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Abstract

This paper presents the derivation of a geometric stiffness matrix, which considers cross-
sectional warping of a generic tridimensional thin-walled member with open cross-
section. Additional terms were added to the derivation previously published to take in
account uniform axial deformation together with bimoment contribution. The
derivation is implemented in a new software developed by the authors: Structural
System Analysis, SSA, which is based on the MASTAN2 kernel and written in MATLAB. A
series of examples are presented and the results are compared to the solution given by
a commercial finite element software. Satisfactory agreement was found when axial and
major axis loading is applied; however, when a member is loaded in the minor axis
direction, the results are considerably different indicating that more research shall be
carried out to accurately predict the buckling load in the minor axis.
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1 Introduction

Krajcinovic (1969) following the methods developed to perform a matrix analysis of
structures composed from solid beams, developed a general matrix formulation to
analyze thin-walled beams. In his paper, Krajcinovic (1969) mentions: “Since the single
thin-walled member is by itself statically undetermined regardless of boundary
conditions, the number of redundant forces is considerably higher than for a similar
structure assembled from solid beams”; based on his observation Krajcinovic (1969)
developed a matrix formulation which does not take in account non-linearity and non-

symmetric cross-section.

In the following year Barsoum and Gallagher (1970) presented a set of stiffness matrices
to take in account torsional stability as well as flexural-torsional stability, but the authors
cautioned the reader: “The measures of solution efficacy were less satisfactory for cases
where the torsional mode predominated. This factor stems from the use of a functional

representation which does not satisfy the basic governing differential equation.”

Yoo (1980) presents most of the development towards deriving a stiffness matrix for
solving linear static problems and eigenvalue problems, however, the authors does not
include in the paper the final matrices and it becomes difficult to implement such
solution. Conci (1992) presents the derivation of a geometric stiffness matrix for generic
cross-section, however, the digital file with the resulting stiffness matrix is illegible and

the numerical analysis cannot be reproduced.

In this paper, we have revised the assumptions made by Conci (1992) and re-derived the
geometric stiffness matrix for generic cross-section; we have found some mistakes,
perhaps typos, which are correctly presented herein. We have also added to the
derivation presented by Conci (1992) additional terms to take in account uniform axial
deformation. Note that, the geometric stiffness matrix developed in this paper can be
simply added to a stiffness matrix previously developed for doubly symmetric sections
given in McGuire et al. (2000) and implemented in the software MASTAN2 (2016), a
MATLAB based structural analysis software. We have implemented this newly
developed geometric stiffness matrix into MASTAN2 (2016) and named this new
software by: Structural System Analysis (SSA). SSA is primarily based on MASTAN2 (2016)
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and it is also written in MATLAB. We compared our development with a commercial

finite element software: Abaqus 6.14-1.

2 Problem Definition

The derivation presented in this paper is based in the virtual displacement approach. In
order to apply the virtual displacement approach it is necessary to know: (i) the material
constitutive relationship, (ii) the strain-displacement compatibility equation, and (iii) a

displacement shape function.

In the virtual displacement approach, the expression for internal work is given in terms
of strain, thus the displacement function (shape function) must be differentiated. For an
axial member, the strain is given by the first derivative of the longitudinal displacement,
while for torsion, the “strain” is given by the rate of change of the rotation about the x-
axis, and for bending, the “strain” or curvature is given by the second derivative of the
transversal displacement. In a general format, the strain (e) is given by appropriate
differentiation of the shape functions vector with respect to the spatial coordinate, N',

multiplied by the vector of nodal point displacements, A,

e=N"-A. (1)
In the same manner, it is necessary to derive an expression for the internal virtual work
in terms of virtual strain, de. The virtual strain, &e, is given by the same vector of
differentiated shape function, N’, multiplied by the virtual vector of nodal point

displacements, 64,

se=N'-(SA). (2)
McGuire et al. (2000) describe the principle of virtual displacement for deformable
structures as: “For a deformable structure in equilibrium under the action of a system
of applied forces, the external virtual work due to an admissible virtual displacement
state is equal to the internal virtual work due to the same virtual displacements”, which

is algebraically represented by:

W = Wi - (3)
Since the virtual displacements are arbitrary, the relationship between the vector of

element nodal forces, F, and the vector of nodal point displacements, 4, is
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F=ka, (4)

where the general expression for an element stiffness matrix, k, is

k:jN'EN’Tdv,
Q,

(5)

where N’ and N’T are real and virtual vector of the differentiated shape function and E

is the relevant elastic constants.

Simple strength of materials principles for an element in pure torsion neglects resistance
to cross-sectional out-of-plane warping and the torsional shearing stresses is in
equilibrium with the applied torque. When longitudinal displacement is restrained the
resistance to cross-sectional out-of-plane warping shall be considered; note that, in this
case, the rate of twist along the length is no longer constant. This condition is known as
nonuniform torsion and it can be analyzed by introducing the rate of twist, d¢/0x, which

is in equilibrium with the bimoment, B.

Bimoment, B, was first introduced by Vlasov (1961) and it can be easily understood in
Figure 1. Consider an axial force, P, applied on the tip of an I-beam, Figure 1a. Figure 1la
is equivalent to superposing the effect of the axial force, Figure 1b, the bending moment
about z axis, Figure 1c, and the bending moment about the y axis, Figure 1d. When
summing all these components, however, the system is found to not be in equilibrium
and it is necessary to add the self-equilibrated forces depicted in Figure 1le; these forces
are responsible for bending each flange in an opposite direction and, therefore, warping

the cross-section due to a warping moment (aka bimoment).
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Figure 1: Equivalent system of forces
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For wide flange members, it is acceptable to admit that the bimoment corresponds to a
moment of opposite direction applied to each flange multiplied by the distance between
both flanges, which considerably simplifies the element stiffness equations. Traditional
cold-formed steel cross-sections, however, are not usually double symmetric sections

and, therefore, this assumption may lead to solutions that are not accurate.

Given that the bimoment exists, and following the nomenclature depicted in Figure 2,

the normal stress is given by

B
y+—1 +I—a), (6)
where,
* w = sectorial area;
e |, = Cy,, = warping constant.

Based on the virtual displacement principles, an updated Lagragian formulation can be

linearized McGuire et al. (2000), which results in

. . _ pt+At
g_[(Ce).dedV +£J;T.5edv +£J;T§;7dv =RV )

where Cis the 4th stress-strain tensor, T is the Cauchy stress tensor, e and n are defined
below. The first and second integral in Eq. (7) represents the conventional elastic
stiffness matrix and the forces acting on the element in the reference configuration,
respectively. The last integral is of our immediate interest. The usual definition of the
Green-Lagrange strains expressed in terms of the reference state can be decomposed

into linear and nonlinear components, € = e + n, where:

_1 T
e—E(Vu+l7u ), (8)
and
—l(VuTVu)
=7 , (9)
where Vu is the deformation gradient (u = u (x, vy, z) is the deformation map). For this

work purpose, we need to rewrite last integral of Eq. (7) for a nonsymmetrical

framework element, as shown in Figure 2.
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Figure 2: Internal Forces

For this framework, the stresses oy, 0; and 1, can be not considered. Since tyx = Ty, and
T = Ty, the only independent stresses at any point on a cross section are ox, Txy and Tyx..

Thus, the tensors T, and n are reduced to:

:(exayxysyxz)-r (10)

”:(nxxanxyanxz )T

Using Eq. (10), last integral of Eq. (7) becomes:

frones ) (22 o 22 2 o

+_J- ou, ou, o”uz ou, qv (11)
X o”y ox 2y

ﬁu ou
L1 J‘ ou, du, y Aty |4y
ox 01 ax 0z

Considering the Vlasov hypothesis of absence of shearing strain in the profile, supposing

rigid cross-sectional shape and small twist angle about the shear center (Oxr=0), as well

as considered by Conci (1992), the displacement of a arbitrary point (x, y, z) is given by,

Uy (X, Y,Z) = U, () = 2u; (X) = yuy (X) —@( ¥, 2) G (X)
uy (% y,2)=u, (X)—(2-25)6,(x) (12)
UZ(X’yaz)ZUZ(X)+(y_yS)9X(X)
where uy, u, and Bx are displacements above the shear center S (ys, zs), ux is the
centroidal displacement C and signal * means derivation to the argument (ex. u;(x) =

du;/dx). Shear and center axes are shown in Figure 3.
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Conci (1992) subdivided Eq. (11) in components with terms found in doubly symmetric
sections, Rf,, and in non-symmetric cross-sections, Rg. Here, we also derived these two

components. Following Chen and Atsuta (2007), we have the identities:

lp =Iy+lz+(y§+z§)A

B, :%J.(zj’Jrzyz)dA—Zzs 13)

B, :%f(y3+yzz)dA—2ys

Z
B :CLI(WZZ +Wy2)dA
w

Using the displacements of Eq. (12) and the coordinate system of the McGuire et al.

(2000), we have the symmetric and non-symmetric components of Eq. (11), respectively:

—M,5(us6; ) dx (14)

|
RS :J.F 8 (z5uy0; — ysu;6; ) dx

|

+J.% - M, B, + Bﬂw)5(9§)2 dx
i (15)
ijs ys6,6,)d
0

|
szé 256,60, )d
0

The symmetric and non-symmetric geometric matrices are derived, respectively, from
Eqg. (14) and Eq. (15).
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3 Derivation of Stiffness Matrix

The derivation of the stiffness matrix was based on the following Hermite polynomials:

m, =(1-¢, ¢)

1;13 =(1—3g2 +2&°, (6‘—282 +83)|,382 —2&%, (—6’2 +6’3)|) (16)
m, :(1—352 +26°, —(8—282 +53)|,352 28, —(—6‘2 +83)|)

in which € = x/I. Given the degrees of freedom depicted in Figure 3, the following

variables can be defined as:

(17)
lly :(uyA’ ng’ uyB’ HZB)

u, :(UZA7 _eyA’ Uzg, _eyB)
0, = (Osa» 0>,<A’ Oss- 9)28)

Using Eqg. (16) and Eq. (17), the internal forces, displacements and rotation are rewritten

using tensorial notation:

F=Fg

Fy = (M2A+MzB)/|

Fo=(M,+M )/

M,=m,-M,

My=m,-M, (18)
ux _ml Uy

u,=m;,-u,

ex :m3'0x

Figure 3: Degrees of freedom for a generic section.
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3.1 Derivation of Stiffness Matrix for Symmetric Cross-sections

Using Eq. (18) in the Eqg. (14), we have:
L e . 2 | (- 2
Rg :J-%Egél(m'l-ux)z +(m'3-uyj +(m'3~uz)2 +Kp(m'3~t9xj ]dx
0

_j(m1 -Mz)é'{(mg.uz)[I;I'S.QXHdX

0

Jm ) [, o, (19)

0

_-:[_(MZAI;Mm)g{(m'I-uX)(1;1’3-uy]—(m'3~uz)[1;3-0Xj}dx

FERCRE O o |

The following tensor properties (Gurtin, 1982) are applied in the next step:

(a-u)(b-v)=(a®b)-(u®v), (20)
S-(u®v)=(Sv)-u=v-STu (21)
(a®b)’ =(b®a) (22)

Using Eq. (20), Eq. (21), Eq. (22), grouping some parts and applying the virtual operator

6 we finally have the symmetric cross-section geometric matrix:

+5uz-{FxB Iol(mg@mg)dx}}uz
(23)
50, L F g2 I'(ﬁ]’@n}]’ dx | Lo
X xBA 0 3 3 X
_bu, { jol(m1 MZ)[mg®§1’3de}ex
—50, -{L:(ml MZ)(m'3®m'3]dx}uz



o i
o e o]
_ou, .{(MzATMzs)Do'[m,3®1;13jdX:}0x
_50X.{wmTMZB>U;(,;,3®HI,3JdX:}uZ
_(sux{(“”%j M) 1 '(ma@mg)dx}}uz
_&,Z{(MYAT o) j'(mg@ma)dx}}ux
_&y{(MyATMyB) '[(:(1;1’3®r;13jdx}49x

50, {WI_M)MMm]d}

3.2 Derivation of Stiffness Matrix for Non-Symmetric Cross-sections

Similar to symmetric cross-sections, applying Eq. (18) in the Eq. (15), and using the

tensor properties Eq. (20), Eq. (21), Eq. (22), and grouping some terms, we have:

RC=Fgz M:ﬁg@:ﬁg}dx]-a(uy ®6,)-Fs Ys Mmg@nﬁgjdx}-ﬁ(uz ®6,)

0 0

+%{:[|:_(m1 ’Mz)ﬁz +(m1 .My)ﬂy +(m1 .B)AN](I;'3®1;1'3JdX}5(0X ®0X)
(24)

1
+('\/|ZAT—MZB)yS j(m3®m'3jdx .5(6,®6,)
LO

_I o o
—MzS I(m3®m'3jdx .5(6,®86,)

)

Applying the virtual operator & and using the tensor properties, we finally have the non-

symmetric cross-section geometric matrix:
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|
: FxB L5 _[[m'3®m'3]d)(]}0x _5“2 '{FXB Ys
0

) .{FXB 2 ::[(r;l'}®r;1'3jdx}uy - 56, {Fxg Ys _I[rﬁ'@mstXHuz
| |

M M [ ° ° ° ° ]
: (ZAI;ZB)yS J‘(m3®m'3j+(m'3®m3de }HX
Lo

+50), {Ij[—(ml M,) 4, +(m;-M, ) 8, +(m, -B)@](;Bg@;ﬁgjdx}ax (25)

M,o+Myg) [Lre - ce )]
—(%?X{(yI—y)ZS J.[m3®m'3j+(m'3®m3de }6&

LO |

Based on the development depicted previously, Kgsymmetic (from Eq. 23) and

KG,non-symmetric (from Eq. 25) are presented in the appendix section.
4 Examples

In order to validate the symmetric and non-symmetric stiffness matrices, we
implemented them both in SSA. Six examples will be given, where the first ten elastic
buckling modes were computed and compared with the obtained in the software
Abaqus 6.14-1, where the element B310S was used. B310S is a tridimensional open
section beam element that uses linear interpolation, Abaqus (2014). Yoo (1980) reports
that elastic buckling loads converge to the same value once the member is discretized
into 16 elements; thus, all examples herein are conservatively modeled with 32 equal
size elements. Two different loads were applied in all examples studied herein: unitary
axial load to the center of gravity, Fx, and loads applied to the shear center in the major
cross-section axis direction. The effect of loading applied to the minor axis has small
practical importance, but the authors have found that further studies have to be
conducted in the topic, since, in our examples, it was not found a satisfactory agreement
when loading is applied in the minor axis, for both: symmetric and non-symmetric cross-

sections.
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4.1 Examplel

A beam with length of 7,320 mm was analyzed. It has a symmetric | cross-section with
web of 508 mm and flanges of 305 mm. The cross-section thickness was defined with 13
mm. It was used an isotropic material of Young’s Modulus of 200 GPa and Poisson’s Ratio
of 0.25. The boundary conditions presented in Figure 4 are considered and two load
cases are applied: a concentrated axial load, Fx, and a concentrated load at mid-length
in the direction of the y-axis, Fy. The results are tabulated in Table 1. The first ten
buckling loads calculated by Abaqus and SSA had an average difference of 5.8% and 5.1%

for Fx and F, loads, respectively, which is considered a satisfactory agreement between

both models.
u,(0)=u,(0)=u,(L)=u,(0)=u,(L) =0
6,(0)=6,(L) =6,(0)=6,(L)=6,(0)=6,(L)=0
0,(0)=6,(L) =0
1 2972 %
Y
2 &~
Figure 4: Boundary Conditions for Example 1.
Table 1: Buckling Loads for Example 1.
Modes SSA Abaqus Abaqus/SSA SSA Abaqus Abaqus/SSA
Fx (N) Fx (N) Fy (N) Fy (N)
1 9058576 8915390 0.98 2802455 2754150 0.98
2 13209187 13179900 1.00 11195287 10867000 0.97
3 18531689 17873900 0.96 23916965 22808200 0.95
4 25630697 25353800 0.99 40690609 39223300 0.96
5 36235416 34044800 0.94 58393375 55575600 0.95
6 48844502 47798500 0.98 77008669 73774500 0.96
7 54779359 49849210 0.91 86351502 78237100 0.91
8 73160032 70522700 0.96 98747694 91291400 0.92
9 81540406 71203700 0.87 125752176 117642000 0.94
10 96317211 79893900 0.83 164743938 156054000 0.95

4.2 Example 2

The problem examined in this subsection presents the same cross-section depicted in
Figure 5a with thickness of 2 mm and beam length of 2,000 mm. The material is
considered isotropic and has a Young’s Modulus of 205 GPa and a Poisson’s Ratio of
0.30. The boundary conditions are presented in Figure 5b and a concentrated axial load,
Fx, and the effect of a distributed load, qy is analyzed. The results of computer analyses
are tabulated in Table 2. The average difference between Abaqus and SSA’s buckling
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loads was 2.2% and 3% for Fxand gy loads, respectively. The models lead to a satisfactory

agreement for both applied loads.

/ \ z
| é C.’ I Kﬁx
B Y (b)

[ 0,(0) =, (0) =u, (L) = u,(0) =u,(L) =0
v (a) 0,(0)=6,(L)=0

50

18.8 50

Figure 5: (a) Channel section, units in mm and (b) Boundary conditions for example 2.

Table 2: Buckling Loads for Example 2.

Modes SSA Abaqus Abaqus/SSA SSA Abaqus Abaqus/SSA
Fx (N) Fx (N) gy (N/mm) gy (N/mm)
1 44015 42789 0.97 6.02 6.03 1.00
2 52689 52658 1.00 24.97 25.03 1.00
3 136347 132934 0.97 58.31 58.65 1.01
4 210758 210263 1.00 105.94 107.10 1.01
5 289980 283458 0.98 167.89 170.87 1.02
6 474209 471700 0.99 244.18 250.62 1.03
7 505043 495319 0.98 334.83 347.11 1.04
8 533749 578936 1.08 439.89 461.48 1.05
9 781571 769679 0.98 559.41 594.81 1.06
10 843056 835111 0.99 693.50 749.00 1.08

4.3 Example3

A beam of 12,000 mm length with cross-section depicted in Figure 6 was tested with the
same boundary conditions of Example 2. A concentrated axial load, Fx, and the effect of
a distributed load, qy is analyzed. This cross-section was based on Palermo (1985). The
material used has Young’s Modulus of 205.9 GPa and Poisson’s Ratio of 0.3125. The
thickness was 10 mm. SSA and Abaqus results are compared in Table 3. While there is a
satisfactory agreement when axial Fx loading is applied, when qy is applied the difference
is as high as 58% for the 10th mode. This difference occurs only in cases where there is
not a single symmetry axis. Note that for the first buckling mode, usually the mode with
most practical interest in design calculation, a difference of only 5% has been found. A
possible reason for this divergence is due to the considerations taken in account while
deriving the stiffness matrix implemented in Abaqus. According to the commercial
software documentation theory guide (Abaqus, 2014), the derivation of the stiffness
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matrix of element B310S considers transverse shear strain while our derivation

implemented in SSA and presented herein does not consider it.

16 10 99 141 80
= * —
= -
(5]
Y
[F5]
o ¢ l
¥y
[¥5]
S 3 z
L ] —a
88 132
! . } Y

Figure 6: Gutter beam cross-section. Units in mm.

Table 3: Buckling Loads for Example 3.

Modes SSA Abaqus Abaqus/SSA SSA Abaqus Abaqus/SSA
Fx (N) Fx (N) qy (N/mm) qy (N/mm)
1 270075 270173 1.00 4.02 4.32 1.05
2 475818 475720 1.00 9.91 11.47 1.16
3 609581 610365 1.00 17.46 21.28 1.22
4 822679 827485 1.01 27.16 34.62 1.27
5 1108739 1124430 1.01 39.23 51.88 1.32
6 1129922 1132177 1.00 53.84 73.55 1.37
7 1473841 1512871 1.03 71.00 100.03 1.41
8 1919161 2001439 1.04 90.71 132.39 1.46
9 2445190 2530900 1.04 112.78 171.62 1.52
10 2519132 2600233 1.03 138.27 218.69 1.58

4.4 Example4

The same beam of Example 2 is analyzed, however, with the boundary conditions used

in Example 1. A concentrated axial load, Fy, and the effect of a distributed load, qy, is

analyzed. The results are presented in Table 4. Both models lead to similar results: the

average difference is 1.2% for both F, and gy loads.

Table 4: Buckling Loads for Example 4.

Modes SSA Abaqus Abaqus/SSA SSA Abaqus Abaqus/SSA
Fx (N) Fx (N) qy (N/mm) qy (N/mm)
1 136347 133236 0.98 48.81 48.59 1.00
2 210758 210263 1.00 146.86 145.84 0.99
3 264879 259305 0.98 319.20 316.53 0.99
4 431160 428601 0.99 548.49 550.83 1.00
5 505043 496347 0.98 777.35 787.00 1.01
6 756596 746114 0.99 1044.83 1082.60 1.04
7 843056 835111 0.99 1275.30 1277.20 1.00
8 1119612 1110200 0.99 1488.03 1487.50 1.00
9 1274501 1254870 0.98 1701.29 1725.40 1.01
10 1494287 1489060 1.00 2068.08 2158.60 1.04
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4.5 Example5

The same beam length and cross-section of Example 3, however, with boundary
conditions presented in Example 1 was analyzed. A concentrated axial load, Fx, and a
distributed load, gy, were applied. Results are shown in Table 5. The mean buckling load
difference for Fx load is 3.6%, which corresponds to a satisfactory agreement. For the
distributed load, qy, one can note larger difference: mean difference of 12.7%, maximum
difference of 26% for the 10th mode. For the first mode, Abaqus and SSA generate the
same buckling load. We understand that this difference can be explained by the same
comment delineated in Example 3: consideration of transverse shear strain in the
Abaqus geometric stiffness derivation. One can note the difference shown in this
example for gy load is smaller than the difference observed In Example 3. We associate

this differences to the constraints imposed in this example.

Table 5: Example 5 Buckling Loads

Modes SSA Abaqus Abaqus/SSA SSA Abaqus Abaqus/SSA
Fx (N) Fx(N) qy (N/mm) ay (N/mm)
1 609581 610366 1.00 19.6 19.6 1.00
2 788847 792966 1.01 46.1 52.0 1.12
3 1108740 1124430 1.01 87.3 100.0 1.14
4 1129922 1132178 1.00 143.2 163.8 1.14
5 1440891 1477960 1.03 201.0 229.5 1.14
6 1919161 2001439 1.04 274.6 312.8 1.14
7 2291618 2300836 1.00 341.3 381.5 1.12
8 2412338 2563458 1.06 426.6 456.0 1.07
9 3052320 3321905 1.09 464.8 527.6 1.14
10 3707796 4142329 1.12 519.8 653.1 1.26

5 Conclusion

A geometric stiffness matrix, which considers cross-sectional warping of a generic cross-
section, is presented herein. The geometric stiffness matrix developed herein was
implemented in MASTAN2 (2016), which lead to the creation of a new software
Structural System Analysis, SSA; both software were developed in MATLAB. Additional
terms were added to the derivation presented by Conci (1992) to take in account
uniform axial deformation. The results are compared to commercial finite element
software, Abaqus 6.14-1, and it was found that there is a satisfactory agreement when

axial Fx and distributed gy loads are applied for the selected examples The authors,
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however, show that Abaqus models did not lead to results similar to the results
presented herein when a member is loaded in the minor axis direction. These
differences occur only in cases where there is not a single symmetry axis. Nevertheless,
for the first buckling mode, usually the mode with most practical interest in design
analysis, a difference of only 5% has been found. The derivation of the stiffness matrix
of Abaqus element B310S considering transverse shear strain is a potential reason for
this divergence since our derivation does not consider it. Although loading in minor axis
is not usual, the authors recommend that more research shall be carried out to

accurately predict the buckling load when the element is loaded in the minor axis.
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Appendix A. Geometric Stiffness Matrix
Ka,symmetric and Kg non-symmetric are depicted respectivelly:
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