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 Abstract - Multiple Sclerosis (MS) is the most prevalent 
demyelinating disease of the Central Nervous System, being the 
Relapsing-Remitting (RRMS) its most common subtype. We 
explored here the viability of use of Self Organizing Maps 
(SOM) to perform automatic segmentation of MS lesions apart 
from CNS normal tissue. SOM were able, in most cases, to 
successfully segment MRIs of patients with RRMS, with the 
correct separation of normal versus pathological tissue 
especially in supratentorial acquisitions, although it could not 
differentiate older from newer lesions.  
 
 

 Index Terms - Self Organizing Maps, SOM, Magnetic 
Resonance Imaging, Demyelination, Multiple Sclerosis 
 
 
 

I.  INTRODUCTION 

 

 Being one of the most concerning illnesses at present, 
constant and fast changing on its protocols and medications 
available, demyelinating diseases, such as multiple sclerosis 
(MS), are among the leading causes of medical help being 
sought both in the inpatient and outpatient environment, 
either due to acute situations, such as the need ofemergency 
care in case of a relapse of recent onset, as well as prompt 
neurological consultation for outpatients who experience 
troubles originating both from the disease and from the side 
effects medications offer.  
 
MS can be subdivided [13], in accordance to the disease 
course, between Relapsing-Remitting, Secondary Progressive 
and Primary Progressive, the first being most prevalent. The 
use of tools to assure better quality of imaging, in this 
scenario, is highly desirable and should always be improved. 
 
Currently, Magnetic Resonance Imaging (MRI) plays a key 
role not only for diagnosis, but also for the evaluation of rate 
of disease progression. Lesion load on MRI is correlated with 

disability outcome in MS. In both cases, the examiner needs 
to gather information from distinct acquisitions, that must be 
seen separately, one at a time, then ponder which will be the 
next steps taken, including maintenance or modification of 
the pharmacological treatment. 
 
In this paper, the use of SOM Self-Organizing Maps (SOM), 
a neural network multivariate pattern recognition technique  
is proposed. The computational analysis can aid on the 
identification of neurological lesions, making diagnosis more 
robust and therapeutic decisions more precise, providing a 
better characterization of the geometry and extension of the 
injury, hence facilitating the identification of compromised 
regions. 
 
According to Kohonen [4], the biggest advantages of SOM 
are being a non-supervised technique of segmentation, and 
being widely used in many fields, such as geology [11, 15], 
mathematics [16], finances [17] and engineering [18]. 
Besides, the better performance of SOM among other 
unsupervised techniques, as principal component analysis 
(PCA) and independent component analysis (ICA), was 
demonstrated by Coléou et al. [22], which motivated the 
choice of this tool. 
 
 In medicine, its use is still to become more frequent. SOM 
has already been validated for segmentation of human tissue 
in previous works [9, 10]. In neuroradiology, it is more 
frequently used with functional images (fMRI) [6,7,8], but 
not so much with conventional images for anatomic 
interpretation. 
 
Mei et al [1], as Vijayakumar et al [2], have shown that SOM 
can be successfully used to separate neoplasm from normal 
tissue in the brain, as well, it can segment different areas of 
the lesion.  
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MS automatic segmentation could play an important role, as 
one could be more assured of following the rate of increase of 
the lesion burden for the same patient, in a more precise way 
[12]. Abdullah et al, on an article in 2011[3], have shown a 
supervised training method of segmentation that could predict 
possible lesions of MS in MRI. However, to our knowledge, 
no indexed paper so far has further explored the segmentation 
of MS lesions based on an unsupervised learning technique, 
as with SOM, among others. 
 
This present study aims to investigate the capability of the 
assisted segmentation of MS lesions by SOM, as well as to 
contribute to data on the yet-not-frequent use of SOM in 
medical research. 
 
 

II.  MATERIALS AND METHODS 

 

 We collected FLAIR, T1 and T1 with Gadolinium (Gd) – 
with enhancement present in half of the cases – which in this 
context represents lesions of newer nature brain 1,5 Tesla 
MRI acquisitions that represented, for the same patient, the 
same topographic level of the lesion in 10 patients with 
confirmed diagnosis of Relapsing-Remitting MS, 2 males and 
8 females, with ages from 21 to 69 years, as described in 
Table I. The topography chosen for each patient represented 
the area with the highest lesion burden. Half had Gd 
enhancement at the time of the acquisition. MS patients 
characteristically have lesions of different times of onset, and 
the enhancement by Gd demonstrates that new lesions have 
appeared roughly within the last 3 months, and are useful 
information regarding treatment decision. All patients were 
under immunomodulating regimen and being regularly 
followed at our institution on the moment the MRIs used in 
this research was performed. 
 

 
TABLE I 

PATIENTS ENROLLED 
PATIENT AGE SEX Gd 

ENHANCEMENT 
LOCATION OF 
SLICE STUDIED 

1 46 M - Supratentorial
2  33 F - Supratentorial
3 33 F + Supratentorial
4  39 F - Supratentorial
5 25 M + Supratentorial
6 39 F + Supratentorial
7 46 F - Supratentorial
8 21 F + Infratentorial
9 44 F + Supratentorial
10  69 F - Infratentorial
Gd = Gadolinium 
 
The acquisitions, for each patient, were then pre-processed 
and registered, in a fashion that their boundaries were mostly 
coincident. The images were then transformed from raster 

into points by ArcMap software [21], data was gathered and 
the absolute black (regions of the pictures that had no brain 
tissue, with gray scale value of 0 in all acquisitions) 
suppressed, in a worksheet, with values of gray of T1, T1 Gd 
and FLAIR for each pixel. Subsequently, the generated 
matrix ran through SOM, first for training neurons, and then 
segmenting the neurons in clusters by k-means, using for 
both tasks SiroSOM, a Matlab-based SOM implementation 
available from CSIRO, Australia, idealized by Fraser and 
Dikson [5]. The parameters used for training neurons are 
displayed in Table II.  
 
SOM is a neural network tool formed by two layers: the input 
data samples, and the map of nodes, called neurons, that can 
learn, in a simplified model of brain processing by a iterative 
method. Let be x = [x1,x2,x3, …, xn] the sample of n 
dimensions to be classified, and N the number of samples. 
The two map dimensions of SOM are heuristic determined by 
two close numbers whose multiplication is closest to 5 ∗ √ܰ, 
and whose ratio is equal to the ratio of the two biggest 
eigenvalues of the covariance matrix of input data. Each node 
is associated to a weight (w), with n dimensions, randomly 
distributed. The target of the algorithm is to adjust the values 
of weights to better classify the input samples, in this case by 
Euclidian distance parameter. The vector between the closest 
node and the sample is called Best Matching Unit (BMU) and 
is used to update the weighs as follows: 
ݐ௜ሺݓ  + 1ሻ = ሻݐ௜ሺݓ + ሻݐሺߙ ∙ ℎ஻ெ௎௜ ሺܶሻ ∙ ௞ݔ] −  ሻ]   (1)ݐ௜ሺݓ
 
in which t is the iteration, ℎ஻ெ௎௜  is the radius of  neuron 
neighborhood with hexagonal lattice, which was defined as a 
Gaussian equation, and determines the neurons to be updated, 
and α is the learn radius, defined as: 
ሻݐሺߙ  = /଴ߙ	 ቀ1 + 100 ௧்ቁ         (2) 

 
in which T is the training length. In this study, the training 
was done in two parts: an initial one with rough values, and a 
refined one, with lower values, all shown in table II.  
 
The distance map between the nodes, called U-Matrix, 
enables the visualization of the clustering results. Once the 
technique preserves topography, it is possible to visualize 
closer groups of nodes (in cold colors) representing similar 
patterns, while more distant ones are associated with 
disparate patterns. 
 
In order to evaluate SOM performance, two errors are 
calculated: topographic (Te) that computes the occurrences in 
which the samples is associated to a BMU that is not adjacent 
in map structure, and quantization (Qe) that measures how 
close the input data is to the BMUs. 
 
Because the number of map nodes are big, they are usually 
clustered by k-means method, in which k is defined by the 
David-Bouldin index. 
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III.  RESULTS 

 
The most important variables and results of SOM are 
summarized in table II. 
 

TABLE II 
PARAMETERS USED IN NEURON TRAINING BY SIROSOM  

 
Patient Map Size Rough Training Fine Training Final Qe Final 

Te 

Initial 
Radius 

Final 
Radius 

Training 
Length 

Initial 
Radius

Final 
Radius 

Training 
Length 

1  64 × 62 90 23 20 23 1 400 0.0114 0,257
2  52 × 50 73 19 20 19 1 400 0,0825 0,083

3 70 × 68 98 25 20 25 1 400 0.0228 0.025

4  68 × 66 95 24 20 24 1 400 0.0048 0.126
5 66 × 64 92 23 20 23 1 400 0.0056 0.153

6 66 × 64 92 23 20 23 1 400 0.0261 0.026
7 68 × 66 95 24 20 24 1 400 0.0171 0.027
8 44 × 42 61 16 20 16 1 400 0.0717 0.087
9 68 ×66 95 24 20 24 1 400 0.0055 0.122

10  44 × 42 61 16 20 16 1 400 0.0232 0.319

 
On Fig. 1a one can see an example of component plots and 
the U-Matrix generated in patient 2. The number of clusters c 
to be created, being c ∈	ℕ	 |	 2	<	 c	<	25, was defined based on 
the internal clustering of the Davies Bouldin Index (DBI), 
provided in SiroSOM, where the lowest value for each 
analysis indicated the possible best result. Fig. 1b shows an 
example of plot of the values of DBI for each possible value 
of c. SiroSOM results were than transformed back from 
points to raster, including cluster number for each pixel. This 
transformation allowed the composition, by ArcMap, of one 
single image, segmented on basis of similarity as explained 
above. 
    
 
 

 

 
 
Fig 1 – A. Maps of Components, plotted separately; B. Davies-Bouldin 
Index values for c clusters, being c ∈	ℕ	|	2	<	c	<	25 

 

 Images obtained by SOM can be seen in Figure 2, 
alongside with FLAIR and T1-Gd acquisitions of each 
patient. Each SOM generated image is segmented in colors 
which represents different clusters.  
 

In all supratentorial images, we are able to notice a 
complete separation of the lesions in one or two specific 
clusters, usually with the most hyperintense part of the lesion 
being put in one cluster, and the lesser bright in another, but 
both different from the adjacent healthy/healthier tissue. 
However, for the same patient, lesions with and without Gd 
enhancement were classified as the same cluster.  
 

In some patients (more prominent on patients 5 and 6), a 
part of the cortex/juxtacortical area is classified as the same 
cluster as the lesions.  
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Fig. 2 – For each patient, A – SOM generated image, B – FLAIR, and C – Gadolinium T1 acquisitions. Gd+ = Patient with Gd enhancement. 
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Fig. 2 (contd.) – For each patient, A – SOM generated image, B – FLAIR, and C – Gadolinium T1 acquisitions. Gd+ = Patient with Gd enhancement. On Patient 6 
the area of enhancement (shown by red arrow) is better seen in other acquisitions, not displayed here 
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IV. DISCUSSION 

 

Keeping in mind that we analysed a limited number of 
samples and that it may carry some limitations of 
representation, SOM were able to successfully segment MRIs 
of patients with RRMS, with the correct separation of normal 
versus pathological tissue in general, and further research 
would be useful to expand the knowledge on this issue. 
 

As mentioned above, in some patients, cortical and 
juxtacortical areas are classified in the same cluster as 
demyelinating lesions. This makes sense, as cortical areas are 
less myelinated, just like the lesions. However, it is not 
possible, only by SOM analysis, to exclude disease damage 
in these parts. It may be plausible, as it has now been known 
for some time, that MS is not only a white matter disease, and 
that there may be some inflammation occurring as well in a 
percentage of these areas cluster-similar to lesions. This is in 
accordance with the already proven concept of Normal-
Appearing White Matter (NAWM) [19,20]. 
 

This results come in accordance with some of the 
previous results of SOM in brain neoplastic lesions, where 
SOM was able to separate lesions from healthy tissues, as 
well as cluster suspected areas of infiltration. These areas of 
suspicion (possible infiltration in neoplasms and possible 
inflammation/gliosis in MS) could be better accessed in 
upcoming research, focusing on methods of confirmation, 
such as biopsy/necropsy. 
 

Though the use of Self Organizing Maps appears to be 
less effective on the segmentation of infratentorial lesions 
and also not sensitive enough to separate acute Gd enhanced 
lesions from lesions of older nature, it was very successful on 
dealing with supratentorial acquisitions.  

 

V. CONCLUSIONS 

 
SOM may be a useful tool for the segmentation of 

supratentorial lesions and for the quantification of lesion 
burden, being important in defining lesion load. Its use in 
medical imaging is yet underexploited, and novel research on 
neuroimaging should be encouraged, based on positive 
results obtained so far in the few studies already published 
and the fact that it is an unsupervised method, making it a 
diagnostic aid valid for not only people with good 
background of  neuroimaging, but also for people of lesser 
knowledge (medical students and non-physician health 
practitioners, for example).  
 

Our analysis suggests that demyelinated regions in MS 
show better lesion delineation when exploited with the aid of 
segmenting software, if compared to conventional 
acquisitions alone, such as T1 or FLAIR. 
 

The fine definition of the geometry of the lesions is not 
always possible based only on individual analysis of MRI 
images. The use of the dimensional space defined by the 
analysed variables by SOM made possible not only the 
categorical separation of tissues, including damaged ones, but 
also contributed to the geometrical identification of their 
scope. Even though this segmentation is not binary (i.e., does 
not separate normal from abnormal, but rather different 
classes of tissues, including arranging distinct normal tissues 
in different clusters), it helps to distinguish lesions, grouped 
in one single cluster (regardless of lesion age), from other 
areas of the brain that do not show a clear evidence of disease 
activity on MRI. This learning is fundamental to the 
diagnosis, as well as to a more precise identification of 
affected regions, which may guide clinical decisions in MS. 
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