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Abstract: Time series are an important object of study in sciences, engineering and business, especially in cases where it is expected 
to know, predict and optimize behaviors. In this context, we intend to show the feasibility of using artificial neural networks in the 
study of several time series in an engineering course, especially those that have no overt behavior or are not able to be modeled 
mathematically in a simple way and have direct application in the education of future engineers. 
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1. Introduction  

According to our proposal, this paper is organized 
as follows: Section 2 presents the perspective of the 
study of time series in engineering education, 

 

Knowing, predicting and optimizing behaviors are 
quite common objectives in the study of time series. 
Being able to analyze data sets, understand its 
behavior and approximate predict future values can 
become a crucial factor for a project success. Thus, 
the study of series with no easy modeling behaviors, 
such as those from data mining, process optimization 
or demands prediction is, therefore, an objective to be 
carefully treated in engineering courses. Future 
engineers must, therefore, be able to analyze and 
“extract knowledge” from non-trivial time series 
modeling, being able to, as far as possible, predict 
future situations. In this context, this paper presents a 
methodology, the use of neural networks for the study 
of time series, aiming to contribute to this objective. 
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introducing the use of ANNs (artificial neural 
networks) in non-trivial time series analysis; Section 3 
presents the basic concepts on modeling and 
simulating ANN; Section 4 discusses the application 
of ANN in time series analysis; finally, Section 5 
presents our conclusions about the use of ANN in time 
series analysis and its use in engineering education. 

2. Time Series in Engineering Education 

The study of time series can be achieved more 
frequently through the use of well-defined equations, 
when the series has a well-defined behavior, or 
through approximation or interpolation equations, 
when there is a behavior that can be identified, but not 
modeled with accuracy. 

For example, Table 1 shows a time series that can 
be completely defined by the equation: 

11 −+ += kkk xxx             (1) 

where, 110 == xx . 
Table 2  shows  a  time series  representing the 

Brazilian population evolution from 1900 to 1990; it 
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Table 1  Fibonacci series. 

x0 x1 x2 x3 x4 x5 x6 x7 x8 X9 ... 
1 1 2 3 5 8 13 21 34 55 ... 

 
Table 2  Brazilian population during the twentieth century 
[1]. 

Year (x) Population in millions (y) 
1900 17.4 
1910 23.4 
1920 30.6 
1930 35.8 
1940 41.2 
1950 51.9 
1960 70.9 
1970 94.5 
1980 121.1 
1990 146.9 

 

can be approximated by an exponential function of the 
type: 

xaeay ⋅⋅= 1
0               (2) 

where, a0 and a1 are constants that can be determined 
through the solution of the system: 

][][][][][ YXAXX TT •=••       (3) 

While the above cases have a relatively predictable 
behavior, we should consider a problem to be outlined: 
a time series does not always have a well-defined 
behavior which can be accurately described by an 
equation. Also, they do not always have a behavior 
that allows an approximation or interpolation using a 
given equation. In this context we intent to present the 
use of neural networks in the study of time series: they 
can detect and learn behaviors that are not 
mathematically modeled in a trivial way. 

As presented in Ref. [2], we can state that ANN is 
able to identify behaviors from prior learning of 
certain patterns. Thus, the series behaviors we 
presented before may be learned by a particular ANN, 
making it possible to infer values for this series, 
within certain limits. Furthermore, implicit behaviors, 
which could not be observed in a direct or trivial way, 
may be detected by an ANN. For example, the study 
of a series of prices of a particular share traded on a 

stock exchange can be accomplished through an ANN. 
In this way, Table 3 shows a time series with the 
AMA (arithmetic moving averages) of five days of 
EMBR3 share closing price (EMBRAER-ON) traded 
on the Sao Paulo Stock Exchange (BOVESPA). 

The MLP (multilayer perceptron) is an ANN model 
very interesting for the study of time series. Through 
this model, implicit patterns in a time series are likely 
to be detected, allowing the network to identify certain 
behaviors. Thus, the time series analysis we proposed 
here is focused on the use of the MLP-ANNs, as an 
alternative to conventional methods for the series study. 

3. Neural Networks and Engineering 
Education 

An ANN is a system commonly abstract, which can 
be used in various applications such as recognition 
and classification of patterns, modeling of physical 
and/or mathematical problems, processes control and 
signal processing as well as several other applications 
such as shown in Refs. [3-8]. Therefore, before its use 
in these tasks, an ANN must be “trained” through 
behavior patterns examples. Thus, in its training phase, 
the network is presented to different input patterns and 
their desired output patterns, in order to “learn” the 
“formation law”, correlating each input pattern to its 
respective output pattern. 

After this phase, if an input pattern that is not part 
of the training set is presented to the network, it is 
expected that the ANN could infer a likely output 
pattern. As an example, let us consider that we want to 
check a possible formation law for the series described 
in Table 3. 
 

Table 3  Arithmetic moving average of EMBR3 share 
closing prices. 

Date Price (in Brazilian Reais) 
14/03/13 17.22 
15/03/13 17.25 
18/03/13 17.27 
19/03/13 17.28 
20/03/13 17.28 
21/03/13 17.33 
22/03/13 17.40 
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Table 4  Training set for an ANN. 

Input vector Desired output 
(x1; x2; x3; x4) (y) 
17.22; 17.25; 17.27; 17.28 17.28 
17.25; 17.27 ; 17.28; 17.28 17.33 
17.27; 17.28; 17.28; 17.33 17.40 

 

In this case, during its training phase, we could give 
to the network the following input and output patterns, 
so it could understand the formation of this law series. 

So after the training phase, if the following input 
pattern is presented to the network (17.27; 17.28; 
17.28; 17.33), it is expected that it presents in its 
output an estimate for a moving average of 22/03/13 
(i.e., 17.40, according to Tables 3 and 4). 

An ANN model that fits within this proposal is the 
MLP proposed in Ref. [9], which is discussed below. 

3.1 The Perceptron 

A MLP-ANN is a layered organization of a 
computational element called “perceptron”. A 
perceptron, in turn, is characterized by trying to 
express a symbolic (and mathematical) representation 
of a biological neuron. Fig. 1 shows a symbolic model 
of a perceptron. Its model is widely discussed in Refs. 
[2, 9, 10] and briefly presented below. Refs. [9-12] 
also present in details the “ackpropagation algorithm” 
which will be discussed later. 

In this model there is a “node”, representing the 
neuron’s body, powered by various external stimuli (x) 
through “synaptic connections”. The computation 
result of the external stimuli processed by the 
perceptron is exported via an output synaptic 
connection (y), which will transmit this signal to the 
input of other network perceptrons. 

The external stimuli that a perceptron receives can 
be  obtained  from  the  output  exported  by  other 
perceptrons  or  from  the  ANN  input, or from a 
particular “polarization signal” (bias) of the neuron. 
According to Ref. [13], the polarization signal has 
great importance in controlling the noise of the data 
presented to the network. All signals that arrive at a 
neuron are considered by the connection “synaptic 

 
Fig. 1  Symbolic model of a perceptron. 
 

weight” that takes this signal to the neuron. 
The mathematical equation that forms this model 

takes into account that the input stimuli have their 
effects thoughtfully summed. That is: 

bx
n

i
ii +⋅= ∑

=1

ων             (4) 

where, “v” is the thoughtfully sum of the input stimuli, 
“wi.xi” is the product between an input signal “x” and 
the synaptic weight “w” of the connection that leads 
the signal to the neuron, “b” is the particular 
polarization signal of this neuron. 

The perceptron response to incoming stimuli is a 
function of their considered sum. That is: 

y = φ(v)                (5) 
where, “y” is the neuron's response, “φ(v)” is the 
neuron’s “activation function”, correlating the output 
to input stimuli. 

The perceptron activation function “φ (v)” must be 
non-linear in order to allow the entire ANN to 
represent non-linear functions, in addition to being 
continuous and “soft” in order to be differentiable in 
all its interval of consideration. 

An example of a very popular activation function in 
MLP networks is the tangent-hyperbolic function: 

𝜑𝜑(𝑣𝑣) =  α. tanh(𝛽𝛽. 𝜈𝜈)           (6) 
where “α” and “β” are constants. 

For this activation function, Ref. [14] considers α = 
1.7159 and β = 2/3 as appropriate values. 

3.2 Layered Neural Networks 

As we mentioned previously, an ANN-MLP is 
composed by layers association of perceptrons. Fig. 2 
shows a model for a MLP. 

In this architecture we have an “input layer”, where 
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the network stimuli (signals) are applied, which are 
propagated layer by layer until the network output, 
from the “1st hidden layer” of neurons until the 
network “output layer”, which will present the results 
of all network processing to the external environment. 

It should also be noted that in a MLP the inputs 
from a given neuron are connected to the outputs of all 
neurons of the preceding layer, and the output of this 
neuron is connected to all inputs of the neurons of 
immediately posterior layer. 

3.3 ANN Learning — The Backpropagation Algorithm 

During the learning phase, so that the network can 
learn the desired behavior, a recursive algorithm such 
as the “error backpropagation algorithm” (or error 
backpropagation) is used. 

In the backpropagation algorithm, during the 
network training phase, an “x” input pattern is 
presented to the network and propagated towards the 
output, generating an “o” output pattern, which is 
compared to the desired value “d” for the concerned 
input pattern. 

The “o-d” difference between the desired pattern 
and the actually obtained in the network output is the 
error “e” of this learning phase for this pattern. If e = 0, 
then we conclude that the network has “learned” the 
“x” input pattern. If e ≠ 0, then the error should be 
backpropagated (from the output layer toward the 1st 

hidden layer) in order to adjust the connections 
weights between the layers’ neurons.  

Formally, we have: 
error signal: ej = dj – oj 

where, dj is an element of the desired output vector for 
the presented input pattern, oj is an output vector 
element obtained with the input vector propagation, 
and ej is the error vector element obtained. 

According to Ref. [13], to minimize ANN training 
difficulties, the error function should be non-linear. 
Thus, for the presented input pattern, we define the 
instantaneous sum of squared errors on the network 
output by: 

∑
=

⋅=
m

j
je

1

2

2
1ε              (7) 

where, “m” is the number of elements of the error 
vector (which equals the number of neurons in the 
output layer of the network). 

If we consider all input patterns to be presented in 
the training phase, we can determine the “mean square 
error” for these patterns during an “epoch” (“epoch” is 
every propagation/backpropagation held for all input 
patterns presented to the network in its training phase). 
Therefore, 

∑
=

⋅=
N

n
QM n

N 1
)(1 εε            (8) 

where, N is the number of training patterns presented 
 

 
Fig. 2  Basic model for a MLP. 
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to the network and ε(n) is the obtained error while 
presenting the pattern n. 

Therefore, the less will be the mean square error 
value (εQM) the better the network input patterns 
learning in a given epoch. Thus, if εQM = 0, the 
network learned with absolute precision all patterns 
presented. 

Thus, a proposal to a MLP training can be: 
• While εQM is not low enough: 
(a) For each training pattern: 
- propagate this pattern, toward the output, layer 

by layer; 
- calculate the error “e” between the desired output 

and the output obtained; 
- Retropropagate the output error towards the input, 

correcting the synaptic weights of each connection. 
- End 
(b) Update the value of εQM. 
• End 
In the algorithm presented above, the error correction 

to adjust the synaptic weights can be achieved by the 
“delta rule”. This synaptic weights adjustment is 
primordial to the ANN learning, since the knowledge 
acquired by the network is condensed in these. 
Considering the connection between two neurons of 
consecutive layers, updating the synaptic weight “ωji” 
between these neurons, from iteration to another, is 
given by: 

jijiji tt ωωω ∆+=+ )()1(        (9) 

where, ωji(t) is the synaptic weight current value, Δωji 
is the synaptic weight correction to be applied, ωji(t + 
1) is the updated value (next value) of synaptic weight. 

The correction value calculation of the synaptic 
weight (ωji) should come in the opposite gradient 
direction of the accumulated error in the propagation 
of an epoch of input samples (training set). Thus, 
according to the delta rule, the synaptic weight 
correction can be given by: 

ijji y⋅⋅=∆ δηω             (10) 

where, η is the neuron’s “learning rate” (0< η <1), 
which value, arbitrated by the network user, defines 
how quickly the network will converge to the 
minimum point; δj is the “local gradient” of neuron j 
for error correction, calculated by the network 
according to the backpropagated error; yi is the neuron 
“i” output value. 

The local gradient ”δj” value for the neuron “j” can 
be calculated as follows: 

jj e⋅= 'ϕδ , if neuron j belongs to the output layer; 
or 

∑ ⋅⋅=
k

kjkj ωδϕδ ' , if neuron j belongs to a hidden 

layer. 
In order to improve the delta rule convergence, we 

may use a “time factor” (μ) which will consider Δωji 
value of the previous iteration for calculating the next 
value: 

)()()1()( tyttt ijjiji ⋅⋅+−∆⋅=∆ δηωµω  (11) 

being “μ” arbitrated between 0 and 1. 
Simply, the ANN design and training process can 

be described as: 
Network design: 
(1) Define the size of the input vector of the 

network, i.e., the number of nodes of the input layer of 
the network; 

(2) Define the size of the output vector of the 
network, i.e., the number of neurons in the output 
layer of the network; 

(3) Define the number of hidden layers of the 
network; 

(4) Define the number of neurons in each hidden 
layer of the network; 

(5) Assign random values (between -1 and 1) for 
the bias signal of each neuron; 

(6) Assign random values (between -1 and 1) for 
the synaptic weights of each connection of the ANN; 

(7) Define the activation function of the neurons 
and its derived; 

(8) End. 
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Network training: 
(1) Define values for η and μ; 
(2) Define the threshold value for εQM; 
(3) While εQM is not low enough: 
a. For each training pattern: 
 Apply the pattern to the input x of the ANN; 
 Calculate the output y of each neuron in the first 

hidden layer, applying these outputs to the inputs of 
the next layer, also calculating the outputs of this layer 
until the output layer (propagation of the input signal); 
 Calculate the error (e) for this pattern, comparing 

the desired value for the output (d) and the value 
obtained at the output (o) for the applied input; 
 From the output layer, toward the input layer of 

the network (error backpropagation): 
- Calculate the local gradient (δ) of each neuron of 

each layer. 
 From the output layer toward the input layer of 

the network: 
- Calculate Δω of each synaptic connection; 
- Update ω of each synaptic connection. 
End. 
b. Update the value of εQM for this epoch; 
c. End. 
(4) End. 
After the network training, its use is accomplished 

simply by presenting any input pattern, which is 
propagated towards the network output, where the 
network response can be observed to the input 
stimulus presented. 

4. Implementation on Case Studies 

A MLP-ANN implementation and simulation can 
be accomplished through computer programs 
development in various languages. These authors 
implemented ANNs in the programming language of 
“SciLab” (http://www.scilab.org), obtaining the 
following results for the simulations. 

According to Refs. [16, 17], an ANN with a single 
intermediate layer is sufficient to approximate any 
continuous function. In turn, Cybenko [18] states that 

any mathematical function can be modeled by an 
ANN with no more than two intermediate layers. 
Funuhashi [19] also investigates the number of 
intermediate layers needed for class function 
implementation in an ANN. Thus, as the series we 
desire to simulate can be approximated by continuous 
functions, all simulations were performed with ANNs 
that had a single hidden layer. Indeed, in the 
simulations shown below we used an ANN with four 
neurons in the input layer, one hidden layer with five 
neurons and an output layer with a single neuron. In 
all cases we also used the same training parameters: 
learning rate (η) equal to 0.3, time factor (μ) equal to 
0.5 and the hyperbolic tangent as the activation 
function of the neurons.  

Table 5 shows the results for the Fibonacci series 
simulation, initially presented in Table 1. 

In Fibonacci series, the ratio xk+1/xk converges to 
1.618. In our simulation, there is a convergence to 
1.612 at the far right of Table 5. On average, we found 
that this ratio, for data simulation, is around 1.641, 
indicating an ANN reasonable learning of this series. 

The resulting simulation for the Brazilian population 
evolution in the last century is presented in Table 6. 

We verify that the simulated value is very close to 
the actual values presented by IBGE (The Brazilian 
Institute of Geography and Statistics) in Ref. [1], an 
error at most 2.5% was observed. When required to 
infer information for 2000 and 2010, the network 
 

Table 5  Simulation of Fibonacci series on an ANN. 

Real value Simulated value 
5 4.3 
8 7.0 
13 11.8 
21 19.4 
34 31.9 
55 52.1 
89 85.3 
144 139.9 
233 229.9 
377 377.2 
610 608.2 

http://www.scilab.org/�
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presented the values shown in Table 7, which are 
compared to the data presented by IBGE in Ref. [1] 
again. 

We observe that the inferred value for 2000 has a 
reasonable approximation to the actual value (around 
6.5% of the observed value in fact). In turn, the result 
inferred for 2010 can be partly explained by a 
reduction in the population growth trend, verified 
since the late twentieth century, which changed the 
studied series behavior. 

Table 8 shows a comparison between AMA 
effectively verified and simulated by an ANN for 
EMBR3 share. 

In Table 8, there is a difference of less than 1% 
between simulated and verified values. When asked to 
infer AMA for the days between 25/03 and 27/03/13 
the network presented the following results, which are 
compared with the values verified in Table 9. 
 
Table 6  Brazilian population evolution simulation in the 
twentieth century. 

Year Official IBGE data 
(in millions) 

Simulated value 
(in millions) 

1940 41.2 40.9 
1950 51.9 50.8 
1960 70.9 70.0 
1970 94.5 94.0 
1980 121.1 118.0 
1990 146.9 146.6 

 
Table 7  A Brazilian evolution simulation inferred by the 
network. 

Year Official IBGE data 
(in millions) 

Simulated value 
(in millions) 

2000 169.6 181.3 
2010 190.8 227.4 

 
Table 8  Arithmetic moving average of closing prices of 
EMBR3 share. 

Date AMA verified 
(Brazil Reais) 

AMA simulated 
(Brazil Reais) 

14/03/13 17.22 17.20 
15/03/13 17.25 17.34 
18/03/13 17.27 17.41 
19/03/13 17.28 17.43 
20/03/13 17.28 17.45 
21/03/13 17.33 17.44 
22/03/13 17.40 17.45 

Table 9  Comparison between inferred and verified values 
by the network for the period between 25/03/13 and 
27/03/13. 

Date AMA verified 
(Brazil Reais) 

AMA simulated 
(Brazil Reais) 

25/03/13 17.37 17.54 
26/03/13 17.53 17.58 
27/03/13 17.58 17.63 

 

Observing the values we may note that even in this 
case the error between verified and inferred values is 
also less than 1%. 

5. Final Conclusions 

In this study, we presented an alternative way to the 
study and teaching of time series through ANNs. 
Throughout the text, the MLP-ANN model was 
discussed and we presented application examples. 

Through this study, we can state that ANN 
application on time series that have a behavior 
perfectly defined by an equation, as in the Fibonacci 
Series, does not produce practical effect, as ANN 
simulation are always approximations of values that 
can be fully determined. In turn, with respect to series 
whose equations can be only approximate, as in the 
case of the series representing the Brazilian population 
evolution, the use of ANNs can be a very interesting 
analysis tool by which implicit behaviors are likely to 
be detected. Regarding the more complex nature series, 
as in the case of time series of share prices, the use of 
ANNs may constitute a fundamental tool of analysis 
that demonstrates behaviors that could hardly likely to 
be detected by other methods.  

The major inconvenient in using ANNs for time 
series analysis lies in the difficulty of finding the most 
suitable network topology for each case to be 
simulated. Using a large number of intermediate 
layers is not recommended because each time the 
measured error is propagated during training to the 
previous layer it can turn out to be higher. Even 
respecting the modeling conditions presented in Refs. 
[16-18], they suggest the use of no more than two 
intermediate layers to any mathematical function, 
setting the number of neurons in each hidden layer is 
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not a simple task.  
The number of nodes in an ANN hidden layer 

strongly depends on training patterns distribution and 
network validation. The use of many units may 
facilitate memorizing training patterns. However, this 
will limit the ability to extract general features that 
allow generalization or recognition of patterns not 
seen during training (overfitting). Moreover, a very 
small number of nodes may force the network to 
spend too much time trying to find a good 
representation. If the number of examples is much 
larger than the number of connections between the 
nodes, overfitting is improbable, but underfitting can 
occur (network does not converge during its training). 

Finally, this proposal applicability in the classroom 
is justified by the need to provide engineering courses 
students’ new tools for the study of cases that are not 
necessarily covered by the traditional 
teaching/learning tools (forecasting, for example). In 
this sense, the use of neural networks in time series 
teaching also seeks to instigate students and 
researchers to develop new and better tools for their 
everyday problems, considering thus, the indivisibility 
of teaching and research in an undergraduate course. 

References 
[1] IBGE (Brazilian Institute for Geography and Statistics). 

2010 Census Synopsis. Rio de Janeiro: IBGE, 2011. 
Accessed February 15, 2013. 
http://www.ibge.gov.br/home/estatistica/populacao/censo
2010/tabelas_pdf/Brasil_tab_1_4.pdf.  

[2] Lippmann, R. P. 1987. “An Introduction to Computing 
with Neural Nets.” IEEE ASSP Magazine 4: 4-22. 

[3] Burke, H., Rosen, D., and Goodman, P. 1995. 
“Comparing the Prediction Accuracy of Artificial Neural 
Networks and Other Statistical Models for Breast Cancer 
Survival.” In Neural Information Processing Systems 7, 
edited by Tesauro, G., Touretzky, D. S., Leen, T. K.  
Cambridge: MIT Press. 

[4] Mighell, D. A., Wikinson, T. S., and Goodman, J. W. 
1988. “Back Propagations and Its Application to 
Handwritten Signature Verification.” In Advances in 
Neural Information Processing Systems 2, edited by 
Lippmann, R. P., Moddy, J. E., and Touretzky, D. S. 

Massachusetts: Morgan Kaufmann. 
[5] Philip, A. A., Taofiki, A. A., and Bidemi, A. A. 2011. 

“Artificial Neural Network Model for Forecasting 
Foreign Exchange Rate.” WCSIT (World of Computer 
Science and Information Technology Journal) 1 (3): 
110-8. 

[6] Reategui, E., and Campbell, J. A. 1994. “A Classification 
System for Credit Card Transactions.” In Proceedings of 
the Second European Workshop on Case-Based 
Reasoning, 167-74. 

[7] Tarsauliya, A., Kant, S., Kala, R., Tiwari, R., and Shukla, 
A. 2010. “Analysis of Artificial Neural Network for 
Financial Time Series Forecasting.” International 
Journal of Computer Applications 9 (5): 16-22. 

[8] Yoda, M. 1994. Predicting the Tokyo Stock Market. New 
Jersey: John Wiley & Sons. 

[9] Haykin, S. 2001. Neural Networks—Principles and 
Practice. 2nd edition. New York: Bookman. 

[10] Hush, D. R., and Horne, B. G. 1993. “Progress in 
Supervised Neural Networks—What’s New Since 
Lippmann?” IEEE Signal Processing Magazine 1: 8-39. 

[11] Fahlman, S. E. 1988. An Empirical Study of Learning 
Speed in Backpropagation Networks. Technical report, 
Carnegie Mellow University. 

[12] Günther, F., and Fritsch, S. 2010. “Neuralnet: Training of 
Neural Networks.” The R Journal 2 (1): 30-8. 

[13] German, S., Bienestock, E., and Doursat, R. 1992. 
“Neural Networks and the Bias-Variance Dilemma.” 
Neural Computation 4: 1-58. 

[14] LeCun, Y. 1989. Generalization and Network Design 
Strategies. Technical report CRG-TR-89-4, Department 
of Computer Science, University of Toronto, Canada. 

[15] Andrews, R., and Geva, S. 1994. “Rule Extraction from a 
Constrained Error Backpropagation MLP.” In 
Proceedings of the 5th Australian Conference on Neural 
Networks, 9-12. 

[16] Hertz, J., Krogh, A., and Palmer, R. G. 1991. 
Introduction to the Theory of Neural Computation, 
volume Lecture Notes. Vol. 1 of Santa Fe Institute Studies 
in the Science of Complexity. Massachusetts: 
Addison-Wesley. 

[17] Cybenko, G. 1989. “Approximation by Superpositions of 
a Sigmoid Function.” Mathematic of Control, Signals and 
Systems 2: 303-14.  

[18] Cybenko, G. 1988. Continuos Valued Neural Networks 
with Two Hidden Layers Are Sufficient. Technical report, 
Department of Computer Science, Tufts University. 

[19] Funuhashi, K. I. 1989. “On the Approximate Realization 
of Continuos Mappings by Neural Networks.” Neural 
Networks 2: 183-92. 

 


