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ABSTRACT

Nowadays, e-mail spam is not a novelty, but it is still an important problem with a high impact on the economy. Spam
filtering poses a special problem in text categorization, in which the defining characteristic is that filters face an active
adversary, which constantly attempts to evade filtering. In this paper, we present a novel approach to spam filtering based
on a compression-based model. We have conducted an empirical experiment on eight public and real non-encoded datasets.
The results indicate that the proposed filter is fast to construct, is incrementally updateable, and clearly outperforms
established spam classifiers. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The term spam is used to denote an unsolicited commercial
e-mail. According to updated reports, the amount of spam
is still increasing. The average of spam sent per day
increased from 2.4 billion in 2002* to 300 billion in
2010.† The cost in terms of lost productivity in the USA
has reached US$ 21.58 billion annually, whereas that in
the worldwide productivity is estimated to be US$ 50
billion.{ On a worldwide basis, the information technology
cost of dealing with junk e-mail was estimated to rise from
US$ 20.5 billion in 2003 to US$ 198 billion in 2010.

In recent years, many methods have been proposed
to automatic spam filtering, such as: white and black-
lists, challenge and response systems, rule-based approaches,
methods which take into account the sender’s domain,
clustering, and others. However, machine learning algo-
rithms have been achieved more success [1]. These
methods include approaches that are considered top
performers in text categorization, such as Rocchio [2,3],
Boosting [4,5], Naïve Bayes (NB) classifiers [6–11], and
Support Vector Machines (SVMs) [12–16]. The two latter
currently appear to be the best spam filters available in the
*See http://www.spamlaws.com/spam-stats.html.
†See www.ciscosystems.cd/en/US/prod/collateral/vpndevc/cisco_2009_asr.
pdf.
{See http://www.rockresearch.com/news_020305.php.

Copyright © 2012 John Wiley & Sons, Ltd.
literature [1,11]. For more details about spam filters, refer
to the surveys [17,18,1,19,20].

A relatively recent approach for inductive inference,
which is rarely employed in text categorization, is the
MinimumDescription Length principle. It states that the best
explanation, given a limited set of observed data, is the one
that yields the greatest compression of the data [21–23].

In this paper, we present a spam classifier based on the
Minimum Description Length principle and compare its
performance with seven different models of the well-known
NB classifiers and the linear SVM. We have conducted an
empirical experiment using eight well-known, large, and
public databases, and the reported results states that our
approach outperforms currently established spam filters.

Fragments of this work were previously presented at
ACM SAC 2010 [24,10]. Here, we have connected all
ideas in a very consistent way and offered a lot more
details about each study and significantly extended the
performance evaluation. To be clear, first, we present more
details about the proposed method, its main features and
how it works. Second, we compare the new approach with
several established classifiers instead of only two, as
presented in the mentioned papers. Third and the most
important, we evaluate the new classifier using public
and larger e-mail corpora, such as TREC06 and CEAS08.

The remainder of this paper is organized as follows:
Section 2 presents the general concepts regarding spam
classifiers. In Section 3, we offer details about the
proposed compression-based approach. The experiments
327
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and results are showed in Section 4. Finally, Section 5
offers conclusions and outlines for future work.
2. GENERAL CONCEPTS

In general, the machine learning algorithms applied to
spam filtering can be summarized as follows.

Given a set ofmessagesM ¼ m1;m2; . . . ;mj; . . . ;mMj j
� �

and a category set C ¼ spam csð Þ; legitimate clð Þf g ,
where mj is the jth e-mail inM and C is the possible label
set, the task of automated spam filtering consists in
building a Boolean categorization function Ψ mj; ci

� �
:

M�C ! true; falsef g . When Ψ(mj, ci) is true, it
indicates message mj belongs to category ci; otherwise,
mj does not belong to ci.

In the setting of spam filtering, there are only two
category labels: spam and legitimate (also called ham).
Each message mj 2 M can only be assigned to one of
them, but not to both. Therefore, we can use a simplified
categorization function Ψspam mj

� �
: M ! true; falsef g .

Hence, a message is classified as spam when Ψspam(mj) is
true and legitimate otherwise.

The application of supervised machine learning algo-
rithms for spam filtering consists of two stages:

(1) Training. A set of labeled messages (M) must be
provided as training data, which are first trans-
formed into a representation that can be understood
by the learning algorithms. The most commonly
used representation for spam filtering is the vector
space model, in which each document mj 2 M is
transformed into a real vector ! xj 2 R Φj j , where
Φ is the vocabulary (feature set), and the coordi-
nates of ! xj represent the weight of each feature
in Φ. Then, we can run a learning algorithm
over the training data to create a classifier
Ψspam ! xj

� �! true; falsef g.
(2) Classification. The classifierΨspam ! xj

� �
is applied

to the vector representation of a message ! x to
produce a prediction whether ! x is spam or not.
2.1. Message representation

Eachmessagem is composed by a set of tokensm={t1, . . ., t|m|},
where each token tk may be a term (or word; e.g.,
“viagra”), a set of terms (e.g., “to be removed”), or a single
character (e.g., “$”). Thus, we can represent each e-mail
by a vector ! x ¼ x1; . . . ; x mj j

� �
, where x1, . . ., x|m| are

values of the attributes X1, . . .,X|m| associated with the
tokens t1, . . ., t|m|. In the simplest case, each token repre-
sents a single term, and all attributes are Boolean: Xi = 1
if the message contains ti, or Xi = 0 otherwise.

Alternatively, attributes may be an integer computed by
token frequencies (TFs) representing how many times each
token appears in the message. A third alternative is to
328 Sec
associate each attribute Xi to a normalized TF, xi ¼ n tið Þ
mj j ,

where n(ti) is the number of occurrences of the token
represented by Xi in m and |m| is the length of m measured
in token occurrences. Normalized TF takes into account
the token repetition versus the size of message [25].
3. COMPRESSION-BASED SPAM
FILTER

Compression-based techniques seem to be a promising
alternative to categorization tasks. Teahan and Harper [26]
and Frank et al. [27] performed extensive experiments to
evaluate the performance of different approaches for text
categorization on the standard Reuters-21578 collection
and compared compression-based algorithms, such as
prediction by partial matching with NB classifiers and
SVM. According to the found results, compression-based
models perform better than word-based NB techniques and
approach the performance of linear SVM.

A relatively recent method for inductive inference,
which is still rarely used in text categorization, is the
Minimum Description Length (MDL) principle. It states
that the best explanation, given a limited set of observed
data, is the one that yields the greatest compression of
the data [21–23].

The purpose of statistical modeling is to discover
regularities in observed data. The success in finding such
regularities can be measured by the length with which the
data can be described. This is the rationale behind the
MDL principle [21]. The fundamental idea is that any regu-
larity in a given set of data can be used to compress the data.

According to the traditional MDL principle, the favorite
model results in the shortest description of the model and
the data, given this model. In other words, the model that
best compresses the data is selected. This model selection
criterion naturally balances the complexity of the model
and the degree to which this model fits the data. This
principle was first introduced by Rissanen [21], and it has
become an important concept in information theory.

Let Z be a finite or countable set and let P be a proba-
bility distribution on Z. Then there exists a prefix code C
for Z such that for all z 2 Z , LC(z) = d� log 2P(z)e. C is
called the code corresponding to P. Similarly, let C be a
prefix code for Z. Then there exists a (possibly defective)
probability distribution P such that for all z 2 Z ,
� log2P

0
zð Þ ¼ LC0 zð Þ. P0 is called the probability distribu-

tion corresponding to C0. Thus, large probability according
to P means small code length according to the code
corresponding to P and vice versa [21–23].

The goal of statistical inference may be cast as trying to
find regularity in the data. Regularity may be identified
with ability to compress. MDL combines these two
insights by viewing learning as data compression: it tells
us that, for a given set of hypotheses H and data set D,
we should try to find the hypothesis or combination of
hypotheses in H that compresses D most [21–23].
urity Comm. Networks 2016; 9:327–335 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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This idea can be applied to all sorts of inductive
inference problems, but it turns out to be most fruitful in
problems of model selection and, more generally, dealing
with overfitting [23]. An important property of MDL
methods is that they provide automatically and inherently
protection against overfitting and can be used to estimate
both the parameters and the structure of a model. In
contrast, to avoid overfitting when estimating the structure
of a model, traditional methods such as maximum likelihood
must be modified and extended with additional, typically
ad hoc principles [23].

Consider the following example. Suppose we flip a coin
1000 times and we observe the numbers of heads and tails.
We consider two model classes: the first consists of a code
that represents each outcome with a 0 for heads or a 1 for
tails. This code represents the hypothesis that the coin is
fair. The code length according to this code is always
exactly 1000 bits. The second model class consists of all
codes that are efficient for a coin with some specific bias,
representing the hypothesis that the coin is not fair. Say
that we observe 510 heads and 490 tails. Then the code
length according to the best code in the second model class
is shorter than 1000 bits. For this reason a naive statistical
method might put forward this second hypothesis as a
better explanation for the data. However, in an MDL
approach, we would have to construct a single code based
on the hypothesis; we cannot just use the best one. A
simple way to do it would be to use a two-part code, in
which we first specify which element of the model class
has the best performance, and then, we specify the data
using that code. We will need quite a lot of bits to specify
which code to use; thus, the total codelength based on the
second model class would be larger than 1000 bits. Thus, if
we follow an MDL approach, the conclusion has to be that
there is not enough evidence in support of the hypothesis
that the coin is biased, even though the best element of
the second model class provides better fit to the data.
Consult Grunwald [23] for further details.

In essence, compression algorithms can be applied to
text categorization by building one compression model
from the training documents of each class and using these
models to evaluate the target document.

3.1. The proposed spam filter

Given a set of classified training messagesM, the task is to
assign a target message m with an unknown label to one of
the classes c2 {spam, ham}. First, the method measures
the increase of the description length of the data set as a
result of the addition of the target document. Finally, it
chooses the class for which the description length increase
is minimal.

We consider in this work, each class (model) c as a
sequence of tokens extracted from the messages and
inserted into the training set. Each token t from m has a
code length Lt based on the sequence of tokens presented
in the messages of the training set of c. The length of m
when assigned to the class c corresponds to the sum
Security Comm. Networks 2016; 9:327–335 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
of all code lengths associated with each token of m,

Lm ¼
X mj j

i¼1
Lti . We calculateLti ¼ � log2Ptid e , where P

is a probability distribution related with the tokens of class.
Let nc(ti) be the number of times that ti appears in messages
of class c, then the probability that any token belongs to
c is given by the maximum likelihood estimation:

Pti ¼
nc tið Þ þ 1

Δj j
nc þ 1

where nc corresponds to the sum of nc(ti) for all tokens that
appear in messages that belongs to c and |Δ| is the vocabu-
lary size. In this work, we set |Δ| = 232, that is, each token
in an uncompress mode is a symbol with 32 bits. This
estimation reserves a “portion” of probability to terms that
the classifier has never seen before.

The proposed spam filter classifies a message using the
following steps:

(1) Tokenization: the classifier extracts all tokens of the
message m= {t1, . . ., t|m|}.

(2) The method calculates the increase of the descrip-
tion length when m is assigned to each class c2 {
spam, ham} by the following equations:

Lm spamð Þ ¼
Xmj j

i¼1

� log2
nspam tið Þ þ 1

Δj j
nspam þ 1

 !& ’

Lm hamð Þ ¼
Xmj j

i¼1

� log2
nham tið Þ þ 1

Δj j
nham þ 1

 !& ’

(3) If Lm(spam)<Lm(ham), then m is classified as

spam; otherwise, m is labeled as ham.
(4) If necessary, the training method is called.

In the following, we offer more information regarding
steps 1 and 4.

3.2. Preprocessing

Tokenization involves breaking the text stream into tokens,
usually by means of a regular expression. We consider in
this work that tokens start with a printable character,
followed by any number of alphanumeric characters,
excluding dots, commas, and colons from the middle of
the pattern. With this pattern, domain names and mail
addresses will be split at dots, so the classifier can
recognize a domain even if subdomains vary [28]. As
proposed by Drucker et al. [12] and Metsis et al. [29],
we do not consider the number of times a token appears
in each message. So, each token is computed only once
per message it appears.

It is important to observe that we did not perform
language-specific preprocessing techniques, such as word
stemming, stop word removal, or case folding. However,
we use an e-mail-specific preprocessing before the
329



Table I. Enron 1 – Results achieved by each filter.

Classifiers Sre(%) Spr(%) Lre(%) Lpr(%) Accw(%) MCC

Basic NB 91.33 85.09 93.48 96.36 92.86 0.831
MN TF NB 82.00 73.21 87.77 92.29 86.10 0.676
MN Bool NB 82.67 60.19 77.72 91.67 79.15 0.560
MV Bern NB 72.67 60.56 80.71 87.87 78.38 0.508
Bool NB 96.00 52.55 64.67 97.54 73.75 0.551
Gauss NB 85.33 89.51 95.92 94.13 92.86 0.824
Flex Bayes 86.67 88.44 95.38 94.61 92.86 0.825
SVM 83.33 87.41 95.11 93.33 91.70 0.796
MDL 92.00 92.62 97.01 96.75 95.56 0.892

Compression-based spam filter T. A. Almeida and A. Yamakami
classification stage. We employ the Jaakko Hyvattis
normalizemime.} This algorithm converts the character
set to UTF-8, decoding Base64, Quoted-Printable, and
URL encoding, and adding warn tokens in case of
encoding errors. It also appends a copy of HTML/XML
message bodies with most tags removed, decodes HTML
entities, and limits the size of attached binary files.

3.3. Training stage

The training stage is basically responsible to update and store
the number of times each token appears in the messages of
each class. Therefore, for each message m={t1, . . ., t|m|} to
be trained, the MDL spam filter performs the following
simple steps:

For each token ti of m do the following:

(1) Search for ti in the training database.
(2) If ti is found, then update the number of messages

on the class of m that ti has appeared; otherwise
insert ti in the database.

An advantage of the MDL classifier is that we can start
with an empty training set, and according to the user
feedback, the classifier builds the models for each class.
Moreover, it is not necessary to keep the messages used
for training because the models are incrementally being
built by the TFs. As the tokens presented in the training
set are kept in a lexicographical order, the computational com-
plexity to train each message is in the order of O(|m| � logn),
where |m| is the number of tokens presented in the
message and n is the amount of tokens in the training set.
Therefore, besides that the proposed approach is incremen-
tally updateable, it is also very fast to construct, especially
when compared with other established methods. Note
that, for training, the NB classifier has a computational
complexity equivalent to O(|m| � n) [29,11] and the linear
SVM O(|m| � n2) [30].

A basic training approach is to start with an empty
model, classify each new sample, and train it in the right
class if the classification is wrong. This is known as train
}Available at http://hyvatti.iki.fi/jaakko/spam.
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on error (TOE). An improvement to this method is to train
also when the classification is right, but the score is near
the boundary – that is, train on near error (TONE) [28].

The advantage of TONE over TOE is that it accelerates
the learning process by exposing the filter to additional
hard-to-classify samples in the same training period.
Therefore, we employ the TONE as training method used
by the proposed spam filter.
4. EXPERIMENTS AND RESULTS

First, we evaluated the proposed approach using the six
well-known, large, real and public Enron datasets.} The
corpora are composed by legitimate messages extracted
from the mailboxes of six former employees of the Enron
Corporation. For further details about the dataset statistics,
refer to Metsis et al. [29].

Tables I–VI present the performance achieved by each
classifier for each Enron dataset. We highlight the highest
score in bold.

According to Cormack [1], the filters should be judged
along four dimensions: autonomy, immediacy, spam
identification, and non-spam identification. However, it is
not obvious how to measure any of these dimensions
separately, nor how to combine these measurements into
a single one for the purpose of comparing filters.

As pointed out by Almeida et al. [11], to provide a fair
evaluation, we consider as the most important measures the
Matthews correlation coefficient (MCC) [31] and the
weighted accuracy rate (Accw%) [25] achieved by each filter.

TheMCC provides a balanced evaluation of the prediction,
especially if the two classes are of different sizes [11,32]. It is
given by the following equation.

MCC ¼ A�Bð Þ � C�Dð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ Cð Þ� Aþ Dð Þ� Bþ Cð Þ� Bþ Dð Þp
}The Enron datasets are available at http://www.iit.demokritos.gr/skel/
i-config/.

urity Comm. Networks 2016; 9:327–335 © 2012 John Wiley & Sons, Ltd.
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Table II. Enron 2 – Results achieved by each filter.

Classifiers Sre(%) Spr(%) Lre(%) Lpr(%) Accw(%) MCC

Basic NB 80.00 97.56 99.31 93.53 94.38 0.850
MN TF NB 75.33 96.58 99.08 92.13 93.02 0.812
MN Bool NB 76.00 98.28 99.54 92.36 93.53 0.827
MV Bern NB 66.00 81.82 94.97 89.06 87.56 0.657
Bool NB 95.33 81.25 92.45 98.30 93.19 0.836
Gauss NB 75.33 98.26 99.54 92.16 93.36 0.823
Flex Bayes 64.00 97.96 99.54 88.96 90.46 0.743
SVM 90.67 90.67 96.80 96.80 95.23 0.875
MDL 91.33 99.28 99.77 97.10 97.31 0.937

Table III. Enron 3 – Results achieved by each filter.

Classifiers Sre(%) Spr(%) Lre(%) Lpr(%) Accw(%) MCC

Basic NB 58.00 100.00 100.00 86.45 88.59 0.708
MN TF NB 62.00 100.00 100.00 87.58 89.67 0.737
MN Bool NB 60.00 100.00 100.00 87.01 89.13 0.723
MV Bern NB 100.00 85.23 93.53 100.00 95.29 0.893
Bool NB 95.33 87.73 95.02 98.20 95.11 0.881
Gauss NB 55.33 97.65 99.50 85.65 87.50 0.676
Flex Bayes 52.67 97.53 99.50 86.78 72.83 0.656
SVM 91.33 96.48 98.76 96.83 96.74 0.917
MDL 90.00 100.00 100.00 96.40 97.28 0.931

Table IV. Enron 4 – Results achieved by each filter.

Classifiers Sre(%) Spr(%) Lre(%) Lpr(%) Accw(%) MCC

Basic NB 95.33 100.00 100.00 87.72 96.50 0.914
MN TF NB 94.00 100.00 100.00 84.75 95.50 0.893
MN Bool NB 97.11 100.00 100.00 92.02 97.83 0.945
MV Bern NB 98.22 100.00 100.00 94.94 98.67 0.966
Bool NB 98.00 100.00 100.00 94.34 98.50 0.962
Gauss NB 94.22 100.00 100.00 85.23 95.67 0.896
Flex Bayes 95.78 100.00 100.00 88.76 96.83 0.922
SVM 98.89 100.00 100.00 96.77 99.17 0.978
MDL 97.11 100.00 100.00 92.02 97.83 0.945

Table V. Enron 5 – Results achieved by each filter.

Classifiers Sre(%) Spr(%) Lre(%) Lpr(%) Accw(%) MCC

Basic NB 90.22 98.81 97.33 80.22 92.28 0.832
MN TF NB 88.59 100.00 100.00 78.12 91.89 0.832
MN Bool NB 95.11 100.00 100.00 89.29 96.53 0.922
MV Bern NB 98.10 91.86 78.67 94.40 92.47 0.814
Bool NB 85.87 100.00 100.00 74.26 89.96 0.799
Gauss NB 88.59 99.39 98.67 77.89 91.51 0.821
Flex Bayes 91.58 98.54 96.67 82.39 93.05 0.845
SVM 89.40 99.70 99.33 79.26 92.28 0.837
MDL 99.73 98.39 96.00 99.31 98.65 0.967

Compression-based spam filterT. A. Almeida and A. Yamakami
Here, A, B, C, and D correspond to the amount of true
positive, true negative, false positive, and false negative
samples, respectively.
Security Comm. Networks 2016; 9:327–335 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
The MCC returns a value inside a predefined range,
which provides more information about the classifiers
performance. It returns a real value between �1 and + 1.
331



Table VI. Enron 6 – Results achieved by each filter.

Classifiers Sre(%) Spr(%) Lre(%) Lpr(%) Accw(%) MCC

Basic NB 87.78 99.00 97.33 72.64 90.17 0.781
MN TF NB 75.78 99.42 98.67 57.59 81.50 0.651
MN Bool NB 93.33 97.45 92.67 82.25 93.17 0.828
MV Bern NB 96.00 92.31 76.00 86.36 91.00 0.753
Bool NB 66.67 99.67 99.33 49.83 74.83 0.572
Gauss NB 89.56 98.05 94.67 75.13 90.83 0.785
Flex Bayes 94.22 97.03 91.33 84.05 93.50 0.833
SVM 89.78 95.28 86.67 73.86 89.00 0.727
MDL 98.67 95.48 86.00 95.56 95.50 0.878

Compression-based spam filter T. A. Almeida and A. Yamakami
A coefficient equals to + 1 indicates a perfect prediction; 0,
an average random prediction; and �1, an inverse
prediction.

Additionally, we present other well-known measures,
such as: spam recall (Sre%), legitimate recall (Lre%),
spam precision (Spr%), and legitimate precision (Lpr%).

The results achieved by the MDL spam filter are
compared with the ones attained by methods considered
the actual top performers in spam filtering: seven different
models of NB classifiers (Basic NB [6], Multinomial term
frequency NB [MN TF NB] [33], Multinomial Boolean
NB [MN Bool NB] [34], Multivariate Bernoulli NB [MV
Bern NB] [35], Boolean NB [Bool NB] [29], Multivariate
GaussNB [Gauss NB] [29], and Flexible Bayes [Flex Bayes]
[36]); and linear SVM with Boolean attributes [12–15].

Table VII summarizes all compared NB spam filters.
For further information, consult Almeida et al. [9–11].

A comprehensive set of results, including all tables and
figures, is available at http://www.dt.fee.unicamp.br/tiago/
research/spam/spam.htm.

The MDL spam filter outperformed the compared
methods for the majority e-mail datasets used in our
empirical evaluation. Note that, in some situations, the
MDL performs much better than SVM and NB classifiers.
For instance, for Enron 1 (Table I), MDL achieved spam
recall rate equal to 92%, whereas SVM attained 83.33%.
Table VII. Naïve Bay

NB classifier P ! xð jci Þ

Basic NB
Y mj j

k¼1
P tkð jci Þ

MN TF NB
Y mj j

k¼1
P tk cij Þxkð

MN Boolean NB
Y mj j

k¼1
P tk cij Þxkð

MV Bernoulli NB
Y mj j

k¼1
P tk cij Þxk � 1� P tkð jcið Þð Þ 1�ð

Boolean NB
Y mj j

k¼1
P tkð jci Þ

MV Gauss NB
Y mj j

k¼1
g xk ; mk;ci ; sk;ci
� �

Flexible Bayes
Y mj j

k¼1
1

Lk ;ci

XLk;ci
l¼1

g xk ; mk;ci ;l ; sci
� �
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It means that for Enron 1 MDL was able to recognize over
8% more of spams than SVM, representing an improve-
ment of 10.40%. The same result can be found for Enron2
(Table II), Enron 5 (Table V), and Enron 6 (Table VI).
Both methods, MDL and SVM, achieved similar
performance with no significant statistical difference only
for Enron 3 (Table III) and Enron 4 (Table IV).

The results show that the data compression model is
more efficient to distinguish messages as spams or hams
than other compared spam filters. It achieved an impressive
average accuracy rate higher than 97%, and high precision
recall rates for all datasets indicating that the MDL spam
filter makes few mistakes. We also verify that the MDL
classifier achieved an average MCC score higher than
0.925 for all tested e-mail collections. It clearly indicates
that the proposed filter almost accomplished a perfect
prediction (MCC = 1.000), and it is much better than not
using a filter (MCC = 0.000).

Among the evaluated NB classifiers, the results indicate
that all of them achieved similar performance with no
significant statistical difference. However, they achieved
lower results than MDL and SVM, which attained an
accuracy rate higher than 90% for the most of Enron
spam datasets.

To reinforce the validation, we performed another
experiment to evaluate the MDL spam filter on more
es spam filters.

Complexity on

Training Classification

O(|m| � n) O(|m|)

O(|m| � n) O(|m|)

O(|m| � n) O(|m|)

xk Þ O(|m| � n) O(|m|)

O(|m| � n) O(|m|)

O(|m| � n) O(|m|)

O(|m| � n) O(|m| � n)
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Table IX. CEAS 2008 – Results achieved by each filter.

Filters (1�AUC)% SC% BH% LAM%

MDL 0.0129 95.79 0.08 0.21
NB 0.0157 89.04 0.00 0.00
SVM 0.0221 98.96 0.51 0.49

Table VIII. TREC 2006 – Results achieved by each filter.

Filters (1�AUC)% SC% BH% LAM%

MDL 0.053 96.92 0.19 0.52
SVM 0.060 99.51 0.71 0.62
NB 0.084 91.77 0.00 0.00
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realistic and larger datasets: TREC06 and CEAS08. The
TREC Spam Track and CEAS Spam Challenge are the
largest and most realistic laboratory evaluations to date.
The main task at TREC 2006 – the immediate feedback
task – simulates the online deployment of a spam filter
with idealized user feedback [1]. On the other hand, the
2008 CEAS Spam Challenge evaluated the filters using a
live simulation task that offers delayed partial feedback in
which feedback is delayed and given only for messages
addressed to a subset of the recipients. The main goal is
to simulate a real mailbox in order to explore the impact
of imperfect or limited user feedback.

To offer fair evaluation and reproducible results, we
followed exactly the same guidelines used in the
challenges including the same measures: spam caught (%),
blocked ham (%), LAM% and (1�AUC)% [1].

The Logistic Average Misclassification (LAM%) is a
single quality measure, based only on the filter’s binary
classifications. Let the false positive rate (fpr) and false
negative rate (fnr), LAM% is given by

LAM% ¼ logit�1 logit fprð Þ þ logit fnrð Þ
2

	 


where

logit pð Þ ¼ log
p

100� p

	 


This measure imposes no a priori relative importance
on ham or spam misclassification, and rewards equally a
fixed-factor improvement in the odds of either [1]. The
lower the LAM%, the better the performance.

The area under the receiver operating characteristic curve
(AUC) provides an estimate of the effectiveness of a soft
classifier over all threshold filtering settings. AUC also has
a probabilistic interpretation: it is the probability that the
classifier will award a random spam message a higher score
than a random hammessage. The (1�AUC)% is often used
instead of AUC because, in spam filtering, the AUC value is
very close to 1 [1].

Again, we compared the performance achieved by the
MDL spam filter against the following:

• NB classifier: the open-source and well-known
Bogofilter classifier (version 0.94.0, default para-
meters – available at http://www.bogofilter.org).

• SVM classifier: relaxed linear SVM [37].

Table VIII present the results achieved by MDL
spam filter and established spam filters on immediate
feedback task for the TREC06 data set. Table IX
present the results achieved by the filters for CEAS08
data set on live simulation. The results by each e-mail
collection are ordered by decreasing performance in
the (1�AUC) % statistic.
Security Comm. Networks 2016; 9:327–335 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
The MDL spam filter achieved very good performance
for all tested e-mail data sets independent on the task. If
we take into account that the (1�AUC)% is the standard
measure used in the spam challenges, we can conclude that
the proposed approach outperforms the top-performance
spam filters. Note that, although the MDL has not achieved
the best SC% rates, it attained very low BH% and LAM%
rates for all tested data sets. It indicates that the proposed
filter rarely misclassify a legitimate message. It is a remark-
able feature because in spam filtering false positives are
considered much worse than false negatives. Despite the
fact that Bogofilter (NB classifier) attained the best BH%
rates for all used e-mail data sets, it achieved the worst
SC% rates.
5. CONCLUSIONS AND
FURTHER WORK

In this paper, we have presented a spam filtering approach
based on data compression model that have proved to be
fast to construct and incrementally updateable. We have
also compared its performance with the well-known linear
SVM and different models of NB classifiers, something the
spam literature does not always acknowledge.

To evaluate the proposed method, we have conducted
empirical experiments using real, large, and public
datasets, and the results indicate that the proposed classifier
outperforms currently established spam filters.

Actually, we are conducting more experiments to
compare our approach with other established commercial
and open-source spam filters, such as SpamAssassin,
ProcMail, OSBF-Lua, and others.
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