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Abstract
The growing urban population growth necessitates that the water delivery sector uses safe, economical 
operations. In this context, an increasing number of operational routines has been tested that can adequately 
handle standard impositions and consumer’s needs. The search for optimum routines for water pumping for 
startup and stopping and pump rotation variation has become increasingly common because of the need to 
reduce energy consumption, which therefore promotes the application of various optimization techniques. 
Among such techniques, special attention has been given to those inspired by nature, such as Particle 
Swarm Optimization (PSO), a technique based on the intelligence of groups, such as fish schools or insect 
swarms. This study presents a hybrid algorithm (simulator-optimizer) to determine optimized operational 
routines for pumping stations using PSO to define the number of pumps that are running (in nominal 
rotation) and rotations, which can therefore satisfy the operational restrictions at the time when the pumps 
are running. The performance evaluation is conducted by applying the model to an actual distribution 
network, where the energy cost was reduced by approximately 60%.

Keywords: Water supply system, energy efficiency, optimized operation, PSO

Introduction

One of the primary challenges that water supply 
companies currently face is the difficulty in dealing 
with urban growth, which is often disorganized, and 
maintaining safe, efficient water delivery. This growth 
incurs a constant need to expand the water delivery 
system, which increases energy consumption; this 
energy consumption is between two and three 
percent of the worldwide consumption (Vilanova 
and Balestieri, 2014)

Much of the delivery systems operational control 
is under the decision of operators who, by acting 
directly or by the command centre, load the 
operational rules based on their experience acquired 
from their career. However, the commands based 
on the operator's experience may lead to better 
performance when operations are executed without 
any knowledge of the system. Differently though, 
emergency situations, such as unpredicted stops of 
the pumping system or a duct rupture, may lead to 

emotionally affected decisions that are not always 
the most appropriate (Sandeep and Rakesh, 2011).

To reduce the reliance on empiricism in decision 
making, the literature proposes various tools that 
create responses from optimization mathematical 
models to aid operators in decision making. Among 
these models, hybrid models (optimizer-simulator) 
are capable of determining optimum manoeuvres 
for a given operational period. Optimized 
operational routines related to pump start-up and 
stopping manoeuvres or rotation changes by a 
frequency inverter significantly reduces energy 
consumption, which has been reported in literature. 
The most common optimization techniques used to 
search for better operational routines are dynamic 
programming (Jowitt and Germanopoulos, 1992) 
and evolutionary techniques, such as genetic 
algorithms: (Cunha, 2009), (Andrade, et al., 2008), 
(Ribeiro, 2007), (Rodrigues, 2007),  (Farmani et 
al., 2007), evolutionary multi-objective techniques  
(Wang, Chang and Cheng, 2009),  (Barán, 
Lücken and  Sotelo, 2005) or even particle swarm 
optimization (PSO) (Al-Ani, 2012).
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The scan of the search area using meta-
heuristics algorithms is arduous and imposes 
great computational efforts in problems with many 
variables. Hence, differently from the studies from 
literature, the present study develops an algorithm, 
hereby named Refining PSO, which consists of two 
steps. The objective of the algorithm is to reduce the 
computational effort for the simulation by decreasing 
the number of variables involved in the continuous 
stage (stage of rotation definition, phase two) once 
the operational status (shutdown or operating 
pump) is obtained in the first phase (discrete stage) 
by binary optimization. It is important to note that 
the strategy to define the pumps that are running 
versus the pumps that are not in operation avoids 
operational drawbacks because the search for only 
rotations may lead to low values, which in turn, can 
lead to undesirable physical phenomena, such as 
cavitation and vibration.  

Materials and Methods
The pumping stations are responsible for much of 
the energy consumption and are the primary target 
in energy efficiency studies in the water supply 
sector. Studies suggest that on average, strategic 
operations with the objective of energy efficiency 
of hydraulic systems operations may lead to a 25% 
reduction in energy consumption. (Ramos, et al, 
2012), (Moreira and Ramos, 2013).

Jowitt and Germanopoulos (1992) evaluated 
the electrical efficiency of motor-pump sets in a 
real network and considered the time variation of 
the demand. The authors used a simulation for 
an extensive period of time and used dynamic 
programming. The results were considered good, 
particularly the computational time spent in the study. 
Nevertheless, the treatments of the equations and 
restrictions of the hydraulic problem were arduous.  

Cunha (2009) proposed real-time optimization of 
water delivery systems using binary optimization 
to represent the pump status problem. The GAlib 
generic algorithm was used as the optimization 
algorithm. According to Cunha (2009), although the 
search results for strategy routines (period of 24h) 
were good, the results were strongly influenced by 
penalties and operations of the optimization algorithm. 

Ribeiro (2007) and Rodrigues (2007) modelled 
pumping systems using a frequency inverter and 
therefore searched for the best rotation for each 
hour of the day. Using a non-classical approach, the 
search for optimal rotations made it possible to work 
with continuous variables, which helped the search 
method. Both Ribeiro (2007) and Rodrigues (2007) 
used genetic algorithms as their optimization method. 
Ribeiro (2007) applied a fictitious network, whereas 
Rodrigues (2007) applied the model developed in 

a real network. Both authors obtained interesting 
values regarding the energy cost reduction. In the 
case of Ribeiro (2007), great improvement was also 
obtained by using variable-level reservoirs. 

Finally, Al-Ani (2012) used MA-PSO (multi-agent 
PSO) with a bi-objective approach (pumping and 
maintenance costs minimization) to search for 
optimal routines for the motor-pump set. For the pump 
operation, this study modelled the stopping and start-
up operations of pumps and thus only considered the 
working status of the machines. According to Al-Ani 
(2012), the algorithm proved to be efficient in reducing 
energy cost (approximately 9%) when applied to an 
actual network (Saskatoon West network). 

By considering a previous study of the problem, the 
equations approached by this study are developed 
below, which presents the equations developed for 
continuous phase. Considering the change from 
nominal rotation (NR) to an inferior rotation (Ni) by 
frequency modifications, the equation can be written 
in dimensionless form, and the nominal frequency 
(f) of 60 Hz can be expressed as

(1)

where fi is the frequency that defines rotation (Ni), 
and α is the associated dimensionless rotation. 

The change from nominal rotation to any rotation 
modifies the pump operating point, which can be 
expressed by its physical similarity laws:

(2)

where subscript p was used to specify the yield 
(η) associated with the pump, and subscript R is 
associated with the condition of nominal rotation. Q, 
H and P represent the flow rate, head and pump 
power, respectively. 

The electric power P(α) required for pumping a flow 
rate Q for a specific head H for a given specific 
rotation α can be calculated as

(3)

where γ is the specific weight of water. The yield ηt 
represents the total yield of the set with the motor, 
inverter, pump, etc. Moreno (2007) suggests the 
following composition for this yield:

(4)

where ηp, ηm, ηsd, ηc, and ηl are the yields of the 
pump, motor, inverter, and cables, respectively, 
which are associated with the loss of head in the 
pump set-up line.   

 The minimum desired consumption of electrical 
energy can be expressed for a period (Pe) of equal 
time intervals (i) by
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(5)

Subject to

pmin ≤ pref ≤ pmax	                           (6)

vmin ≤ vref ≤ vmax                             	          (7)

Nk,min ≤ Nk ≤ Nk,max 	                        (8)

nmaneuver ≤ nmax  			    (9)

N0 ≤ N24		                   (10)

where ci is the electric energy cost for time interval 
i. The power P(α)n,i is the electric power required for 
pumping to satisfy a demand Q by the system for 
a given period of time at a given head H of pump n 
to meet the operational requirements (Brentan, et 
al, 2013). Furthermore, pmin is the minimum dynamic 
pressure determined by the standard, pref is the 
pressure at a reference node at any time of the day, 
pmáx is the maximum static pressure determined by 
the standard, vmin is the minimum velocity in any 
tube of the facility determined by the standard, vref 
is the velocity in a reference tube at any time of 
the day, vmáx is the maximum velocity in any tube 
of the facility determined by the standard, Nk,mín is 
the minimum operational level of reservoir k of the 
facility, Nk is the level of reservoir k at any time of 
the day, and Nk,máx is the maximum operational level 
of reservoir k. Finally, nmanobra is the number of stops 
and startup pump operations performed in the day, 
and nmáx is the maximum number of manoeuvres 
allowed for the safety and maintenance of the 
equipment.

Optimization Using PSO
The bio-inspired algorithms are one of the techniques 
that have been gaining strength in the last few 
years. This large group of algorithms includes the 
PSO developed by Eberhart and Kennedy in 1995 
and improved by Eberhart and Shi, who added the 
inertia constant (Eberhart and Kennedy, 1995) and 
(Eberhart and Shi, 2001). Since then, this algorithm 
has been widely used in continuous optimization 
problems of many variables or in problems using 
combination analysis and a discrete/continuous 
combination.  

PSO is an algorithm based on a population, where 
particles are the elementary unit. The particles are 
composed of two vectors of size D (dimension of the 
problem), one that represents the particle position 
and the other that represents the displacement 
velocity. At each iteration n, the particle is updated 
by renewing the position information and velocity, 
which will subsequently be described (Eberhart and 
Kennedy, 1995).

The first step of the method is particle initiation 
for both the position and initial velocity, which is 
randomly performed within an interval of interest. 
The particles search for optimal points of the 
problem and update their velocities until one of 
the stop criteria for the problem is met, such as 
the maximum value with random error, maximum 
number of iterations, the absence of improvement 
in the object function for a given iteration interval; 
there are other stop criteria widely used in various 
numerical problems (Faires and Burden, 2002).

Considering that the problem contains i particles, the 
position of particle Xi in the swarm is described by a 
vector with D coordinates, where Xi = (xi1,xi2,xi3,...xiD).  
This particle’s velocity can also be described 
by a vector with D positions, where each vector 
component Vi represents the velocity of particle i in 
the D coordinate, i.e., Vi = (vi1, vi2,vi3...viD).

The particles compare their positions among 
themselves and “remember” their previous positions 
stored in their “memory”. After evaluating the best 
solution, the method allows the particles far from 
the solution to move closer to the best solution. 
During the comparison, the best position of particle 
i is stored in a vector called lbest (best local value), 
described as Pi = (pi1,pi2,pi3...piD), and the best 
solution of the swarm is stored in a vector called 
gbest (best global value).  

The swarm’s behaviour can be described by the 
following equations: 

(11)

(12)

where d = 1,2,…D, n = 1,2,… N, and N is the 
number of iterations. Additionally, r1 and r2 are 
randomly chosen numbers within the interval [0,1], 
and n represents the current iteration. 

From equation (11), it can be observed that for 
each iteration the particle position is updated. Part 
of this update is marked by a coefficient that has 
information on the best positions experienced by 
the particle, which is called the cognitive coefficient 
(c1). Another aspect of the update is influenced by 
the information on the best positions experienced 
by the group, and such information is computed at a 
velocity by a coefficient called the social coefficient 
(c2). Finally, the velocity is also updated by a 
coefficient named weight or the inertia coefficient 
(w). (Eberhart and Kennedy, 1995)

In the continuous problem, the particle “flies over” 
the entire search space. In the case of a binary 
discrete space, the particle scans the vertices of a 
D-dimensional hypercube and searches for the best 
solution vertex. In comparison to the algorithms for 
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continuous spaces, where the flying-over velocity is 
easily interpreted as the particle displacement rate 
from a position xid to a position xi+1,d, which can be 
easily determined by equation (7), the interpretation 
of velocity in the binary case is more complex. For 
this case, the velocity is probabilistic and can be 
understood as the chance of position xid being 1. 
(Eberhart and Kennedy, 1997)

To transform the velocity into a position, a sigmoidal 
function is typically used, according to the following 
relation:

If rand()< S(vid), then xid =1;	 (13)

where rand() is a function that generates a random 
number in the interval [0,1], and S(vid) is the sigmoidal 
function applied to the velocity; the transformation 
between the value of rand() in the interval [0,1] 
can thus be controlled. Therefore, depending on 
velocity, the probability is responsible for updating 
the particle's position (Eberhart and Kennedy, 1997)

PSO and most of the bio-inspired methods are 
unrestricted search methods, and hence, these 
methods do not have treatment mechanisms for the 
restrictions inside their search routines. Therefore, 
a way to transform a restricted problem into an 
unrestricted problem for the applicability of one of 
the unrestricted algorithms is required (Pillo and 
Grippo, 1989). One common, widely used form in 
restricted engineering problems is using a penalty 
function, which adds a certain value from the 
object function, whose role is to treat deviations of 
variables or associated parameters relative to the 
pre-defined restrictions (Yeniay, 2005).

As the restricted problem treatment in this study, 
a penalty method for pressures named “Fictitious 
Machine Method” was used with the following 
formulation: let pref be the necessary pressure in a 
reference node, in water column meters, and Qtub 
be the flow rate in the pipes, in m³/s, which arrives 
at this node. It is possible to calculate the power of 
a fictitious hydraulic machine, which regularizes the 
pressure at this node, and works as a pump when 
the pressure at the reference node is lower than the 
desired pressure or works as a turbine when the 
pressure at the reference node is higher than the 
desired pressure. By multiplying the required power 

where γ is the specific weight of the fluid transported by 
the studied system, and P is the pressure at the node. 

Hence, the cost associated with the fictitious 
machine and the consequent penalty of the method 
can be written as

                                                                                                      (15)

where c is the energy cost, f is the surcharge 
factor, and k is a factor related to the convergence 
characteristics of the method, which is used as a 
scale factor. 

For the penalties of the velocities and stopping/start-
up pump operations, the classical development of 
penalty functions was used, which was presented 
by Parsopoulos and Vrahatis (2002) and can be 
written as

(16)

where λ is a scale multiplying factor, |x-x’| is the 
modulus of the total deviation between the limit 
value x’ and the variable x, and t is an exponent that 
defines the behaviour of the penalty function. 

 

Results and Discussion
As a case study, the system designed by Carrijo (2004) 
is used to determine the optimal pump manoeuvres 
using a genetic algorithm. This system is located in 
the city of Goiânia, Brazil and is part of the delivery 
network for a population of approximately 1.2 million 
people. The demand nodes represent derivations to 
sectors of representative networks, and thus, the 
flow rates attributed to such nodes are the demands 
of the sectors delivered by each derivation (Carrijo, 
2004). The figure below illustrates the topology of 
this network, and the tables display the physical and 
hydraulic characteristics of the network:

by each time interval and by the energy cost at this 
time interval, the cost of establishing the necessary 
pressure in the observed node is obtained. The 
power of the fictitious hydraulic machine can be 
calculated with the following equation:

(14)



23

Melo Brentan B. & E. Luvizotto Jr Water Research and Management, Vol. 4, No. 2 (2014)  19-30

Figure 1: Actual topology studied by Carrijo (2004)

Table 1: Variable level reservoirs (VLR) data, CARRIJO (2004)

VLR Volume (m³) Max Level (m) Level (m)
14 10000 6.0 858.0
19 5000 5.5 561.5
24 10000 7.0 836.5
29 3000 5.0 863.0

Table 2: Flow rate control valve data, CARRIJO (2004)

Valve Diameter (mm) Flow Rate (l/s)
29 600 616
30 600 496
31 800 542
32 500 474

Table 3: Consumption nodes demand and level, CARRIJO (2004)

Demand Nodes Level (m) Max Demand (l/s)
15 843.50 616
20 846.70 496
25 820.65 474
30 846.80 542
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Table 4: Nodes level, CARRIJO (2004)

Node Level (m)
02 788.10
03 788.15
04 788.12
05 788.10
06 788.12
07 788.13
08 801.20
09 823.10
10 845.15
11 840.05
12 845.12
13 845.12
16 848.20
17 850.15
18 850.15
21 852.20
22 832.30
23 832.25
26 850.10
27 850.15
28 850.13

Table 5: Pipe data, CARRIJO (2004)

Pipe Level (m) Diameter (mm)
01 50 1500
02 5 1200
03 5 1200
04 5 1200
05 5 1200
06 2050 1500
07 2840 600
08 3990 800
09 200 800
10 4725 1372
11 120 800
12 50 800
13 10 800
14 1050 1372
15 5368 1200
16 441 800
17 50 800
18 10 800
19 2070 800
20 50 1000
21 50 100
22 10 100
23 473 800
24 50 800
25 10 800

Table 6: Neutral Demand Curve, CARRIJO (2004)

Hour Multiplying Factor
01 0.30
02 0.15
03 0.20
04 0.45
05 0.43
06 0.55
07 0.60
08 0.80
09 0.90
10 1.00
11 0.90
12 0.80
13 0.70
14 0.65
15 0.65
16 0.60
17 0.60
18 0.63
19 0.68
20 0.65
21 0.60
22 0.30
23 0.30
24 0.30

The study considered a minimum water level in the 
reservoirs of 1.5 m, and the pumps curves were 
defined with one point, i.e., using a hydraulic head 
of 85 m and a flow rate of 895 l/s. The value of the 
coefficient C of the Hazen-Williams equation that 
was adopted was 100 for all of the pipes, which 
is in accordance with the study by Carrijo (2004). 
Furthermore, for the operational cost studies, an 
80% efficiency was used for the motor-pump sets. 
The study by Carrijo (2004) considered the energy 
cost as Brazilian Real (R$) 0.17076/kWh during the 
peak hour and R$0.0816/kWh at all other times. In 
turn, the demand at the peak hour is considered to be 
26.38 R$/kW and at all other times is considered to 
be R$8.66/kW. With all of the simulations performed 
for the previously detailed network, the following 
result is obtained for the cost of the operational 
routine:

Table 7: Operational cost, comparative table

Type of simulated 
scenario Operational Cost

PSO-R 2213.80
AG 2494.33
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It can be observed that the routine found with PSO-R works with higher rotations that reduce the occurrence 
of excessive vibration problems, and therefore, cavitation problems can be avoided. Next, comparative 
graphs are presented with the reservoir level and pressure at the control nodes. By observing the reservoir 
level fluctuation graphs, the significant level variation of reservoir 29 is observed once again, which reflects 
the pressure variation at node 30. Moreover, the level of fluctuation caused by the routine found with PSO-R 
leads to emptying in moments of greatest water consumption and higher energy cost.

Figure 2: Level fluctuation of reservoir 14: comparison of techniques

Figure 3: Level fluctuation of reservoir 19: comparison of techniques
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Figure 4: Level fluctuation of reservoir 24: comparison of techniques

Figure 5: Level fluctuation of reservoir 29: comparison of techniques

Next, the comparative graphs of the pressure evolution in the reference nodes are displayed.
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Figure 6: Pressure variation at node 15: comparison of techniques

Figure 7: Pressure variation at node 20: comparison of techniques
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Figure 8: Pressure variation at node 25: comparison of techniques

Figure 9: Pressure variation at node 30: comparison of techniques

Conclusions
By analysing the network from Carrijo (2004) using the PSO-R, the performance of the optimizer was 
obtained in terms of the final operation cost compared with that of the genetic algorithm. In economic terms, 
when compared with the fixed rotation scenario, the PSO-R results in a reduction of 63.5% in operational 
cost.  

The PSO-R performed 888000 evaluations of the objective function (216 particles with 3000 iterations in 
the binary phase, and 120 particles and 2000 iterations in the continuous phase) for the presented network, 
where the stop criterion for both phases was the absence of improvement of the objective function for at 
least 100 consecutive iterations. 
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From an operational point of view, the method proved 
to be effective in determining the operational rules 
for the assessed network, which resulted in high 
energy savings by reducing the operational cost of 
the pumping systems. Furthermore, the optimized 
routine resulted in better use of the variable level 
reservoir, whose emptying and filling movement 
assured a better water quality.  

Moreover, the optimized routine exhibited less 
variable behaviour for the evaluated pressures at 
the relevant nodes of the studied system. The less 
abrupt pressure variation softens the stresses on 
the pipes, which subsequently increases the useful 
life of the pipes due to less fatigue processes. 

By assessing the optimization method in a 
continuous phase, the results indicated that 
the lower limit for the specific rotations requires 
further evaluation because in several cases, the 
frequent use of a specific low rotation may lead to 
an undesirable phenomenon, such as cavitation, 
excessive vibration, or even overheating the 
equipment. 

Finally, the use of computational tools to operate 
delivery systems can be extremely useful when 
used with clear knowledge of hydraulic issues and 
computational methods involved in the problem. 
The indiscriminate use of computational models 
could create serious issues for system operations, 
and therefore, there is a need to provide tools to the 
operators that can unite the operation practice with 
the ease of the computational tools. 
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