to adjust the synaptic weights can be achieved by the
“delta rule”. This synaptic weights adjustment is
primordial to the ANN learning, since the knowledge
acquired by the network is condensed in these.
Considering the connection between two neurons of
consecutive layers, updating the synaptic weight “ωji”
between these neurons, from iteration to another, is
given by:

jijiji tt ωωω ∆+=+)()1((9)

where, ωji(t) is the synaptic weight current value, Δωji
is the synaptic weight correction to be applied, ωji(t +
1) is the updated value (next value) of synaptic weight.

The correction value calculation of the synaptic
weight (ωji) should come in the opposite gradient
direction of the accumulated error in the propagation
of an epoch of input samples (training set). Thus,
according to the delta rule, the synaptic weight
correction can be given by:

ijji y⋅⋅=∆ δηω (10)

where, η is the neuron’s “learning rate” (0< η <1),
which value, arbitrated by the network user, defines
how quickly the network will converge to the
minimum point; δj is the “local gradient” of neuron j
for error correction, calculated by the network
according to the backpropagated error; yi is the neuron
“i” output value.

The local gradient ”δj” value for the neuron “j” can
be calculated as follows:

jj e⋅= 'ϕδ , if neuron j belongs to the output layer;
or

∑ ⋅⋅=
k

kjkj ωδϕδ ' , if neuron j belongs to a hidden

layer.
In order to improve the delta rule convergence, we

may use a “time factor” (μ) which will consider Δωji
value of the previous iteration for calculating the next
value:

)()()1()(tyttt ijjiji ⋅⋅+−∆⋅=∆ δηωµω (11)

being “μ” arbitrated between 0 and 1.
Simply, the ANN design and training process can

be described as:
Network design:
(1) Define the size of the input vector of the

network, i.e., the number of nodes of the input layer of
the network;

(2) Define the size of the output vector of the
network, i.e., the number of neurons in the output
layer of the network;

(3) Define the number of hidden layers of the
network;

(4) Define the number of neurons in each hidden
layer of the network;

(5) Assign random values (between -1 and 1) for
the bias signal of each neuron;

(6) Assign random values (between -1 and 1) for
the synaptic weights of each connection of the ANN;

(7) Define the activation function of the neurons
and its derived;

(8) End.

Neural Networks and the Study of Time Series: An Application in Engineering Education

158

Network training:
(1) Define values for η and μ;
(2) Define the threshold value for εQM;
(3) While εQM is not low enough:
a. For each training pattern:
 Apply the pattern to the input x of the ANN;
 Calculate the output y of each neuron in the first

hidden layer, applying these outputs to the inputs of
the next layer, also calculating the outputs of this layer
until the output layer (propagation of the input signal);
 Calculate the error (e) for this pattern, comparing

the desired value for the output (d) and the value
obtained at the output (o) for the applied input;
 From the output layer, toward the input layer of

the network (error backpropagation):
- Calculate the local gradient (δ) of each neuron of

each layer.
 From the output layer toward the input layer of

the network:
- Calculate Δω of each synaptic connection;
- Update ω of each synaptic connection.
End.
b. Update the value of εQM for this epoch;
c. End.
(4) End.
After the network training, its use is accomplished

simply by presenting any input pattern, which is
propagated towards the network output, where the
network response can be observed to the input
stimulus presented.

4. Implementation on Case Studies

A MLP-ANN implementation and simulation can
be accomplished through computer programs
development in various languages. These authors
implemented ANNs in the programming language of
“SciLab” (http://www.scilab.org), obtaining the
following results for the simulations.

According to Refs. [16, 17], an ANN with a single
intermediate layer is sufficient to approximate any
continuous function. In turn, Cybenko [18] states that

any mathematical function can be modeled by an
ANN with no more than two intermediate layers.
Funuhashi [19] also investigates the number of
intermediate layers needed for class function
implementation in an ANN. Thus, as the series we
desire to simulate can be approximated by continuous
functions, all simulations were performed with ANNs
that had a single hidden layer. Indeed, in the
simulations shown below we used an ANN with four
neurons in the input layer, one hidden layer with five
neurons and an output layer with a single neuron. In
all cases we also used the same training parameters:
learning rate (η) equal to 0.3, time factor (μ) equal to
0.5 and the hyperbolic tangent as the activation
function of the neurons.

Table 5 shows the results for the Fibonacci series
simulation, initially presented in Table 1.

In Fibonacci series, the ratio xk+1/xk converges to
1.618. In our simulation, there is a convergence to
1.612 at the far right of Table 5. On average, we found
that this ratio, for data simulation, is around 1.641,
indicating an ANN reasonable learning of this series.

The resulting simulation for the Brazilian population
evolution in the last century is presented in Table 6.

We verify that the simulated value is very close to
the actual values presented by IBGE (The Brazilian
Institute of Geography and Statistics) in Ref. [1], an
error at most 2.5% was observed. When required to
infer information for 2000 and 2010, the network

Table 5 Simulation of Fibonacci series on an ANN.

Real value Simulated value
5 4.3
8 7.0
13 11.8
21 19.4
34 31.9
55 52.1
89 85.3
144 139.9
233 229.9
377 377.2
610 608.2

http://www.scilab.org/�

Neural Networks and the Study of Time Series: An Application in Engineering Education

159

presented the values shown in Table 7, which are
compared to the data presented by IBGE in Ref. [1]
again.

We observe that the inferred value for 2000 has a
reasonable approximation to the actual value (around
6.5% of the observed value in fact). In turn, the result
inferred for 2010 can be partly explained by a
reduction in the population growth trend, verified
since the late twentieth century, which changed the
studied series behavior.

Table 8 shows a comparison between AMA
effectively verified and simulated by an ANN for
EMBR3 share.

In Table 8, there is a difference of less than 1%
between simulated and verified values. When asked to
infer AMA for the days between 25/03 and 27/03/13
the network presented the following results, which are
compared with the values verified in Table 9.

Table 6 Brazilian population evolution simulation in the
twentieth century.

Year Official IBGE data
(in millions)

Simulated value
(in millions)

1940 41.2 40.9
1950 51.9 50.8
1960 70.9 70.0
1970 94.5 94.0
1980 121.1 118.0
1990 146.9 146.6

Table 7 A Brazilian evolution simulation inferred by the
network.

Year Official IBGE data
(in millions)

Simulated value
(in millions)

2000 169.6 181.3
2010 190.8 227.4

Table 8 Arithmetic moving average of closing prices of
EMBR3 share.

Date AMA verified
(Brazil Reais)

AMA simulated
(Brazil Reais)

14/03/13 17.22 17.20
15/03/13 17.25 17.34
18/03/13 17.27 17.41
19/03/13 17.28 17.43
20/03/13 17.28 17.45
21/03/13 17.33 17.44
22/03/13 17.40 17.45

Table 9 Comparison between inferred and verified values
by the network for the period between 25/03/13 and
27/03/13.

Date AMA verified
(Brazil Reais)

AMA simulated
(Brazil Reais)

25/03/13 17.37 17.54
26/03/13 17.53 17.58
27/03/13 17.58 17.63

Observing the values we may note that even in this
case the error between verified and inferred values is
also less than 1%.

5. Final Conclusions

In this study, we presented an alternative way to the
study and teaching of time series through ANNs.
Throughout the text, the MLP-ANN model was
discussed and we presented application examples.

Through this study, we can state that ANN
application on time series that have a behavior
perfectly defined by an equation, as in the Fibonacci
Series, does not produce practical effect, as ANN
simulation are always approximations of values that
can be fully determined. In turn, with respect to series
whose equations can be only approximate, as in the
case of the series representing the Brazilian population
evolution, the use of ANNs can be a very interesting
analysis tool by which implicit behaviors are likely to
be detected. Regarding the more complex nature series,
as in the case of time series of share prices, the use of
ANNs may constitute a fundamental tool of analysis
that demonstrates behaviors that could hardly likely to
be detected by other methods.

The major inconvenient in using ANNs for time
series analysis lies in the difficulty of finding the most
suitable network topology for each case to be
simulated. Using a large number of intermediate
layers is not recommended because each time the
measured error is propagated during training to the
previous layer it can turn out to be higher. Even
respecting the modeling conditions presented in Refs.
[16-18], they suggest the use of no more than two
intermediate layers to any mathematical function,
setting the number of neurons in each hidden layer is

Neural Networks and the Study of Time Series: An Application in Engineering Education

160

not a simple task.
The number of nodes in an ANN hidden layer

strongly depends on training patterns distribution and
network validation. The use of many units may
facilitate memorizing training patterns. However, this
will limit the ability to extract general features that
allow generalization or recognition of patterns not
seen during training (overfitting). Moreover, a very
small number of nodes may force the network to
spend too much time trying to find a good
representation. If the number of examples is much
larger than the number of connections between the
nodes, overfitting is improbable, but underfitting can
occur (network does not converge during its training).

Finally, this proposal applicability in the classroom
is justified by the need to provide engineering courses
students’ new tools for the study of cases that are not
necessarily covered by the traditional
teaching/learning tools (forecasting, for example). In
this sense, the use of neural networks in time series
teaching also seeks to instigate students and
researchers to develop new and better tools for their
everyday problems, considering thus, the indivisibility
of teaching and research in an undergraduate course.

References
[1] IBGE (Brazilian Institute for Geography and Statistics).

2010 Census Synopsis. Rio de Janeiro: IBGE, 2011.
Accessed February 15, 2013.
http://www.ibge.gov.br/home/estatistica/populacao/censo
2010/tabelas_pdf/Brasil_tab_1_4.pdf.

[2] Lippmann, R. P. 1987. “An Introduction to Computing
with Neural Nets.” IEEE ASSP Magazine 4: 4-22.

[3] Burke, H., Rosen, D., and Goodman, P. 1995.
“Comparing the Prediction Accuracy of Artificial Neural
Networks and Other Statistical Models for Breast Cancer
Survival.” In Neural Information Processing Systems 7,
edited by Tesauro, G., Touretzky, D. S., Leen, T. K.
Cambridge: MIT Press.

[4] Mighell, D. A., Wikinson, T. S., and Goodman, J. W.
1988. “Back Propagations and Its Application to
Handwritten Signature Verification.” In Advances in
Neural Information Processing Systems 2, edited by
Lippmann, R. P., Moddy, J. E., and Touretzky, D. S.

Massachusetts: Morgan Kaufmann.
[5] Philip, A. A., Taofiki, A. A., and Bidemi, A. A. 2011.

“Artificial Neural Network Model for Forecasting
Foreign Exchange Rate.” WCSIT (World of Computer
Science and Information Technology Journal) 1 (3):
110-8.

[6] Reategui, E., and Campbell, J. A. 1994. “A Classification
System for Credit Card Transactions.” In Proceedings of
the Second European Workshop on Case-Based
Reasoning, 167-74.

[7] Tarsauliya, A., Kant, S., Kala, R., Tiwari, R., and Shukla,
A. 2010. “Analysis of Artificial Neural Network for
Financial Time Series Forecasting.” International
Journal of Computer Applications 9 (5): 16-22.

[8] Yoda, M. 1994. Predicting the Tokyo Stock Market. New
Jersey: John Wiley & Sons.

[9] Haykin, S. 2001. Neural Networks—Principles and
Practice. 2nd edition. New York: Bookman.

[10] Hush, D. R., and Horne, B. G. 1993. “Progress in
Supervised Neural Networks—What’s New Since
Lippmann?” IEEE Signal Processing Magazine 1: 8-39.

[11] Fahlman, S. E. 1988. An Empirical Study of Learning
Speed in Backpropagation Networks. Technical report,
Carnegie Mellow University.

[12] Günther, F., and Fritsch, S. 2010. “Neuralnet: Training of
Neural Networks.” The R Journal 2 (1): 30-8.

[13] German, S., Bienestock, E., and Doursat, R. 1992.
“Neural Networks and the Bias-Variance Dilemma.”
Neural Computation 4: 1-58.

[14] LeCun, Y. 1989. Generalization and Network Design
Strategies. Technical report CRG-TR-89-4, Department
of Computer Science, University of Toronto, Canada.

[15] Andrews, R., and Geva, S. 1994. “Rule Extraction from a
Constrained Error Backpropagation MLP.” In
Proceedings of the 5th Australian Conference on Neural
Networks, 9-12.

[16] Hertz, J., Krogh, A., and Palmer, R. G. 1991.
Introduction to the Theory of Neural Computation,
volume Lecture Notes. Vol. 1 of Santa Fe Institute Studies
in the Science of Complexity. Massachusetts:
Addison-Wesley.

[17] Cybenko, G. 1989. “Approximation by Superpositions of
a Sigmoid Function.” Mathematic of Control, Signals and
Systems 2: 303-14.

[18] Cybenko, G. 1988. Continuos Valued Neural Networks
with Two Hidden Layers Are Sufficient. Technical report,
Department of Computer Science, Tufts University.

[19] Funuhashi, K. I. 1989. “On the Approximate Realization
of Continuos Mappings by Neural Networks.” Neural
Networks 2: 183-92.

